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ABSTRACT 

There is increasing evidence for a cerebellar contribution to cognitive processing, but the 

specific input pathways conveying this information remain unclear. We probed the role of 

climbing fiber inputs to Purkinje cells in generating and evaluating predictions about 

associations between motor actions, sensory stimuli, and reward. We trained mice to perform 

a visuomotor integration task to receive a reward and interleaved cued and random rewards 

between task trials. Using two-photon calcium imaging and Neuropixels probe recordings of 

Purkinje cell activity, we show that climbing fibers signal reward expectation, delivery, and 

omission. These signals map onto cerebellar microzones, with reward delivery activating 

some microzones and suppressing others, and reward omission activating both reward-

activated and reward-suppressed microzones. Moreover, responses to predictable rewards 

are progressively suppressed during learning. Our findings elucidate a specific input pathway 

for cerebellar contributions to reward signaling and provide a mechanistic link between 

cerebellar activity and the creation and evaluation of predictions. 
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INTRODUCTION 

The cerebellum is thought to facilitate smooth behavioral execution and learning by generating 

expectations about the sensory consequences of actions and using sensory input to inform 

future motor output – i.e. forming internal models of how we interact with the world (1, 2). 

Purkinje cells, the output neurons of the cerebellar cortex, are crucial for the construction and 

updating of internal models (3). These neurons receive thousands of inputs from parallel fibers 

carrying contextual sensory and motor information, and a single but exceptionally strong input 

from a climbing fiber. These climbing fibers, which generate complex spikes in Purkinje cells, 

carry supervisory instructive signals and modify the synaptic weights of parallel fiber inputs to 

Purkinje cells (4-6).  

Climbing fiber activation triggers complex spikes in Purkinje cells at low rates (~0.5-2 Hz) and 

yet exerts a powerful influence on cerebellar function at the level of Purkinje cell populations. 

This is due to the anatomical and functional relationships between inferior olive neurons, the 

source of climbing fibers, and Purkinje cells (7, 8). Olivary neurons are gap-junction coupled 

and exhibit subthreshold oscillations (9, 10), and neighboring olivary neurons, which innervate 

neighboring Purkinje cells, fire action potentials synchronously and consequently trigger 

synchronous complex spikes in neighboring Purkinje cells. In this way, functional clusters of 

Purkinje cells, known as microzones, experience climbing fiber activation coherently and 

coordinate cerebellar output via synchronous output to neurons of the cerebellar nuclei (11). 

Population recording methods have recently made it possible to address how olivary neurons 

engage Purkinje cell populations during behavior (12-20). 

In well-studied tasks that engage the cerebellum, the instructive signals conveyed by climbing 

fibers are usually considered as error signals in an extrinsic framework, e.g. retinal slip during 

visual tracking (21, 22). However, there is increasing evidence for the cerebellum’s 

involvement in a higher-order processing (23) including spatial navigation (24), language 

processing (25), and, notably for our study, reward (15, 26). We therefore examined whether 

the climbing fiber inputs to Purkinje cells may carry internally generated instructive signals and 

tested this possibility directly by studying how reward context is represented by climbing fiber 

inputs to Purkinje cell populations. 

We demonstrate topographically organized encoding of reward context in the complex spiking 

patterns of Purkinje cell populations in lobule simplex of the cerebellar cortex, a region 

traditionally thought to modulate forelimb movements (15, 27). We recorded dendritic calcium 

signals (a proxy for climbing fiber input and complex spikes) using two-photon microscopy and 

made direct recordings of complex spikes using Neuropixels probes while mice received 

rewards with varying degrees of predictability: after performing a trained motor action, after a 
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tone-cue that preceded reward by a fixed delay, and randomly without prompting. Population 

activity of Purkinje cells represented reward context in a diverse but predictable manner 

organized spatially into microzones: some microzones exhibited elevated activity at reward 

delivery (‘reward-activated microzones’), while other microzones were inhibited (‘reward-

suppressed microzones’). Some of these microzones also exhibited an elevated rate of 

complex spiking in anticipation of upcoming reward, with this behavior preferentially expressed 

in reward-suppressed microzones. When rewards were omitted on motor trials, both reward-

activated and reward-suppressed microzones exhibited omission-related feedback error 

signals. Omitting tone-cued rewards also triggered feedback error signals, and these signals 

occurred just after the time of expected reward. Finally, the degree of reward predictability 

modulated reward-related sensory responses in a graded fashion: the more predictable the 

reward, the smaller the sensory response it triggered. Combined with the recent 

demonstration that cerebellar granule cells also encode reward context (26), our data 

demonstrate that the cerebellar cortex has access to the information streams necessary to 

create and evaluate expectations about higher-order variables.   
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RESULTS 

Population Purkinje cell complex spike recordings during a sensorimotor task 

We trained mice to perform a visually guided sensorimotor integration task to study the variety 

of climbing fiber signals conveyed to Purkinje cells during behavior. Mice were head-fixed in 

front of an array of monitors and trained to use a steering wheel placed in front of their 

forepaws to control a virtual object (Figure 1A, left). The object appeared at an eccentric 

visual position ~45o from the visual midline, and mice had to move it into the center of the 

environment to receive a delayed water reward. After ~10 days of pre-training aimed to 

establish an association between steering wheel turns and virtual object movement, mice were 

transitioned to a more difficult version of the task. Here, the object always appeared on the 

same side (left) at a fixed position, and the mice were required to make a single, continuous 

turn of the steering wheel to translate the object/wheel to a visible target region ±15o from the 

visual midline (Figure 1A, right). Each trial was initiated by the appearance of the object, and 

well-trained mice initiated movements as soon as the object appeared. After the mouse 

initiated a wheel movement, trial outcome was assessed by the position of the object when 

the mouse had, for the first time since trial start, stopped moving the wheel for 100 ms 

continuously. If the object was positioned within the central target region, a delayed reward 

was given 500 ms after the object was stopped (400 ms from trial evaluation). Mice performed 

214 ± 8 trials per session (mean ± s.e.m., n = 61 sessions from 6 mice), and there were 3 

possible outcomes of each trial: undershoots, correct (rewarded) trials, and overshoots 

(Figure 1B). Behavioral performance plateaued after <1 week on this final task version and 

resulted in the following breakdown of performance: 28 ± 4% undershoots, 59 ± 2% correct 

trials, and 13 ± 3% overshoots (mean ± s.e.m., n = 6 mice, averaged within mouse for sessions 

≥ 5 of final task version; Figure 1C). By comparison, performance on days 1 and 2 of the final 

task version was significantly lower (46 ± 3% correct trials, mean ± s.e.m., n = 6 mice, p < 

.05). 

To image Purkinje cell populations during our task, we expressed Cre-dependent GCaMP6f 

virus in Pcp2(L7)-cre mice. Injections were targeted to the left lobule simplex and adjacent 

vermis (Figure 1D), regions known to be involved in forelimb movements (15, 27). Purkinje 

cell population activity was recorded using resonant scanning two-photon microscopy to 

measure dendritic calcium signals, faithful indicators of climbing fiber input and complex 

spiking in Purkinje cells (28-31). Our fields of view (FOVs) yielded 219 ± 27 (mean ± s.e.m., n 

= 13 different fields from 9 mice) distinct dendritic regions of interest (ROIs) corresponding to 

individual Purkinje cells (Figure 1E). Individual dendritic ROIs exhibited fast calcium transients 

indicative of complex spikes, and we extracted the size and timing of these events for each 

recorded neuron (Figure 1F).  
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As a first step towards understanding how Purkinje cell activity is related to different aspects 

of the behavior, we aligned the calcium responses of our neurons to two important time points 

in the task across trial outcomes: (1) movement initiation and (2) movement termination and 

reward delivery (which occurred with a fixed time interval), and sorted neurons by their 

response during these epochs on correct trials. Subsets of Purkinje cells exhibited elevated 

dendritic calcium signals in the interval immediately prior to movement initiation and during 

the movement itself (Figure 1G). Because animals usually initiated wheel movements 

immediately upon object appearance, these signals may reflect either object appearance (a 

sensory signal) or the wheel movement (a motor signal). To distinguish these (not mutually 

exclusive) possibilities, we compared activity in trials where mice reacted rapidly from those 

in which they did not, and wheel movement within trials to those made during inter-trial 

intervals (Supplementary Figure 1). We found that while the object appearance itself could 

evoke responses in our recorded neurons, movement-aligned activity was similar for trials in 

which animals reacted quickly or slowly, and also similar for wheel movements initiated within 

trials and outside of trials. Furthermore, trial-by-trial analysis of population activity as a function 

of reaction time showed a tighter linkage between activity and movement onset than object 

appearance. Thus, movement onset-aligned activity is preferentially related to movement.  

Many Purkinje cells also exhibited elevated calcium signals in the interval between the end of 

wheel movements and the reward, and at the time of the reward delivery itself (Figure 1H). 

Overall, we found that movement onset-related activity was not predictive of trial outcome 

(Figure 1I), while reward delivery on correct trials modulated our recorded populations 

potently (Figure 1J). In subsequent experiments, we explored how reward-related signals 

were organized in Purkinje cell populations and how they could be modulated by reward 

context.  

Topographic organization of reward-related signals 

Microzones constitute a fundamental unit of cerebellar processing and are defined by the 

relationship between Purkinje cells and the climbing fibers that innervate them (7, 8, 28, 30, 

32). We asked whether the functional segregation of Purkinje cells activated by reward 

delivery maps onto microzones. To begin, instead of sorting ROIs based on response 

magnitude, we sorted them based on anatomy: orthogonally to the parasagittal axis of Purkinje 

cell dendrites. This sorting revealed groups of reward delivery-activated and reward delivery-

suppressed Purkinje cells (Figure 2A). To classify individual Purkinje cells into microzones 

systematically in all our recorded FOVs, we used principal component analysis to reduce the 

dimensionality of each dataset and performed k-means clustering followed by a series of 

validation steps to identify microzonal clusters (see Methods and Supplementary Figure 2). 

The clustering results for our example FOV are plotted for the first 3 components in Figure 
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2B. These functionally defined clusters mapped onto anatomically clustered Purkinje cell 

populations, revealing almost perfect mediolateral segregation into microzones (Figure 2C, 

Supplementary Figure 3). This method yielded similar results to previously established 

correlation-based methods for identifying microzones, as evident from the block-diagonal 

correlation matrix structure of our sorted Purkinje cells (see Methods and Supplementary 
Figure 3). Fields of view (670 µm x 670 µm) contained 5.3 ± 0.3 microzones (mean ± s.e.m., 

n = 6 fields from 6 mice). Microzones were 170 ± 10 µm wide (~17 dendrites wide) and 

contained 34 ± 3 dendrites (n = 1101 dendrites, 32 microzones), consistent with reported 

microzonal widths on the order of 100-200 µm (15, 28, 30) (Supplementary Figure 3). 

