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Abstract

We study the interplay between surrogate meth-
ods for structured prediction and techniques from
multitask learning designed to leverage relation-
ships between surrogate outputs. We propose an
efficient algorithm based on trace norm regular-
ization which, differently from previous methods,
does not require explicit knowledge of the cod-
ing/decoding functions of the surrogate frame-
work. As a result, our algorithm can be applied to
the broad class of problems in which the surrogate
space is large or even infinite dimensional. We
study excess risk bounds for trace norm regular-
ized structured prediction proving the consistency
and learning rates for our estimator. We also iden-
tify relevant regimes in which our approach can
enjoy better generalization performance than pre-
vious methods. Numerical experiments on rank-
ing problems indicate that enforcing low-rank re-
lations among surrogate outputs may indeed pro-
vide a significant advantage in practice.

1. Introduction
The problem of structured prediction is receiving increas-
ing attention in machine learning, due to its wide practical
importance (Bakir et al., 2007; Nowozin et al., 2011) and
the theoretical challenges in designing principled learning
procedures (Taskar et al., 2004; 2005; London et al., 2016;
Cortes et al., 2016). A key aspect of this problem is the
non-vectorial nature of the output space, e.g. graphs, permu-
tations, and manifolds. Consequently, traditional regression
and classification algorithms are not well-suited to these set-
tings and more sophisticated methods need to be developed.
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Among the most well-established strategies for structured
prediction are the so-called surrogate methods (Bartlett
et al., 2006). Within this framework, a coding function
is designed to embed the structured output into a linear
space, where the resulting problem is solved via standard
supervised learning methods. Then, the solution of the sur-
rogate problem is pulled back to the original output space
by means of a decoding procedure, which allows one to
recover the structured prediction estimator under suitable
assumptions. In most cases, the surrogate learning problem
amounts to a vector-valued regression in a possibly infinite
dimensional space. The prototypical choice for such surro-
gate estimator is a regularized least squares in a reproducing
kernel Hilbert space, as originally considered in (Weston
et al., 2003; Cortes et al., 2005; Bartlett et al., 2006) and
then explored in (Mroueh et al., 2012; Kadri et al., 2013;
Brouard et al., 2016; Ciliberto et al., 2016; Osokin et al.,
2017; Rudi et al., 2018; Luise et al., 2018).

The principal goal of this paper is to extend the surrogate
approaches to methods that encourage structure among the
outputs. Indeed, a large body of work from traditional multi-
task learning has shown that leveraging the relations among
multiple outputs may often lead to better estimators (Alvarez
et al., 2012; Argyriou et al., 2008; Caponnetto & De Vito,
2007; Maurer, 2006; Micchelli et al., 2013). However, pre-
vious methods that propose to apply multitask strategies to
surrogate frameworks (see e.g. Alvarez et al., 2012; Fergus
et al., 2010) heavily rely on the explicit knowledge of the
encoding function of a surrogate framework. As a conse-
quence they are not applicable when the surrogate space is
large or even infinite dimensional.

Contributions. We propose a new algorithm based on
low-rank regularization for structured prediction that builds
upon the surrogate framework in (Ciliberto et al., 2016;
2017). Differently from previous methods in the literature
on surrogate methods, our approach does not require explicit
knowledge of the encoding function, by leveraging intrinsic
properties of the loss function. In particular, exploiting ap-
proaches based on the variational formulation of trace norm
regularization (Srebro et al., 2005), we are able to derive
an efficient learning algorithm also in the case of infinite
dimensional surrogate spaces.
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We characterize the generalization properties of the pro-
posed estimator by proving excess risk bounds for the cor-
responding least-squares surrogate estimator that extend
previous results (Bach, 2008). In particular, in line with
previous work on the topic (Maurer & Pontil, 2013), we
identify settings in which the trace norm regularizer can pro-
vide significant advantages over standard `2 regularization.
While similar findings have been obtained in the case of a
Lipschitz loss, to our knowledge this is a novel result for
least-squares regression with trace norm regularization. In
this sense, the implications of our analysis extend beyond
structured prediction and apply to settings such as collab-
orative filtering with side information (Abernethy et al.,
2009). We evaluate our approach on a number of learning-
to-rank problems. In our experiments the proposed method
significantly outperforms all competitors, suggesting that
enforcing low-rank regularization on the surrogate outputs
can be beneficial also in structured prediction settings.

Paper Organization. Sec. 2 reviews surrogate methods
and the specific framework adopted in this work. Sec. 3 in-
troduces the proposed approach to trace norm regularization
and proves that it does not leverage explicit knowledge of
coding and surrogate space. Sec. 4 describes the statistical
analysis of the proposed estimator both in a vector-valued
and multi-task learning setting. Sec. 5 reports on experi-
ments. Sec. 6 discusses relevant directions for future work.

2. Background
Our proposed estimator belongs to the family of surrogate
methods (Bartlett et al., 2006). This section reviews the
main ideas behind these approaches.

