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Abstract—Surgical-tool detection from laparoscopic images is
an important but challenging task in computer-assisted minimally
invasive surgery. Illumination levels, variations in background
and the different number of tools in the field of view, all
pose difficulties to algorithm and model training. Yet, such
challenges could be potentially tackled by exploiting the temporal
information in laparoscopic videos to avoid per frame handling
of the problem. In this paper, we propose a novel encoder-
decoder architecture for surgical instrument detection and ar-
ticulation joint detection that uses 3D convolutional layers to
exploit spatio-temporal features from laparoscopic videos. When
tested on benchmark and custom-built datasets, a median Dice
similarity coefficient of 85.1% with an interquartile range of 4.6%
highlights performance better than the state of the art based
on single-frame processing. Alongside novelty of the network
architecture, the idea for inclusion of temporal information
appears to be particularly useful when processing images with
unseen backgrounds during the training phase, which indicates
that spatio-temporal features for joint detection help to generalize
the solution.

Index Terms—Surgical-tool detection, medical robotics, com-
puter assisted interventions, minimally invasive surgery, surgical
vision.

I. INTRODUCTION

Minimally invasive surgery (MIS) has become the preferred
technique to many procedures that avoids the major drawbacks
of open surgery, such as prolonged patient hospitalization and
recovery time [1]. This, however, comes at the cost of a
reduced field of view of the surgical site, which potentially
affects surgeons’ visual understanding, and similarly restricted
freedom of movement for the surgical instruments. [2]. To
improve the surgeons’ ability to perform tasks and precisely
target and manipulate the anatomy, it is crucial to monitor
the relationship between the surgical site and the instruments
within it to faciliate computer assisted interventions (CAI).

CAI promises to provide surgical support through advanced
functionality, robotic automation, safety zone preservation and
image guided navigation. However, many challenges in algo-
rithm robustness hampering the translation of CAI methods
relying on computer vision to the clinical practice. These
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Fig. 1: Each surgical tool is described by five joints (coloured
dots) and four connections (black lines). LTP: Left Tip Point,
RTP: Right Tip Point, HP: Head point, SP: Shaft point and
EP: End Point.

include classification and segmentation of organs in the camera
field of view (FoV) [3], definition of virtual-fixture algorithms
to impose a safe distance between surgical tools and sensitive
tissues [4], and surgical instrument detection, segmentation
and articulated pose estimation [5], [6].

Surgical-tool detection in particular has been investigated
in recent literature for different surgical fields, such as reti-
nal microsurgery [7] and abdominal MIS [8]. Information
provided by algorithms can be used to provide analytical
reports, as well as, as a component within CAI frameworks.
Early approaches relied on markers on the surgical tools [9]
or active fiducials like laser pointers [10]. While practical
such approches require hardware modifications and hence are
more complex to translate clinically but also they inherently
still suffer from vanishing markers or from occlusions. More
recent approaches relying on data driven machine learning
such as multiclass boosting classifiers [11], Random Forests
[12] or probablistic trackers [13] have been proposed. With the
inceasing availability of large datasets and explosion in deep
learning advances the most recent works utilize Fully Con-
volutional Neural Networks (FCNNs) [5], [14], [15]. Despite
the promising results using FCNNs, a limitation is that tem-
poral information has never been taken into account, despite
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Fig. 2: Sliding window algorithm: starting from the first video
frame, an initial clip with Wd frames (dotted red line) is
selected and combined to generate a 4D datum of dimensions
image width x image height x Wd x 3. Then the window
moves of Ws frames along the temporal direction and a new
clip (dotted blue line) is selected.

the potential for temporal continuity as well as articulation
features to increase the FCNN generalization capability and
also capture range.

Spatio-temporal feature extraction has been shown to be
effective for action [16] and object recognition [17] us-
ing 3D convolutional layers. In this paper, we follow this
paradigm and propose a 3D FCNN architecture to extract
spatio-temporal features for instrument joint and joint-pair
detection from laparoscopic videos acquired during robotic
MIS procedures performed with the da Vinci R© (Intuitive
Surgical Inc, CA) system. We validate the new algorithm and
model using benchmark data and a newly labelled dataset that
we will make available.