We used our microzonal groupings to ask how functionally related groups of Purkinje cells 

encoded reward-related activity in their complex spiking patterns. Most Purkinje cells within a 

given microzone exhibited similar patterns of reward-related activity (Figure 2D) and 

microzones segregated into two groups – those that increased their activity upon reward 

delivery (‘reward-activated’, Figure 2D, Clusters 3, 5, and 6; Figure 2F) and those that 

decreased their activity upon reward-delivery (‘reward-suppressed’, Figure 2D, Clusters 1, 2, 

and 4; Figure 2G). Across our 6 FOVs, we found an equal proportion of reward-activated and 

reward-suppressed microzones (16 of each). These reward-related groupings were not strictly 

related to movement onset-related activity, with both reward-activated (11 of 16) and reward-

suppressed (7 of 16) microzones showing significant activation at the time of movement onset 

(assessed across trials for intervals 300-0 ms prior to movement onset and compared to 

baseline firing rates; Wilcoxon signed-rank test). We also aligned a subset of our FOVs (4 of 

6) to coarser anatomical maps of the cerebellar surface. These coarse maps showed a gross 

level of stereotypy between animals with alternating groups of reward-activated and reward-

suppressed neurons that could contain multiple functionally identified microzones 

(Supplementary Figure 4). 

We next asked whether complex spikes in Purkinje cells, at the level of microzones, may 

encode upcoming reward predictively and whether they may signal lack of reward on incorrect 

trials. We found that both reward-activated and reward-suppressed microzones could exhibit 

elevated activity in the delay period between movement offset and reward (assessed across 

trials for delay intervals 0 - 200 ms and 200 - 400 ms after movement offset, and compared to 

interval 500 prior to movement offset; Wilcoxon signed-rank test, p < 0.025 with Bonferroni 

correction), with a higher fraction of reward-suppressed microzones showing significant 

modulation (Figure 2H). Activity during the delay period was similarly elevated on correct and 

incorrect trials (Figure 2E-G), suggesting that mice used reward delivery as the ultimate signal 

reflecting trial outcome. Indeed, mice that licked predictively during the delay period (3 of 6 

mice) did so similarly for correct and incorrect trials. To rule out the possibility that delay period 
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activation was simply a reflection of this licking motor program, we correlated the level of 

activation in reward-predictive microzones to the level of predictive licking that each animal 

exhibited and found no relationship (Supplementary Figure 5). Thus, predictive licking 

cannot explain the elevated activity observed during the delay period.  

Subsets of activated and suppressed microzones also exhibited elevated activity in the period 

after expected reward time on incorrect trials (assessed across trials for post-reward intervals 

100 – 300 ms and 300 - 500 ms after expected reward time compared to delay period 500 - 0 

ms prior to reward time; Wilcoxon signed rank test, p < 0.025 with Bonferroni correction), with 

a higher proportion of reward-suppressed microzones showing significant modulation (Figure 
2H). Thus, complex spikes in Purkinje cell populations collectively encode reward-related 

information in our task, including putatively predictive signals, bidirectionally-modulated 

reactive signals, and error-like signals associated with lack of reward on incorrect trials.  

Predictability modulates reward-related sensory responses in trained mice 

In some experiments, mice were occasionally provided with random rewards during inter-trial 

intervals of the motor task to maintain their motivation. When we analyzed these experiments 

and compared reward-related responses within the task to those given randomly during inter-

trial intervals, we noticed that random rewards triggered significantly larger responses than 

rewards earned during correct trials of the task (Supplementary Figure 6). We reasoned that 

this difference may reflect an expectation-dependent modulation of the reward-related sensory 

cue (solenoid sound), similarly to the suppression of climbing fiber responses to predicted 

periocular air puffs during eye-blink conditioning (33).  

To test this directly, most of the mice in our study (5 of 6 mice from Figure 2) were trained to 

perform the motor task with interleaved random or tone-cued rewards on a subset (10% each) 

of inter-trial intervals (Figure 3A). Thus, we could compare how climbing fiber inputs to 

Purkinje cells convey information about random (not predictable), operant, and tone-cued 

(fully predictable) rewards (Figure 3B). Consistent with tone-cued rewards being more 

predictable (and carrying a greater degree of expectation) than operant rewards, all mice 

exhibited greater predictive licking during the delay between the tone cue and reward than 

during the delay between a correctly executed operant trial and reward (Supplementary 
Figure 7). Predictive lick was, by definition, not present in the random reward condition. The 

level of reward predictability had a clear influence on reward-related sensory responses: 

random reward evoked the largest signals, operant rewards evoked signals of intermediate 

size, and tone-cued rewards exhibited strong suppression of the sensory response typically 

associated with reward delivery (Figure 3C-D). To further validate that reward predictability 

exerted a suppressive effect on reward-related sensory signals, we also analyzed data from 
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2 mice that were trained on an easier version of our task, where all vigorous wheel movements 

towards the midline produced a correct trial and were rewarded (see Methods). In these mice, 

we found that reward responses were suppressed even more than those mice trained on our 

normal task (Supplementary Figure 8).  

How does the predictability of reward alter the patterns of activity displayed by populations of 

Purkinje neurons? To answer this question, we computed correlations between the mean 

activity response vectors in each Purkinje cell over the interval 0 to 500 ms post-reward in our 

three reward conditions. Random and operant rewards triggered highly correlated activity 

patterns, confirming that similar subsets of Purkinje cell dendrites were activated in these two 

reward conditions. In contrast, the correlation between activity patterns recruited by either 

random or operant rewards with those recruited by tone-cued rewards was lower than 

between random and operant rewards (Figure 3E), demonstrating that reward predictability 

modulated these responses in a similar manner. To test whether representations of reward 

predictability varied continuously or whether they were categorically different across our 

reward conditions, we performed trial-by-trial analysis of the reward responses in individual 

neurons for trials with different amounts of predictive licking. This analysis did not show any 

obvious trend of greater suppression of the reward response in trials with stronger predictive 

licking for either tone-cued or operant rewards (Supplementary Figure 7). Thus, while 

predictive licking was categorically different across our different reward conditions, it was not 

sufficient to explain the differences in reward responses across different reward categories.  

We also analyzed responses to random and cued rewards separately for Purkinje cells in 

reward-activated and reward-suppressed microzones (defined within the operant motor task; 

Figure 3F). We found that, on average, Purkinje cells from both groups were activated by the 

predictive tone cue and exhibited little modulation at the time of reward. In contrast, random 

reward delivery could activate not only those Purkinje cells that were activated by the reward 

cue in the operant task, but also Purkinje cells that were suppressed by operant rewards. 

Thus, the level of predictability exerts a bidirectional influence on reward-related activity 

across Purkinje cell populations, modulating responses when there is ambiguity in the 

outcome and remaining neutral when there is no ambiguity. 

To validate that the reward-related modulation of Purkinje cell dendritic calcium signals do 

indeed reflect modulation in complex spiking, and not some other process (e.g. modulation of 

dendritic calcium signals by molecular layer interneurons (34)), we complemented our imaging 

experiments with direct electrophysiological recordings of complex spikes in Purkinje cells 

(Figure 4A) using Neuropixels probes. We performed these experiments in a minimal 

behavioral task in which we presented mice with tone-cued and random rewards (without a 

motor task), and processed the electrophysiological recordings using automated spike sorting 
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methods combined with post hoc manual curation (Supplementary Figure 9; see Methods). 

Recordings from Purkinje cells were readily identifiable by a range of criteria, including the 

presence of complex spikes (Figure 4B, left) and high-frequency simple spikes (Figure 4B, 
right), which exhibited characteristic pauses in firing after complex spikes (Figure 4C). Most 

recorded neurons (56 / 61 cells, n = 3 mice) exhibited an increase in complex spikes upon 

delivery of random rewards (Figure 4D). In agreement with our imaging experiments, the 

response to tone-cued rewards in these Purkinje cells was significantly suppressed (Figure 
4E-F, top). Furthermore, the minority of Purkinje cells in our recordings that exhibited 

suppressed complex spike response to random rewards also were activated by the tone cues 

and exhibited minimal modulation at reward time when rewards were cued (Figure 4E-F). 

Thus, the results of our imaging experiments are highly consistent with those observed using 

direct electrophysiological recordings of complex spikes. 

Modulation of reward-related responses develops with training 

Reward expectation must by definition be associated with the development of trained 

behavior, and expectation signals should be absent in naïve mice. To test this, we analyzed 

recordings from the first day of training, when mice could begin to form associations between 

rewards and the tone-cues, wheel turns, or solenoid clicks that preceded rewards. Naïve mice 

learned to lick to rewards over the course of this first session, but the majority of ‘within-trial’ 

rewards on this first day were given as auto-rewards (see Methods). In naïve mice, reward 

delivery evoked dendritic calcium events in Purkinje cells that were similar across all 

conditions (Figure 5A-C). Interestingly, we observed the development of suppression of tone-

cued rewards even within this first day of training. While random and within-trial rewards evoke 

similar responses, the response to tone-cued rewards was slightly reduced when averaging 

all tone-cued rewards (on average 10) given on this first day. However, when we analyzed 

only the first 3 tone-cued rewards given within each session, we saw no difference in the 

response when we compared them to random rewards (Figure 5D). Thus, the suppression of 

responses for predictable rewards was learned and could develop rapidly during training. To 

further support the idea that mice learned to associate task parameters and reward, we 

compared the latency to the first lick for random rewards in naïve and trained mice. The lick 

latency in trained mice was significantly shorter than in naïve mice, consistent with a learned 

association that developed with training (Figure 5E). 

Fictive reward on operant trials triggers error signals across microzones 

We next tested how omission of reward could produce an error response, similar to that 

observed at reward time on incorrect motor trials, and to the reward-omission response 

recently reported by Heffley and colleagues (15). We took advantage of the fact that the 
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solenoid valve-associated sensory cue that was audible at reward time represents the most 

immediate signal that reward would be delivered across reward conditions in our task. We 

introduced perturbation trials on 10% of correct trials in our motor task in which we triggered 

an identical solenoid valve to the one that normally delivered our reward but was not coupled 

to reward: i.e. we gave a fictive reward (Figure 6A). In 5 of our 6 mice, we recorded from 

FOVs that showed reward-related activity (Figure 6B, compared to Figure 2C) and measured 

the differences in neural activity and behavior between real and fictive reward presentation 

(Figure 6C-D). Responses on trials with real and fictive reward were similar during the pre-

reward delay period and the immediate post-reward period (Figures 6C-G), demonstrating 

that mice could not distinguish between the sound of real and fictive reward. However, Purkinje 

cells exhibited strong activation in the later post-reward period (+100 to +200 ms) (15), 

presumably when mice realized the lack of reward delivery (Figure 6C-F). This reward-related 

error signal was present across our two groups of Purkinje cells (Figure 6G). Thus, reward-

related error signals transcend microzone boundaries: both reward-activated and suppressed 

microzones can convey these signals. 

