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Abstract. Although convolutional neural networks (CNNs) currently
dominate competitions on image segmentation, for neuroimaging analy-
sis tasks, more classical generative approaches based on mixture models
are still used in practice to parcellate brains. To bridge the gap between
the two, in this paper we propose a marriage between a probabilistic gen-
erative model, which has been shown to be robust to variability among
magnetic resonance (MR) images acquired via different imaging proto-
cols, and a CNN. The link is in the prior distribution over the unknown
tissue classes, which are classically modelled using a Markov random
field. In this work we model the interactions among neighbouring pixels
by a type of recurrent CNN, which can encode more complex spatial
interactions. We validate our proposed model on publicly available MR
data, from different centres, and show that it generalises across imaging
protocols. This result demonstrates a successful and principled inclusion
of a CNN in a generative model, which in turn could be adapted by any
probabilistic generative approach for image segmentation.

1 Introduction

Image segmentation is the process of assigning one of several categorical labels
to each pixel of an image, which is a fundamental step in many medical image
analyses. Until recently, some of the most accurate segmentation methods were
based on probabilistic mixture models [1]. These models define a probability
distribution over an observed image (X), conditioned on unknown class labels
(Z) and parameters (θ). Assuming a prior distribution over unknown variables,
Bayes rule is used to form a posterior distribution:

p(Z,θ |X) ∝ p(X | Z,θ) p(Z,θ) , (1)

which can be evaluated or approximated. Wells III et al. [2] introduced these
types of models for brain segmentation from magnetic resonance (MR) images.
By assuming that the log-transformed image intensities followed a normal distri-
bution in the likelihood term p(X | Z,θ), they segmented the brain into three
classes: grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF).

As generative models require the data-generating process to be defined, they
can be extended to more complex joint distributions than in [2], allowing for
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Fig. 1: T1-weighted MR images from two different, publicly available, datasets: MIC-
CAI2012 and MRBrainS18 (on which we evaluate our method). It is evident that
learning from one of these populations, and subsequently testing on the other is very
challenging. The intensities are different by an order of magnitude, the bias is stronger
in the MRBrainS18 subject. Additionally, age related change and pathology can be
clearly seen, such as differences in ventricle size and white matter hyper-intensities,
which further complicates the learning problem.

segmentation methods robust to, e.g., slice thickness, MR contrast, field strength
and scanner variability. Many of today’s most widely used neuroimaging analysis
software, such as SPM [3], FSL [4] and FreeSurfer [5], rely on these kinds of
models, and have been shown to reliably segment a wide variety of MR data
[6,7].

However, recent advances in convolutional neural networks (CNNs) have pro-
vided a new method for very accurate (and fast) image segmentation [8], circum-
venting the need to define and invert a potentially complex generative model.
Discriminative CNNs learn a function that maps an input (e.g., an MRI) to an
output (e.g., a segmentation) from training data, where the output is known.
They typically contain many layers, which sequentially apply convolutions, pool-
ing and nonlinear activation functions to the input data. Their parameters are
optimised by propagating gradients backwards through the network (i.e., back-
propagation). For medical imaging, the U-net architecture [9] is the most popu-
lar and now forms the basis for most top performing entries in various medical
imaging challenges aimed at segmenting, e.g., tumours, the whole brain or white
matter hyper-intensities1. The more classical segmentation frameworks based on
probabilistic models seem to have met their match.

Challenges on medical image segmentation can be seen as lab experiments
and – as with new medical therapies – there is a large gap to get from bench to
bedside. CNNs excel in this context, factorising the commonalities in an image
population of training data, which generalise to new data from the same popula-
tion. They can struggle, however, when faced with new data that contain unseen
features [10], e.g., a different contrast (Fig. 1). This scenario usually requires the
model being trained anew, on that unseen image contrast. In fact, even with-
out considering inter-individual variability (age, brain shape, pathology, etc), a
CNN-based segmentation software has yet to be presented that is agnostic to
the great variability in MR data [11]. Lack of such software is largely due to the

1 braintumorsegmentation.org, wmh.isi.uu.nl, mrbrains18.isi.uu.nl
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limited amount of labelled data available in medical imaging, which is a clear
obstacle to their generalisability. Some methods have been developed to address
this problem, e.g., intensity normalisation [12], transfer learning [13] and batch
normalisation [14]. Still, none of these methods are yet general enough to solve
the task of segmenting across scanners and protocols. Recently, approaches based
on realistic data augmentation have shown promising results [15,16].