The paper is organized as follows: Sec. II presents the
structure of the considered instruments and the architecture of
the proposed FCNN. In Sec. III we describe the experimental
protocol for validation. The obtained results are presented in
Sec. IV and discussed in Sec. V with concluding discussion
in Sec. VI.

II. METHODS

A. Articulated surgical tool model and ground truth

We consider two specific robotic surgical tools in this
paper, EndoWrist R© Large Needle Driver and EndoWrist R©
Monopolar Curved Scissors, however, the methodology can
be adapted to any articulated instrument system.

Our instrument model poses each tool as a set of connected
joints as shown in Fig. (Fig. 1): Left Tip Point (LTP), Right
Tip Point (RTP), Head Point (HP), Shaft Point (SP) and End
Point (EP), for a total of 5 joints. Two connected joints were
represented as a joint pair: LTP-HP, RTP-HP, HP-SP, SP-EP,
for a total of 4 joint pairs.

Following previous work, to develop our FCNN model
we perform multiple binary detection operations (one per
joint and per connection) to solve possible ambiguities of
multiple joints and connections that may cover the same

Fig. 3: Ground-truth example for shaft point (circle) and shaft-
end point connection (rectangle). We used the same pixel
number (rd) for both circle radius and rectangle thickness,
highlighted in green.

image portion (e.g. in case of instrument self-occlusion) [5].
For each laparoscopic video frame, we generated 9 separate
ground-truth binary detection maps: 5 for the joints and 4
for the joint pairs (instead of generating a single mask with
9 different annotations which has been shown to perform less
reliably). For every joint mask, we consider a region of interest
consisting of all pixels that lie in the circle of a given radius
(rd) centered at the joint center [5]. A similar approach was
used to generate the ground truth for the joint connections.
In this case, the ground truth is the rectangular region with
thickness rd and centrally aligned with the joint-connection
line. An example for SP and SP-EP link is shown in Fig. 3.

The input to our 3D FCNN is a temporal clip (i.e., set of
temporally consecutive video frames) obtained with a sliding-
window controlled by the window temporal length (Wd) and
step (Ws). A visual representation of the sliding-window is
shown in Fig. 2. Starting from the first video frame, the first
Wd images are collected and used to generate a 4D data
volume of dimensions frame height x frame width x Wd x
3, where 3 refers to the spectral RGB channels. The window
then moves Ws frames along the temporal direction and a new
temporal clip is generated resulting in a collection of M 4D
clips.

B. Network architecture

The architecture of our proposed network is shown in Fig.
4 and Table I describes the full hyper parameter details. The
framework is similar to U-net [18] using the well-known
encoder-decoder structure. We used a two-branch architecture
to allow the FCNN to separately process the joint and connec-
tion masks [19]. Skip connections [18] are used in the middle
layers and we employ strided convolution instead of pooling
for multi-scale information propagation both up and down.
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Fig. 4: Proposed network architecture. Dashed arrows refer to
skip connections. Conv3D-BN-Relu: 3D convolution followed
by batch normalization (BN) and rectified linear unit (Relu) ac-
tivation. Strided Conv3D: 3D convolution. Strided Deconv3D:
3D deconvolution. Concatenation: joining two inputs with
the same shape to assemble a unique output. Due to the
impossibility to represent the 4D output (width x height x
Wd x 3), where Wd is the number of frames in a temporal
clip, we joined the nine (joint+connection) masks in a single
image. Input and output dimensions are reported.

To incorporate spatio-temporal information and features
that is encoded in videos, we use 3D kernels with 3x3x3
dimension for non-strided convolution [20] and we perform
a double contraction and extension of the temporal dimension
by setting a kernel stride of 2x2x2 in the middle layers. This
configuration allows the model to recover the information on
surgical-tool position lost during the down-sampling (encoder)
phase [21].

III. EXPERIMENTS

A. Datasets

The proposed network was trained and tested using a
dataset of 10 videos (EndoVis Dataset: 1840 frames, frame
size = 720x576 pixels) from the EndoVis Challenge 20151.
Specifically, we used 8 videos for training and 2 (EndoVis.A

1https://endovissub-instrument.grand-challenge.org/

TABLE I: Specifications of the proposed network. Kernel size
and stride (kernel height x kernel width x kernel depth) as
well as output dimensions (height (H) x width (W) x Wd (D)
x N◦Channels) of each layer are shown. Wd is the number
of frames that compose a temporal clip. The final output is a
clip of 9 binary maps (one per joint/connection) with the same
dimension of the input.

