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Abstract

The standard wide-field imaging technique, the w-projection, allows correction for wide fields of view for non-
coplanar radio interferometric arrays. However, calculating exact corrections for each measurement has not
been possible due to the amount of computation required at high resolution and with the large number of
visibilities from current interferometers. The required accuracy and computational cost of these corrections is
one of the largest unsolved challenges facing next-generation radio interferometers such as the Square
Kilometre Array. We show that the same calculation can be performed with a radially symmetric w-projection
kernel, where we use one-dimensional adaptive quadrature to calculate the resulting Hankel transform,
decreasing the computation required for kernel generation by several orders of magnitude, while preserving the
accuracy. We confirm that the radial w-projection kernel is accurate to approximately 1% by imaging the zero-
spacing with an added w-term. We demonstrate the potential of our radially symmetric w-projection kernel via
sparse image reconstruction, using the software package PURIFY. We develop a distributed w-stacking and
w-projection hybrid algorithm. We apply this algorithm to individually correct for non-coplanar effects in
17.5 million visibilities over a 25 by 25 degree FoV Murchison Widefield Array observation for image
reconstruction. Such a level of accuracy and scalability is not possible with standard w-projection kernel
generation methods. This demonstrates that we can scale to a large number of measurements with large image
sizes while still maintaining both speed and accuracy.
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1. Introduction

Since the advent of radio interferometry in the 1940s
(Pawsey et al. 1946; Ryle & Vonberg 1948) radio astronomers
have built an impressive suite of interferometric imaging
techniques to allow signals from collections of antennas to be
used collectively to image astronomical sources. As successive
generations of interferometric arrays were built and operated,
techniques were developed to obtain an estimate of the true sky
brightness distribution, and to correct for different instrumental
affects inherent in the process. Among these methods are
processes such as deconvolution of the antenna response, so-
called “CLEANing” (Högbom 1974; Schwarz 1978; Steer et al.
1984; Pratley & Johnston-Hollitt 2016), and methods to
account for wide-field and other direction-dependent effects
(DDEs) such as w-projection (Cornwell et al. 2008) and
a-projection (Bhatnagar et al. 2008).

In the past, when the field of view (FoV) of instruments was
relatively small, it was common practice to assume curvature
was negligible and proceed with a two-dimensional Fourier
transform over the uv-plane (using Cartesian coordinates). With
the arrival of next-generation telescopes, such as the LOw
Frequency ARray (van Haarlem et al. 2013), Murchison
Widefield Array (MWA; Tingay et al. 2013), and Hydrogen
Epoch of Reionization Array (DeBoer et al. 2017), telescopes
became non-coplanar arrays with extremely large FoVs. Such
instruments are precursors to the low-frequency component of
the Square Kilometre Array (SKA-LOW), and are already
encountering “big data” challenges. Imaging and correcting for
DDEs (with wide-FoV DDEs being the most basic) are among
the most computationally intensive and critical challenges that
need to be solved if the SKA is to meet its scientific goals, in

areas such as the epoch of reionization (EoR; Koopmans et al.
2015) and cosmic magnetism (Johnston-Hollitt et al. 2015).
Until now, the approach to account for the third Fourier
dimension, w, has been to use mathematical approximations to
correct for this term and the associated wide-field effects in the
measurement equation, reducing the problem back to a two-
dimensional Fourier transform via the so-called “w-projection
algorithm” (Cornwell et al. 2008; Tasse et al. 2013; Offringa
et al. 2014).
However, the w-projection algorithm kernels, used to correct

for non-coplanar array and sky curvature, to date have been
computationally expensive to calculate, with kernel generation
dominated by the fast Fourier transform (FFT; Scaife 2015). In
particular the gridding kernel (anti-aliasing kernel) and w-chirp
are multiplied in image space, and then an FFT is applied to
generate the w-projection kernel (Cornwell et al. 2011). This
means it has not been possible to generate a kernel for each w-
term individually; instead they are generated as w-planes,
approximately correcting for a group of w-terms.
For extremely wide FoVs, this becomes expensive in

computation and memory, and requires both high-resolution
sampling to model the spherical curvature and extra zero-
padding to increase sub-pixel accuracy in the uv-domain. Such
a cost in kernel construction has motivated alternative imaging
strategies, such as image domain gridding (van der Tol et al.
2018). Even for small FoVs with high resolution, it is not
possible to perform an FFT for each visibility on large data
sets, limiting the kernel calculation to a small number of
w-planes. However, Merry (2016) mathematically showed that
for narrow FoVs the w-projection kernel can be approximated
as separable into a product of two 1d kernels, reducing the
resources required to generate w-planes.
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In this work, we set out to improve the analytic under-
standing of wide-field interferometry, in the hopes that it would
provide clues on how to improve the strategy of expensive
kernel construction. We start by presenting the non-standard
analytic expression for the 3D Fourier transform used to create
the w-projection kernel. Then, using the analytic expression for
the Fourier transform of a spherical shell and enforcing the
horizon window with a convolution kernel, we arrive at the 3D
expression for the sky curvature and horizon in the uvw-
domain. The real component of the kernel is a radial Sinc
function in uvw. It is also clear that the horizon window
produces the imaginary component, which is a Hilbert
transform of the real component. With this understanding, we
investigate construction through 3D convolution in the uvw-
domain to generate gridding kernels. However, this proves
computationally challenging due to rapid osculations and large
function support.3

We find it is less challenging to generate the w-projection
kernel via a Fourier integral using 2D adaptive quadrature, due
to the smoothness of the window function and the chirp.
However, under the condition that the window function has
radial symmetry, this 2D Fourier integral is equivalent to a 1D
Hankel transform. We show that such a 1D Hankel transform
can be fast and accurately computed with adaptive quadrature
compared to the 2D Fourier integral, and produces the same
imaging results.

Lastly, we provide a demonstration of exact correction of
the w-component with sparse image reconstruction using the
software package PURIFY (Carrillo et al. 2014; Pratley et al.
2018), using the hybrid of w-stacking and w-projection with
distributed computation on a high-performance computing
cluster. Correction of the w-component for each measurement
is only possible with the developments in this work, a radially
symmetric w-projection kernel, and distributed computation
with w-stacking.