In this paper, we propose an approach to bridge between the classical, but
robust, generative segmentation models and more recent CNN based methods.
The link is in the prior term of (1), where we encode the unknown tissue distri-
bution as drawn from a Markov random field (MRF). Using an MRF is in itself
nothing new; they have been used successfully for decades in order to introduce
spatial dependencies into generative segmentation models [17,18], relaxing the
independent voxels assumption. Here however, we instead model and learn the
interactions among neighbouring pixels by a type of CNN. This allows us to
parametrise the MRF by a more complex mathematical function than in the
regular linear case, as well as cover a larger neighbourhood than a second-order
one. The idea is that learning at the tissue level may generalise better than
learning directly from the image intensities. We validate our approach on two
publicly available datasets, acquired in different centres, and show favourable
results when applying the model trained on one of these datasets to the other.

Related Work: Rather than reviewing the use of MRFs in image segmentation
we will here briefly discuss two fairly recent additions to the computer vision
field [19,20], because they are closely related to the method we present in the
subsequent section. The idea of both these papers is to cast the application and
learning of a conditional random field (CRF) into a CNN framework. A CRF is
a statistical modeling method that directly defines the posterior distribution in
(1). To compute the CRF both papers apply a mean-field approximation, which
they implement in the form of a CNN.

In contrast to the works described above, we are interested in defining the
full generative model, whilst keeping the separation between likelihood and prior
in (1). Modelling these two components separately allows us to include expert
knowledge and image-intensity independent prior information over the segmen-
tation labels. It also integrates easily with existing mixture-model-based ap-
proaches. Furthermore, modelling the prior as an MRF, without data-dependency
in the neighbourhood model, may help in generalising among different image
populations. Finally, our model allows an arbitrarily complex MRF distribution
to be defined, including, e.g., nonlinearities.

2 Methods

In this section we use the generative model defined by (1) to encode an MRF over
the unknown labels. We show that computing this MRF term is analogous to
the mathematical operations performed by a CNN. We then go on to formulate
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learning the MRF clique potentials as the training of a CNN. This allows us to
introduce nonlinearities and increasing complexity in the MRF neighbourhood.

Generative Model: The posterior in (1) allows us to estimate the unknown
tissue labels. For simplicity, we will from now on assume that all parameters (θ)
are known; we therefore only want to infer the posterior distribution over cate-
gorical labels Z ∈ {0, 1}I×K , where I are the number of pixels in the image and
K are the number of classes, conditioned on an observed imageX ∈ RI×C , where
C are the number of channels. Modelling multi-channel images allows the use of
all acquired MR contrasts of the same subject. In practice, unknown parameters
of, e.g., class-wise intensity distributions would need inferring too. Variational
Bayesian (VB) inference, along with a well-chosen mean-field approximation,
allows any such model to fit within the presented framework [21].

Making use of the product rule, we may define the joint model likelihood
p(X,Z) as the product of a data likelihood p(X | Z) and a prior p(Z). In a
mixture model, it is assumed that once labels are known, intensities are inde-
pendent across pixels and all pixels with the same label k are sampled from the
same distribution pk(x). This can be written as:

p(X | Z) =

I∏
i=1

K∏
k=1

pk(xi)
zik . (2)