Kernel (Size / Stride) Output

Encoder

Conv 0 3x3x3 / 1x1x1 H x W x D x 32

2B Strided Conv1 2x2x2 / 2x2x1 H
2

x W
2

x D x 32

2B Conv1 3x3x3 / 1x1x1 H
2

x W
2

x D x 32

Conv1 1x1x1 / 1x1x1 H
2

x W
2

x D x 64

2B Strided Conv2 2x2x2 / 2x2x1 H
4

x W
4

x D x 64

2B Conv2 3x3x3 / 1x1x1 H
4

x W
4

x D x 64

Conv2 1x1x1 / 1x1x1 H
4

x W
4

x D x 128

2B Strided Conv3 2x2x2 / 2x2x2 H
8

x W
8

x D
2

x 128

2B Conv3 3x3x3 / 1x1x1 H
8

x W
8

x D
2

x 128

Conv3 1x1x1 / 1x1x1 H
8

x W
8

x D
2

x 256

2B Strided Conv4 2x2x2 / 2x2x2 H
16

x W
16

x D
4

x 256

2B Conv4 3x3x3 / 1x1x1 H
16

x W
16

x D
4

x 256

Conv4 1x1x1 / 1x1x1 H
16

x W
16

x D
4

x 512

Decoder

2B Strided Deconv1 2x2x2 / 2x2x2 H
8

x W
8

x D
2

x 128

2B Conv1 3x3x3 / 1x1x1 H
8

x W
8

x D
2

x 128

Conv1 1x1x1 / 1x1x1 H
8

x W
8

x D
2

x 256

2B Strided Deconv2 2x2x2 / 2x2x2 H
4

x W
4

x D x 64

2B Conv2 3x3x3 / 1x1x1 H
4

x W
4

x D x 64

Conv2 1x1x1 / 1x1x1 H
4

x W
4

x D x 128

2B Strided Deconv3 2x2x2 / 2x2x1 H
2

x W
2

x D x 32

2B Conv3 3x3x3 / 1x1x1 H
2

x W
2

x D x 32

Conv3 1x1x1 / 1x1x1 H
2

x W
2

x D x 64

2B Strided Deconv4 2x2x2 / 2x2x1 H x W x D x 16

2B Conv4 3x3x3 / 1x1x1 H x W x D x 16

Conv4 1x1x1 / 1x1x1 H x W x D x 32

Conv5 1x1x1 / 1x1x1 H x W x D x 9

and EndoVis.B) for testing and validation. It is worth noticing
that EndoVis.B has a completely different background with
respect to the 8 training EndoVis videos, differently from
EndoVis.A that has a similar background.

We further acquired 8 videos with a da Vinci Research
Kit (dVRK) (UCL dVRK Dataset: 3075 frames, frame size =
720x576 pixels) to attenuate overfitting issues. In fact, with
the inclusion of spatio-temporal information in the FCNN
processing, the number of FCNN parameters increased by a
factor of 3 with respect to its 2D counterpart. Seven videos
were used for training/validation and one (UCL dVRK) for
testing.

Dataset details, in terms of number of train-
ing/validation/testing videos and frames, are reported in
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TABLE II: Specification for the dataset used for training and testing purposes. For each video of both the Endovis and the
UCL DVRK datasets, the number of frames is shown.

EndoVis Dataset: 1840 Frames (37.5% Whole Dataset)

Training Set Validation Set Test Set

Video 0 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Video 7
Video 8

(EndoVis.A)
Video 9

(EndoVis.B)

210 Frames 300 Frames 250 Frames 80 Frames 75 Frames 75 Frames 240 Frames 75 Frames 300 Frames 235 Frames

UCL DVRK Dataset: 3075 Frames (62.5% Whole Dataset)

Training Set Validation Set Test Set

Video 0 Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
Video 7

(UCL DVRK)

375 Frames 440 Frames 520 Frames 215 Frames 295 Frames 165 Frames 550 Frames 515 Frames

Fig. 5: Sample images from (left and middle) EndoVis and
(right) UCL DVRK datasets for (first row) training (second
row) testing. The images from the two datasets are different
in terms of resolution, light conditions, number of tools in the
field of view, shaft shape and colour.