The developments presented here provide an accurate route
for reducing the computational overhead for next-generation
wide-field imaging, thus providing a step forward on the path
to realizing the SKA.

This work starts with an introduction to the interferometric
measurement equation and the w-projection algorithm in
Sections 2 and 3 extends the w-projection derivation starting
from a 3D setting. The calculation of a 1D radially symmetric
w-projection kernel is derived in Section 4. The 1D radially
symmetric kernel is then numerically validated and bench-
marked in Section 5. Section 6 details and demonstrates the
computationally distributed w-stacking and w-projection hybrid
algorithm that is possible with a 1D w-projection kernel. This
work is concluded in Section 7.

2. Interferometric Measurement Equation

The interferometric measurement equation for a radio
telescope can be represented by the following integral:
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where (u, v, w′) are the baseline coordinates and (l, m, n) are
directional cosines restricted to the unit sphere. In this work, we
define ¢ = + ¯w w w, where w̄ is the average value of w-terms,
and w is the effective w-component (with zero mean). x is the
sky brightness, = - -( )ln l m1 2 2 is a parameterization of
the upper hemisphere, and a includes DDEs such as the
primary beam and FoV. The measurement equation is a
mathematical model of the measurement operation that allows
one to calculate model measurements y when provided with a
sky model x. Having such a measurement equation allows one
to find a best-fit model of the sky brightness, for a given set of
(incomplete) measurements. Many techniques are available for
inverting a measurement equation in an attempt to find a best-fit
model. This includes traditional methods such as CLEAN
(Högbom 1974) and maximum entropy (Ables 1974; Cornwell
& Evans 1985), and state of the art deconvolution methods
such as sparse regularization algorithms (Onose et al. 2016;
Dabbech et al. 2018; Pratley et al. 2018). There are many other
variations of the measurement equation, that can include
general DDEs and polarization (McEwen & Scaife 2008;
Smirnov 2011; Price & Smirnov 2015). But, all interferometric
measurement equations can be derived from the van Cittert-
Zernike theorem (Zernike 1938).
This measurement equation is typically approximated by a

non-uniform FFT, because it reduces the computational
complexity from ( )MN to  +( )MJ N Nlog2 , where N is
the number of pixels, M is the number of visibilities, and J is
the number of weights to interpolate off the FFT grid for each
axis (Fessler & Sutton 2003; Thompson et al. 2008). This
process is traditionally known as degridding. The version of the
measurement equation relevant in this work is represented by
the following linear operations:

= ( )y xWGCFZS . 2

S represents a gridding correction and correction of baseline-
independent effects such as w̄, Z represents zero-padding of the
image, F is an FFT, G represents a sparse circular convolution
matrix that interpolates measurements off the grid, and the
combined GC includes baseline-dependent effects such as
variations in the primary beam and w-component in the
interpolation, and W are weights applied to the measurements.
This linear operator represents the application of the measure-
ment equation, so it is typically called a measurement operator
F = WGCFZS with F Î ´M N .

In this case, = ( )x lxi i and = ( )y uyi i are discrete vectors in
 ´N 1 and ´M 1 of the sky brightness and visibilities, respectively.

Since the measurement operator is linear it has an adjoint
operator F†, which essentially, consists of applying these
operators in reverse. Additionally, while it is possible to
represent these operators in matrix form, this is not always
efficient or practical.
The dirty map can be calculated by F†y, and the residuals

can be calculated by F F F-† †x y.

2.1. Gridding and Degridding

Degridding, also known as the NUFFT, is the process of
applying the linear operators GFZS. There are many works in
the literature describing this process (see Section 4 of Pratley
et al. 2018 for a brief review). The zero-padding, Z (normally

3 By the support of a function we mean the region of the domain where the
function has non-zero output.
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by a factor of 2), is to increase the accuracy of the degridding/
gridding of visibilities, by upsampling in the Fourier domain.
The choice of interpolation weights in G, known as the
gridding kernel, affects the aliasing error, where ghost periodic
structures can appear in the dirty map from outside the imaged
region. An ideal gridding kernel would be a sinc interpolation
kernel, which would prevent any ghosting from the imaged
region with a box function, but this has a large support (highly
non-localized). Well known kernels, such as prolate spheroidal
wave functions (PSWF) and Kaiser–Bessel functions, are
known to suppress the ghosting through apodization while
having minimal support on the Fourier grid (Fessler &
Sutton 2003; Offringa et al. 2014; Pratley et al. 2018). This
apodization is then corrected for with the gridding correction S.

Importantly, the size of the cell in a grid is inversely
proportional to the FoV, and the number of cells in a grid
determines the resolution of the image.

2.2. The Projection Algorithm

The projection algorithm has been developed to model
baseline-dependent effects. Typically, DDEs in the measure-
ment equation such as the primary beam and w-term are
multiplied with the sky intensity in the image domain. Since
they are baseline-dependent, a separate primary beam and
w-term would need to be multiplied for each baseline—which
is computationally inefficient, as this involves applying a
different gridding/degridding process for each baseline.

If we define our baseline-dependent DDEs as
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the measurement equation can be expressed as
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We can use the convolution theorem, which states that for
functions f and g we have    =- { { } { }}f g f g1 , where
convolution in 3D is defined as
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This produces the expression

=( ) ˜( ) ( ) ( )y u v w y u v C u v w, , , , 0 , , , 6

where ˜( )y u v, , 0 is the Fourier transform of the sky brightness
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where the projection kernel C is the Fourier representation of c,
and å is the convolution operation.

2.3. Projection with Convolutional Degridding

Since the convolution with gridding kernels is already
baseline-dependent, we can include the projection convolution
in the gridding process. If we let G(u, v) be a gridding kernel,
and the Fourier transform of the window function g(l, m), we

find
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which suggests that we should define a new convolutional
kernel

=[ ]( ) ( ) ( ) ( )GC u v w G u v C u v w, , , , , , 9

=( ) ˜( ) [ ]( ) ( )y u v w y u v GC u v w, , , , 0 , , , 10

where ˜( )y u v, , 0 is now the Fourier transform of the gridding-
corrected sky brightness
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Traditionally, the kernel window is separable in l and m, i.e., g
(l, m)=g(l)g(m). But, as relevant for the later sections of
this work, it can be a radial function, i.e., a function of

+l m2 2 only.
This shows that we can include the projection convolution in

the gridding process through the kernel GC in Equation (10)
and the operator GC seen in Equation (2). In the next section,
we derive expressions for the chirp kernel C in uvw-space from
a 3D setting.

