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Abstract— This article presents progress made towards im-
plementing a shared control framework for a smart wheelchair
based upon stochastic dynamic programming. First, we de-
scribe the mechanical, electrical and software design process
of our instrumented wheelchair platform. Then, we detail a
deterministic control-oriented model of the wheelchair motion
dynamics using Euler-Lagrange equations. This is followed by
the development of a stochastic model of the human driver’s
intention using Markov chain. Finally, we end our contribution
with a discussion of the future implementation and evaluation
of our stochastic dynamic programming.

I. INTRODUCTION

The area of shared control has a growing body of research.
It is interesting to note that much of this research employed
a technique called linear blending which combines linearly
the user’s demand and the actions of a high-level algorithm.
Essentially, the final command is a weighted sum between
the two, and various methods have been proposed to optimize
these weights [1]–[4]. Trautman demonstrated theoretically
that a probabilistic approach is superior to linear blending in
terms of safety: linear blending does not guarantee safety
mathematically [5]. To investigate this issue, Ezeh et al.
implemented a probabilistic shared control (PSC) approach
where the user’s trajectory and the path planner’s trajectory
are modelled as a joint probability distribution [6]. Although
experiments with PSC showed some improvement over linear
blending in specific circumstances, they were not as substan-
tial as we would have expected.

Two possible reasons may account for this. Firstly, al-
though the kinematic limitations (namely maximum veloc-
ity and acceleration) of the robot have been taken into
account according to the dynamic window approach [7]
algorithm, the wheelchair’s dynamics were not modeled
explicitly. Secondly, the user intention model may have been
overly simplistic or too general (broad), unable to capture
the user’s complex intentions. In particular, a memoryless
implementation was used in [6]. In order to solve these
issues, we propose here a stochastic dynamic programming
approach where a wheelchair dynamic model is formulated
and validated in simulation. In addition, the user’s intention
is estimated using Markov chain modeling, where the present
information is used in order to predict the future, at the next
sample.

*This work was supported by Interreg FCE project ADAPT number 116
1Catalin Stefan Teodorescu, Bingqing Zhang and Tom Carlson are with

Aspire Create, University College London, Royal National Orthopaedic Hos-
pital, HA7 4LP, UK {s.teodorescu, bingqing.zhang.18,
t.carlson}@ucl.ac.uk

A. A smart wheelchair

Assistive technologies are key elements intended to meet
the needs of people with chronic disabilities. They facilitate
social inclusion, increase self-esteem and autonomy to carry
out everyday tasks.

This article presents progress made in building a
new research platform: an instrumented electric-powered
wheelchair. We used a commercial Sunrise Medical Salsa
M2 model and added off-the-shelf sensors to it (ultrasonic
sensors, encoders, electric current sensor). The result can be
seen in Fig. 1.
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Fig. 1: Instrumented wheelchair

The final goal is to convert the instrumented wheelchair
into a semi-autonomous vehicle capable of ensuring safe ride
to the human driver using a PSC.

B. Stochastic Dynamic Programming

A careful selection among candidate algorithms capable
of tackling our complex control problem led us to Stochas-
tic Dynamic Programming (SDP) [8]. We believe SDP is
the right candidate for the following general reasons. A
stochastic optimization problem with nonlinear constraints is
solved offline. The outcome is an explicit analytical solution
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u(x) (a lookup table) that can be implemented in real-
time on embedded electronics. Actually, the resulting control
law is deterministic and can be used for extensive offline
analysis (e.g. check reliability, safety etc.), prior to online
implementation. The methodology is industry-ready [9], [10].

In particular, our work was largely inspired by the SDP
methodology used in [9]. Let us highlight a list of common
features between [9] and our current work:
• in terms of problem formulation, the end goal (target) is

not a fixed point in the Cartesian space. This is a typical
path planning requirement, which is a different problem.
• the path to follow by drivers is not predefined upfront.