A common prior distribution for labels in a mixture model is the categorical
distribution, which can be stationary (p(zi) = Cat (zi | π)) or non-stationary
(p(zi) = Cat (zi | πi)) [22]. However, both these distributions assume condi-
tional independence between pixels. MRFs can be introduced to model depen-
dencies between pixels in a relatively tractable way by assuming that interactions
are restricted to a finite neighbourhood:

p(zi | {zj}j 6=i) = p(zi | zNi) , (3)

where Ni defines pixels whose cliques contain zi. We make the common as-
sumption that this neighbourhood is stationary, meaning that it is defined by
relative positions with respect to i: Ni = {i+ δ|δ ∈ N}. Here, we assume that
this conditional likelihood factorises over the neighbours and that each factor is
a categorical distribution:

p(zi | zNi) =
∏
δ∈N

K∏
k=1

K∏
l=1

(πk,l,δ)
zi,k·zi+δ,l . (4)

Mean-field inference: Despite the use of a relatively simple interaction model,
the posterior distribution over labels is intractable. Therefore, our approach is
to search for an approximate posterior distribution that factorises across voxels:

p(Z |X) ≈ q(Z) =

I∏
i=1

q(zi) . (5)
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We use VB inference [21] to iteratively find the approximate posterior q that min-
imises its Kullback-Leibler divergence with the true posterior distribution. Let us
assume a current approximate posterior distribution q(Z) =

∏
j Cat (zj | rj);

each voxel follows a categorical distribution parameterised by rj , which is of-
ten called a responsibility. VB then gives us the optimal updated distribution
for factor i by taking the expected value of the joint model log-likelihood, with
respect to all other variables:

ln q?(zi) =

K∑
k=1

zik

(
ln pk(xi) +

∑
δ∈N

K∑
l=1

ri+δ,l lnπk,l,δ

)
+ const. (6)

This distribution is again categorical with parameters:

r?ik ∝ exp

(
ln pk(xi) +

∑
δ∈N

K∑
l=1

ri+δ,l lnπk,l,δ

)
. (7)

Implementation as a CNN: Under VB assumptions, posterior distributions
should be updated one at a time, in turn. Taking advantage of the limited sup-
port of the neighbourhood, an efficient update scheme can be implemented by
updating at once all pixels that do not share a neighbourhood2. Another scheme
can be to update all pixels at once based on the previous state of the entire field.
Drawing a parallel with linear systems, this is comparable to Jacobi’s method,
while updating in turn is comparable to the Gauss-Siedel method. In the Jacobi
case, updating the labels’ expected values can be implemented as a convolution,
an addition and a softmax operation; three basic layers of CNNs:

R? = f(R) = softmax(C +W ∗R) . (8)

The matrix C contains the conditional log-likelihood terms (ln pk(xi)). The con-
volution weights W ∈ R|N |×K×K are equal to the log of the MRF weights
(lnπk,l,δ) and, very importantly, their centre is always zero. We call such filters
MRF filters, and the combination of softmaxing and convolving an MRF layer.
These weights are parameters of the approximate posterior distribution q?(Z).
Note that multiple mean-field updates can be implemented by making the MRF
layer recurrent, where the output is also the input [19].

Now, let us assume that we have a set of true segmentations Ẑ1...N , along
with a set of approximate distributions with parameters R1...N . One may want
to know the MRF parameters W that make the new posterior estimate q? with
parametersR? = f(R) the most likely to have generated the true segmentations.
This reduces to the optimisation problem:

W ? = argmax
W

N∑
n=1

ln q?(Ẑn |W ) = argmax
W

I∑
i=1

K∑
k=1

ẑnik ln r?nik , (9)

2 When N contains four second-order neighbours, this corresponds to a checkerboard
update scheme.
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which is a maximum-likelihood (ML), or risk-minimisation, problem. Note that
this objective function is the negative of what is commonly referred to as the
categorical cross-entropy loss function in machine-learning. If the optimisation
is performed by computing gradients from a subset of random samples, this
is equivalent to optimising a CNN, with only one layer, by stochastic gradient
descent.