3. Projection Algorithm in a 3D Setting

In this section, we derive the 3D w-projection kernel CH

formula including the horizon. We start using a measurement
equation that can be expressed to include the horizon explicitly
and any restrictions of our signal to the sphere. We restrict the
signal above the horizon in 3D through the Heaviside step
function

Q =
>
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and to the sphere through the Dirac delta function, yielding
δ(1−l2−m2−n2),
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This leads to the measurement equation
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where equivalent 3D equations can be found in Thompson
(1999), Cornwell et al. (2008), and Thompson et al. (2008).
Unlike the previous section, the above equation has no 1/n
term. This term is provided by the Dirac composition rule,
which is shown in the next subsection.

3.1. w-projection Including the Horizon Directly

In this section, we show that the kernel in the work of
Cornwell et al. (2008) is equivalent to including both the
horizon and spherical effects in the projection algorithm in a

3
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full 3D setting. The Fourier transform of Equation (13) is
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We find that the Dirac delta function is zero at two values
of n=n±, where =  - -n l m1 2 2 are the two roots. In
addition, we have d d d- = - - -+ + -( ) ( ( ) ( ))n n n n n n2 2

+( )n2 ; however, the horizon eliminates the n=n− root from
the integral. Using the composition rule for the Dirac delta
function we have
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where the bounds of integration are now restricted to the
sphere. and doing an integral over n we find
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This is the standard expression used for the w-projection kernel
in Cornwell et al. (2008), with the inclusion of a factor of 1/2
from there being two roots and normalization of the Dirac Delta
function. To date, there is no analytical solution for this integral
beyond approximations. One reason this integral may be
difficult to solve analytically is the breaking of spherical
symmetry when including the horizon.

Having no analytic solution to this integral poses a problem
for understanding the properties of CH(u, v, w). This has lead to
various approximations of CH(u, v, w), where the solution can
be used to estimate its support and amplitude.

We can expand - - -( )w l m1 12 2 in a Taylor expan-
sion to a given order. If we expand in - - -( )l m1 12 2 to
first order, we find
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This has the assumption w(l2+m2)2=1. Also, choosing a
small FoV (l2+m2)2=1 leads to
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In Cornwell et al. (2008), they stated the above small FoV
approximation, which is a Gaussian. The Fourier transform of a
Gaussian function is also Gaussian, and leads to
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however, they comment that this expression breaks down at
large FoVs and diverges at w=0. By choosing to fix the sky
to a parabola, rather than the sphere, we arrive at the same

approximation above. First, we choose
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then by integrating over n in Equation (14), we arrive at the
same small FoV approximation.

3.2. w-projection with Exact Spherical Correction

We choose to replace the horizon with a window function,
where the expression for the full sphere is

d¢ = - - -( ) ( ) ( ) ( )c l m n w h n l m n, , ; 1 . 22H
2 2 2

Any scaling from this window function can be corrected in the
upper hemisphere of the measurement equation
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3.2.1. No Horizon

When h(n)=1 there is no horizon and the w-projection
kernel is calculated from
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The Fourier transform of this equation has an analytic solution
that can be simply expressed as a real valued function

p p= + + p+( ) ( ) ( )C u v w u v w e, , 2 sinc 2 , 25iw2 2 2 2

as shown in Vembu (1961), which is solved in spherical
coordinates due to symmetry. This solution dates back as far
as Poisson (1820), and similar problems have been solved in
two-dimensions in Parseval (1805). The units of (u, v, w) are
implicitly chosen to depend on the directional cosines (l, m, n),
meaning + + =u v w 12 2 2 corresponds to the largest spatial
scales.
The Sinc function above represents limits on the resolution

in (u, v, w) due to the FoV being bounded to the sphere. The
uncertainty principle states that restricting the FoV is equivalent
to enforcing a resolution limit on C(u, v, w). At a small FoV,
this kernel is effectively a delta function of small support.
However, as the FoV increases, the kernel becomes a radial
Sinc function with extended support and rapid oscillations.
When mosaicking multiple FoVs, the resolution in (u, v, w) is
increased (as discussed in Ekers & Rots 1979 and Thompson
1999); however, the total FoV will be limited to the sphere, as
represented by this radial Sinc function.
Since x(l, m) is independent of n it will project both onto the

sphere for n and −n. While C(u, v, w) models the curvature of
the sphere, it allows a reflection of x(l, m) for −1�n<0.
This is why a horizon window function needs to be included in
the analysis.
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3.2.2. Projecting above the Horizon

If we let H(w) be the Fourier transform of h(n), we find that
the horizon effect can be understood through the convolution
theorem:

=( ) ( ) ( ) ( )C u v w H w C u v w, , , , . 26H

We can get an expression for the horizon-limited w-projection
kernel in the (u, v, w) domain in terms of the w-projection
kernel for the full sphere. Choosing h(n)=Θ(n) with

d= -
p
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w

1

2
, we find an expression equivalent to
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where the second term is a Hilbert transform of the sphere
along the w-axis. Another equivalent expression can be found
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We are not aware of an analytic solution to this convolution,
which could improve understanding of the behavior of wide-
field effects.

3.3. Convolution with a Gridding Kernel

To calculate the w-projection kernel, we could convolve the
chirp with the gridding kernel in the (u, v, w) domain
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However, the challenge with computing this three-dimensional
integral is the extended support of H and C in w. Additionally,
C(u, v, w) will have rapid oscillation in (u, v) for small values
of w, making accurate numerical integration and convolution
expensive, see Figure 1. Therefore, we avoid this approach in
kernel calculation, and present an alternative approach in the
next section.

4. Kernel Calculation Methods

In the previous section, we discussed the properties of the w-
projection kernel in the (l, m, n) and (u, v, w) domains. We
expected that the properties for numerical convolution with the
chirp and the gridding kernel are more favorable by multiplying
the window and the chirp in the image domain, then
performing a Fourier transform to generate the kernel in the
Fourier domain. This should increase accuracy and reduce the
total computation.