Feedback error signals caused by omission of tone-cued reward  

Modulation of reward-related activity on tone-cued rewards is drastically reduced in trained 

animals. Given the cerebellum’s crucial role in motor timing (3, 12, 33, 35), we reasoned that 

mice may learn the delay interval between the cue and reward for tone-cued rewards, and 

wondered how violations of this expectation would be represented in the climbing fiber input 

to Purkinje cells. To test this directly, we introduced tone cues in our task that were not 

followed by rewards (Figure 7A). To obtain enough repetitions for each condition, we altered 

the likelihood of the reward event types during inter-trial intervals of our operant task, such 

that 30% of intervals contained a cued reward and 10% of intervals contained a cue but no 

reward (3:1 reward to omission ratio) and recorded from the same 5 mice subjected to fictive 

reward (Figure 7B). In two of these mice, we also recorded video of orofacial movements 

during these experiments (Supplementary Figure 10). Cued omission of reward evoked 

responses in many Purkinje cells (Figure 7C-D) at the time of expected reward (computed 

over 0 – 200 ms post expected reward, Figure 7E-F). These error signals were related to the 

expectation based on the tone cue, because we omitted any sensory signal at the time of the 

reward itself. Importantly, responses to the tone-cue were similar for rewarded and 

unrewarded cues (Figure 7E-F). We again asked if Purkinje cells defined as reward-activated 

and reward-suppressed in our motor task encoded this reward omission differently, and found 

that, as for our analysis of incorrect trials within the motor task, these error responses were 

expressed more strongly (but not exclusively) by neurons in reward-suppressed microzones 

(Figure 7G). We also validated that these omission responses were present in our 
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electrophysiological recordings of Purkinje cells by omitting cued rewards in our simple 

conditioning paradigm. We found neurons with significant increases in complex spike rates at 

expected reward time (Figure 7H), confirming that omission-related error signals identified in 

our imaging experiments are reflected in the underlying complex spike patterns of Purkinje 

cells. 
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DISCUSSION 

The nature and variety of signals conveyed to Purkinje cell populations by climbing fibers has 

been vigorously debated. This debate has centered on whether climbing fibers carry feedback 

error signals or timing signals to sculpt ongoing and future actions (36). Here we show that 

when mice learn to associate multiple parameters – operant wheel movements, tone-cues, 

and solenoid clicks – with reward, this reward context is encoded in climbing fiber input to 

Purkinje cells. Specifically, climbing fiber signals encode parameters related to internally 

generated expectations, namely those relating to reward expectation, delivery, and evaluation.  

In this way, the cerebellum can utilize all relevant signals – be they self-generated or sensed 

– to make predictions about the future, evaluate these predictions, and relay them to the rest 

of the brain.  

Microzonal organization of reward signals in Purkinje cells 

Our results demonstrate that climbing fiber inputs signal reward bidirectionally, as activation 

and suppression, via distinct but adjacent groups of microzones (7, 32). Purkinje cells in 

microzones that were suppressed by reward delivery were more likely to exhibit reward-

predictive activity, while Purkinje cells that exhibited reward-related sensory responses 

exhibited expectation-dependent modulation of these responses. However, when reward was 

expected but not delivered, both groups could exhibit error signals in response to this violated 

expectation. Notably, these error signals were strongest (i.e. strongly engaged in both reward-

activated and reward-suppressed microzones) in our fictive reward condition, when mice both 

made the correct action and were provided with the reward-associated sensory signal, and 

less prominent on incorrect motor trials and when tone-cued rewards were omitted. Mice also 

made larger, less stereotyped orofacial movements upon omission of expected reward, 

presumably in search of the reward they were expecting. The generality of these error signals, 

which manifest both on a neural and behavioral level, imply that when expectations are 

violated, climbing fibers may be activated in a heterogeneous manner to destroy previously 

created associations, since the outcomes of these expectations were not fulfilled. 

Learned, temporally specific suppression of sensory responses to predictable rewards 

The degree of predictability of upcoming reward exhibited a profound influence on reward-

related signals in our trained mice. The greater the likelihood of upcoming reward, the greater 

the suppression of responses to reward. Reward delivery elicited large climbing fiber 

responses in Purkinje cells when reward was delivered randomly, moderate responses when 

reward was delivered in a motor trial context in which success was not guaranteed, and 

virtually no responses when reward was cued with a fully predictive tone. These reward-
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related expectations developed with training: responses to reward were similar at the very 

beginning of training, and suppression of predictively reward-related signals developed rapidly 

(within the first training session for fully predictable rewards). The mechanism of this 

suppression is unclear, but a potential source may be the cerebellum itself, whose output 

could exert either an indirect excitatory or direct inhibitory influence over the inferior olive (37). 

These expectation signals were also temporally specific: omission of reward on tone-cued 

trials evoked omission-related activation of Purkinje cells specifically at the time of expected 

reward. 

Relationship between reward-related signals in the two input streams to Purkinje cells 

Cerebellar granule cells have recently also been shown to encode reward (26), presumably 

driven by mossy fiber input of unknown origin. Assessing the similarity of these granule cell 

signals with reward-related climbing fiber signals will require a careful comparison of the 

reward contingencies of these signals, ideally using the same behavioral task. Specifically, a 

spatial organization of reward-related signals (Figure 2A-D) and activity suppressed by 

reward (Figure 2G) have not yet been observed in granule cells. If the granule cell and 

climbing fiber-mediated reward signals indeed exhibit similar behavioral contingencies, it will 

be interesting to examine whether these signals converge on the same Purkinje cells, as might 

be expected from microzonal functional organization (7). Simultaneous encoding of reward-

related signals by granule cell and climbing fiber inputs to Purkinje cells parallels the 

acquisition of predictive signals in these inputs during delayed eye-blink conditioning (33, 38). 

Robust representation of reward signals in these two input pathways, which can drive plasticity 

mechanisms in Purkinje cells, may be crucial for the role of the cerebellar cortex in guiding 

learned behavior.  

Relationship with reward signals elsewhere in the brain  

Our data highlight the diversity of information about reward expectation and delivery provided 

by climbing fiber inputs to Purkinje cells. Reward-related complex spike responses are 

inversely scaled by reward predictability in both reward-activated and reward-suppressed 

microzones, consistent with temporal-difference (TD) prediction error models (39) invoked in 

studies of the midbrain dopaminergic system (40, 41) and for Purkinje cells during eye-blink 

conditioning (33). In this framework, unexpected stimuli should evoke stronger responses than 

predictable ones. However, in contrast to the predictions of TD models, in which neurons 

activated by reward delivery would be suppressed by omission of reward (and vice-versa), we 

observed that reward omission was signaled as an increase in the climbing fiber input in both 

reward-activated and reward-suppressed Purkinje cells (15).  



 
 

15 

The ramp-like increase in climbing fiber activity observed in some Purkinje cells in anticipation 

of reward (Figure 2D-H) represents a non-canonical mode of firing for climbing fibers, which 

typically have been reported to exhibit brief changes in firing rates locked to sensory and motor 

events. The mechanism of this steady activation is not clear, but it may reflect a change in 

excitability of olivary neurons triggered by descending inputs from the cerebellum itself (37, 

42-44). These patterns of activation are similar to those of GABAergic neurons in the ventral 

tegmental area (41) and serotonergic neurons in the dorsal raphe nucleus (45), which 

progressively increase their activity in anticipation of upcoming reward.  

Understanding how cerebellar circuits engage with processing of reward in other parts of the 

brain is an important avenue for future research. The afferent inputs to the inferior olive arise 

from a variety of cortical and subcortical sources (37, 46). Cerebellar outputs target the 

midbrain dopaminergic system (47) and can influence both premotor (48, 49) and basal 

ganglia (50) circuits via the thalamus. Thus, the olivo-cerebellar system may interact with the 

canonical reward circuitry of the brain through these reciprocal connections. Overall, our 

findings lend further support to the idea that the cerebellum coordinates with the rest of the 

brain to process a range of cognitive functions.  
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Figure 1: Population Purkinje cell complex spike imaging during a sensorimotor task
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Figure 1: Population Purkinje cell complex spike imaging during a sensorimotor task 
a. Behavioral setup: mice were head-fixed in front of three monitors and trained to use a 

steering wheel to translate a virtual object from an eccentric visual position (45° left of midline) 

to the midline (±15° target) to obtain a delayed reward. 

b. Example behavioral trials: single undershoot (left), correct (middle) and overshoot (right) 

wheel trajectories, along with reward time and licking behavior. 

c. Behavioral performance in well-trained mice. Colored lines represent performance of 

individual mice (averaged across sessions), and thick black line represents average 

performance across mice. Data are shown as mean ± s.e.m. (n = 6 mice). 

d. GCaMP6f-labeled Purkinje cells in lobule simplex and adjacent vermis. A field of view 

(FOV) in a typical lobule simplex recording location is shown in cyan. 

e. Extracted Purkinje cell dendritic regions of interest (ROIs) from field highlighted in d. 

f. Six example Purkinje cell dendrite fluorescence traces (black) and extracted dendritic 

events (blue). The thickness of the blue line denotes event amplitude. 

g. Top: trial-averaged Ca2+ responses in Purkinje cell population aligned to wheel movement 

onset for undershoot, correct and overshoot trials. Cells are sorted by the first coefficient of 

principal component analysis (PCA) performed over the interval ±500 ms from movement 

onset on correct trials. Middle: trial-averaged steering wheel position. Bottom: trial-averaged 

licking. Position and licking traces are shown as mean ± s.e.m. (n = 97 undershoots, 156 

corrects and 18 overshoots). 

h. Same as g but aligned to reward delivery and sorted by over the interval ±500 ms. Purkinje 

cell dendritic responses were sorted independently in g and h. 

i. Mean time course of fluorescence responses (top) and detected events (bottom) aligned 

to movement onset (vertical dashed line). Mean response for statistical comparisons was 

computed on detected events over an interval of −300 to 0 ms from movement onset (bar 

above traces). Data are shown as mean ± s.e.m. (n = 1,101 neurons from 6 FOVs in 6 mice). 