Surrogate Methods. Surrogate methods are general strate-
gies to address supervised learning problems. Their goal is
to learn a function f : X → Y minimizing the expected risk
of a distribution ρ on X × Y

E(f) :=

∫

X×Y
`(f(x), y) dρ(x, y), (1)

given only n observations (xi, yi)
n
i=1 independently drawn

from ρ, which is unknown in practice. Here ` : Y ×Y → R
is a loss measuring prediction errors.

Surrogate methods have been conceived to deal with so-
called structured prediction settings, namely supervised
problems where Y is not a vector space but rather a “struc-
tured” set (of e.g. strings, graphs, permutations, points on a
manifold, etc.). Surrogate methods have been successfully
applied to problems such as classification (Bartlett et al.,
2006), multi-labeling (Gao & Zhou, 2013; Mroueh et al.,
2012) or ranking (Duchi et al., 2010). They follow an alter-
native route to standard empirical risk minimization (ERM),
which instead consists in directly finding the model that best
explains training data within a prescribed hypotheses space.

Surrogate methods are characterized by three phases:

1. Coding. Define an embedding c : Y → H, where
H is a Hilbert space. Map (xi, yi)

n
i=1 to a “surrogate”

dataset (xi, c(yi))
n
i=1.

2. Learning. Define a surrogate loss L : H × H → R.
Learn ĝ : X → H via ERM on (xi, c(yi))

n
i=1.

3. Decoding. Define a decoding d : H → Y and return
the estimator f̂ = d ◦ ĝ : X → Y .

Example 1 (One Vs All). Y = {1, . . . , T} set of T classes
and ` the 0-1 loss: 1) The coding is c : Y → H = RT
with c(i) = ei the vector of all 0s but 1 at the i-th entry.
2) ĝ : X → RT is learned by minimizing a surrogate loss
L : RT × RT → R (e.g. least-squares). 3) The classifier is
f̂(x) = d(ĝ(x)), with decoding d(v) = argmaxTi=1{vi}.

A key element of surrogate methods is the choice of the loss
L. Indeed, since H is linear (e.g. H = RT in Ex. 1), if L
is convex it is possible to learn ĝ efficiently by means of
standard ERM. However, this opens the question of charac-
terizing how the surrogate risk

R(g) =

∫
L(g(x), c(y)) dρ(x, y) (2)

is related to the original risk E(f). In particular let f∗ :
X → Y and g∗ : X → H denote the minimizers of respec-
tively E(f) andR(g). We require:

• Fisher Consistency. E(d ◦ g∗) = E(f∗).
• Comparison Inequality. For any g : X → H,

E(d ◦ g)− E(f∗) ≤ σ(R(g)−R(g∗)), (3)

with σ : R → R+ a continuous nondecreasing function,
such that σ(0) = 0.

Fisher consistency guarantees the coding/decoding frame-
work to be coherent with the original problem. The compar-
ison inequality suggests to focus the theoretical analysis on
ĝ, since learning rates for ĝ directly lead to learning rates
for f̂ = d ◦ ĝ.

SELF Framework. A limiting aspect of surrogate methods
is that they are often tailored around individual problems.
An exception is the framework in (Ciliberto et al., 2016),
which provides a general strategy to identify coding, decod-
ing and surrogate space for a variety of learning problems.
The key condition in this settings is for the loss ` to be SELF:

Definition 1 (SELF). A function ` : Y × Y → R is a
Structure Encoding Loss Function (SELF) if there exist a
separable Hilbert spaceHY , a continuous map ψ : Y → HY
and V : HY → HY a bounded linear operator, such that for
all y, y′ ∈ Y

`(y, y′) = 〈ψ(y), V ψ(y′)〉HY . (4)
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The condition above is very general (albeit not always trivial
to verify in practice): as shown in (Ciliberto et al., 2016;
2017), most loss functions used in machine learning are
SELF (e.g. regression, robust estimation, classification,
ranking, etc.).

We can design surrogate frameworks “around” a SELF `,
by choosing (Coding) the map c = ψ : Y → HY , the
least-squares (Surrogate loss) L(h, h′) = ‖h− h′‖2HY and
(Decoding) d : HY → Y defined for any h ∈ HY as

d(h) = argminy∈Y 〈ψ(y), V h〉HY (5)

for any h ∈ HY . The resulting is a sound surrogate frame-
work as summarized by the theorem below.

Theorem 1 (Thm. 2 in (Ciliberto et al., 2016)). Let ` be
SELF and Y a compact set. Then, the SELF framework
introduced above is Fisher consistent. Moreover, it satisfies
a comparison inequality with σ(·) = q`

√·, where q` =
‖V ‖ supy∈Y ‖ψ(y)‖HY .