Post-processing MRFs: MRFs are sometimes used to post-process segmen-
tations, rather than as an explicit prior in a generative model. In this case, the
conditional data term is not known, and the objective is slightly different: ap-
proximating a factorised label distribution q(Z) =

∏I
i=1 q(zi) that resembles

the prior distribution p(Z). This can be written as finding such distribution q
that minimises the Kullback-Leibler divergence with the prior p:

q? = argmin
q

KL (q‖p) . (10)

Again, assuming all other factors fixed with q(zj) = Cat (zj | rj), the optimal
distribution for factor i is obtained by taking the expected value of the prior
log-likelihood:

ln q?(zi) =

K∑
k=1

zik

(∑
δ∈N

K∑
l=1

ri+δ,l lnπk,l,δ

)
+ const, (11)

which is equivalent to dropping the conditional term in the generative case.
Equation (8) is then written as R? = softmax (W ∗R).

Nonlinear MRF: The conditional prior distribution p(zi | zNi) that defines an
MRF can, in theory, be any strictly positive probability distribution. However,
in practice, they are usually restricted to simple log-linear functions, which are
easy to implement and efficient to compute. On the other hand, deep neural
networks allow highly nonlinear functions to be implemented and computed
efficiently. Therefore, we propose a more complex layer based on multiple MRF
filters and nonlinearities, that implements a nonlinear MRF density. To ensure
that we implement a conditional probability, a constraint is that the input value
of a voxel may not be used to compute its posterior density. Therefore, the first
layer consists MRF filters that do not have a central weight, and subsequent
layers are of size one to avoid reintroducing the centre value by deconvolution.
We thus propose the first layer to be an MRF filter W ∈ R|N |×K×F , where
F is the number of output features. Setting F > K allows the information
to be decoupled into more than the initial K classes and may help to capture
more complex interactions. This first convolutional layer is followed by a ReLU
activation function, 1D convolutions that keep the number of features untouched,
and another ReLU activation function. This allows features to be combined
together. A final 1D linear layer is used to recombine the information into K
classes, followed by a softmax. Fig. 2 shows our proposed architecture.
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Fig. 2: An illustration of the architecture of our MRF CNN. Outlined are the oper-
ations performed for learning to predict the centre of a segmented pixel. The nonlin-
earities are introduced by the ReLU activations. By setting the number of MRF layers
to K and keeping only the final softmax layer, the linear MRF model is obtained. The
convolution kernel applied by the MRF filter is shown left of the segmentations, with
its centre constrained to be zero.

Implementation and training: In this work we set the number of MRF layers
to F = 16, we use three by three convolutions and leaky ReLU activation func-
tions with α = 0.1. We optimise the CNN using the Adam optimiser. To reduce
overfitting, we augment the data in two ways: (1) by simple left-right reflection;
and (2), by sampling warps from anatomically feasible affine transformations,
followed by nearest neighbour interpolation. Realistic affine transformations can
be sampled by parametrising them by their 12 parameter Lie group (from which
the transformation matrix can be constructed via an exponential mapping [23])
and then learning their mean and covariance from a large number of subjects’
image headers.

3 Validation

This section aims to answer a series of questions: (1) does applying a linear
MRF trained by backpropagation to the output segmentations of a generative
model improve the segmentation accuracy? (2) does complexifying the MRF
distribution using numerous filters and nonlinearities improve the segmentation
accuracy compared to a linear MRF? (3) do the learnt weights generalise to new
data from an entirely different dataset?

Datasets and preprocessing: Our validation was performed on axial 2D slices
extracted from two publicly available datasets3:

– MICCAI2012: T1-weighted MR scans of 30 subjects aged 18 to 96 years,
(mean: 34, median: 25). The scans were manually segmented into 136 anatom-
ical regions by Neuromorphometrics Inc. for the MICCAI 2012 challenge on
multi-atlas segmentation.

– MRBrainS18: Multi-sequence (T1-weighted, T1-weighted inversion recov-
ery and T2-FLAIR) MR scans of seven subjects, manually segmented into

3 my.vanderbilt.edu/masi/workshops, mrbrains18.isi.uu.nl

my.vanderbilt.edu/masi/workshops
mrbrains18.isi.uu.nl
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ten anatomical regions. Some subjects have pathology and they are all older
than 50 years. All scans were labelled by the same neuroanatomist.