No group was significantly different from any other group (NS; Kruskal–Wallis test, H = 4.6, 

d.f. = 2, P = 0.1). 

j. Same as i but aligned to reward time (500 ms after wheel stop). Mean response for 

statistical comparisons was computed on detected events over the interval of 0 to +100 ms 

post-reward (bar above traces). Data are shown as mean ± s.e.m. (n = 1,101 neurons from 6 

FOVs in 6 mice). Response on correct trials was significantly different from response on 

undershoot and overshoot trials (Kruskal–Wallis test, H = 22.7, d.f. = 2, P = 1 × 10−5, 

significance values for Bonferroni-corrected individual comparisons: correct versus 

undershoot trials, P = 0.004; correct versus overshoot trials, P = 1 × 10−5; undershoot versus 

overshoot, P = 0.5). 

Statistics summary: n.s. = not significant, **P < 0.01. 



Figure 2: Reward-activated and suppressed Purkinje cells segregate to distinct
cerebellar microzones
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Figure 2: Reward-activated and suppressed Purkinje cells segregate to distinct 
cerebellar microzones 

a. Trial-averaged Ca2+ responses in example FOV aligned to reward delivery on correct trials 

(left) or reward delivery time on incorrect trials (right), sorted anatomically from medial to lateral 

and warped by the local curvature of our recorded Purkinje cell ROIs. 

b. PCA projection of z-scored Purkinje cell dendritic Ca2+ activity (spontaneous activity only) 

onto first three components. Individual ROIs are colored on the basis of k-means clustering 

(k = 6) of neuronal projections onto first six principal components (p = 6). Outlier ROIs shown 

in gray; n = 273 neurons. 

c. Anatomical mapping of functionally identified clusters. Colors correspond to those 

in b (outlier ROIs shown in gray). 

d. Trial-averaged dendritic events plotted separately for neurons within a cluster (left) and as 

the average microzone response (right) on correct trials. Data in right panels are shown as 

mean ± s.e.m. across trials. Group correspondence is denoted by color of y axis labels. 

e. Same as d for incorrect trials. Note that correct trial responses are cropped to better 

illustrate responses on incorrect trials. 

f. Time course of mean microzonal event rates on correct trials (black) and incorrect trials 

(red) for reward-activated microzones. Data are shown as mean ± s.e.m. across microzones 

(n = 16 microzones, 6 mice). 

g. Same as f for reward-suppressed microzones (n = 16 microzones, 6 mice). 

h. Fraction of reward-activated (gray) and reward-suppressed (cyan) microzones that show 

elevated activity during the delay period on correct trials (assessed using two-sided Wilcoxon 

signed-rank test with Bonferroni correction), at the time of expected reward on incorrect trials 

(assessed using two-sided Wilcoxon signed-rank test with Bonferroni correction) and during 

the movement onset period on all trials (assessed using two-sided Wilcoxon signed-rank test). 

Statistical significance between proportions was assessed using a Chi-squared test (n = 16 

reward-activated and 16 reward-suppressed microzones, significance values for individual 

comparisons: delay period (correct trials), P = 0.03; expected reward time (incorrect 

trials), P = 0.03; movement onset (all trials), P = 0.15). 

Note that in d-g, gray bars indicate mean ± 2 s.d. of baseline event rate. Statistics summary: 

n.s. = not significant, *P < 0.05. 
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Figure 3: Predictability modulates reward responses in trained mice 
a. Schematic of reward perturbation experiments: during each behavioral session, we 

randomly interspersed random rewards (10% of inter-trial intervals) or tone-cued rewards 

(also 10% of inter-trial intervals; 500 ms delay between cue onset and reward). 

b. Top: trial-averaged population response of a representative FOV (same as Fig. 2) to 

random, operant and tone-cued rewards. ROIs are sorted first by mediolateral position of 

identified microzones, then mediolaterally within each microzone. Color blocks adjacent to 

each heatmap denote microzonal designation, following the color scheme of Fig. 2 (gray, 

unclustered). Middle: trial-averaged steering wheel velocity. Bottom: trial-averaged licking. 

Velocity and licking are shown as mean ± s.e.m. across trials (n = 30 random rewards, 156 

trial rewards and 30 tone-cued rewards). 

c. Scatter plots showing pairwise comparisons of response amplitude (computed as mean 

over 0 to +100 ms after each event) across different reward conditions; n = 891 neurons from 

5 FOVs in 5 mice. Data points from representative FOV (b) are shown in darker gray. 

d. Cell-wise average of Purkinje cell dendritic response to each reward-related event. Data 

are shown as mean ± s.e.m. (n = 891 neurons from 5 FOVs in 5 mice, Kruskal–Wallis 

test, H = 460, d.f. = 3, P = 2 × 10−99, significance values for Bonferroni-corrected individual 

comparisons: random versus trial reward, P = 2 × 10−18; random versus cued 

reward, P = 3 × 10−33; trial versus cued reward, P = 0.009; trial reward versus tone 

cue, P = 1 × 10−57; cued reward versus tone cue, P = 5 × 10−82). 

e. Summary of Pearson’s correlations between pairs of reward-related events. Data are 

shown as box plots: center line, median; box edges, interquartile range; whiskers, range 

without outliers; gray points, outliers (n = 891 neurons from 5 FOVs in 5 mice, Kruskal–Wallis 

test, H = 237, d.f. = 3, P = 5 × 10−51, significance values for Bonferroni-corrected individual 

comparisons: random and trial reward versus random and cued reward, P = 7 × 10−32; random 

and trial reward versus trial and cued reward, P = 3 × 10−35; random and cued reward versus 

trial and cued reward, P > 0.9; random and cued reward versus random reward and tone 

cue, P = 1 × 10−17; trial and cued rewards versus random reward and tone cue, P = 4 × 10−20). 

f. Time course of mean responses across reward conditions for Purkinje cells in reward-

activated microzones (top, n = 361 neurons) and reward-suppressed microzones 

(bottom, n = 470 neurons). Note that 60 neurons were not clustered into a microzone and 

excluded from this analysis. Data are shown as mean ± s.e.m.  

Statistics summary: n.s. = not significant, **P < 0.01, ***P < 0.001. 

 

  



Figure 4: Electrophysiological recordings of complex spikes during cued and random
reward presentation
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Figure 4: Electrophysiological recordings of complex spikes during cued and random 
reward presentation 
a. Example raw traces (gray) recorded on three adjacent vertically consecutive sites (20 µm 

vertical separation) of a Neuropixels probe within a Purkinje cell layer. The simple spikes and 

complex spikes of a single Purkinje cell are highlighted in black and red, respectively. Several 

other Purkinje cells were identified in this recording but are not highlighted. 

b. Examples of waveforms of complex spikes (CS waveform, left) and simple spikes (SS 

waveform, right) recording using Neuropixels probes (same recording as in a). Each panel 

shows detected spike waveform (mean ± s.d.) and 20 overlaid raw traces.  

c. Normalized histogram of simple spike firing rate (same neuron as a and b) aligned to time 

of complex spikes, demonstrating the characteristic post-CS pause. 

d. Peristimulus time histogram (bin size = 10 ms) of complex spikes in example units that were 

activated (top) and suppressed (bottom) by random reward delivery on random reward trials 

(left) and cued reward trials (right); n = 146 random rewards and 154 cued rewards. 

e. Same as d but for all recorded units that showed activation (top, n = 56 neurons from three 

mice) and suppression (bottom, n = 5 neurons from three mice) to random reward delivery. 

Data are shown as mean ± s.e.m. 

f. Random and tone-cued reward responses (imaging data) in Purkinje cells (PCs) activated 

by random reward (top, n = 280 neurons, 236 of 361 from trial reward-activated microzones 

and 44 of 470 from trial reward-suppressed microzones) and Purkinje cells suppressed by 

random reward (bottom, n = 273 neurons, 28 of 361 from trial reward-activated microzones 

and 245 of 470 from trial reward-suppressed microzones). Modulation of individual Purkinje 

cells was assessed by comparison of response in post-reward period (33–133 ms post-

reward) to pre-reward withhold period (1 s). Data are shown as mean ± s.e.m. 

  



Figure 5: Modulation of reward-related responses develops with training
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Figure 5: Modulation of reward-related responses develops with training 
a. Top: trial-averaged population response of a representative FOV (same as Fig. 2) to 

random, operant and tone-cued rewards in naïve mice (first training session). ROIs are sorted 

first by mediolateral position of identified microzones, then mediolaterally within each identified 

microzone. Color blocks adjacent to each heatmap denote microzonal designation, following 

the color scheme of Fig. 2 (gray, unclustered). Middle: trial-averaged steering wheel velocity. 

Bottom: trial-averaged licking. Velocity and licking are shown as mean ± s.e.m. across trials; 

n = 8 random rewards, 70 trial rewards and 10 tone-cued rewards. 

b. Scatter plots showing pairwise comparisons of response amplitude (computed as mean 

over 0 to + 100 ms after each event) across different reward conditions; n = 1,187 neurons 

from 5 FOVs in 5 mice. Data points from a representative FOV (a) are shown in darker gray. 

c. Cell-wise average of Purkinje cell dendritic response to each reward-related event, pooled 

over the same 1,187 cells in 5 mice. Data are shown as mean ± s.e.m. 

d. Relative response magnitude in neurons responsive to random reward (mean response 

over 0–100 ms after random reward >2 s.d. above baseline) in trained (black), naïve mice 

(whole first session, cyan) and naïve mice (first three trials only, red). Data are shown as 

mean ± s.e.m.; n = 400 neurons (of 891) in trained mice and n = 710 neurons (of 1,187) in 

naïve mice (Kruskal–Wallis test, H = 1857, d.f. = 11, P < 1 × 10−99, significance values for 

Bonferroni-corrected individual comparisons: trained versus naïve mice (trial 

reward), P = 1 × 10−73; trained versus naïve mice (cued reward), P = 1 × 10−59; trained versus 

naïve mice (tone cue), P = 3 × 10−15; naïve mice (all trials) versus naïve mice (first three trials) 

(cued reward), P = 2 × 10−91; naïve mice (all trials) versus naïve mice (first three trials) (tone 

cue), P = 7 × 10−43). 

e. Comparison of latency to first lick in trained mice (gray) and naïve mice (cyan). For naïve 

mice, trials in which mice did not produce a lick to reward delivery (typically the first 5–10 

rewards) were excluded (n = 5 trained mice and 4 naïve mice; licks were not registered for one 

naïve mouse). Data are shown as mean ± s.e.m., P = 0.02 (two-side Wilcoxon rank-sum test). 