Instead, it is a random ride in a circuit with obstacles
(drivers may choose by themselves where to go).
• plant dynamics (mechanical, electrical) is properly mod-

eled and hence not neglected (by making use of the
assumption that transients are fast enough so that steady-
state is reached between successive time samples).
On the other hand, in this work we have to make the effort

to translate and formulate a new optimal control problem.
Below is a list of significant differences:
• the framework in [9] is specific to the automotive sector,

while here we target assistive technologies. In particular
the vehicle in [9] is intended to be autonomous, while here
we are interested in semi-autonomous vehicles.
• the optimization problem is different: authors in [9] are

interested in the power balance between multiple power
sources (a battery versus internal combustion engine). The
cost function accounts for fuel consumption and pollutants.
In this work, we are interested in obstacle avoidance.
• the mathematical formulation in [9] takes into account

one stochastic variable (namely the linear velocity of the
vehicle), while here we have two stochastic variables
(the linear velocity of the vehicle, as well as its angular
velocity). In other words the motion in [9] is 1-dimensional
(1D), along a line, while here we are interested in a 2-
dimensional (2D) planar motion.
• there is no awareness of the environment in [9], while here

we use ultrasonic sensors.
• plant model dynamics are defined by a second order

ordinary differential equation (ODE) system in [9], while
here we have a nineth order ODE. Contrary to [9], no
quasi-static modeling is used here.
The block diagram in Fig. 2 is central to this work.

It summarizes the requirements for SDP: control design
as well as simulation. In the following, v and ω stand
for the wheelchair’s linear velocity and angular velocity,
respectively. Fig. 2 illustrates a 2-layer control strategy.
The driver expresses his intention by moving the joystick.
There is a one-to-one relation (that can be experimentally
identified) between positions on the joystick’s plane and
the demanded linear velocity vdem and demanded angular
velocity ωdem. In this article, we prefer to work with veloc-
ities instead of joystick positions. They will be sent to the
supervisory control (terminology according to [9]), which in
turn will calculate an optimal decision based on environment
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Fig. 2: Stochastic model overview.

awareness (distance to obstacles) and send it as reference
linear velocity vref and reference angular velocity ωref to the
wheelchair dynamics block. To summarize, another way to
see Fig. 2 is that supervisory control filters (in a broad sense)
signals coming from the driver by incorporating environment
awareness (obstacles).

In this paper we will focus on two blocks of Fig. 2 (namely
Wheelchair Dynamics and Driver Intention) and leave the
other two for future work.

This article is organized as follows. In section II we
present the architecture of the instrumented wheelchair.
Then, section III presents the deterministic wheelchair dy-
namic model using Euler-Lagrange method which is vali-
dated in simulation. Next, analytic modeling of the human
driver intention is performed in section IV. A discussion
follows in section V highlighting the link towards future
work. Finally, the paper ends with conclusions.

II. ARCHITECTURE

In order to build a stable, reliable and reusable research
platform (an instrumented wheelchair) it is important to
address properly all the three design criteria: mechanical,
electrical and software design. They will be presented next.

A. Mechanical design

For prototyping, we used an aluminium frame directly
attached to the base of the wheelchair (see Fig. 1). It offers
the ability to easily slide and mount other components, like
cable trunking, DIN rail, sensors etc. Each rod ends with a
3D printed rounded end cap used to cover the sharp edge
and thus avoid injuries.

Encoders: We opted for a minimally invasive compact de-
sign for mounting encoders, type Kubler 8.KIS40.1362.0500.
In Fig. 3 the reader can identify their position, in the narrow
space available on the inside of the main wheel. Both the
housing as well as the pulley attached to the main wheel (110
teeth, pitch 2.5 mm) were 3D printed using PLA material.

B. Electrical design

Fig. 1 shows the selected position for a single-board
computer (Odroid C2 or Raspberry Pi 3b+), namely to one
side of the wheelchair. This position allows efficient usage of
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Fig. 3: Mechanical design: encoder mount.

the build-in wifi. Most of the other electronics were placed
inside a modular electrical enclosure (see Fig. 4) which sits
under the wheelchair seat, above the battery in normal oper-
ation. It acts as a Faraday cage, thus protecting the sensitive
electronic components situated inside from electromagnetic
interference, mainly coming from the motors.

Arduino Mega 
(ultrasonic sen-

sors forward)

Arduino Uno
(encoders)

TIVA
(virtual 
joystick)

Arduino Mega 
(ultrasonic  

sensors rear)

Fig. 4: Electrical design: close-up of the electrical enclosure

1) Ultrasonic sensors: In Fig. 1, two out of four ultrasonic
sensor clusters are visible. Each cluster is equipped with
three SRF08 sensors. The two forward clusters are connected
to one Arduino Mega and the rear clusters are connected to
another Arduino Mega. Both Arduinos sit inside the electrical
enclosure, see Fig. 4. These ultrasonic sensors communicate
via I2C (i.e. TWI) bus with the Arduinos. Below are some
important practical considerations.