Table II. In Fig. 5 we show three samples from the training
and test set, both from the EndoVis and UCL dVRK datasets.
The UCL dVRK and EndoVis datasets were different in terms
of lightning condition, background, and colour and tools.

B. Model training
As ground truth, we used annotations2 provided for the

EndoVis dataset [5], which consisted in 1840 frames, while
we manually labeled one of every three frames of the UCL
dVRK dataset, resulting in 3075 annotated frames. Images
were resized to 320x256 pixels in order to reduce processing
time and the GPU memory requirements. For both datasets,
we selected rd equal to 15 pixels.

The FCNN model was implemented in Keras3 and trained

2https://github.com/surgical-vision/EndoVisPoseAnnotation
3https://keras.io/

using a Nvidia GeForce GTX 1080. For training, we set an
initial learning rate of 0.001 with a learning decay of 5% every
five epochs and a momentum of 0.98. Following the studies
carried out in [22], [23], we chose a batch size of 2 in order
to improve the generalization capability of the networks. Our
FCNN was trained using the per-pixel binary cross-entropy as
loss function [5] and stochastic gradient descend as chosen
optimizer. We then selected the best model as the one that
minimized the loss on the validation set (∼10% of the whole
dataset).

C. Performance metrics and experiments

1) Experiments using different time steps (E1): We inves-
tigated the network’s performance at different Ws, i.e. 4 (Step
4), 2 (Step 2) and 1 (Step 1). We always considered Wd = 8,
hence obtaining 1200, 2395 and 4780 4D data, respectively.
Data augmentation was performed, flipping frames horizon-
tally, vertically and in both the directions, hence quadrupling
the amount of available data and obtaining 4800 (Step 4),
9580 (Step 2) and 19120 (Step 1) 4D data. We then trained
one FCNN for each Ws.

2) Comparison with the state of the art (E2): For the
comparison with the state of the art, we chose the model
proposed [5], which is the most similar with respect to
ours. We compared it with the model that showed the best
performances according to E1.

3) Performance metrics: For performance evaluation, we
compute the Dice Similarity Coefficient (DSC), Precision
(Prec) and Recall (Rec):

DSC =
2TP

2TP + FN + FP
(1)

Prec =
TP

TP + FP
(2)

Rec =
TP

TP + FN
(3)
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Fig. 6: Dice Similarity Coefficient (DSC), precision (Prec) and
recall (Rec) obtained when training the proposed network with
Ws = 1 (Step 1), 2 (Step 2) and 4 (Step 4).

Fig. 7: Visual examples of (left) ground-truth segmentation,
and segmentation outcomes obtained with (center) the network
proposed in [5], and (right) the proposed network for the UCL
dVRK dataset.

where TP is the number of pixels correctly detected as
joint/connection and background, while FP and FN are the
number of pixels misclassified as joint/connection neighbors
and backgorund, respectively.

Multiple comparison Two-Way ANOVA was performed to
detect significant differences between results achieved when
investigating E1 and E2, always considering a significance
level (α) equal to 0.01.

For fair comparison, we selected Ws = 8 to generate the
3D test sets for both E1 and E2, as to avoid temporal-clip
overlapping.

IV. RESULTS

A. E1 results

Figure 6 shows the boxplots of the performance metrics
evaluated on the three testing videos. Median DSC for Step 1,
Step 2 and Step 4 were 86.1%, 85.2% and 84.8%, respectively,
with InterQuartile Range (IQR) < 10% in all cases. Two-
Way Anova test highlighted statistically significant differences
(p−value < 0.01, Two-Way Anova Test).

Fig. 8: Visual exmples of (left) ground-truth segmentation,
and segmentation outcomes obtained with (center) the network
proposed in [5], and (right) the proposed network, for the
EndoVis.B dataset.

TABLE III: Quantitative results of the proposed 3D model
trained on the three datasets, using Ws = 1 (Step 1), 2 (Step
2) and 4 (Step 4). The evaluation for each of the test videos
is performed in terms of median Dice similarity coefficient
(DSC), precision (Prec) and recall (Rec). We highlighted in
red the best scores for every video.