Statistics summary: *P < 0.05, ***P < 0.001. 
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Figure 6: Fictive rewards on operant trials trigger error signals across microzones 
a. Schematic of fictive reward experiments: on 10% of correct motor trials, correct trials 

triggered a second solenoid that mimicked the reward sound. 

b. Anatomical mapping of functionally identified microzones from an example FOV (same as 

Fig. 2 on different recording day). Outlier ROIs shown in gray. 

c. Top: population response heatmap (trial-averaged events) of FOV from b to real (left) and 

fictive (right) rewards. ROIs are sorted first by mediolateral position of identified microzones, 

then mediolaterally within each identified microzone. Color blocks adjacent to each heatmap 

denote microzonal designation, following the color scheme in b. Middle: trial-averaged 

steering wheel velocity. Bottom: trial-averaged licking. Velocity and licking are shown as 

mean ± s.e.m. across trials; n = 141 real rewards and 16 fictive rewards.  

d. Mean difference image (smoothed over three frames) comparing responses to real and 

fictive rewards.  

e. Pairwise comparisons of reward-related responses at different time intervals after delivery 

of real and fictive rewards. Data pooled from 832 Purkinje cell dendritic ROIs from 5 FOVs in 

5 mice (1 FOV per mouse). Data points from a representative FOV (b) are shown in darker 

gray. 

f. Cell-wise average of Purkinje cell dendritic response to each reward-related event. Data 

are shown as mean ± s.e.m. (n = 832 neurons from 5 FOVs in 5 mice, Kruskal–Wallis 

test, H = 333, d.f. = 3, P = 8 × 10−72, significance values for Bonferroni-corrected individual 

comparisons: real reward (0–100 ms) versus real reward (100–200 ms), P = 3 × 10−40; real 

reward (0–100 ms) versus fictive reward (0–100 ms), P = 0.7; real reward (100–200 ms) 

versus fictive reward (100–200 ms), P = 4 × 10−56). 

g. Time course of mean responses on real reward trials (black) and fictive reward trials (red) 

for Purkinje cells in reward-activated microzones (left, n = 368 neurons) and reward-

suppressed microzones (right, n = 405 neurons). Note that 59 neurons were not clustered into 

a microzone and excluded from this analysis. Data are shown as mean ± s.e.m. 

Statistics summary: n.s. = not significant, ***P < 0.001. 
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Figure 7: Omission of cued rewards triggers feedback error signals 
a. Schematic of cued reward omission: during each behavioral session, we randomly 

interspersed random rewards as in previous experiments (10% of inter-trial intervals), tone-

cued rewards (30% of inter-trial intervals) or tone cues with reward omitted (10% of inter-trial 

intervals). 

b. Anatomical mapping of functionally identified microzones from an example FOV (same as 

Fig. 2 but on a different recording day). Outlier ROIs shown in gray. 

c. Top: trial-averaged population response of a representative FOV to tone-cued rewards and 

omissions. ROIs are sorted first by mediolateral position of identified microzones, then 

mediolaterally within each identified microzone. Color blocks adjacent to each heatmap 

denote microzonal designation. Middle: trial-averaged steering wheel velocity. Bottom: trial-

averaged licking. Velocity and licking are shown as mean ± s.e.m. across trials; n = 59 cued 

rewards and 20 cued omissions. 

d. Mean difference image (smoothed over three frames) comparing responses to real and 

fictive rewards. 

e. Pairwise comparisons of reward-related responses at different time intervals after delivery 

of real and fictive rewards. Data pooled from 765 Purkinje cell dendritic ROIs from 4 FOVs in 

4 mice (1 FOV per mouse). Data points from a representative FOV (b) are shown in darker 

gray. 

f. Cell-wise average of Purkinje cell dendritic response to each reward-related event 

measured over interval 0–200 ms after each event. Data are shown as mean ± s.e.m. and 

statistical significance between cued rewards and cued omissions was assessed using the 

two-sided Wilcoxon signed-rank test (n = 765 neurons from 4 FOVs in 4 mice, P = 2 × 10−42). 

g. Time course of mean event rates (from imaging experiments) on real reward trials (black) 

and fictive reward trials (red) for Purkinje cells in reward-activated microzones (left, n = 349 

neurons) and reward-suppressed microzones (right, n = 362 neurons). Note that 54 neurons 

were not clustered into a microzone and excluded from this analysis.  

h. Time course of mean complex spike rates (from electrophysiology experiments) on real 

reward trials (black) and fictive reward trials (red) (n = 7 neurons from 3 mice). 

Electrophysiological complex spike recordings were acquired without a motor task. Data are 

shown as mean ± s.e.m. (P = 0.02, two-sided Wilcoxon signed-rank test).  

Statistics summary: n.s. = not significant, *P <0.05, ***P < 0.001. 
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ONLINE METHODS 

Animals 

All animal procedures were approved by the local Animal Welfare and Ethical Review Board 

at University College London and performed under license from the UK Home Office in 

accordance with the Animals (Scientific Procedures) Act 1986. We used male Pcp2(L7)-Cre 

mice (line Jdhu – B6.Cg-Tg(Pcp2-Cre)3555Jdhu/J) (51) aged between 3 and 6 months. Male 

mice were preferred in our task because they were larger and more willing to initiate wheel 

movements at the beginning of training, facilitating more rapid learning in our task. Mice were 

group housed prior to surgery, single-housed after surgery, and maintained on a 12:12 day-

night cycle. In total, data from 12 mice (9 imaging and 3 electrophysiology) were used in this 

study. 

Headplating, virus injection, and chronic window installation 

A minimum of 2 hours before surgery, mice were injected with dexamethasone to reduce 

swelling during surgery. A single procedure, during which mice were maintained under 1.5-

2% isoflurane anesthesia, was performed on each mouse lasting approximately 2 hours to 

install a headplate over the cerebellar cortex, infect Purkinje cells with GCaMP6f, and install 

a chronic window for chronic imaging experiments. Buprenorphine (1 mg/kg, subcutaneous, 

Vetergesic) was administered peri-operatively for analgesia. Once mice were anesthetized, 

custom headplates with an oval inner opening 7 mm long and 9 mm wide were installed over 

the forelimb regions of the cerebellar cortex on the left side of each mouse (lobule simplex 

and adjacent paravermis lobules V and VI) and secured with dental cement (Super-Bond C&B, 

Sun-Medical). This corresponded to the posterior tip of the interparietal bone, 1.8 mm 

displaced from the midline (approximately 6 mm caudal and 1.8 mm lateral from bregma). 

Mice to be used for imaging experiments were next injected with virus and implanted with a 

cranial window, while mice used for electrophysiology experiments were allowed to recover at 

this point.  

For mice used in imaging experiments, we performed a 3 mm craniotomy, centered in the 

middle of the headplate hole, to expose the cerebellar cortex for virus injection and window 

installation. We then injected Cre-dependent GCaMP6f (52) virus 

(AAV1.CAG.Flex.GCaMP6f.WPRE.SV40) diluted 1:12 from stock titer in 3 locations spanning 

paravermis and intermediate lobule simplex. At each location, ~100 nl of virus solution was 

pressure-injected at depths of 500, 375, and 250 µm below the cerebellar surface at 2 minute 

intervals. We waited ~5 minutes after the final of set of 3 injections before retracting the 

injection pipette. In total, ~1 µl of diluted virus was injected per mouse. Finally, a 3 mm single-

paned coverslip was press-fit in to the craniotomy, sealed to the skull by a thin layer of 
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cyanoacrylate (VetBond) and fixed in place by dental cement. The conical portion of a nitrile 

rubber seal (RS Components, Stock no. 749-581) was then glued to the headplate with dental 

cement and filled with Kwik-Cast to protect the window preparation during recovery and 

between recording sessions. Mice were allowed to recover for a minimum of 7 days before 

beginning water restriction, during which time they were given post-operative analgesia as 

needed. 

After mice had recovered from surgery, they were placed under water restriction for at least 5 

days during which time they were acclimated to the recording setup and expression-checked. 

All mice were maintained at 80-85% of their initial weight over the course of recording 

experiments. Trained mice typically received all their water for the day from rewards during 

the behavioral task, while naïve mice were supplemented to 1 g water per day with Hydrogel. 

On the day of electrophysiology experiments, a small craniotomy (<1mm diameter) was 

performed over the proximal part of lobule simplex under brief anesthesia (< 20 minutes), a 

nitrile rubber seal was affixed to the headplate to act as a recording chamber, and the chamber 

was filled with Kwik-Cast. Mice were allowed to recover for >2 hours before experiments 

began. 

Behavior 

Motor task training protocol 

Mice were head-fixed in front of an array of 3 monitors with screens arranged at 135o relative 

to each other and the central screen directly in front of the mouse (creating 3 sides of an 

octagon). Below their forepaws was Lego rubber tire that could be rotated left and right, and 

whose angle was measured using a rotary encoder coupled to the wheel’s axle. We used the 

MATLAB-based software ViRMEn (53) to construct and operate the virtual reality (VR) 

environment. The rotation of the steering wheel translated the virtual object (a revolving black 

and white beach ball) displayed on the screens during each operant motor trial.  

Mice were initially trained to translate the virtual object, which appeared in the middle of either 

the left or right screens (at +45o or -45o), towards the visual midline to receive a reward 

(inspired by the visual decision-making task of Burgess and colleagues (54)), at a high wheel 

gain (9 degrees/mm wheel rotation). On the first few days of training, the virtual object drifted 

towards the midline and triggered an auto-reward after a long delay (60 – 180 seconds). These 

auto-reward sessions were useful to allow mice to make the initial associations necessary to 

perform the more difficult versions of the task. The data from naïve mice shown in Figure 5 

come from the first day of these auto-reward sessions. After several days (~1 week of training), 

mice learned to make wheel turns on their own accord to receive rewards. At this point, they 

were switched to a unilateral version of the task (left trials only) and increased the difficulty in 
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multiple steps. We decreased the gain to 6 degrees/mm and rewarded all trials in which the 

mice moved the object past the visual midline. This simplified task version facilitated training 

mice to react rapidly to object appearance and to make vigorous movements. The data shown 

in Supplementary Figure 8 come from this task version. We then made the task slightly harder 

by decreasing the gain to 2.25 degrees/mm, such that mice had to make more than one 

movement (typically two) to get the wheel to the target region (±15o from the visual midline) 

and only reward trials in which the object was left unmoved in the target region for 500 ms. 