Loss trick. A key aspect of the SELF framework is that, in
practice, the resulting algorithm does not require explicit
knowledge of the coding/decoding and surrogate space
(only needed for the theoretical analysis). To see this, let
X = Rd and HY = RT and consider the parametrization
g(x) = Gx of functions g : X → HY , with G ∈ RT×d a
matrix. We can perform Tikhonov regularization to learn
the matrix Ĝ minimizing the (surrogate) empirical risk

min
g:X→H

n−1
n∑

i=1

‖g(xi)− ψ(yi)‖2H + λ‖g‖2HS, (6)

where ‖ · ‖HS is the Hilbert-Schmidt (HS) (or Frobenius)
norm regularizer and λ > 0. Note that Ĝ can be obtained in
closed form and ĝ : X → HY is such that

ĝ(x) = Ĝx =

n∑

i=1

αi(x)ψ(yi), with (7)

α(x) = (α1(x), . . . , αn(x))> = (KX + nλI)−1vx, (8)

for every x ∈ X . Here KX ∈ Rn×n is the empirical kernel
matrix of the linear kernel k(x, x′) = x>x′ and vx ∈ Rn is
the vector with i-th entry (vx)i = k(x, xi).

Applying the SELF decoding in Eq. (5) to ĝ, we have

f̂(x) = d(ĝ(x)) = argmin
y∈Y

n∑

i=1

αi(x)`(y, yi), (9)

for all x ∈ X . This follows by combining the SELF prop-
erty `(y, yi) = 〈ψ(y), V ψ(yi)〉HY with ĝ in Eq. (7) and
the linearity of the inner product. Eq. (9) was originally
dubbed “loss trick” since it avoids explicit knowledge of the
coding ψ, similarly to the feature map for the kernel trick
(Schölkopf et al., 2002).

The characterization of f̂ in terms of an optimization prob-
lem over Y (like in Eq. (9)) is a common practice to most
structured prediction algorithms. In the literature, such de-
coding process is referred to as the inference (Nowozin
et al., 2011) or pre-image (Brouard et al., 2016; Cortes et al.,
2005; Weston et al., 2003) problem. We refer to (Honeine &
Richard, 2011; Bakir et al., 2007; Nowozin et al., 2011) for
examples on how these problems are addressed in practice.

General Setting. The derivation above holds also whenHY
is infinite dimensional and when using a positive definite
kernel k : X × X → R on X . Let HX be the reproducing
kernel Hilbert space (RKHS) induced by k and φ : X → HX
a corresponding feature map (Aronszajn, 1950). We can
parametrize g : X → HY as g(·) = Gφ(·), with G ∈
HY ⊗HX the space of Hilbert-Schmidt operators fromHX
to HY (the natural generalization of Rd×T = Rd ⊗ RT to
the infinite setting). The problem in Eq. (6) can still be
solved in closed form analogously to Eq. (7), with now KX

the empirical kernel matrix of k (Caponnetto & De Vito,
2007). This leads to the decoding for f̂ as in Eq. (9).

3. Low-Rank SELF Learning
Building upon the SELF framework, we discuss the use of
multitask regularizers to exploit potential relations among
the surrogate outputs. Our analysis is motivated by observ-
ing that Eq. (6) is equivalent to learning multiple (possibly
infinitely many) functions

min
{gt}∈HX

1

n

∑

t∈T

n∑

i=1

(gt(xi)− ϕt(yi))2 + λ‖gt‖2HX , (10)

where, given a basis {et}t∈T of HY with T ⊆ N, we have
denoted ψt(y) = 〈et, ψ(y)〉HY for any y ∈ Y and t ∈
T . Indeed, from the literature on vector-valued learning in
RKHS (see e.g Micchelli & Pontil, 2005), we have that for
g : X → HY parametrized by an operatorG ∈ HY⊗HX , any
gt : X → R defined by gt(·) = 〈et, g(·)〉HY , is a function
in the RKHSHX and, moreover, ‖G‖2HS =

∑
t∈T ‖gt‖2HX .

The observation above implies that we are learning the sur-
rogate “components” gt as separate problems or tasks, an
approach often referred to as “independent task learning”
within the multitask learning (MTL) literature (see e.g. Ar-
gyriou et al., 2008). In this respect, a more appropriate
strategy would be to leverage the potential relations be-
tween such components during learning. In particular, we
consider the problem

min
G∈HY⊗HX

1

n

n∑

i=1

‖Gφ(xi)− ψ(yi)‖2HY + λ‖G‖∗, (11)

where ‖G‖∗ denotes the trace norm, namely the sum of the
singular values of G. Similarly to the `1-norm on vectors,
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the trace norm favours sparse (and thus low-rank) solutions.
Intuitively, encouraging G to be low-rank reduces the de-
grees of freedom allowed to the individual tasks gt. This
approach was extensively investigated and successfully ap-
plied to several MTL settings, (see e.g. Argyriou et al., 2008;
Bach, 2008; Abernethy et al., 2009; Maurer & Pontil, 2013).

In general, the idea of combining MTL methods with surro-
gate frameworks has already been studied in settings such as
classification or multi-labeling (see e.g. Alvarez et al., 2012;
Fergus et al., 2010). However, these approaches require
to explicitly use the coding/decoding and surrogate space
within the learning algorithm. This is clearly unfeasible
whenHY is large or infinite dimensional.

