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Abstract. In the medical domain, the lack of large training data sets
and benchmarks is often a limiting factor for training deep neural net-
works. In contrast to expensive manual labeling, computer simulations
can generate large and fully labeled data sets with a minimum of manual
effort. However, models that are trained on simulated data usually do
not translate well to real scenarios. To bridge the domain gap between
simulated and real laparoscopic images, we exploit recent advances in un-
paired image-to-image translation. We extent an image-to-image trans-
lation method to generate a diverse multitude of realistically looking
synthetic images based on images from a simple laparoscopy simulation.
By incorporating means to ensure that the image content is preserved
during the translation process, we ensure that the labels given for the
simulated images remain valid for their realistically looking translations.
This way, we are able to generate a large, fully labeled synthetic data
set of laparoscopic images with realistic appearance. We show that this
data set can be used to train models for the task of liver segmentation of
laparoscopic images. We achieve average dice scores of up to 0.89 in some
patients without manually labeling a single laparoscopic image and show
that using our synthetic data to pre-train models can greatly improve
their performance. The synthetic data set will be made publicly available,
fully labeled with segmentation maps, depth maps, normal maps, and
positions of tools and camera (http://opencas.dkfz.de/image2image).
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Fig. 1. Images from simple laparoscopic computer simulation (domain A, first column)
translated to look like real laparoscopic video frames (synthetic Bsyn, second and third
column) using various styles. During the unpaired training process, a multi-scale struc-
tural similarity loss ensures that structures remain similar. This enables us to use the
generated images along with labels from domain A as training data for various tasks.

1 Introduction

With the increase in computing power, there is an obvious trend towards training
larger and deeper networks. However, in the medical domain, the lack of large
data sets is a strong limiting factor [10]. The difficulty of recording real patient
data in an operating room, legal restrictions on sharing and the great expense
of manual labeling by experts make it near impossible to generate large training
benchmarks. This work focuses on the example of the segmentation of laparo-
scopic videos, where deep networks can achieve high accuracies, but sometimes
fail to generalize to new patients due to the lack of more labeled data [4]. A solu-
tion to this problem could be the usage of synthetic training data. In computer
simulations, large amounts of fully labeled data can be created automatically.
The main issue here is that models trained on synthetic data usually do not
generalize well to real data, due to the domain gap between the two.

Instead, we propose to use image-to-image translation techniques to translate
images from the domain of simulated images in which labels are known (domain
A), to the domain of real images in which we want to train our model (domain
B). Recent advances in image translation make it possible to do this even if
the data is unpaired, i.e. no direct mapping between samples in one domain
to samples in the other domain exists [13]. Additionally, multi-modal image-to-
image translation [6,8] enables us to control the style of the translation result,
which can be utilized to increase the diversity in the final data set. In the present
work, domain A consists of images from very simple laparoscopic 3D computer
simulations while domain B is the domain of images from real laparoscopy video
feeds. In order to use the translated data for training, care must be taken that
a) the translated images look realistic enough to bridge the domain gap and b)
the labels remain valid. This is especially difficult in laparoscopic images, since
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image content can change drastically between different viewpoints and between
patients. To achieve our goal, we build up on several methods:

Unpaired translation The CycleGAN [13] has made it possible to translate
images between two unpaired domains by usage of a cycle consistency loss and
adversarial losses. A generator network GB translates images from A to B which
a discriminator network DB tries to differentiate from real images in B. At the
same time, generator GA and DA use the same method to translate images from
B to A. The cycle consistency states that an image a translated to B and back
to A must match the original image, i.e. a = GA(GB(a)) (and symmetrically
for an image b). This method can only learn a one-to-one mapping (uni-modal),
meaning each input image will generate exactly one output.

Multi-Modal translation The key idea behind multi-modal image translation
is the separation of an image’s content from its style. The assumption is that the
content between domains remains the same, while the style is domain-specific
(texture, lighting). An encoder EA first extracts a style-code sa and a content-
code ca from the source image and a generator GB then uses this content-code
together with a style-code sb from the target domain to create the image b′ in
the target domain [6,8]. The opposite direction works analogously. A cycle loss
and various reconstruction losses bind the networks together.

Label-preserving translation SPIGAN [9] proposes to train an additional
network which tries to predict the depth map from the translated image, argu-
ing that this preserves image structure. In our experience, this bears the risk
of co-adaptation between the networks. AugGAN [5] and GANTruth [1] bind
the generators to the image structure via weight-sharing with segmentation net-
works. However, AugGAN requires segmentation labels to be known for both do-
mains and GANTruth requires a pre-trained segmentation network in the target
domain. Our goal is to not use labels during the translation process, simplifying
the training procedure.