After mice learned to do this consistently (on >70% of trials), we analyzed the wheel 

movements for each mouse and identified a gain for each mouse that was most likely to 

produce a correct trial in a single movement – defined as one where the wheel is stopped in 

the target region for 100 ms. The mean gain across the mice used in this study was 3.3 

degrees/mm corresponding to a 13.6 mm translation of the wheel to hit the center of the target 

(range 2.5-4 degrees/mm). On the first day that mice were trained on this final task version, 

their performance was 30-50% and plateaued at ~60% after about 1 week of training on this 

final task version. All recordings in ‘trained’ mice were performed after behavior had plateaued.  

Rewards on correct trials consisted of ~3 µl of a sugar water solution (5% sucrose) and were 

delivered through a solenoid valve (NResearch, Part number 225PNC1-21) whose click was 

audible to the mouse. Reward delivery on correct motor trials was delivered 400 ms after trial 

evaluation (500 ms after the wheel stopped moving) and were followed by short (0-2 s) 

timeout, while incorrect motor trials were followed by a long (5-7 s) timeout. After completion 

of the timeout, a variable withhold period (1.5-2.5 s) was enforced, in which time mice were 

obligated to not lick or turn the steering wheel. Lick were detected using an electrical lick circuit 

(55). As indicated in the main text, random or tone-cued reward were administered upon the 

completion of these withhold periods. Tone cues for reward trials consisted of a 100 ms long, 

4 kHz tone followed by 400 ms of silence before reward delivery. The timing of these cued 

reward was designed to mimic those of the operant motor rewards, which required the wheel 

to be stopped for 100 ms to trigger a reward 400 ms later (same 500 ms total delay). Random 

rewards were given immediately upon the completion of the withhold period. In all mice used 

for the analyses in this study, random and tone-cued reward were included throughout training 

with 10% probability of each extra reward type being given on any single inter-trial interval, 

except in perturbation experiments as indicated. Behavioral parameters and task-related 

triggers were fed back to the VR system through an Arduino and National Instruments DAQ 

card (NI USB-6212). 

Pavlovian conditioning task 

Mice used for Neuropixels electrophysiology experiments were trained on a Pavlovian 

conditioning paradigm consisting of an equal mixture of cued and random rewards during 
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training (9 training sessions). The same tone cues, timing intervals, and solenoid valves were 

used for these experiments as for the tone-cued and random reward imaging experiments. 

On the day of recording (session 10), mice were presented with 50 baseline trials of cued and 

random rewards (equal probability), after which 20% of rewards were randomly omitted.  

Data acquisition 

Two-photon calcium imaging 

Imaging experiments were performed through a 16x/0.8 NA objective (Nikon) using a Sutter 

MOM microscope equipped with the Resonant Scan box module. A Ti:Sapphire laser tuned 

to 930 nm (Mai Tai, Spectra Physics) was raster scanned using a resonant scanning 

galvanometer (8 kHz, Cambridge Technologies) and images were collected at 512x512 pixel 

resolution over fields of view of 670 µm x 670 µm at 30 Hz. Sample plane power used for 

recordings ranged from 30-70 mW and recordings were performed midway between the pial 

surface and the Purkinje cell body layer, at depths of ~75 µm. The microscope was controlled 

using ScanImage (Version 2015, Vidrio Technologies) and tilted to ~10 degrees such that the 

objective was orthogonal to the surface of the brain and coverglass. Blood vessel landmarks 

were used to approximately find the same fields of view across imaging sessions, and fine 

scale adjustments were made to maximize day-to day overlap by taking short imaging movies 

(10 seconds) and aligning them to the previous day’s recordings.  

Electrophysiological recordings 

Electrophysiological recordings were made using Neuropixels (“Phase 3A”) electrode arrays 

(56) mounted on a custom 3D-printed plastic piece and affixed to a 3 axis micromanipulator 

with one axis tilted to be perpendicular to stereotaxic coordinates. This manipulator axis was 

used to lower the probe into the cerebellum at ~8 µm/s to a final depth of ~3 mm. Electrodes 

were allowed to settle for a minimum of 20 minutes before beginning experiments. Signals 

were recorded from the distal 384 channels (covering ~3.84 mm of linear distance). 

Recordings were made in external reference mode with gain of 500 for the action potential 

band (300 Hz high-pass filter) and acquired at 30 kHz using SpikeGLX software 

(http://billkarsh.github.io/SpikeGLX/). Electrodes were coated with a lipophilic dye (DiI) to 

facilitate histological identification of electrode tracks. 

Video analysis of orofacial movements 

Frontal video of mice on omission trials was recorded at 100 Hz using an Allied Vision Mako 

U-130B camera. To analyze orofacial movements, the brightness of a region of interest 

surrounding each mouse’s mouth (~4 x 8 mm) was averaged, baseline subtracted (8th 

percentile of a 2 second rolling average surrounding each data time point) and aligned to 
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behavior. Because the mice tongues appeared bright in these videos, we could use the 

brightness value at each time point as a proxy for tongue movements.  

Anatomical mapping and histology 

The anatomical maps shown in Supplementary Figure 4 were made by taking tiled z-stacks 

of the exposed portions of the cerebellum (in live mice) and stitching them to create a 

panoramic image of the cerebellar cortical surface. Imaging fields of view were manually 

aligned to these reference images. 

For histological experiments requiring post-mortem histology, mice were deeply 

anesthetized with ketamine/xylazine then transcardially perfused with PBS then 4% 

paraformaldehyde (PFA) in PBS. Brains were removed and post-fixed overnight in 4% PFA 

in PBS.  

Data analysis 

Extraction of Purkinje cell dendritic ROIs and identification of putative complex spikes 

ROIs corresponding to single Purkinje cells were extracted using a combination of Suite2p 

software in MATLAB (57) for initial source extraction and custom-written software to merge 

over-segmented dendrites. For each recorded field of view, we identified individual dendrites 

using the following protocol: 

(1) After running initial segmentation using Suite2p, all dendritic segments corresponding 

to a fluorescent portion of a Purkinje cell dendrite in the mean fluorescence image were 

selected for further processing using Suite2p’s built-in user interface. 

(2) Correlations of the baseline-subtracted (8th percentile of a 2 second rolling average 

surrounding each data time point) fluorescence traces of all selected dendritic 

segments were computed. Dendritic segments that did not exhibit correlations above 

0.5 with any other dendritic segments were classified as unique Purkinje cell ROIs.  

(3) The dendritic segments that did exhibit correlations above 0.5 with any other segment 

were classified in to non-redundant groups. These groups were then visualized in a 

custom written MATLAB graphical user interface that displayed each segment in a 

different color and overlaid it and its correlated partners on the mean fluorescence 

image. Segments that originated from the same single dendrite (i.e. had highly 

correlated fluorescence traces and were aligned in the axis of Purkinje cell dendrites) 

were merged. A weighted average of the fluorescence trace of each group of merged 

dendritic segments was computed based on the number of pixels in each segment. 

An event detection algorithm, MLspike (58), was used to identify fast dendritic calcium 

transients, faithful indicators of complex spiking activity in Purkinje cells (28-30, 59-61), in each 
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dendritic ROI. As input to MLspike, we used baseline subtracted fluorescence traces (∆F) to 

which we added the maximum value of each trace (input values near zero are problematic for 

MLspike). The baseline fluorescence parameter (F0) was set as the 25th percentile of each 

fluorescence trace, the sampling rate (dt) was set at 1/30 (30 Hz), and the indicator decay 

parameter (tau) was set to 0.15. The output of MLspike is an event time, as well as an 

amplitude (an integer multiple of the unitary event size detected of each trace). Events 

detected in consecutive bins, which are very likely to reflect a large dendritic event 

corresponding to a single complex spike rather than multiple separate complex spikes at our 

imaging rates (30 Hz), were summed and binned in to the first time point of each sequence. 

Event amplitudes for each ROI were normalized by the mean amplitude of detected events 

for that ROI. The absolute event rate across all recorded Purkinje cell dendritic ROIs in this 

study was 1.4 ± 0.4 Hz (mean ± s.d., n = 2854 ROIs from 13 fields of view in 9 mice), consistent 

with previously reported rates of complex spiking during behavior (62). Event amplitudes were 

converted into rates by multiplying by the imaging frequency (30 Hz), creating a complex spike 

firing rate weighted by event amplitude. Treating all detected complex spike events the same 

(i.e. setting their magnitude equal to 1) produced very similar results (Supplementary Figure 
11). 

Synchronization of behavior and recordings 

All behavioral parameters – trial onset and offset triggers, wheel translation, reward deliveries, 

tone cues, VR frame update times, 2-photon imaging frame times, and video frame times – 

were acquired simultaneously and digitized at 5 kHz using a National Instruments (NI USB-

6212) and saved using PackIO software (63). Subsequent analysis was performed off-line 

using custom written scripts in MATLAB (Version 2017a or 2018a).  

Recorded dendritic fluorescence traces and extracted events (complex spikes) were aligned 

to different behavioral events of interest at the first frame whose acquisition began after each 

event and averaged across occurrences of each of these behavioral events. Wheel movement 

initiation was defined as the first time on each motor trial that wheel velocity exceeded 1 mm/s. 

Binary licking traces, whose value was one when the mouse’s tongue contacted the lickport 

and was zero otherwise, were averaged in their raw format in all plots and quantifications. 

Identification of Purkinje cell microzones 

Initial spatial sorting of Purkinje cells was by (1) fitting a line through the pixels comprising 

each ROI and using this line to create a local direction vector for each ROI, (2) binning these 

ROI vectors at a density of 32x32 pixels – creating a 16x16 grid from our 512x512x pixel 

images with 1 mean vector per square, (3) fitting local contour lines to this grid using 

MATLAB’s ‘streamline’ function, and (4) grouping ROIs by their closest local contour line, 
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sorting ROIs orthogonally to this contour line, and concatenating groups closest to each 

contour line. ROIs were organized and indexed from medial to lateral, by convention. This 

analysis demonstrated clearly that parasagittal clusters of Purkinje cells exhibited uniformity 

in their responses to reward. 

To systematically identify functional clusters of Purkinje cells (microzones) in our recordings, 

we devised the following analysis pipeline: 

(1) We normalized our recordings by z-scoring our baseline-normalized fluorescence data 

matrices and performed principal component analysis on both our whole baseline data 

matrix (‘all data’) as well as just spontaneous activity obtained by concatenating the 

withhold periods before the start of each trial (‘spontaneous only’). 

(2) To determine the relevant principal component subspace in which to cluster our data, 

we performed 1000 shuffles of our ‘all data’ matrix where each neuron’s activity was 

jittered in time over the interval ± 400 ms (± 12 imaging frames). We computed a mean 

and standard deviation of the variance explained by the principal components of these 

temporally jittered data and took the first n principal components of our real data whose 

variance explained exceeded the mean + 2 s.d. of the shuffled data. The number of 

principal components with significant information varied between 4 and 7, depending 

on the field of view. 