SELF and Trace Norm MTL. In this work we leverage the
SELF property outlined in Sec. 2 to derive an algorithm that
overcomes the issues above and does not require explicit
knowledge of the coding map ψ. However, our approach
still requires to access the matrix KY ∈ Rn×n of inner
products (KY)ij = 〈ψ(yi), ψ(yj)〉HY between the training
outputs. When the surrogate space HY is a RKHS, KY

corresponds to an empirical output kernel matrix, which can
be efficiently computed. This motivates us to introduce the
the following assumption.
Assumption 1 (SELF & RKHS). The loss ` : Y × Y → R
is SELF with HY a RKHS on Y with reproducing kernel
kY(y, y

′) = 〈ψ(y), ψ(y′)〉HY for any y, y′ ∈ Y .

The assumption above imposes an additional constraint on
` and thus on the applicability of Alg. 1. However, it was
shown in (Ciliberto et al., 2016) that this requirement is
always satisfied by any loss when Y is a discrete set. In this
case the output kernel is kY(y, y′) = δy=y′ the 0-1 kernel.
Moreover, it was recently shown that Asm. 1 holds for
any smooth ` on a compact set Y by choosing kY(y, y′) =
exp(−‖y − y‖/σ) the Abel kernel with hyperparameter
σ > 0 (Luise et al., 2018).

Algorithm. Standard methods to solve Eq. (11), such as
forward-backward splitting, require to perform the singu-
lar value decomposition of the estimator at every iteration
(Mazumder et al., 2010). This is prohibitive for large scale
applications and, to overcome these drawbacks, algorithms
exploiting the variational form

‖G‖∗ =
1

2
inf
{
‖A‖2HS + ‖B‖2HS : G = AB∗, r ∈ N,

A ∈ HY ⊗ Rr, B ∈ HX ⊗ Rr
}
,

of the trace norm have been considered (see e.g. Srebro et al.,
2005). Using this characterization, Eq. (11) is reformulated
as the problem of minimizing

1

n

n∑

i=1

‖AB∗φ(xi)−ψ(yi)‖2HY+λ
(
‖A‖2HS+‖B‖2HS

)
, (12)

Algorithm 1 LOW-RANK SELF LEARNING

Input: KX ,KY ∈ Rn×n empirical kernel matrices for
input and output data, λ regularizer, r rank, ν step size, k
number of iterations.

Initalize: Sample M0, N0 ∈ Rn×r randomly.

For j = 0, . . . , k:
Mj+1 = (1− λν)Mj − ν(KXMjNj − I)KYNj
Nj+1 = (1− λν)Nj − ν(NjM

>
j KX − I)KXMj

Return: The weighting function αtn : X → Rn
with αtn(x) = NkM

>
k vx for any x ∈ X

with vx ∈ Rn as in Eq. (8)

over the operators A ∈ HY ⊗ Rr and B ∈ HX ⊗ Rr, where
B∗ denotes the adjoint of B and r ∈ N is now a further
hyperparameter. The functional in Eq. (12) is smooth and
methods such as gradient descent can be applied. Interest-
ingly, despite the functional being non-convex, guarantees
on the global convergence in these settings have been ex-
plored (Journée et al., 2010).

In the SELF setting, minimizing Eq. (12) has the additional
advantage that it allows us to derive an analogous of the
loss trick introduced in Eq. (9). In particular, the following
result shows how each iterate of gradient descent can be
efficiently “decoded” into a structured prediction estimator
according to Alg. 1.

Theorem 2 (Loss Trick for Trace Norm). Under Asm. 1, let
M,N ∈ Rn×r and (Ak, Bk) be the k-th iterate of gradient
descent on Eq. (12) from A0 =

∑n
i=1 φ(xi) ⊗ M i and

B0 =
∑n
i=1 ψ(yi) ⊗ N i, with M i, N i denoting the i-th

rows of M and N respectively. Let ĝk : X → HY be such
that ĝk(·) = AkB

∗
kφ(·). Then, the structured prediction

estimator f̂k = d ◦ ĝk : X → Y with decoding d in Eq. (5)
is such that

f̂k(x) = argmin
y∈Y

n∑

i=1

αtn
i (x) `(y, yi)

for any x ∈ X , with αtn(x) ∈ Rn the output of Alg. 1 after
k iterations starting from (M0, N0) = (M,N).

The result above shows that Alg. 1 offers a concrete algo-
rithm to perform the SELF decoding f̂k = d ◦ ĝk of the
surrogate function ĝk(·) = AkB

∗
kφ(·) obtained after k iter-

ations of gradient descent on Eq. (12). Note that whenHY
is infinite dimensional it would be otherwise impossible to
perform gradient descent in practice. In this sense, Thm. 2
can be interpreted as a representer theorem with respect to
both inputs and outputs. The details of the proof are re-
ported in Appendix A; the key aspect is to show that every
iterate (Aj , Bj) of gradient descent on Eq. (12) is of the
form Aj =

∑n
i=1 φ(xi)⊗M i and Bj =

∑n
i=1 ψ(yi)⊗N i
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for some matrices M,N ∈ Rn×r. Hence, the products
A∗jAj = M>KXM and B∗jBj = N>KYN – used in the
optimization – are r × r matrices that can be efficiently
computed in practice, leading to Alg. 1.

We conclude this section by noting that, in contrast to trace
norm regularization, not every MTL regularizer fits naturally
within the SELF framework.