Dimensioning: One I2C network consists of one Ar-
duino Mega and 6 ultrasonic sensors. The lumped capaci-
tance was experimentally measured to be 260 pF, which is
well below the I2C bus limit specification of 400 pF. Our
experience shows that beyond it, frequent errors occur. Extra
2.2kΩ pull-up resistors needed to be added in parallel to
the built-in 10kΩ present inside the SDA and SCL lines of
Arduino Mega.

2) Electrical enclosure: Apart from the two Arduino
Mega synchronized using serial communication and respon-
sible for firing ultrasonic sensors, the electrical enclosure also
contains:
• an Arduino Uno plus a hardware counter receiving signals

from the two wheel encoders;
• a TIVA board acting as virtual joystick and allowing taking

control of the wheelchair from a ROS node. The ROS node
reads a ROS topic with user defined velocities and converts
it into a low-level R-Net bus message, sent to the power

module. The latter will interpret it as a signal coming from
a joystick. This prototype was developed by the team of
INSA Rennes [4].
3) Electric current sensor: Two inexpensive CZH-LABS

D-1085 sensors, capable of measuring up to 50 Ampere, were
mounted on an inner DIN rail, under the wheelchair seat,
above the battery: see Fig. 5. They measure current flowing
from the power module to each motor. Later on, we will use
them for indirect torque estimation.

Electric current 
sensor

Cable trunking

Circuit breaker

Fig. 5: Electrical design: components attached to the inner
side of the prototyping metal frame

C. Software

We opted for Robot Operating System (ROS) as middle-
ware, since it allows to flexibly interconnect sensors and
collect data. Fig. 6 illustrates a schematic diagram of the
instrumented wheelchair architecture. In the middle sits the
single-board computer acting as ROS Master.
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Fig. 6: Architecture of the instrumented wheelchair.

III. MODELING WHEELCHAIR DYNAMICS

In this work, the wheelchair is sitting on an inclined plane
(a ramp) with angle α(t). Notice this angle does not need to
be fixed, instead, the orientation of the slope with respect to
the inertial frame needs to be fixed.

In order to build a dynamic model, we separate rotating
parts from the static ones. We modeled the entire system
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(a) in blue: trajectories of the 3 centers of mass: the two main
wheels (of mass mw) and the wheelchair body including the
driver (mass m3)
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Fig. 7: Wheelchair motion down a slope with α = 30◦; actuators run in open loop control (τm1,τm2) = (0.75,0) Nm.

wheelchair plus driver as three distinct objects, rigidly con-
nected between them:
• the two main wheels as vertical rolling disks [11, §1.4].

We neglected the other 4 castor wheels.
• the wheelchair body including the driver as an uniform

rectangular box.1

We made the assumptions regarding each of the three
aforementioned parts:
• each mass is concentrated at their individual center of

mass.
• links connecting parts are rigid (not flexible).
• wheels are rolling without slipping.
This allowed us to build a lumped mass system as follows.

A. Euler-Lagrange model

The Lagrangian is taken to be the total kinetic energy of
the system minus the potential energy (gravity effect) [11]–
[13]. On the one hand we have the effect of the two main
wheels (see the first line of the following formula) and on
the other hand, the wheelchair body including the driver (see
the second line of the following formula):

L =
2

∑
i=1

1
2

mw
(
ẋi ẏi żi

)′ẋi
ẏi
żi

+
1
2

Iw,zzψ̇
2
i −mwgazi


+

1
2

m3
(
ẋ3 ẏ3 ż3

)′ẋ3
ẏ3
ż3

+
1
2

Izz
r2

l2
w
(ψ̇1− ψ̇2)

2−m3gaz3

1This might seem to our reader an overly simplistic premise, whereas a
better model would follow the natural shape of the person sitting on the
wheelchair. As we will see later on, only two parameters are necessary for
this dynamic model: the mass (which is independent of the shape) and the
moment of inertia. The latter can be either extracted from a realistic CAD
design or experimentally identified as proposed here.