Within each dataset, all subjects were scanned on the same scanner and with
the same sequences, whilst between datasets, the scanners and sequences differ
(Fig. 1). Both datasets have multiple labelled brain structures, such as cortical
GM, cerebellum, ventricles, etc. We combined these so as to obtain the same
three labels for each subject: GM, WM and OTHER (1 − GM −WM). These
labels were used as targets when training our model.

All T1-weighted MR scans were segmented with the algorithm implemented
in the SPM12 software4, which is based on the generative model described in
[3]. In this model, the distribution over categorical labels is independent across
voxels, non-stationary, and encoded by a probabilistic atlas deformed towards
each subject. The algorithm generates soft segmentations, that is, parameters
of the posterior categorical distribution over labels. We pulled the GM, WM
and OTHER classes from these segmentations. Fig. 3 shows the T1-weighted
image of one subject from each dataset, with its corresponding target labels and
SPM12 segmentations5.

Model training and evaluation: We trained two different models: a regular,
second-order MRF (Lin); and a second-order nonlinear MRF (Net). Fig. 2 ex-
plains the differences in architecture between the two. For each subject and each
class, we computed the Dice score of the ML labels obtained using SPM12 and
those obtained after application of the linear MRF and the nonlinear MRF. Sta-
tistical significance of the observed changes was tested using two-sided Welch’s
t-tests between paired measures. Multiple comparisons were accounted for by
applying the Bonferroni correction.

We first evaluated the learning abilities of the networks. To this end, we
performed a 10-fold cross validation of the MICCAI2012 dataset, where groups
of three images were tested using a model trained on the remaining 27 images.
This yielded Dice scores for the entire MICCAI2012 dataset, which are shown
in Fig. 4a. Next, we evaluated the generalisability of the networks, that is, what
kind of performances are obtained when the models are tested on images from
an entirely new dataset, with different imaging features. We randomly selected
models trained on one of the MICCAI2012 folds and applied them to the images
from the MRBrainS18 dataset. The results are shown in Fig. 4b.

Results: The 10-fold cross validation results in Fig. 4a show that the increase in
Dice scores for both GM and WM is statistically significant after applying either
of our two MRF CNN models. (Fig. 3 shows the results for a randomly selected
MICCAI2012 subject). With a mean Dice of {GM = 0.867,WM = 0.921} for
SPM12, and {GM = 0.901,WM = 0.929} and {GM = 0.909,WM = 0.931} after
applying the linear and nonlinear MRF, respectively. The results imply that the

4 www.fil.ion.ucl.ac.uk/spm/software/spm12
5 Besides disabling the final MRF clean-up, we used the default parameters of SPM12.

www.fil.ion.ucl.ac.uk/spm/software/spm12
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Fig. 3: Example training data and results. From left to right: T1-weighted MR image
with target labels, SPM GM and WM segmentations, results of applying the linear
MRF model to the SPM segmentations, results of applying the nonlinear MRF model
to the SPM segmentations. Below each tissue class are the corresponding Dice scores,
computed with the target labels as reference.

classical generative approach of SPM12, which currently ranks in the top 50 on
the MRBrainS13 challenge website6, could move up quite a few positions by
application of our proposed model trained on the challenge data. As can be seen
in Fig. 4a, for one of the subjects, all models perform substantially worse. On
closer inspection, this subject suffers from major white matter hyper-intensities.
This abnormality is currently not handled well by the MRF CNN models, which
obtain lower Dice scores than the initial SPM12 segmentations.

Fig. 4b shows results when applying the models to data from a different
centre, not part of the training data (Fig. 3 shows the results for a randomly se-
lected MRBrainS18 subject). Mean Dice scores are {GM = 0.722,WM = 0.816}
for SPM12, and {GM = 0.761,WM = 0.831} and {GM = 0.755,WM = 0.829}
after application of the linear and nonlinear MRF, respectively. Application of
the MRF improves both GM and WM segmentations. The nonlinear MRF per-
forms slightly worse than the linear version. This result could be due to the
nonlinear model – which possesses many more parameters than the linear model
– overfitting to the training subjects of MICCAI2012. Additionally, the nonlin-
ear MRF may struggle with the MRBrainS18 subjects that have pathology (e.g.