In this section, we describe two methods for calculating the
w-projection kernel using the Fourier transform. The first is
numerical integration using adaptive quadrature in 2D, the
second is to restrict the imaged region to a radial FoV, allowing
for a radially symmetric kernel that can be integrated with
adaptive quadrature in 1D. In the following section we compare
the numerical accuracy and speed of the two kernel construc-
tion methods. The scaling Q - - - -( )l m l m1 12 2 2 2 is
included in the gridding and primary beam correction, because

it is baseline-independent. We do not include this term in the
gridding kernel, and we apply this in the image domain with all
other baseline-independent effects.

4.1. Cartesian Integration

To calculate the Fourier coefficients of the w-projection
corrected gridding kernel, we need to perform a Fourier series
with boundary conditions determined by the size of the
window. We let Δu and Δv determine the conversion between
pixel and baseline coordinates, u=upixΔu and v=vpixΔv
where upix and vpix are integer pixel values. This factor is given
by

a
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where cell is the size of a pixel in arcseconds, α is the
oversampling ratio, and Nx is the image width of the x-axis. A
similar formula is given for Δv, with respect to the y-axis. We
use this FoV to integrate over the imaged region, and including
the bounds of the sphere
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We then change coordinates l=x/Δu and m=y/Δv to be
relative to the imaged region
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Here, g(l) is the window function that determines the gridding
kernel and [GC] is the w-projection corrected gridding kernel.
It is worth noting that when w=0, there is no dependence on
Δu or Δv, unless the condition l2+m2�1 is to be enforced.
Depending on the convention of the FFT operation F in the

measurement operator, there could be a phase offset of
pe iu2 2pix and pe iv2 2pix required to center the image.4 The

region of integration is determined by the zero-padded FoV (we
have used zero-padding by a factor of α=2).

4.2. Polar Integration

By performing a change of coordinates, this integral can also
be evaluated in polar coordinates
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4 This is due to the difference of centering the coordinates in the middle or at
the corner of the image, which can require an FFT shift.
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The region is circular rather than rectangular, which is a
fundamental difference with the Cartesian expression in
Equation (32) (the boundary conditions for the Fourier series
lie on a circle, rather than a square).

This enforces a Sinc convolution with the w-projection for the
rectangular boundary condition, and a Airy Pattern convolution
(first order Bessel Function) for the circular boundary condition.
This translates to a slightly different interpolation when
upsampling the w-projection kernel, Sinc interpolation in the
rectangular case, and p a a+ +( ) ( )J u v u v4 21

2 2 2 2

interpolation in the circular case, both enforcing a band limit.
It is important to state that this boundary is at the edge of the

zero-padded region, which suggests that there would be little
difference in practice because it is far outside of the gridding-
corrected region, and will not change suppression of the
aliasing error (which is the purpose of the window function/
gridding convolution function). This means that while the
kernels are fundamentally different due to the boundary

condition, they will perform the same role, and the measure-
ment operators will be equivalent after gridding correction and
zero-padding.

4.3. Radial Symmetry

We now make our window function radially symmetric
 +( ) ( ) ( )g l g m g l m2 2 , and choose Δu=Δv so that the

chirp is also radially symmetric. This allows us to take the
Fourier transform of a radially symmetric function, which is
calculated using a 1D integral rather than a 2D polar integral in
Equation (33), and is known as a Hankel transform.5 This is
given by
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where J0 is a zeroth-order Bessel function. The restriction of
r/Δu<1 is built into the bounds of the integration. This has
the large computational advantage of only sampling along the
radius, reducing how the computation scales with FoV and w.
There is also an increase in accuracy, because there is no
sampling in θ. Furthermore, the condition that we require
Δu=Δv is not difficult to accommodate in many cases.

4.4. Adaptive Quadrature

To compute Equation (32), we use adaptive multidimen-
sional integration. In a multi-variate setting, quadrature is also
known as cubature.
We use the software package Cubature,6 which has imple-

mentations of these algorithms. We use the h-adaptive cubature
method to evaluate the integrals in this work, which uses the
work of Genz & Malik (1980) and Berntsen et al. (1991) to
perform integration using an adaptive mesh to approximate the
integral, until convergence is reached (h is in reference to a
length parameter of the mesh). Cubature also has a p-adaptive
method (Ernst 1989), which uses polynomial-based quadrature,
increasing the polynomial order of the integrand until the
integration has converged, and is expected to converge faster
than h-adaptive methods for smooth integrands.
The p-adaptive would converge faster than the h-adaptive

method for the 1D-integration, while providing results as
accurate within numerical error. However, the accuracy of the
p-adaptive method was not as accurate for 2D-integration,
especially in the presence of discontinuities. For this reason, we
use the p-adaptive method for 1D-integration but the h-adaptive
method for 2D-integration.

4.5. Kaiser–Bessel Gridding Kernel

In this work, we use a Kaiser–Bessel gridding kernel.
Kaiser–Bessel functions have been used as convolutional
gridding kernels for decades (Greisen 1979; Jackson et al.
1991; Fessler & Sutton 2003), and have a simpler form than the

Figure 1. Oscillations of C, without the complex phase, as a function of u for
given w. Equation (30), which is used to calculate the pixel size of a uv-grid, shows
that many of these oscillations can occur over the convolution window, making
numerical integration difficult for convolution with the gridding kernels G and the
horizon H. Hence, we find that convolution by numerical integration is difficult.
Additionally, we see that C has a large support that increases with w. The top
figure shows the standard Sinc function at w=0, and the bottom figure shows the
spread of C over a wider range of u as w increases.

5 Birkinshaw (1994) suggested that convolutions between radially symmetric
functions can be efficiently computed using a Hankel Transform, but in
different astronomical contexts.
6 https://github.com/stevengj/cubature
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PSWF, while providing similar performance (Greisen 1979).
The zeroth-order Kaiser–Bessel function can be expressed as

b

b
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-
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where upix has units of pixels, J is the support in units of pixels,
I0 is the zeroth-order modified Bessel function of the first kind,
and β determines the spread of the Kaiser–Bessel function
(Jackson et al. 1991; Fessler & Sutton 2003). The Fourier
Transform of G(upix) is

p b= -( ) ( ) ( )g x x Jsinc . 362 2 2 2

To correct for the convolution, the image is divided by g(l)
(Jackson et al. 1991; Fessler & Sutton 2003)

= -( ) [ ( )] ( )s x g x . 371

The work of Fessler & Sutton (2003) shows that for β=2.34J
the Kaiser–Bessel kernel performs like the optimal min-max
kernel being considered.