where (xi,yi,zi) are Cartesian coordinates of each center of
mass with respect to the inertial frame, i = 1,2,3. Their
velocities are calculated as follows:

ẋi = vi cosα cos
(

r
lw

(ψ1−ψ2)

)
(1a)

ẏi = vi sin
(

r
lw

(ψ1−ψ2)

)
(1b)

żi = vi sinα cos
(

r
lw

(ψ1−ψ2)

)
(1c)

where

v1 = ψ̇1 r; v2 = ψ̇2 r; v3 = (ψ̇1 + ψ̇2)r/2

and ψ1, ψ2 are angular displacements of the right and left
main wheel, respectively. All parameters are indicated in
Table I, together with their nominal values (most of them
taken from datasheets).

Finally, derivations of the Euler-Lagrange equation lead to
the second order system:[

a b
b a

][
ψ̈1
ψ̈2

]
+ c
[

ψ̇1
ψ̇2

]
−
[

d
d

]
cos
(

r
lw
(ψ1−ψ2)

)
= e
[

τm1
τm2

]
(2)

where τm1 and τm2 are torques applied to the motors, and
the parameters:

a = mwr2 + 1
4 m3r2 + Iw,zz + Izz

r2

l2
w
+ηGJmr2

G

b = 1
4 m3r2− Izz

r2

l2
w

c = ηG Bm r2
G

d =
(
mw + m3

2

)
ga r sinα

e = ηGrG

(3)
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TABLE I: Parameters of the dynamic model

Symbol Meaning Nominal
Value

mw mass of a main wheel 2.6 kg
r radius of a main wheel 0.1651

m
Iw,zz moment of inertia of a main wheel 1

2 mwr2

lw length between the two main
wheels

0.55 m

m3 mass of wheelchair body including
the driver

200 kg

Izz moment of inertia of wheelchair
body including the driver

4.42
kg m2

rG motor gearbox ratio 26
ηG motor gearbox efficiency 0.97
Jm lumped moment of inertia of motor

rotor and rotating parts of gearbox
9.6 10−5

kg m2

Bm lumped rotational viscous damping 1.85 10−4

Nm s/rad
ga gravitational acceleration 9.81

m/s2

It is interesting to note in (2) the coupling effect between
the dynamics of each degree-of-freedom ψi (with i = 1,2):
note the place of the parameters a and b, as well as the
argument of the cosine.

B. Experimental identification of parameters

Some parameters in system (2)-(3) can easily be obtained
through direct measurements (e.g. mass, radius of wheels,
lengths) or are supplied by the manufacturer (e.g. motor
gearbox ratio). Other parameters are more difficult to infer,
especially if datasheets are unavailable (e.g. moments of
inertia). Luckily, they can be experimentally identified using
the linearity in the parameters property [12, §7.5.3], [14]:

Y (ψ, ψ̇, ψ̈)θ = eτm

where
• ψ , ψ̇ , ψ̈ are vectors representing displacement, velocity

and acceleration, respectively; ψ =
(
ψ1,ψ2

)
;

• θ is the parameter vector consisting of products and/or
sums of physical parameters (3);
• τm =

(
τm1,τm2

)
is the vector of motor torques. In practice,

a monotonic increasing function describes the relation
between electric current flowing through the windings and
motor torques. Often, it is approximated by a constant gain
[12, §6.1].
• Y (ψ, ψ̇, ψ̈) is the regressor matrix.

The above system is control-oriented. It is simple enough
to be used in a real-time application, yet captures a great deal
of physical phenomena. In particular, it can be used for:
• open-loop control by model inversion: specify desired

trajectory profiles ψ(t) and the model will indicate which
are the associated motor torques τm(t).
• indirect measurement of motor torques. making it a soft-

ware sensor: measure in real-time ψ and its higher order
derivatives ψ̇ and ψ̈ , pass them to the model and obtain
torques τm.

• simulating correct overall behavior, as we shall detail in
the next section.

C. Validation in simulation

In order to gain physical insight of system (2)-(3), we
simulated the following scenario: a wheelchair is positioned
heading down a ramp and starts advancing due to the
joint action of gravity and constant torque applied to the
right motor only (τm1 > 0,τm2 = 0). The trajectories of the
three center of mass can be visualized in Fig. 7a. Notice
the circular shape described by the wheelchair which is
what we expected. Details of these trajectories are given
in Fig. 7b. In particular, it is interesting to notice in the
bottom plot of Fig. 7b, towards the end of the simulation,
that the left wheel will decelerate to the point of starting to
rotate backwards (ψ̇2 < 0). This happens as the wheelchair
rotates and advances up the slope, and is exactly what one
would notice in real world. This confirms the model follows
correctly the physical laws.