(3) The coefficients associated with this number of principal components (p) were used 

for k-means clustering of the ‘all data’ matrix’ and ‘spontaneous only’ matrix. The 

number of clusters in this p-dimensional subspace of our data was chosen 

programmatically using silhouette criterion values to identify the optimal number from 

a range [1:12]. To optimize clustering, centroid positions were re-seeded 1000 times 

and the solution yielding the lowest within-cluster distances was used for further 

analysis. 

(4) Identified clusters were mapped on to anatomy and all further analysis was performed 

using the ‘spontaneous only’ matrix to align with the original conception of microzones, 

but results from the ‘all data’ matrix were used as comparison. 

(5) The following criteria were applied sequentially to refine identified microzones: 

a. Clusters with fewer than 5 members were merged with their closest neighbor. 

b. Cluster with clear multipeaked spatial distributions in the mediolateral axis were 

split into separate clusters. To identify multipeaked distributions, the 

mediolateral coordinates of ROI centroids were binned at ~80 µm/bin (64 

pixels/bin) and normalized to the peak bin. Secondary peaks were defined as 

those containing counts greater than 40% of the largest bin of the histogram.  
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c. ROIs that were spatial outliers along the mediolateral axis of a given cluster 

were excluded from further analysis. These outliers were defined as having a 

mediolateral centroid position greater than three scaled median absolute 

deviations from the median mediolateral centroid of the cluster. 

(6) We sorted Purkinje cells within each cluster’s spatial as described above and also 

sorted microzones relative to each other based on median ROI position. Thus, we 

sorted ROIs within each microzone based on their mediolateral position, and also 

sorted microzones relative to each other based on their mediolateral position. 

Electrophysiological analysis 

Data from Neuropixels recordings were automatically spike sorted with Kilosort 2 

(https://github.com/MouseLand/Kilosort2) (64) and manually curated using the ‘Phy’ GUI 

(https://github.com/kwikteam/phy). Given the foliation of the cerebellar cortex, recordings 

typically yielded multiple crossings of the Purkinje cell layer, and we were usually able to 

isolate 4-5 Purkinje cell units from each layer. Purkinje cells were identified by their 

characteristic electrophysiological signature (65, 66), including the presence of complex 

spikes and simple spikes. The rate of complex spikes was 1.4 ± 0.5 Hz (mean ± s.d., n = 61 

units, 3 recordings from 3 mice). As shown in Supplementary Figure 9, complex spikes 

exhibited either a narrow waveform followed by spikelets if the recording site was perisomatic, 

or a broader waveform when the recording site was dendritic and in the molecular layer (66). 

All recording sites were confirmed by post-hoc histology, in which recording tracks (labelled 

with DiI coating the recording electrode) were identified in 100 µm coronal cerebellar sections 

in brains fixed after recording and counterstained using Neurotrace 435/455 (Supplementary 
Figure 9a). Recording tracks were aligned to the Allen Mouse Common Coordinate 

Framework (CCF; (67, 68)) using ‘Allen CCF tools’, a custom GUI for 3D alignment of 

electrode tracks to histology (69). Spike sorting analysis and complex spike identification were 

performed with the experimenter blind to task conditions. After these sorting procedures, units 

were aligned to behavior and grouped into reward-activated and reward-suppressed 

categories based on responses to random reward. Units activated at reward omission were 

identified by inspection.  

Statistical analysis 

No statistical methods were used to pre-determine sample sizes, but our sample sizes are 

similar to those reported in previous publications (15, 20, 26). No randomization of 

experimental subjects was necessary as all mice were trained and recorded under the same 

conditions. Behavioral events within each training session were randomized on a trial-by-trial 

basis within the temporal ranges and incidence rates described in the text. Data collection and 
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analysis were not performed blind to the conditions of the experiment, but analysis relied on 

code that was standardized for all experimental conditions. 

Categorical comparisons between proportions were made using the Chi-squared test. Data 

distributions were not assumed to be normally distributed and all statistical comparisons 

between groups of continuous variables were performed using non-parametric tests – the 

Wilcoxon rank-sum test and sign test were used to study differences between two groups of 

unpaired and paired data, respectively, and the Kruskal-Wallis test was used when more than 

2 groups were compared. Bonferroni correction was applied for multiple comparisons. In 

general, 95% confidence intervals (p < 0.05) were used to define statistical significance. 
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Supplementary Figure 1 

Activity aligned to movement onset is preferentially related to movement and not to object appearance 

a. Top: Events extracted from population two-photon calcium imaging of Purkinje cells during the behavioral task, expressed as a 
heatmap. Activity in an example session is aligned to object appearance (dashed line) on trials in which the mouse did not immediately 



turn the wheel (turn latency > 0.75 s). Bottom: summary of activity and behavior for all sessions. N = 1101 neurons, 6 mice, 6 sessions 
(1 session per mouse). Data are shown as mean ± s.e.m. 

b. Top: Heatmap of activity in an example session aligned to wheel turns (dashed line) that occurred within a trial (left) or outside of a 
trial (right). Bottom: summary of activity and behavior for all sessions. N = 1101 neurons, 6 mice, 6 sessions (1 session per mouse). 
Data are shown as mean ± s.e.m. 

c. Top: Heatmap of activity in an example session aligned to wheel turns (dashed line) that occurred early within a trial (turn latency 
≤ 0.75 s) or late in a trial (turn latency > 0.75 s). Bottom: summary of activity and behavior for all sessions. N = 859 neurons, 5 mice, 5 
sessions (1 session per mouse). Note that one session was excluded from these analyses because it only had 4 trials in which it 
initiated a movement with turn latency > 0.75 s. Data are shown as mean ± s.e.m. 

d. Comparison of first significant population-wide event after object appearance (defined as the time points when the mean event rate 
for a field of view exceeded the mean + 2 s.d. of activity during the withhold period on each trial) to the reaction time of the mouse on 
each trial. Dots represent individual trials and dots of the same color represent individual sessions (one session per mouse). Black line 
and shaded bar represent linear fit and 95% confidence interval through all data points (linear regression, p = 3x10-42). N = 594 trials, 
6 mice, 6 sessions (1 session per mouse). 

e. Same as panel d but for the last population-wide event before movement onset (linear regression, p = 8x10-190).  

f. Summary of Pearson’s correlation coefficients of activity traces for individual neurons between wheel turns within trial and outside 
of trial (green bar, interval -300 to +300 ms relative to wheel movement, N = 1101 neurons, 6 mice, 6 sessions), between trial onsets 
without movement and wheel turns within a trial (gray bar, interval +100 to 700 ms for trial onset and -300 to +300 ms for wheel turns 
in order to align peaks of activity, N = 1101 neurons, 6 mice, 6 sessions), and between wheel turns that occurred early within a trial and 
movements that occurred late within a trial (blue bar, interval -300 to +300 ms relative to wheel movement, N = 859 neurons, 5 mice, 
5 sessions). Intervals for correlation analysis were chosen to align the peaks of the responses for each condition. Data are shown as 
box plots: center line, median; box edges, interquartile ranges; whiskers, range without outliers (1.5 times the interquartile range from 
box edges); black points, outliers (Kruskal-Wallis test, H = 359, d.f. = 2, p = 9x10-79, significance values for Bonferroni-corrected 
individual comparisons: wheel turns: within trial and outside of trial vs trial onset without movement and wheel turns within trial, p = 
7x10-63; wheel turns: within trial and outside of trial vs wheel turns within trial: early and late, p > 0.9; trial onset without movement and 
wheel turns within trial vs wheel turns within trial: early and late, p = 1x10-54). 

Statistics summary: n.s. = not significant, ***p < 0.001. 



 



Supplementary Figure 2 

PCA-based clustering reveals correlated groups of Purkinje cell dendrites 

Workflow for microzone identification is shown: 

a. Significant principal components were identified by performing 1000 iterations of PCA on cell-wise jittered data (interval ± 400 ms, 
whole recording) and choosing first p principal components that explained significantly more variance than the jittered components. 

b. The appropriate number of clusters for each data set (spontaneous data only) were chosen from the interval [1:12] based on silhouette 
analysis. PCA projection in 3 dimensions shown before clustering (left, pseudocolored by coefficients of 4th component) and after initial 
clustering (right, colored by cluster). 

c. The initial clusters for each recording were mapped on anatomy and exclusion criteria were applied to obtain pure clusters. 

d. ROI centroids were projected on to the mediolateral anatomical axis and binned at ~80 um (64 pixels). Secondary peaks were 
identified with a threshold of 40% of the maximum bin. If secondary peaks were found, individual ROIs were assigned to the closest peak 
(none found in example dataset). 

e. The median position for each cluster was computed and ROIs that were more than 3 median absolute deviations away from median 
were excluded as outliers. 

f. Final cluster designations were assigned, ROIs were organized spatially within each cluster and clusters were organized spatially 
relative to each other. 



 



Supplementary Figure 3 

Microzonal identification for each recorded dataset 

Anatomical maps (subpanel 1), clustering (subpanels 2 and 3), and correlation heatmaps (subpanels 4 and 5) for fields of view used in 
Figures 1 – 2. Analysis was done independently for spontaneous activity acquired during withhold periods (spont.) and for whole recording 
session (all data). Numbers of neurons for fields of view in panels a-f = 210, 124, 122, 273, 237, and 135, respectively. 



 

Supplementary Figure 4 

Mapping recorded fields of view onto cerebellar anatomy 

Coarse anatomical maps with landmarks are shown in grayscale and reward response is shown in color. Field of view number 
corresponds to numbers given in Supplementary Figure 3. Purkinje cell dendrites with high reward activity (’reward-activated’) are shown 
in magenta, and Purkinje cell dendrites with low reward activity (’reward-suppressed’) are shown in cyan. Number of trial rewards per 
field of view: 120 (Field of view 2), 143 (Field of view 3), 156 (Field of view 4), and 52 (Field of view 5). 



 

Supplementary Figure 5 

Relationship between delay period activity and predictive licking on operant trials 

a. Example of microzone from animal that exhibited predictive licking showing delay period activity on both correct (left, black) and 
incorrect (right, red) trials. N = 162 correct trials and 124 incorrect trials. 

b. Same as panel a but for animal that did not exhibit predictive licking. N = 156 correct trials and 115 incorrect trials. 

c. Comparison of mean microzonal activity during delay period (-500 to 0 ms relative to reward) in significantly activated microzones on 
correct and incorrect trials. Dots of the same color represent microzones from the same recording. N = 14 microzones from 6 mice. 

d. Comparison of degree of predictive licking on correct and incorrect trials. N = 6 sessions from 6 mice. 

e. Relationship between level of delay period activation and degree of predictive licking on correct trials. N = 14 microzones from 6 mice. 



f. Same as panel e but for incorrect trials. 