SELF and other MTL Regularizer. A well-established
family of MTL methods consists in replacing the trace norm
‖G‖∗ with tr(GAG∗) in Eq. (11), where A ∈ HY ⊗HY is a
positive definite linear operator enforcing specific relations
on the tasks via a deformation of the metric ofHY (see Mic-
chelli & Pontil, 2005; Jacob et al., 2008; Alvarez et al., 2012,
and references therein). While in principle appealing also in
surrogate settings, thes approaches present critical computa-
tional and modelling challenges for the SELF framework:
the change of metric induced by A has a disruptive effect on
the loss trick. As a consequence, an equivalent of Thm. 2
does not hold in general (see Appendix A.3 for a detailed
discussion).

4. Theoretical Analysis
In this section we study the generalization properties of
low-rank SELF learning. Our analysis is indirect since we
characterize the learning rates of the Ivanov estimator (in
contrast to Tikhonov, see Eq. (11))

Ĝ = argmin
‖G‖∗≤γ

1

n

n∑

i=1

‖Gφ(xi)− ψ(yi)‖2HY . (13)

Indeed, while Tikhonov regularization is typically more
convenient from a computational perspective, Ivanov reg-
ularization is often more amenable to theoretical analysis
since it is naturally related to standard complexity measures
for hypotheses spaces such as Rademacher complexity, Cov-
ering Numbers or VC dimension (Shalev-Shwartz & Ben-
David, 2014). However, the two regularization strategies
are equivalent in the following sense: for any γ there exists
λ(γ) such that the minimizer of Eq. (11) (Tikhonov) is also
a minimizer for Eq. (13) (Ivanov) with constraint γ (and
vice-versa). This follows from a standard Lagrangian dual-
ity argument leveraging the convexity of the two problems
(see e.g. Oneto et al., 2016, or Appendix E for more details).
Hence, while our results in the following are reported for
the Ivanov estimator from Eq. (13), they apply equivalently
to Tikhonov in Eq. (11).

We now proceed to present the main result of this section,
proving excess risk bounds for the trace norm surrogate
estimator. In the following we assume a reproducing kernel
kX on X and kY on Y (according to Asm. 1) and denote
m2
X = supx∈X kX (x, x) and m2

Y = supy∈Y kY(y, y). More-
over, let C = E φ(x)⊗ φ(x) the covariance operator over

input data sampled from ρ and by ‖C‖op its operator norm,
namely its largest singular value. We introduce the follow-
ing condition.

Assumption 2. There exists G∗ ∈ HY ⊗ HX with finite
trace norm, ‖G∗‖∗ < +∞, such that g∗(·) = G∗φ(·) is a
minimizer of the riskR in Eq. (2).

The assumption above requires the ideal solution of the
surrogate problem to belong to the space of hypotheses of
the learning algorithm. This is a standard requirement in
statistical learning theory in order to characterize the excess
risk bounds of an estimator (see e.g. Shalev-Shwartz & Ben-
David, 2014).

Theorem 3. Under Asm. 2, let Y be a compact set, let
(xi, yi)

n
i=1 be a set of n points sampled i.i.d. and let ĝ(·) =

Ĝφ(·) with Ĝ the solution of Eq. (13) for γ = ‖G∗‖∗. Then,
for any δ > 0

R(ĝ)−R(g∗) ≤ (mY + M)

√
4 log r

δ

n
+O(n−1), (14)

with probability at least 1− δ, where

M = 2mX‖C‖1/2op ‖G∗‖2∗ + mXR(g∗)‖G∗‖∗, (15)

with r a constant not depending on δ, n or G∗.

The proof is detailed in Appendix B. The two main ingredi-
ents are: i) the boundedness of the trace norm of G∗, which
allows us to exploit the duality between trace and opera-
tor norms; ii) recent results on Bernstein’s inequalities for
the operator norm of random operators between separable
Hilbert spaces (Minsker, 2017).

We care to point out that previous results are available in
the following settings: (Bach, 2008) shows the convergence
in distribution for the trace norm estimator to the minimum
risk and (Koltchinskii et al., 2011) shows excess risk bounds
in high probability for an estimator which leverages previ-
ous knowledge on the distribution (e.g. matrix completion
problem). Both are devised for finite dimensional settings.
To our knowledge this is the first work proving excess risk
bounds in high probability for trace norm regularized least
squares. Note that the relevance of Thm. 3 is not limited to
structured prediction but it can be also applied to problems
such as collaborative filtering with attributes (Abernethy
et al., 2009).

Discussion. We now discuss under which conditions trace
norm (TN) regularization provides an advantage over stan-
dard the Hilbert-Schmidt (HS) one. We refer to Appendix B
for a more in-depth discussion on the comparison between
the two estimators, while addressing here the key points.

For the HS estimator, excess risk bounds can be derived by
imposing the less restrictive assumption ‖G∗‖HS < +∞.
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A result analogous to Thm. 3 can be obtained (see Ap-
pendix B), with constant M such that

M = mX (mX+‖C‖
1
2
op) ‖G∗‖2HS + mXR(g∗)‖G∗‖HS.