Contribution In this work, we show how both the goal of realism as well as
the preservation of label accuracy during translation can be achieved. First, we
build an extension to the MUNIT framework which is asymmetrical and does not
require the simulated domain to have multiple styles, speeding up the process
of creating the simulated data. Next, we incorporate an additional multi-scale
structural similarity loss [12] and show that it helps to preserve image content
and structure despite large changes in camera viewpoint. Additionally, we show
how the addition of noise in the encoders can help avoid mode collapse - where
multiple images map to a similar output - and steganography. To validate the
approach, we show that pre-training a segmentation model on the synthetic data
can increase segmentation scores.
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As part of this work, we translate 100 000 images to domain B (see Fig. 1).
This data set, fully labeled with segmentation maps, depth maps and further
labels as well as the code will be publicly available8, with possible applications
ranking from pre-training to benchmarking.

2 Methods

Unpaired multi-modal image-to-image translations can output convincing re-
sults, but have mostly been tested on scenarios where the content stays similar
in all images across both domains (such as faces to faces or mountains to moun-
tains) [6,8]. In laparoscopy, viewpoints can change and structures - such as the
gallbladder or abdominal wall - move into and out of the view. Incorporating
this into our data set is necessary as we want it to be very diverse, however,
the mismatch in domain distributions can lead to many wrongly added details,
such as a gallbladder where there should only be liver and fat tissue replacing
liver tissue. The following describes our extensions to the MUNIT architecture
which enable us to deal with these issues, namely adding a structure-preserving
loss, simplifying the encoder EA and using noise to avoid co-adaptation of the
networks. The resulting training process is outlined in Fig. 2.
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Fig. 2. Architecture based on MUNIT [6]. Image a randomly drawn from A is trans-
lated to B and back to A, where a cycle loss ensures that a is reconstructed correctly.
The same is done in the opposite direction for images drawn from B. Various recon-
struction losses ensure that the generators and encoders work as expected (please see
[6] for more details). During the translation process, images from A are encoded to a
latent code ca, while images from B are split into two latent codes: content cb and style
sb. Unlike MUNIT, we do not have a style in A, which simplifies the creation of the
rendered images. Furthermore, we add noise to all encoders to prevent the hiding of
information and add the MS-SIM loss between source images and their translations.

2.1 Architecture

Multi-Scale Structural Similarity (MS-SSIM) loss: Unpaired translation net-
works often invent details in their output. This is likely due to two reasons:

8 Data set and code available at: http://opencas.dkfz.de/image2image/

http://opencas.dkfz.de/image2image/
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1) Some structures and some viewpoints occur more in one of the two domains
than in the other. For example, domain A contains more close-ups of the liver
due to the random placement of the camera. The discriminator DB will dis-
courage these images, resulting in the generator GB inventing structures like an
additional gallbladder. 2) Generative models are susceptible to mode collapse.
We add a multi-scale structural similarity [12] loss between an image a and its
translation GB(a) (and similarly in the other direction). The loss works on the
image brightness (average over the channels) which ensures that brighter regions
(such as the gallbladder) remain brighter and darker regions remain dark while
at the same time not penalizing style-dependent changes in hue.

Noise against steganography : GANs have shown to be very effective hiding
information in their output images [2]. Since the generators GA and GB are
trained jointly to fulfill the cycle consistency, GA learns to hide details of the
image b in its translation which are useful for GB . This is problematic when
giving GB a real image to translate, since these details are not present in this
case. To circumvent this effect, we add Gaussian noise to the input of each
translation network.

Asymmetrical style: One of our aims is to reduce the amount of manual work
required to generate data. In this spirit, we want to translate from a simple and
easy to set up domain A to a very complex domain B and let the computer do
the bulk of the work automatically. We remove the part of encoder EA which
extracts the style and the style-injection from GA. As a result, our setup becomes
asymmetrical and we do not need to worry about creating multiple textures or
lighting styles in the simulated domain A, simplifying the simulation process.
During training, both the style extracted by EB as well as randomly drawn style
vectors are used when translating from A to B. In this way, the network can
later translate images either using a random style or the style taken from a real
image.

2.2 Translation data

To train our translation networks, we use two unpaired data sets, which both
contain images with livers, gallbladders, tools, fat and abdominal wall (see Fig.
3).