Traces in panels a and b and data points in panels d-f are shown as mean ± s.e.m. Black line and shaded bars in panels d-f represent 
linear fit and 95% confidence interval through all data points (linear regression; panel c, p = 2x10-6; panel d, p = 5x10-8; panel e, p = 0.5; 
panel f, p = 0.9). 



 

Supplementary Figure 6 

Initial observation of reward response modulation 

a. Top: Trial-averaged population response in the first mouse in which we observed reward response modulation (Supplemental Figure 
3, FOV 1). Middle: Trial-averaged steering wheel velocity. Bottom: Trial-averaged licking response. Data are shown as mean ± s.e.m. 
across trials (n = 162 trial rewards and 5 random rewards). In this experiment, the mouse was not subjected to all of the potential reward 
contingencies, only to random and trial-dependent (operant) rewards, but still exhibited the characteristic reward response modulation.  

b. Scatter plot comparing reward-related responses over interval 0 to +100 ms post reward for random rewards and rewards earned on 
correct motor trials. 

c. Cell-wise average of Purkinje cell dendritic response to trial rewards and random rewards taken over interval 0 to +100 ms post 
reward. Data are shown as mean ± s.e.m. across cells (n = 210 cells, two-sided Wilcoxon signed-rank test, p = 3x10-18). 

Statistics summary: ***p < 0.001. 



 

Supplementary Figure 7 

Quantification of licking responses across reward conditions 

a. Comparison of delay period (reward-predictive) licking for tone-cued rewards and correct motor trials (-500 to 0 ms relative to reward 
in both conditions, which had the same delay interval). Mean licking responses in individual mice (n = 5) are as single colored dots with 
error bars showing across trial s.e.m. All mice exhibited higher predictive licking for tone-cued rewards than on correct motor trials (p = 
3x10-22 (Mouse 1, yellow), p = 5x10-17 (Mouse 2, red), p = 1x10-16 (Mouse 3, green), p = 1x10-7 (Mouse 4, blue), p = 1x10-6 (Mouse 5, 
magenta), two-sided Wilcoxon rank sum test across trials).  

b. Normalized response to trial rewards (mean activity in interval 0 to +100 ms after reward in Purkinje cells from reward-activated 
microzones (top) and reward-suppressed microzones (bottom) as a function of degree of predictive licking. Reward-related responses 
and predictive licking were quantified on individual trials, after which responses in individual neurons were normalized to the mean 
response to random reward per neuron and all neuron-trial pairs were binned for plotting according level of predictive licking in each trial. 

c. Same as panel a but for cued rewards. 



Data are shown as mean ± s.e.m. In panels b and c, N = 38337 neuron-condition pairs (trial rewards, activated), 51888 pairs (trial 
rewards, suppressed), 11584 pairs (cued rewards, activated), and 11314 pairs (cued rewards, suppressed). The number of Purkinje cells 
= 361 (reward-activated) and 450 (reward-suppressed) pooled from 5 mice. Black line represents linear fit through all data points (not 
binned). 



 

Supplementary Figure 8 

Stronger suppression of reward response on operant trials with an easier task 

a. Top: Trial-averaged population response of a representative field of view to random, operant, and tone-cued rewards on a different 
task version in which all wheel movements towards the midline were rewarded. ROIs are by mediolateral position within the field of view. 
Middle: Trial-averaged steering wheel velocity. Bottom: Trial-averaged licking response. Velocity and licking are shown as mean ± s.e.m. 
across trials (n = 11 random rewards, 210 trial rewards, and 20 tone-cued rewards). 

b. Scatter plots showing pairwise comparisons of response amplitude (computed as mean over 0 to +100 ms after each reward-related 
event) across different reward conditions. N = 556 neurons from 2 FOVs in 2 mice. Data points from representative field of view (panel 
a) are shown in darker gray. 

g. Relative response magnitude in neurons responsive to random reward (mean response over 0 to 100 ms after random reward > 2 
s.d. above baseline) in mice trained on the task used throughout the majority of this study (black) and the easier task version (gray). Data 
are shown as mean ± s.e.m., and n = 400 neurons (of 891) for mice trained on the hard task and n = 417 neurons (of 556) for mice trained 



on the easy task (Kruskal-Wallis test, H = 2543, d.f. = 7, p < 1x10-99, significance values for Bonferroni-corrected individual comparisons: 
hard task vs easy task (trial reward), p = 5x10-25; hard task vs easy task (cued reward), p = 9x10-15). 

Statistics summary: ***p < 0.001. 



 

Supplementary Figure 9 

Recordings from Purkinje cells using Neuropixels probes 

a. Histological localization of the Neuropixels recording track in a coronal section of cerebellum (6.2mm caudal from bregma). Blue: 
Neurotrace, Red: DiI (highlighting the electrode track). Dashed red line shows the projection of the electrode track onto this anatomical 
section. 

b. Examples of complex spikes (CSs) and simple spikes (SSs) recorded using Neuropixels probes. Each panel shows 100 overlaid raw 
traces (with mean and s.d. shown as black line and shaded area, respectively) on adjacent recording sites (20 µm vertical and horizontal 
separation), situated from -1890 µm to -1990 µm below the surface of the brain shown in panel a. Red: CS recordings showing channels 
located in the molecular (top channels) and Purkinje (middle channels) layers of the cerebellar cortex. Blue: corresponding SS recordings 
from the same putative Purkinje cells exhibiting post-CS pauses, as in Figure 4C (SS1 and SS2 associated with CS1 and CS2, 
respectively). 

c. Example raw traces (gray) recorded on three adjacent vertically consecutive channels (20 µm separation) of a Neuropixels probe 
within the Purkinje cell layer. The spikes of the simple spike cluster (black) and complex spike cluster (red) shown in Figure 4A-C are 



highlighted. Note that several other simple and complex spike clusters were identified within this Purkinje cell layer but are not highlighted 
for clarity. 



 

Supplementary Figure 10 

Video analysis of orofacial movements on omission trials 



To better understand how complex spiking responses upon reward omission might be reflected behaviorally, we analyzed videos of 
orofacial movements in a subset of mice presented with real and fictive trial reward and with delivered and omitted cued rewards. We 
observed that upon violations of reward expectations, mice exhibited larger orofacial movements, consistent with them searching for an 
expected reward. 

a. Two video frames (taken at 100 Hz) show mouse 500 ms before a random reward was delivered (left) and 220 ms after the random 
reward was delivered (right). White dashed boxes indicate regions of analysis (~4 x 8 mm). 

b. Orofacial movement signal recorded for a single random reward (left, corresponding to video frames in panel a) and the mean orofacial 
movement signal (right) across all random rewards in a session (n = 30). 

c. Mean orofacial movement signals from example mouse (same session as panels a and b) on operant trials (left) with real reward 
(black, n = 52) and fictive reward (red, n = 8), and signals on cued reward trials (right) on which reward was given (black, n = 40) and 
omitted (red, n = 14). 

d. Same as panel c but for a different mouse. N = 54 operant trials with real reward, 14 operant trials with fictive reward, 53 cue + reward 
trials, and 12 cue + omission trials. 

Data in panels b - d are shown as mean ± s.d. across trials. 



 

Supplementary Figure 11 

Modulation of reward responses calculated using unweighted event detection 

Data used in this figure are the same as in Figure 3 of the main text, but all detected event amplitudes are set to a value of 1. 



a. Schematic of reward perturbation experiments: during each behavioral session, we randomly interspersed random rewards (10% of 
inter-trial intervals) or tone-cued rewards (also 10% of inter-trial intervals; 500 ms delay between cue onset and reward). 

b. Top: Trial-averaged population response of a representative field of view (same as Figure 2) to random, operant, and tone-cued 
rewards. Dendritic calcium event matrix was binarized for this analysis, setting all event amplitudes to a value of 1. ROIs are sort first by 
medio-lateral position of identified microzones, then mediolaterally within each identified microzone. Color blocks adjacent to each 
heatmap denote microzonal designation, following the color scheme of Figure 2 (gray = unclustered). Middle: Trial-averaged steering 
wheel velocity. Bottom: Trial-averaged licking response. Velocity and licking are shown as mean ± s.e.m. across trials. N = 30 random 
rewards, 156 trial rewards, and 30 tone-cued rewards. 

c. Scatter plots showing pairwise comparisons of response amplitude (computed as mean over 0 to +100 ms after each reward-related 
event) across different reward conditions. N = 891 neurons from 5 FOVs in 5 mice. Data points from representative field of view (panel 
b) are shown in darker gray. 

d. Cell-wise average of Purkinje cell dendritic response to each reward-related event.  Data are shown as mean ± s.e.m. (n = 891 
neurons from 5 FOVs in 5 mice, Kruskal-Wallis test, H = 428, d.f. = 3, p = 2x10-92, significance values for Bonferroni-corrected individual 
comparisons: random vs trial reward, p = 4x10-17; random vs cued reward, p = 1x10-32; trial vs cued reward, p = 0.004; trial reward vs 
tone cue, p = 1x10-51; cued reward vs tone cue, p = 4x10-77). 

e. Cell-wise comparison of Pearson’s correlations between pairs of reward-related events computed over 0 to +500 ms after each event. 
Data are shown as box plots: center line, median; box edges, interquartile ranges; whiskers, range without outliers (1.5 times the 
interquartile range from box edges); gray points, outliers (n = 891 neurons from 5 FOVs in 5 mice, Kruskal-Wallis test, H = 245, d.f. = 3, 
p = 8x10-53, significance values for Bonferroni-corrected individual comparisons: random and trial reward vs random and cued reward, p 
= 1x10-34; random and trial reward vs trial and cued reward, p = 6x10-37; random and cued reward vs trial and cued reward, p > 0.9; 
random and cued reward vs random reward and tone cue, p = 5x10-17; trial and cued rewards vs random reward and tone cue, p = 1x10-

18). 

f. Time course of mean responses across reward conditions for Purkinje cells in reward-activated microzones (top, n = 361 neurons) 
and reward-suppressed microzones (bottom, n = 470 neurons). Note that 60 neurons were not clustered into a microzone and so excluded 
from this analysis. Data are shown as mean ± s.e.m. 

Statistics summary: n.s. = not significant, **p < 0.01, ***p < 0.001. 
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