Median Value of DSC(%) / Prec(%) / Rec(%)

EndoVis. A EndoVis. B UCL DVRK

Step 4 85.9 / 82.3 / 89.7 81.3 / 78.8 / 85.3 85.5 / 79.7 / 92.4

Step 2 86.9 / 83.2 / 91.0 83.2 / 80.5 / 86.4 85.5 / 79.4 / 92.7

Step 1 88.3 / 85.4 / 91.9 80.9 / 76.0 / 86.0 86.9 / 82.3 / 92.4

Our analysis separately considers the performance on each
of the three testing videos, obtaining the results showed in
Table III. Step 1 model achieved the best results in terms of
DSC and Prec on both the EndoVis.A and UCL dVRK videos
(DSC=88.6%, 86.9% respectively), but showed the worst
performances on EndoVis.B (DSC=80.9%). Step 2 model
obtained the highest scores in EndoVis.B, while Step 4 showed
the lowest performance in all the three test videos. Two-Way
Anova test highlighted differences between each video couple
(p−value < 0.01, Two-Way Anova Test). Since EndoVis.B
presented the most challenging background, we selected Step
2 dataset to train our model in the successive experiment.
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TABLE IV: Comparison with the state of the art method
proposed in [5]. Results are reported in terms of difference
between the proposed and state-of-the-art median values of
Dice similarity coefficient (DSC), precision (Prec) and re-
call (Rec). We highlighted in red (positive values) and blue
(negative values) the scores where the two models achieved
substantially different results (≥ ±5%)

∆ Median Value of DSC(%) / Prec(%) / Rec(%)

EndoVis.A EndoVis.B UCL DVRK

LTP -3.1 / -4.5 / -2.2 33.0 / 46.1 / 16.0 1.0 / -0.5 / 1.1

RTP 0.7 / 3.0 / -3.4 24.2 / 34.4 / 1.4 -0.4 / -2.9 / 2.7

HP -3.0 / -3.3 / -2.5 -0.8 / -4.0 / 0.9 0.1 / -1.8 / 2.3

SP -2.9 / -3.2 / -1.0 1.5 / 0.1 / 2.5 -1.4 / -2.9 / -0.6

EP 0.5 / 1.6 / -2.6 1.1 / -3.4 / 3.4 15.7 / 20.6 / -1.6

LTP-HP -0.4 / -3.2 / 2.3 30.9 / 40.2 / 3.8 -0.9 / -2.0 / 2.6

RTP-HP -0.1 / 1.2 / -2.1 36.0 / 51.0 / -9.2 -0.8 / -4.3 / 2.7

HP-SP -2.3 / -4.3 / 1.8 3.2 / 0.8 / 5.0 -1.7 / -4.4 / 1.5

SP-EP -0.3 / -0.8 / 0.3 -0.1 / -1.6 / 1.7 5.0 / 8.2 / -0.8

B. E2 results

Table IV shows the results of the comparison with [5].
In particular, the differences (∆) of the median performance
metrics obtained by the proposed Step 2 FCNN and the one
proposed in [5] are shown for each joint and connection (e.g.
for LTP, results are reported as ∆DSC(LTP) = DSC3D(LTP)
- DSC2D(LTP)). We highlighted the positive (red) and neg-
ative (blue) scores where one of the two models showed
substantially different (≥ ±5%) performances with respect
to each other. The two models showed similar performances
on EndoVis.A for all metrics. Both the architectures achieved
good metric values (> 80%) for all joints and connections,
with oscillations in ∆DSC score from -3% to 0.7%.

When considering the UCL dVRK testing video, the pro-
posed FCNN substantially outperformed the state of the art on
EP and SP-EP, achieving ∆DSC differences of +15.7% and
+5.0%. A sample of the performed segmentation for the two
models is shown in Fig. 7 for EP and SP-EP for illustration
purposes.

Finally, the proposed model outperformed [5] on LTP, RTP,
LTP-HP and RTP-HP on EndoVis.B, showing improvements
on ∆DSC of +33%, +24.2%, +30.9% and +36.0% respectively,
while achieving one lower value only for Rec value of RTP-
HP connection. Considering the performances on the whole
test set, the proposed model achieved a median DSC score
of 85.1% with IQR=4.6%. Visual segmentation examples are
shown in Fig. 8.