6 mrbrains13.isi.uu.nl/results.php

mrbrains13.isi.uu.nl/results.php


10

**** ****

****

**** ***

****

*** ns

***

**** *

***

MICCAI2012

GM

MICCAI2012

WM

MRBrainS18

GM

MRBrainS18

WM

SPM Lin Net SPM Lin Net SPM Lin Net SPM Lin Net

0.6

0.7

0.8

0.9

1.0

D
ic

e

(a)

**** ****

****

**** ***

****

*** ns

***

**** *

***

MICCAI2012

GM

MICCAI2012

WM

MRBrainS18

GM

MRBrainS18

WM

SPM Lin Net SPM Lin Net SPM Lin Net SPM Lin Net

0.6

0.7

0.8

0.9

1.0

D
ic

e

(b)

Fig. 4: Validation of our model on the MICCAI2012 (a) and MRBrainS18 (b) datasets.
Dice scores were computed for known labels (GM and WM) and: SPM12 segmenta-
tions (SPM); and linear (Lin) and nonlinear (Net) 8-neighbour MRF applied to the
SPM12 segmentations. Asterisks indicate statistical significance of paired t-tests after
Bonferroni correction: 0.05 (∗), 0.01 (∗∗), 0.001 (∗ ∗ ∗) & 0.0001 (∗ ∗ ∗∗).

white matter hyperintensities). Still, the fact that Dice scores improve when ap-
plying the model to new data shows that we can successfully improve segmenting
images from different MR imaging protocols.

4 Discussion

In this paper, we introduced an image segmentation method that combines the
robustness of a well-tuned generative model with some of the outstanding learn-
ing capability of a CNN. The CNN encodes an MRF in the prior term over
the unknown labels. We evaluated the method on annotated MR images and
showed that a trained model can be deployed on an unseen image population,
with very different characteristics from the training population. We hope that
the idea presented in this paper introduces to the medical imaging community
a principled way of bringing together probabilistic modelling and deep learning.

In medical image analysis – where labelled training data is sparse and im-
ages can vary widely – generalisability across different image populations is one
of the most important properties of learning-based methods. However, achieving
this generalisability is made difficult by the limited amount of annotated data;
the datasets we used in this paper contained, in total, only 37 subjects. This
issue may be addressed by realistic, nonlinear data augmentation, which is able
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to capture changes due to ageing and disease. Learning this variability in shape
from a large and diverse population could be a step in that direction [24]. On the
other hand – manual segmentations suffer from both intra- and inter-operator
variability, is it clinically meaningful to learn from these very imperfect anno-
tations? Could automatic segmentations prove more anatomically informative
than manual ones (c.f., Fig. 3)? Semi-supervised techniques, leveraging both
labelled and unlabelled data, could be an option for making our method less
dependent on annotations (see e.g., [25]).

We chose the architecture of our proposed MRF CNN with the idea of keeping
the number of parameters low (to reduce overfitting), while still introducing a
more complex neighbourhood than in regular MRF models. However, we did not
extensively investigate different architectures, e.g., activation functions and filter
size. There is therefore a possibility of improved performance by design changes
to the network. Such a change could be to hierarchically apply MRF filters
of decreasing size, which could increase neighbourhood size without increased
overfitting. Another potentially interesting idea would be to ‘plug in’ the MRF
filters at the end of a segmentation network, such as a U-net, emulating MRF
post-processing inside the network. Finally, we intend to integrate our model
into a generative segmentation framework and then validate its performance by
comparing it to other existing segmentation software.

Acknowledgements: JA was funded by the EU Human Brain Project’s Grant
Agreement No 785907 (SGA2). YB was funded by the MRC and Spinal Research
Charity through the ERA-NET Neuron joint call (MR/R000050/1).
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