In this work, we use the Kaiser–Bessel gridding kernel to
calculate w-projection kernels, by using g(x) in Equations (32)
and (34). For other possible window functions and anti-aliasing
kernels, see Thompson et al. (2008) and Pratley et al. (2018).

5. Validation of Radially Symmetric Kernel

In this section we numerically evaluate Equation (32), and
present a cross section of the kernel, showing its variation with
sub-pixel accuracy. We then numerically evaluate Equation (34),
showing that it provides the same accurate sub-pixel accuracy,
with orders of magnitude less function evaluations during the
quadrature computation.

5.1. Quadrature Convergence Conditions

The kernel function is normalized to one when (u, v, w)=
(0, 0, 0), and an estimate error tolerance η on the quadrature
calculated kernel [GC]η(upix, vpix, w) is used for quadrature
convergence of the kernel, such that the absolute difference is
less than η:

 h- h∣[ ]( ) [ ] ( )∣ ( )GC u v w GC u v w, , , , . 38pix pix pix pix

It is also possible to use the relative difference

 h
- h

h
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which would constrain smaller values of [GC]η(upix, vpix, w) to
be calculated more accurately, at the cost of more computation.

There is a downside to using absolute difference. For
example, if you are calculating kernels to an absolute accuracy
of 10−2 and the kernels have values below 10−2, then these
values may not be accurate. The relative difference is an ideal
alternative, but it can cause an inconsistent level of accuracy
across the measurement operator, and more computation can go
into small values that may not contribute much in practice. If
the support size is known accurately before computation, this
may help.

We assume that the support size of the w-projection GC
kernel is proportional to 2w/Δu and at least the support size of

the gridding kernel G. With the support size known, we use the
absolute different criteria with η=10−6.

5.2. Kernel Cross Section

Figure 2 shows a cross section of the w-projection kernel
[GC](upix, 0, w), the real and imaginary components, and the
absolute value, for 0�upix�19 and 0�w�99. We find
that the convolution of CH with G(u) and G(v) creates a smooth
varying w-projection kernel in both the real and imaginary
components. The imaginary component is zero at w=0,
which is consistent with Equation (27). We find that the decay
in the kernel as a function of w is more extreme with
wider FoVs.
We then evoke radial symmetry in the gridding kernel and

FoV, and evaluate Equation (34) in Figure 3. We find that the
features of the radially symmetric gridding kernel from
Equation (32) match the cross section of Equation (34),
suggesting little difference between the two kernels. Addition-
ally, when N samples are required to evaluate the 1D radially
symmetric kernel, approximately N2 are required to evaluate
the 2D kernel, as shown in Figure 4. This suggests that the
symmetric kernel calculation scales with radius, not the total
area as in the 2D case. This has enormous general implications
for computation and storage for w-projection kernels at
large FoVs.

5.3. Numerical Equivalence of a Radially Symmetric Kernel

Next, we show that using the radially symmetric gridding
kernel is consistent with the non-radially symmetric kernel. To
test this, we constructed three measurement operators Fstandard
(standard w-projection kernel), Fradial (symmetric w-projection
kernel), and F -no projection (no w-term), and show that
F F»standard radial within some error (suggesting that they
agree), and use F -no projection as a reference operator.
To show that two operators are equivalent, we need the notion

of an operator norm · op. The operator norm for an operator that
maps between Hilbert spaces (ℓ2) has the property that

 F F " Î      ( )x x x . 40ℓ ℓ
N

op2 2

F op is the smallest value for which this is true for all x.
This allows us to put bounds on the output of F op for each
input. We also have the properties that F F=   †op op

and F F F=   †
op op

2 .
The operator norm allows the following statement:
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For every input sky model x, the root-mean-squared (rms)
difference between the model visibilities is bounded by the
product of the rms of the input sky model and the operator
norm F F- standard radial op. Additionally, for visibilities y
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This statement says that the rms difference between dirty
maps is bounded by the product of the rms of the input
visibilities and the operator norm F F- standard radial op. When
F F- =  0standard radial op , the two operators will clearly be
the same.

Since our linear operators map between two Hilbert spaces,
the operator norm of F is the square root of the largest
eigenvalue of F F† . To calculate the largest eigenvalue, we use
the power method (as used in Pratley et al. 2018).

First, we normalize each operator, such that F =  1, so there
is no arbitrary scaling. Then we calculate F F- standard radial op

and F F- - standard no projection op.
To construct the measurement operators, we use a variable

Gaussian sampling density in (u, v, w), with a root-mean-
squared spread of 100 wavelengths. We scale w to have an rms
value of 20 wavelengths. We choose a cell size of 240 arcsec
and an image size of 256 by 256 pixels. This provides a full
width FoV of 17°.0667×17°.0667. It is important to note that

the w-kernels are a function of the FoV, and not the cell size.
The kernel support size is estimated by the w-value for each
measurement to be D( ( ) )w umin max 4, 2 , 40 . This support has
a minimum size of 4 and a maximum size of 40, and in between
a size of 2w/Δu. The benchmarking was performed on a high-
performance workstation comprised of two Intel Xeon
Processors (E5-2650Lv3) with 12 cores each with 2 times
hyper-threading per core (at 1.8 GHz) and 256 Gigabytes of
DDR4 RAM (at 2133MHz).
We found that the construction time of a radially symmetric

kernel was almost two orders of magnitude faster to calculate.
An absolute difference of 10−4 was used for quantifying
quadrature convergence. The power method was considered to
be converged, with a relative difference of 10−6.
In Figure 5, we show the operator construction time (excluding

the normalization), and the operator norm of the difference. Each
data point was generated by averaging over five realizations. The
number of measurements M ranges from only 100 to 1000. From