This constant is structurally similar to the one for TN (with
‖ · ‖HS appearing in place of ‖ · ‖∗), plus the additional
term m2

X‖G‖2HS. We first note that if ‖G∗‖HS � ‖G∗‖∗, the
bound offers no advantage with respect to the HS counter-
part.

Hence, we focus on the setting where ‖G∗‖HS ∼ ‖G∗‖∗ are
of the same order. This corresponds to the relevant scenario
where the multiple outputs/tasks encoded byG∗ are (almost)
linearly dependent. In this case, the constant M associated
to the TN estimator can potentially be significantly smaller
than the one for HS: while for TN the term ‖G∗‖2∗ is miti-
gated by ‖C‖1/2op , for HS the corresponding term ‖G∗‖HS is
multiplied by (mX + ‖C‖1/2op ). Note that the operator norm
is such that ‖C‖1/2op ≤ mX but can potentially be signifi-
cantly smaller than mX . For instance, when X = Rd, kX is
the linear kernel and training points are sampled uniformly
on the unit sphere, we have mX = 1 while ‖C‖1/2op = 1√

d
.

In summary, trace norm regularization allows to leverage
structural properties of the data distribution provided that
the output tasks are related. This effect can be interpreted as
the process of “sharing” information among the otherwise
independent learning problems. A similar result to Thm. 3
was proved in (Maurer & Pontil, 2013) for Lipschitz loss
functions (and HY finite dimensional). We refer to such
work for a more in-depth discussion on the implications
of the link between trace norm regularization and operator
norm of the covariance operator.

Excess Risk Bounds for f̂ . By combining Thm. 3 with the
comparison inequality for the SELF framework (see Thm. 1)
we can immediately derive excess risk bounds for f̂ = d ◦ ĝ.

Corollary 4. Under the same assumptions and notation of
Thm. 3, let ` be a SELF loss and f̂ = d ◦ ĝ : X → Y . Then,
for every δ > 0, with probability not less than 1− δ it holds
that

E(f̂)− E(f∗) ≤ q`
4

√
4(mY + M)2 log r

δ

n
+O(n−

1
2 )

where M and r are the same constants of Thm. 3 and q` is
as in Thm. 1.

The result above provides comparable learning rates to those
of the original SELF estimator (Ciliberto et al., 2016). How-
ever, since the constant M corresponds to the one from
Thm. 3, whenever trace norm regularization provides an
advantage with respect to standard Hilbert-Schmidt regu-
larization on the surrogate problem, such improvement is
directly inherited by f̂ .

We conclude this section by noting that a large body of
previous work has been focused on providing margin-based
bounds for structured predictions (see e.g. Taskar et al.,
2004; Cortes et al., 2016). Even if a comparison between
the margin-based paradigm and surrogate approaches is non
trivial, it is interesting to note that:

1. The surrogate bounds in Thm. 3 are comparable to the
generalization margin bounds (see e.g. (Taskar et al.,
2004)) both in terms of rates (i.e. O(n−1/2)) and some
of the key quantities (e.g. ‖w‖2 in (Taskar et al., 2004)
is related to the ‖g∗‖HS in our setting).

2. While in surrogate settings the comparison inequality
in Eq. (3) offers a direct connection with the original
structured problem, for margin-based methods the link
is less direct: similarly to the binary classification set-
ting, the gap between the margin loss and the original
loss could be bridged by a noise condition (i.e. when
there is low noise at the decision boundary between
labels, prediction becomes easier). When explicitly
available, this condition might possibly lead to fast
rates for the structured problem. Interestingly, it was
recently shown in (Thm 3.5 in Nowak et al., 2019) that
an improved comparison inequality holds true in low-
noise finite settings also for the SELF framework. This
might offer a further connection between surrogate and
margin-based methods for structured prediction.

4.1. Multitask Learning

So far we have studied trace norm regularization when learn-
ing the multiple gt in Eq. (10) within a vector-valued setting,
namely where for any input sample xi in training we ob-
serve all the corresponding outputs ψt(yi). This choice was
made mostly for notational purposes and the analysis can be
extended to the more general setting of nonlinear multitask
learning, where separate groups of surrogate outputs could
be provided each with its own dataset. We provide here a
brief summary of this setting and our results within it, while
postponing all details to Appendix C.

Let T be a positive integer. In typical multitask learn-
ing (MTL) settings the goal is to learn multiple functions
f1, . . . , fT : X → Y jointly. While most previous MTL
methods considered how to enforce linear relations among
tasks, (Ciliberto et al., 2017) proposed a generalization of
SELF framework to address nonlinear multitask problems
(NL-MTL). In this setting, relations are enforced by means
of a constraint set C ⊂ YT (e.g. a set of nonlinear con-
straints that f1, . . . , fT need to satisfy simultaneosly). The
goal is to minimize the multi-task excess risk

min
f :X→C

ET (f), ET (f) =
1

T

T∑

t=1

∫

X×R
`(ft(x), y)dρt(x, y),
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where the ρt are unknown probability distributions onX×Y ,
observed via finite samples (xit, yit)

nt
i=1, for t = 1, . . . , T .