D. Block model output

In this work, we consider the output of system (2)-(3) to
be the linear velocity v and the angular velocity ω . They can
easily be calculated using the linear relation:[

v
ω

]
= A

[
ψ̇1
ψ̇2

]
, with A = r

[
0.5 0.5

1/lw −1/lw

]
. (4)

Note that matrix A is invertible.

E. Block model input. Low-level control

In this section we are interested to achieve tracking of
desired reference trajectories (vref,ωref), which are specified
by the supervisory control in Fig. 2. Actually, our decision to
work with velocities as inputs is motivated and imposed by
the input design requirement of the virtual joystick described
in section II-B.2.

A simple typical choice for this type of robotics problem
is the independent joint control [12, §6]. It relies on the as-
sumption that coupling between each axis of the wheelchair
is weak. By analyzing the parameter values of system (2)-(3)
we confirm that this is indeed the case. Consequently, we use
a Proportional-Integral (PI) controller to ensure tracking of
the desired reference on each axis, as depicted in Fig. 8. The

Wheelchair 
Dynamic   

Model

𝒗𝐫𝐞𝐟

𝝎𝐫𝐞𝐟
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ሶ𝝍𝟐,𝐫𝐞𝐟

PID
T-1
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𝝉𝐦𝟏

𝝉𝐦𝟐

ሶ𝝍𝟏

ሶ𝝍𝟐
T

𝒗

𝝎+
+

-

-

feedback

Fig. 8: Wheelchair model with low-level PI control.

block named T stands for the transform (4) and the block
named T−1 represents its unique inverse.
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Each PI is governed by the dynamics:

τ̇mi = KP (ψ̈i ref− ψ̈i)+KI (ψ̇i ref− ψ̇i) (5)

where i = 1,2, and KP, KI are tuning parameters.

F. Augmented input-output system

In this section we highlight the structure of the black block
depicted using dashed line in Fig. 8. It is the same one
from Fig. 2 and is necessary later on, for control design
and simulation. To summarize, it has:
• inputs: velocities (vref,ωref);
• outputs: velocities (v,ω) from (4); position (x3,y3,z3)

from (1a)-(1c);
• dynamics written as a first order ordinary differential

system accounting for the following ODEs: (2)-(3) with
state variables (ψ1, ψ̇1,ψ2, ψ̇2); (5) with state variables
(τm1,τm2); (1a)-(1c) only for i = 3, with state variables
(x3,y3,z3). To summarize, this gives a total of 9 state
variables, stored in the state vector X .
This model will be used for SDP. Therefore it needs to be

discretized in time: Xk+1 = f (Xk,vref,k,ωref,k) where k is time
sample, and f (·) is calculated accordingly. Furthermore, it
will be augmented once more using the stochastic dynamics
of driver intention.

IV. MODELING DRIVER INTENTION

Unlike wheelchair motion which obeys physical laws, that
are well known and can be modeled in a deterministic way
(see section III), it is very difficult to know upfront the
decisions (vdem,ωdem) of any driver, given a circuit with
predefined obstacles. The best one can hope is to derive a
statistical model of driver intention:

vdem,k+1 = w1,k ωdem,k+1 = w2,k

where w1,k and w2,k are random variables.2 In this section
we are interested in the analytic probability distribution
functions for two proposed driver models. In future work,
they will be used to:
• form a stationary Markov chain.
• generate random driving cycles.

A. The control design philosophy

In control problems with uncertain variables, the proba-
bility distribution of the uncertainty is the means to inform
about plant dynamics which are likely to occur. Therefore, it
is important to highlight the possibility of hitting obstacles
so that this situation is taken into account when designing
control. Two extreme driver models are the expert driver,
who will know to keep distance from obstacles and easily
find its way through a circuit, and the driver which makes
wrong moves and hits the obstacles. The latter is of particular
interest to us, as we intend to achieve control capable
of correcting worst-case scenarios. Two variants will be
analyzed in the following sections.