Rendered data set - Domain A: We create six synthetic laparoscopic 3D-
scenes using the liver and gallbladder surface meshes extracted from CT scans
of six patients (3D-IRCADb 01 data set, IRCAD, France). We add meshes which
represent fat tissue, ligament and the inflated abdominal wall. Each tissue type
is assigned a distinctive texture with small random details. We randomly place
the camera together with a light source (representing the laparoscope) and tools.
In this way, we render 2000 images from random perspectives for each patient,
resulting in 12 000 synthetic images. To increase the diversity in our translated
results, we repeat the process for four additional patients where no gallbladder is
present, resulting in scenes similar to liver staging procedures. The images from
all ten patients together make up our extended rendered data set A+.
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Fig. 3. Sample images from the two domains. Both contain similar objects, but no
pairing information is known, and the distribution of content does not necessarily
match.

Real data set - Domain B: The real images are taken from 80 videos of the
Cholec80 data set (videos of 80 laparoscopic cholecystectomies) [11]. We first
identify parts of the videos in which the gallbladder is still intact and then
extract frames at five frames per second. We separate the resulting images into
a training data set Btr (75 patients, roughly 74 000 images) and a segmentation
data set Bv (5 patients). We manually segment the liver in 196 images of Bv (at
a rate of one frame every five seconds).

2.3 Experiments

We train the translation networks for 375 000 iterations. Afterwards, we translate
all images from A+, using five randomly drawn style vectors for each image,
resulting in 100 000 images which we call the synthetic data set Bsyn.

Evaluating the image quality quantitatively is difficult. Instead, we validate
the usefulness of the synthetic data set by using it as training data for a seg-
mentation task: As a baseline, we first train a TernausNet-11 [7] on the real
Cholec80 validation data set Bv in a leave-one-patient-out cross-validation (five
models trained, each time one patient is left out of the training data to be used
for testing). We then train the same network only on the synthetic data Bsyn and
validate it on all five patients in Bv. Furthermore, we test how the performance
changes if the network which is already trained on Bsyn is fine-tuned on the real
data in the same cross-validation as before. The experiments are repeated for a
TernausNet which has previously been pre-trained on the ImageNet data set [3].

To see how our synthetic data helps in the adaptation to a wider diversity
of images, we evaluate the pre-initialized TernausNets on images from 13 liver
staging sequences, in which a total of roughly 2000 images are segmented [4].

3 Results

Using the MS-SSIM loss can greatly improve the preservation of image structure,
as shown qualitatively in Fig. 4 and helps in the correct usage of textures: The
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correct assignment of texture to the various organs can be clearly seen and close-
up shots of the liver surface result in highly detailed liver texture translations
(more translation results in the supplementary materials).

b GA(b) G′
A(b)

a GB(a) G′
B(a)

Fig. 4. Qualitative results for the MS-SSIM loss. During translation of images b and
a, the networks tend to remove (GA(b)) or add (GB(a)) detail. In contrast, networks
G′

A and G′
B , which are trained with an MS-SSIM loss, preserve structures in both

directions.

Table 1. Median dice scores for Bv (Patients 75 to 80 from Cholec80 data) and for
the 13 staging procedures. In all cases where Bv is part of the training data, the
reported results are from a leave-one-patient-out cross-validation (except for the staging
procedures, where all five patients were used). In patient P78 most of the visible liver
region is covered in ligament and fat tissue. Median scores for the 13 staging procedures
increase considerably by using the synthetic data Bsyn for pre-training. An additional
improvement is achieved by pre-training on the ImageNet data I.

Training data P76 P77 P78 P79 P80 Staging Procedures

Bv 0.50 0.68 0.42 0.52 0.56

Bsyn 0.73 0.70 0.13 0.74 0.76

Bsyn + Bv 0.74 0.72 0.40 0.64 0.61

I + Bv 0.80 0.81 0.48 0.86 0.83 0.25

I + Bsyn 0.89 0.80 0.12 0.80 0.85 0.61

I + Bsyn + Bv 0.92 0.83 0.64 0.89 0.91 0.77

Training on our synthetic data shows considerable improvements over train-
ing only on the real data (Table 1). When using the synthetic data for pre-
training, the median dice score improved by an average of 16 percent (no Ima-
geNet pre-training) and 11 percent (with ImageNet pre-training).

When the network was tested on the 13 staging procedures [4] containing
data that had not been seen at all during training, the mean dice score using
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only real training data Bv was 0.25, and improved to 0.77 when the network was
pre-trained with the synthetic data Bsyn.

4 Discussion

In this work, we have shown that consistent translation results can be achieved
despite having a large change in content and viewpoints.

The translated results alone can be used to achieve reasonably good scores
on a segmentation task without labeling a single image. When pre-training a
network with our synthetic data, we can demonstrate an increase in performance,
compared with only using real data. We also show that the training data can
help a network in generalizing to new situations.

Unpaired image-to-image translation is proving to be a very powerful tool in
the generation of training data. Since the domain of surgical data science still
mostly lacks large benchmarks and open data sets, it could greatly benefit from
further development in this field.
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