Figure 2. Plot of the kernels calculated using Equation (32), as a function of upix and w, with vpix=0, for absolute (left column), real (middle column), and imaginary
(right column) values. Each row has a different FoV, 11°. 3778×11°. 3778 (top), 17°. 0667×17°. 0667 (middle), and 22°. 7556×22°. 7556 (bottom). We see that the
kernel spreads as a function of increasing w. The support size in pixels increases with FoV, due to a large field increasing the sampling rate of the kernel. It is also clear
that the kernel decreases in value with increasing w, and is faster at wider FoVs. The real and imaginary components both show oscillations. We find the imaginary
component is zero at w=0, as expected. The values have been calculated using adaptive quadrature within an absolute error of η=10−6. There are 100 uniform
samples in both upix and w, resulting in 104 for each plot. The red line shows max(4, 2w/Δu)/2 for reference, which is assumed to be the support size for this work.
The features of this kernel are also consistent with w-projection kernels used by ASKAPSoft (Cornwell et al. 2011).
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this figure, it is clear that that the operator difference is
consistently on the order of 10−3, suggesting that we have the

bounds of F F- - 
 

( )† †

10
y

y
3ℓ

ℓ

standard radial 2

2
, which translates to an

upper bound dirty map rms difference of the order of less than
1%. However, the difference will in principle be less. This is
similarly true for generating model visibilities.

It is also clear that the construction times are dramatically
different between the two. The construction time is greatly
improved by the threading, because the kernel construction was
performed in parallel. However, due to the small value of M,
this improvement has reached saturation. It is clear in this
example that construction is hundreds of times faster when
using a radial symmetric kernel.

5.4. Imaging of the Directionally Dependent w-effect via the
Zero-spacing

The previous tests have indirectly verified that the radially
symmetric w-projection kernel is consistent with the 2D

w-projection kernel, suggesting that the entire degridding and
gridding process is self-consistent. In this section, we image the
generated radially symmetric kernels directly and compare
against the theoretically expected values that are independent
of implementation.
In the image domain, we expect the w-projection kernel to be

a chirp with the form

= p- - - -( ) ( )( )c l m w e, ; , 43iw l m2 1 12 2

then by only imaging the zero-spacing with an artificial w-
component, which can be done by choosing y(0, 0, w)=1 and

=w̄ 0 in the measurement equation, we find that the adjoint
application of the measurement operator and then taking the
complex conjugate will result in

=
- -

( ) ( ) ( ) ( )dde l m w a l m
c l m w

l m
, ; ,

, ;

1
. 44expected

2 2

Figure 3. Plot of the kernels calculated from Equation (34), as a function of upix and w, with vpix=0, for absolute (left column), real (middle column), and imaginary
(right column) values. Each row has a different FoV, 11°. 3778×11°. 3778 (top), 17°. 0667×17°. 0667 (middle), and 22°. 7556×22°. 7556 (bottom). We find the same
features in Figure 2, showing that it is consistent with Equation (32). The values have been calculated using adaptive quadrature within an absolute error of η=10−6.
There are 100 uniform samples in both upix and w, resulting in 104 for each plot. The red line shows D( )w umax 4, 2 2 for reference.
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It follows that in the discrete setting, gridding a visibility at
(u, v)=(0, 0) and =w̄ 0 will produce the same result:

*F= = =( ) ( ) ( )( )
†dde l m w N, ; . 45i i u v w icalculated 0, 0,

We calculate the average relative difference of dde for the
imaginary and real parts, using the formula

d =
-
+

⎡
⎣⎢

⎤
⎦⎥( )

∣ ∣ ∣ ∣
( )q p

q p

q p
, 2 , 46

which suppresses divergences for when q or p are close to zero.
We choose a(l, m)=1, and values of w=10, 100 wavelengths
using an image with 4096 by 4069 pixels and a pixel height and
width of 15 arcsec. This leads to a FoV of 17°.0667×17°.0667.
We compare using a support size linear in w,

D
w

u

2 , rounded to
the nearest pixel. We choose an accuracy of 10−6 in absolute and
relative error for numerical quadrature.

Figures 6 and 7 show that the radially symmetric w-
projection kernel has an error on the order of 1% for both the
real and imaginary parts. Where the w-effect goes through zero
in the real and imaginary parts, the average relative difference
diverges. It is clear that the w-projection kernel still matches the
expected w-effect, and that these divergences are due to
instabilities of the average relative difference for values close
to zero.

We find that increasing the support size and reducing the
error in numerical quadrature can reduce the average relative
difference. We also find that the support size

D
w

u

2 and accuracy
of 10−6 in absolute and relative error for numerical quadrature
are sufficient for relative error on the order of 1%. However, if

we do not require this accuracy, we can reduce the needed
computation by reducing the support size and reducing the
accuracy of the numerical quadrature.

6. Distributed w-stacking w-projection Hybrid Algorithm

In this section, we provide a brief demonstration of using
radially symmetric w-projection kernels in image reconstruc-
tion. We show for the first time that fast and accurate kernel
construction, in conjunction with w-stacking, enables the
ability for modeling sky curvature and non-coplanar baselines
to extremely wide FoVs for each visibility. The kernels are
calculated to an absolute accuracy of 10−6, making the kernel
extremely accurate for each w and very wide FoVs. We present
a hybrid of w-stacking and w-projection algorithm that uses the
Message Passing Interface (MPI) standard and show its
application to image reconstruction of an MWA observation
of Puppis A and Vela. This algorithm is made practical with the
developments of the previous section and the use of distributed
computation.

6.1. w-stacking-w-projection Measurement Operator

First, we distribute the measurements into w-stacks using
MPI. Then, we generate a w-projection kernel for each
visibility in a w-stack.
The measurement operator corrects for the average w-value

in the w-stack, then applies a further correction to each
visibility with the w-projection. Each w-stack yk has a
measurement operator of

F = ˜ ( )W GC FZS . 47k k k k

Figure 4. The plots above show the number of function evaluations in the quadrature method required to produce Figures 2 (top row) and 3 (bottom row). Each
column corresponds to a FoV of 11°. 3778×11°. 3778(left), 17°. 0667×17°. 0667 (middle), and 22°. 7556×22°. 7556 (right). The top row shows two times the values in
the bottom row, suggesting that if Equation (34) takes N evaluations, then Equation (32) takes N2 evaluations to compute. This shows that the computation of
Equation (34) scales with radius vs. the computation of Equation (32) that scales with area. The number of evaluations required can be greatly reduced by increasing
the absolute error η.