2Please note the difference in notation between the Latin alphabet letter
w used to represent uncertainty, and the Greek alphabet ω which stands for
angular velocity.

B. Blind driver model

This driver explores the environment ignoring obstacles,
is indifferent to their location and has an equal chance to
hit or not to hit the obstacles. Therefore, this driver can be
modeled using an uniform distribution: see Fig. 9(a).
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Fig. 9: Standard probability distributions: (a) uniform, i =
1,2; (b) Gaussian, R = 1. Normalized x-axis.

C. ”Naughty child” driver model

This driver will tend to request maximum velocity and hit
the closest obstacle on purpose, situated at a given R radius
around the wheelchair. Otherwise, the driver will just move
maximum forward velocity. The value of R corresponds to
the range of our calibrated ultrasonic sensors: this choice
allows us to match the driver’s sight with how far the
instrumented wheelchair can reliably sense obstacles in the
environment.

Largely inspired by the dynamic window approach [7], in
Fig. 10 we have overlapped the velocity space (vdem,ωdem)
and wheelchair’s moving frame within the Cartesian space
(the origin represents the receding wheelchair position). As
the wheelchair advances, obstacles are to be found in any of
the 8 regions Ωi, with i = 1, ..,8; each region is covered
by one ultrasonic sensor with 45◦ beam spread. Let Ωo
be that specific region where the obstacle is closest to the
wheelchair, and the angle θ ∈ [0,360◦) used to sweep the
regions. Then, the probability distribution of the naughty
child model is:

P(r,θ) =


√

2
πσ2 exp

{
− (r−R)2

2σ2

}
, if θ ∈Ωo

0 ,otherwise
(6)

where σ is the standard deviation of this normal distribution;
r ∈ [0,R) is the distance from the origin along a ray. This
distribution is illustrated in Fig. 9(b). By using the one-to-
one change of coordinates:

vdem = r sinθ θ = atan2(vdem,ωdem)
ωdem = r cosθ r = vdem/sinθ

one can express (6) as P(vdem,ωdem).

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 253 submitted to 2019 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). Received March 30, 2019.



Ω3

Ω2

Ω1

Ω8

Ω4

Ω7

Ω6

𝜔dem

𝑣dem

𝜃

Ω5

Fig. 10: The velocity space subdivided into regions Ωi, i =
1, ..,8. Red stars indicate the presence of obstacles in those
directions. The blue solid circle is the domain boundary, in
accordance to the physical joystick outputs.

V. DISCUSSION

Contrary to other control design techniques (e.g. determin-
istic dynamic programming [8]) which necessitate a given
deterministic driving cycle, stochastic dynamic programming
(SDP) is appealing for wheelchair obstacle avoidance since
the supervisory control is optimized over a family of random
driving cycles (i.e. driver intentions) in an average sense. We
expect the control law issued by the naughty child model
to be quite reactive, repulsive to the nearest obstacle. This
happens due to the high probability that the driver is expected
to deliberately hit the obstacle. On the other hand, the control
law issued by the blind driver will be less cautious in terms
of obstacle avoidance, since there is an equal probability that
the driver might choose to do something else than hitting
the obstacle. Surprisingly, we expect an expert driver model
to be the least appropriate for safe control design. For this
reason we decided not to model the expert driver here. The
probability of hitting obstacles would be quite low, so SDP
would not properly take into account this (presumably rare)
occurrence.

Now, we propose to look at our obstacle avoidance control
problem from another point of view. SDP is optimal with
respect to the chosen driver intention model. Consequently,
we expect that a real expert driver participant might not feel
comfortable at all when testing the instrumented wheelchair
running a control policy computed using the naughty child
or blind driver model. Therefore, in the future, we intend to
compute multiple SDP control policies associated to various

driver models, and sort them in ascending order in terms of
safety (it is common language in wheelchair field to think of
Profile 1,2,etc.) Then, the real participant driver might have
to play with them before finding the one that best suits his
expectations.

VI. CONCLUSIONS

This article covered two design requirements of stochastic
dynamic programming for a future smart wheelchair (as-
sistive technologies). First, a dynamic input-output model
of wheelchair motion was elaborated using Euler-Lagrange
equations. Inputs as well as outputs are defined in velocity
space. Second, two models of driver intention were presented
as means to cope with a safe ride requirement and thus avoid
obstacles.
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