The NL-MTL framework interprets the nonlinear multitask
problem as a structured prediction problem where the con-
straint set C represents the “structured” output. Assuming
` to be SELF with space HY and coding ψ, the estimator
f̂ : X → C then is obtained via the MTL decoding map dT

f̂(x) = dT (ĝ(x)) := argmin
c∈C

T∑

t=1

〈ψ(ct), V ĝt(x)〉, (16)

where each ĝt(·) = Gtφ(·) : X → HY is learned indepen-
dently via surrogate ridge regression like in Eq. (6).

Similarly to the vector-valued case of Eq. (10), we can
“aggregate” the operatorsGt ∈ HX⊗HY in a single operator
G, which is then learned by trace norm regularization as in
Eq. (11) (see Appendix C for the definition of G). Then, an
analogous of Thm. 2 holds for the corresponding variational
formulation of such problem, which guarantees the loss trick
to hold (see Appendix A.2 for the corresponding version of
Alg. 1).

Also in this setting we study the theoretical properties of the
low-rank approach via the estimator obtained via surrogate
Ivanov regularization

Ĝ = argmin
‖G‖∗≤γ

1

T

T∑

t=1

1

nt

nt∑

i=1

‖Gtφ(xit)− ψ(yit)‖2HY . (17)

We report the result characterizing the excess risk bounds
for Ĝ (see Thm. 7 for the formal version). Note that in
this setting the surrogate risk RT of G corresponds to the
average least-squares surrogate risks of the individual Gt.
In the following we denote by C̄ = 1

T

∑T
t=1 Ct the average

of the input covariance operators Ct = Ex∼ρtφ(x)⊗ φ(x)
according to ρt.

Theorem 5 (Informal). Under Asm. 2, let {xit, yit}nt=1 be
independently sampled from ρt for t = 1, . . . , T . Let ĝ(·) =
Ĝφ(·) with Ĝ minimizer of Eq. (17). Then ∀δ > 0, with
probability at least 1− δ,

RT (ĝ)−RT (g∗) ≤

√
2M′ log T r′

δ

Tn
+O((nT )−1),

where the constant M′ depends on ‖G∗‖∗, ‖C̄‖1/2op ,RT (g∗)
and r′ a constant independent of δ, n, T,G∗.

Here the constant M′ exhibits an analogous behavior to M
for Thm. 3 and can lead to significant benefits in the same
regimes discussed for the vector-valued setting. Moreover,
also in the NL-MTL setting we can leverage a comparison
inequality similar to Thm. 1, with constant qC,`,T from
(Thm. 5 Ciliberto et al., 2017). As a consequence, we obtain

the excess risk bound for our MTL estimator f̂ = dT ◦ ĝ of
the form

ET (f̂)− ET (f∗) ≤ qC,`,T
4

√
M′ log T r′

δ

nT
+O(n−

1
2 ).

The constant qC,`,T , encodes key structural properties of the
constraint set C and it was observed to potentially provide
significant benefits over linear MTL methods (see Ex. 1 in
the original NL-MTL paper). Since qC,`,T is appearing as
a multiplicative factor with respect to M′, we could expect
our low-rank estimator to provide even further benefits over
standard NL-MTL by combining the advantages provided
by the nonlinear relations between tasks and the low-rank
relations among the surrogate outputs.

5. Experiments
We evaluated the empirical performance of the proposed
method on ranking applications1, specifically the pairwise
ranking setting considered in (Duchi et al., 2010; Fürnkranz
& Hüllermeier, 2003).

Denote by D = {d1, . . . , dN} the full set of documents
(e.g. movies) that will be ordered according to relevance or
preference (i.e. ranked). Let X be the space of queries (e.g.
users) and assume that for each query x ∈ X , a subset of
the set of the associated ratings y = {y1, . . . , yN} is given,
representing how relevant each document with respect to
the query x. Here we assume each label yi in {0, . . . ,K}.
The relation yi > yj means that di is more relevant than dj
to x and should be assigned a higher rank.

We are interested in learning f : X → {1, . . . , N}N , which
assigns to a given query x a rank (or ordering) of the N
object in D. We measure errors according to the (weighted)
pairwise loss

`(f(x),y) =

N∑

j<i=1

(yi − yj) sign(fj(x)− fi(x)), (18)

with fi(x) denoting the predicted rank for di. Following
(Ciliberto et al., 2017), learning to rank with a pairwise
loss can be naturally formulated as a nonlinear multitask
problem and tackled via structured prediction. In particular
we can model the relation between each pair of documents
(di, dj) as a function (task) that can take values 1 or −1
depending on whether di is more relevant than dj or vice-
versa. Nonlinear constraints in the form of a constraint
set C need to be added to this setting in order to guarantee
coherent predictions. This leads to a decoding procedure for
Eq. (16) that amounts to solve a minimal feedback arc set
problem on graphs (Slater, 1961).