10

The Astrophysical Journal, 874:174 (15pp), 2019 April 1 Pratley, Johnston-Hollitt, & McEwen



The gridding correction has been modified to correct for the w-
stack dependent effects, such as the average w̄k and ( )ln1
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We choose no primary beam effects within the stack ak(li, mi).
This gridding correction shifts the relative w value in the stack.
This can reduce the effective w value in the stack, especially

when the stack is close to the mean w̄k, i.e., to the value of
- ¯w wi k.

7 This reduces the size of the support needed in the w-
projection gridding kernel for each stack,
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(qu,j, qv,j) represents the nearest grid points. For each stack
Îyk

Mk we have the measurement equation F=y xk k .
To cluster the visibilities into w-stacks, it is ideal to minimize

the kernel sizes across all stacks, minimizing the memory and
computation costs of the kernel. A k-means clustering can be
used, which greatly improves performance by reducing the
values of -∣ ¯ ∣w wi k

2 across the w-stacks.
It is clear that each stack has an independent measurement

equation. However, the full measurement operator is related to
the stacks in the adjoint operators such that

F F F= =⎡⎣ ⎤⎦
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dirty 1
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max

max

When applying the w-stacks in parallel, an MPI all-reduce can
be used to sum over the dirty maps generated from each node.
The full operatorF can be normalized using the power method.

6.2. Distributed Image Reconstruction

For image reconstruction, we use alternating direction
method of multipliers as implemented in PURIFY (ADMM)
(Pratley et al. 2018; 2019), but built using MPI to operate on a
computing cluster. The algorithm solves the same minimization
problem stated in Pratley et al. (2018):




Y F-
Î

    ( )†x y xmin subject to . 51
x

ℓ ℓ
N 1 2

The term Y †x ℓ1 is a penalty on the number of non-zero
wavelet coefficients, while F- y x ℓ2 is the condition
that the measurements fit within a Gaussian error bound ò. The
wavelet operator Y uses a wavelet dictionary of 9 wavelets,
which includes a Dirac basis, and Debauches 1 to 8. Each basis
in the dictionary Yk has its own node, and is performed in
parallel. Like with the adjoint measurement operator, an MPI
reduction is performed to sum over the nodes for the forward
wavelet operator8

Y Y
a

a
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⎥⎥[ ] ( )x , ..., . 521 9

1

9

6.3. MWA Observation of Puppis A and Vela

We use PURIFY (Pratley et al. 2018) and the MPI w-stacking
w-projection hybrid algorithm to reconstruct an observation of
Puppis A performed with the MWA telescope. The observation is
from the Phase 1 configuration of the MWA taken on 2013 May
16. The data were collected with XX and YY linear polarizations

Figure 5. Figures comparing three types of measurement operators. One with a
standard 2D w-projection kernel Fstandard, a radially symmetric kernel Fradial,
and one with no w-projection kernel F -no projection. The comparisons were
performed for 100 to 1000 measurements. (Top) The difference in operator
norms. We find that the full 2D and radially symmetric kernels are bounded to
be the same within about 3×10−3. We find that assuming no w-projection
kernel produces a difference close to 1. (Bottom) A plot of the construction
time for each operator (excluding normalization). We find that using an analytic
expression for the Kaiser–Bessel with no w-projection, F -no projection, is fastest
for two reasons. There are no quadrature integrals to calculate, and a minimal
amount of coefficients to store into memory. The quadrature calculation with
variable kernel size means that Fradial will always take more time to calculate,
even for w=0, which is computationally cheap for quadrature (see Figure 4).
We find Fstandard is the most expensive in time to calculate. This is consistent
with the number of function evaluations required to calculate each coefficient.

7 Another good choice may be to minimize the median w in a stack rather
than the mean w in a stack.
8 We use the convention that Ya=x and Y a=†x .

11

The Astrophysical Journal, 874:174 (15pp), 2019 April 1 Pratley, Johnston-Hollitt, & McEwen



and have been calibrated and flagged following the standard
MWA data reduction process; more details on this process can be
found in Offringa et al. (2014). The observation is centered at
(R.A.=08:19:59.99, decl.=−42:45:00), with a 112 s integra-
tion, and a central frequency of 149.115MHz with a bandwidth
of 30.720MHz. Figure 8 shows a histogram of the visibilities as
a function of w, and the w-coverage of the observation ranges
between ±600 wavelengths. The observation contains on the
order of 17 million visibilities, and the XX and YY correlations are
combined to generate the Stokes I visibilities.

We use a k-means algorithm with MPI to sort and distribute
the visibilities into 50 w-stacks, spread over 25 nodes (2
processes per node, with 1 process per stack); this sorting took
approximately 5 s. Most w-stacks contain w-values between 0

and ±12 wavelengths, however, some stacks contain w-values
of up to 22 wavelengths. The reconstructed image was
performed over a 25° by 25° FoV, using 20482 pixels and a
pixel width of 45″. Generating the radial w-projection kernels
took close to 40 minutes; this generation time can be changed
with more or less w-stacks. Furthermore, the measurement
operator was computed in parallel with over 25 nodes, and used
in combination with the sparse image reconstruction algorithms
used in Pratley et al. (2018). We used the Galaxy Super-
computer (located in the Pawsey Supercomputing Centre.9)
This observation contains the Puppis A and Vela supernova

remnants, a mix of many bright compact sources and extended

Figure 6. Here, we show the calculated radial w-projection chirp in the image domain along with the average relative difference of the expected and calculated chirp
for both the real and imaginary parts. The left column displays the real component of the chirp, and the right column shows the imaginary component. The top row is
the radial w-projection chirp in the image domain calculated using ddecalculated with 4096 pixels and a pixel size of 15 arcsec, calculated for a w=10 wavelengths
using a kernel support size of 10 by 10 pixels. The bottom row is the average relative difference δ(ddeexpected, ddecalculated). We find that average relative difference is
on the order of 1%, excluding where ddecalculated and ddeexpected are close to zero and the average relative difference diverges. This shows that the radial symmetric w-
projection kernel accurately models the directionally dependent w-effect at high resolution over wide FoVs.