V. DISCUSSION

A. E1 discussion

The results we obtained on EndoVis.A and UCL dVRK may
be explained considering that the backgrounds in the videos
are very similar to the ones of the videos of the training set,
meanwhile EndoVis.B’s background is completely missing in

the training data domain. The low DSC score achieved by
Step 1 model on EndoVis.B, coupled with the high scores on
the other two datasets, showed that, with high probability, the
model overfitted. Such a conclusion may be expected: despite
the large amount of data, the high correlation between datasets,
due to the use of a temporal step Ws of only one frame, led
the sliding window algorithm to produce a dataset with too
little variability for training a model over a good domain.

The model trained on Step 4 dataset was not able to achieve
competitive results in any of the test videos with respect to
the other models. Since the proposed architecture has a very
large number of parameters (∼ 80000), it needs a lot of data
in order to be properly trained. For this reason, the model
achieves lower quality predictions.

The network trained on Step 2 dataset achieved the best
scores for all the considered metrics on EndoVis.B. This
may be explained as Ws=2 strikes a balance between the
amount of data and the similarity between the frames. We
select this model for the successive comparison with the
architecture presented in [5], due to its capability to generalize
on backgrounds not already seen in the training phase.

B. E2 discussion

EndoVis.A was probably the less challenging video in terms
of background complexity and both the proposed and network
showed similar results [5]. When instead the EndoVis.B test
video was considered, the previous model [5] was barely able
to properly recognize and separate tip joints and connections
from the background, achieving poor DSC values and overesti-
mating joint/connection detection. This result is visible in Fig.
8, where multiple tip-points are erroneously detected for LTP
and RTP and double connections for the related joint pairs.

On the other hand, the results obtained by the 3D network
suggest that the temporal information was exploited to improve
the network generalization capability on unseen backgrounds,
obtaining DSC scores of 77.6% and 76.4% for LTP and RTP,
respectively.

Similarly, the testing performance achieved on the UCL
dVRK dataset by the proposed 3D model outperformed that
achieved by [5]. In fact, as shown in Fig. 7, the background
presented homogeneous portions in terms of texture and color
that were misclaissified as EP when not including temporal
information, while the proposed 3D model showed its ability
to better separate joints and joint-pair connections from back-
ground, achieving a ∆DSC of +15.7% and +5.0% on EP and
SP-EP, respectively.

C. Limitations and future work

An obvious limitation of this study is the limited number of
testing videos, which is due to the lack of available annotated
data. Nonetheless, this number is comparable to that of similar
work in the literature [5] and we will release the data we
collected for further use in the community.

A second issue is related to the 2D nature of the esti-
mated joint position. It would be interesting to include da
Vinci R© (Intuitive Surgical Inc, CA) kinematic data in the
joint/connection position estimation. Such information may
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be useful to provide a more robust solution for occluded
joints. This is realistic and feasible using dVRK information
but requires careful calibration and data management. While
dVRK encoders are able to provide kinematic data for end-
effector 3D position and angles between robotic-joint axes,
this requires a projection on the image plane to be suitable for
2D tracking, with errors associated to projection parameters
and encoders’ precision.

Several natural extension of the proposed work would be
to include the instrument articulation estimation within other
scene understanding algorithms, e.g. computational stereo or
semantic SLAM, in order help with algorithms coping with
the boundary regions between instruments and tissue. With
sufficiently accurate performance visual servoing approaches
can also be implemented from the estimated information.

VI. CONCLUSION

In this paper, we proposed a 3D FCNN architecture for
surgical-instrument joint and joint-connection detection in
MIS videos. This approach, to the best of our knowledge,
represents the first attempt to use spatio-temporal features
in the field. Our results, achieved by testing existing datsets
and new contribution datasets, suggest that spatio-temporal
features can be successfully exploited to increase segmentation
performance with respect to 2D models based on single-frame
information for surgical-tool joint and connection detection.
This moves us towards a better framework for surgical scene
understanding and can lead to applications of CAI in both
robotic systems and in surgical data science.
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