1Code at https://github.com/dstamos/LR-SELF
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ml100k jester1 jester2 jester3 sushi

MART 0.499 (±0.050) 0.441 (±0.002) 0.442 (±0.003) 0.443 (±0.020) 0.477 (±0.100)
RankNet 0.525 (±0.007) 0.535 (±0.004) 0.531 (±0.008) 0.511 (±0.017) 0.588 (±0.005)

RankBoost 0.576 (±0.043) 0.531 (±0.002) 0.485 (±0.061) 0.496 (±0.010) 0.589 (±0.010)
AdaRank 0.509 (±0.007) 0.534 (±0.009) 0.526 (±0.001) 0.528 (±0.015) 0.588 (±0.051)

Coordinate Ascent 0.477 (±0.108) 0.492 (±0.004) 0.502 (±0.011) 0.503 (±0.023) 0.473 (±0.103)
LambdaMART 0.564 (±0.045) 0.535 (±0.005) 0.520 (±0.013) 0.587 (±0.001) 0.571 (±0.076)

ListNet 0.532 (±0.030) 0.441 (±0.002) 0.442 (±0.003) 0.456 (±0.059) 0.588 (±0.005)
Random Forests 0.526 (±0.022) 0.548 (±0.001) 0.549 (±0.001) 0.581 (±0.002) 0.566 (±0.010)

SVMrank 0.513 (±0.009) 0.507 (±0.007) 0.506 (±0.001) 0.514 (±0.009) 0.541 (±0.005)
SELF + ‖ · ‖HS 0.312 (±0.005) 0.386 (±0.005) 0.366 (±0.002) 0.375 (±0.005) 0.391 (±0.003)

(Ours) SELF + ‖ · ‖∗ 0.156 (±0.005) 0.247 (±0.002) 0.340 (±0.003) 0.343 (±0.003) 0.313 (±0.003)

Table 1. Performance of benchmark approaches and our proposed method on five ranking datasets.

We evaluated our low-rank SELF learning algorithm on the
following datasets:

Movielens. Movielens 100k (mk100k)2 consists of ratings
(1 to 5) provided by 943 users for a set of 1682 movies. A
total of 100, 000 ratings available.

Jester. The Jester3 datasets consist of user ratings of 100
jokes where ratings range from −10 to 10. Three datasets
are available: jester1 with 24, 983 users jester2 with
23, 500 users and jester3 with 24, 938.

Sushi. The Sushi4 dataset consists of ratings provided by
5000 people on 100 different types of sushi. Ratings ranged
from 1 to 5 and only 50, 000 ratings are available. Addi-
tional features for users (e.g. gender, age) and sushi type
(e.g. style, price) are provided.

We compared our approach to a number of ranking methods:
MART (Friedman, 2001), RankNet (Burges et al., 2005),
RankBoost (Freund et al., 2003), AdaRank (Xu & Li, 2007),
Coordinate Ascent (Metzler & Croft, 2007), LambdaMART
(Wu et al., 2010), ListNet, Random Forest. For all methods
we used the implementation provided by RankLib5 library.
We also compared with the SVMrank (Joachims, 2006)
approach using the implementation made available online by
the authors. We also evaluated the original SELF approach
in (Ciliberto et al., 2017) (SELF + ‖ · ‖HS).

We used a linear kernel on the input and for each dataset we
performed parameter selection using 50% of the available
ratings of each user for training, 20% for validation and
the remaining for testing. We averaged the performance
across 5 trials, each time considering a different random
train/validation/test split.

2http://grouplens.org/datasets/movielens/
3http://goldberg.berkeley.edu/

jester-data/
4http://www.kamishima.net/sushi/
5https://sourceforge.net/p/lemur/wiki/

RankLib/

Results. Table 1 reports the average performance of the
tested methods across five independent trials. Prediction er-
rors are measured in terms of the pair-wise loss in Eq. (18),
normalized between 0 and 1. The performance of both
SELF approaches significantly outperforms the competitors,
in line with (Ciliberto et al., 2017), where the nonlinear
MTL approach based on the SELF framework already im-
proved upon state of the art ranking methods. Our proposed
algorithm achieves an even lower prediction error on all
datasets. This supports the idea motivating this work that
leveraging the low-rank relations can provide significant
advantages in practice.

6. Conclusions
This work combines structured prediction methods based
on surrogate approaches with multitask learning techniques.
Building on a previous framework for structured prediction
we derived a trace norm regularization strategy that does
not require explicit knowledge of the coding function. This
led to a learning algorithm that can be efficiently applied in
practice also when the surrogate space is large or infinite
dimensional. We studied the generalization properties of
the proposed estimator in terms of excess risk bounds for
the surrogate learning problem. Our results on trace norm
regularization with least-squares loss are, to our knowledge,
novel and can be applied also to other settings such as col-
laborative filtering with side information. Experiments on
ranking applications showed that relations between surro-
gate output can be beneficial in practice.

A question opened by our study is whether other multitask
regularizers could be similarly adopted. As mentioned in the
paper, even well-established approaches, such as those based
on incorporating prior knowledge of the similarity between
tasks pairs within the regularizer, do not necessarily extend
to our setting. Future work will also investigate whether
alternative surrogate loss functions to the canonical least-
squares loss could be considered to enforce desirable tasks
relations between the surrogate outputs more explicitly.
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