9 https://www.pawsey.org.au/our-systems/
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structures of the galactic plane. With PURIFY, we use natural
weighting, as it provides the best performance in modeling both
extended and compact structures. We do not include primary
beam corrections when solving for the reconstructed image.

Figure 9 shows the dirty map, residuals, and the recon-
structed image. As described in Pratley et al. (2018), we do not
include the restored map, and the reconstructed image is a sky
model that is the equivalent to a CLEAN component model.
We also follow Pratley et al. (2018) by using the same wavelet
dictionary, and scale the epsilon by 275 because the weights are
relative, not absolute. We can correct the scale of flux due to
the FoV using the Fourier relation F(Δuupix, Δvvpix) being
paired with D D

D D
( )f l u m v

u v

, .
To convert the dirty map and residual map to Jy/Beam, we

image the weights of the visibilities to obtain the peak pixel
value of the point-spread function, the dirty map is then divided
by this value to convert from Jy/Pixel to Jy/Beam. We find
that the residual map has a rms value of approximately
190 mJy/Beam, with many of the extended structures removed

Figure 7. Same as Figure 6, but for w=100 wavelengths and using a kernel support size of 118 by 118 pixels. Again, we find that average relative difference is on the order
of 1%, demonstrating that even for larger w, the radial symmetric w-projection kernel accurately models the directionally dependent w-effect at high resolution over wide FoVs.

Figure 8. Histogram of the w-coverage of the imaged data using 100 bins. The
w-values span over ±600 wavelengths. This w-coverage represents 17,529,644
visibilities after flagging of radio frequency interference (RFI) has been applied.
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from the residuals. The large-scale structures of Vela are
accurately removed, with only a few positive regions in the
residuals where the negative side lobes of Vela are located.
This shows that the majority of the large-scale structures and
more compact detailed sources such as Puppis A are accurately
modeled using PURIFY over a 25 by 25 degree FoV. The
dynamic range of the reconstruction is 19,850.

7. Conclusion

In this work, we investigate exact analytic expressions for
modeling curvature in wide-field interferometry, for extremely
wide FoVs. This expression has traditionally been stated in the
(l, m, n) domain. However, this work provides the first exact
analytic expression for sky curvature and horizon seen in wide-
field interferometry in the (u, v, w) domain. Unlike the previous
small FoV approximations, this exact kernel does not diverge
and is continuous. Furthermore, it provides more insight into
spherical imaging, i.e., it describes a fundamental resolution
limit for the measurement of visibility from a sphere, and the
impact of the horizon window in the (u, v, w) domain. While
this expression provides insight, the rapid oscillations due to
the spherical sky and large support make calculation difficult.
These findings suggest that exact computation of projection
kernels is more feasible through a Fourier integral from the
(l, m, n) domain.

As described previously, the effect of the w-projection kernel
for non-coplanar baselines ( ¹w 0) becomes greater at larger
FoVs. At these extremely wide FoVs, construction of a w-
projection kernel is expensive using FFT-based methods.
Additionally, in this work, we have found that calculations are
extremely fast and accurate using adaptive quadrature to compute

a radially symmetric gridding kernel. This dramatically reduces
the amount of calculations for a numerically exact kernel
calculation, reducfing the number of samples in the 2D case from
N2 to N in the radially symmetric case. This immediately makes
such a quadrature method computationally competitive. It has
low memory usage, it can be distributed in parallel, and scales to
extremely wide FoVs. Furthermore, the calculation is analytic up
to a chosen numerical error, allowing the tuning of speed versus
accuracy that is not possible with FFT-based methods for large
images.
In this work, we developed a new technique to validate the

calculation and application of a DDE. We show that by
applying the modeled DDE when gridding the zero-spacing, we
provided an image of the DDE model that can be directly
verified. We applied this to the radial w-projection kernel to
show the w-effect corrections to be accurate on the order of 1%.
This accuracy value is tunable through the support size and the
accuracy of the quadrature integration.
These modeling effects are critical not just for imaging, but

for calibration of instrumental and ionospheric effects, where
the w-projection can be used to simulate extremely wide FoVs.
Additionally, any sky model needs to have wide-FoV effects
taken into account. Such a sky model may be critical for
physical scientific results. For example, any physical model of
the EoR that is to be compared with data collected from a wide-
field interferometer needs to have wide-field effects included in
the comparison, just as any other instrumental effect (such as
the primary beam). This emphasizes that while imaging
methods are generally not important for non-imaging experi-
ments, the same process of modeling and correcting for the
instrument is still critical in any other analysis.

Figure 9. The dirty map (top left), residuals (bottom left), and sky model reconstruction (right) of the 112 s MWA Puppis A observation centered at 149.115 MHz,
using 17.5 million visibilities and an image size of 20482 (each pixel is 45 arcsec and the FoV is approximately 25 by 25 degrees). This image was reconstructed using
the MPI distributed w-stacking-w-projection hybrid algorithm, and using the radial symmetric w-projection kernels, in conjunction with the ADMM algorithm. The
rms of the residuals is 0.189 Jy/beam, and the dynamic range of the reconstruction is 19,850.

14

The Astrophysical Journal, 874:174 (15pp), 2019 April 1 Pratley, Johnston-Hollitt, & McEwen



The fast and exact correction via quadrature using a radially
symmetric kernel is new, and makes fast, exact, spherical, and
non-coplanar baseline corrections possible with a w-stacking–
w-projection hybrid. The process works by first correcting for
the average w-value in a stack to reduce kernel size and total
computation, then correcting the exact difference for each
visibility using quadrature calculated kernels. This method was
then demonstrated on an MWA observation of the Puppis A
and Vela supernova remnants for a 25 by 25 degree FoV and
over 17.5 million measurements.

We have shown that this distributed and paralleled algorithm
is extremely powerful for wide-field imaging. Furthermore,
these algorithms can be accelerated using multi-threaded
parallelism, i.e., general purpose graphics processing units, in
addition to MPI.

With this work, we provide an important step forward for fast
and accurate evaluation of wide-field interferometric imaging,
bringing us closer to solving the computational challenges of the
SKA and thus realizing its enormous scientific potential.
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