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INTRODUCTION 

Minimally invasive surgical procedures are performed 

with a small incision for surgical instruments to pass 

through to reach the stage of the procedure. Dexterous 

surgical instruments like concentric tube robots (CTR) 

are needed to steer along sensitive structures within the 

body and achieve minimal damage by employing a 

remote centre of motion (RCM) at the incision point. A 

CTR is a continuum robot composed of multiple 

telescopic, concentric, pre-curved, super-elastic tubes 

that can be axially translated and rotated at their base 

relative to each other [1]. The bending is derived from the 
elastic tube interactions with neighboring tubes, allowing 

for high dexterity while maintaining a small footprint. 

Along with the CTR, which is known as the distal 

configuration, there are outer degrees of freedom (DOF) 

that fix the CTR’s base to a remote center of motion 

known as the proximal configuration. Kinematic 

modelling of such systems is non-trivial due to the 

complex interaction of individual tubes with neighboring 

tubes that form unique bending curves. Previously, 

traditional iterative approaches have been used to 

moderate success, but challenges include model 
complexity and a reliance on material constants. Previous 

work on introducing model-free solution include 

solutions with feed-forward neural networks [5]. 

Although these solutions are accurate, the cost of data 

sampling is high as all training, validation and testing is 

done on a physical CTR. 

 
Figure. 1. Distal configuration of 3 tubes [1]. 

This paper presents a deep reinforcement learning 

approach to solving the inverse kinematics of CTRs. The 

approach known as deep deterministic policy gradient 

(DDPG) [2] has shown promising results in high 
dimensional, continuous control problems such as 

humanoid robot control [3] and RC car drifting [4]. 

DDPG is an off-policy, actor-critic based algorithm that 

uses experience replay. Fully-connected neural networks 

are used to model the actor and critic.  
With this work, the authors investigate using DDPG for 

CTRs in simulation for 3 configurations, distal, proximal 

and full. The distal configuration consists of a rotational 

and prismatic DOF per tube and the proximal 

configuration has 3 rotational and 1 prismatic DOF to 

maintain a remote centre of motion. 

MATERIALS AND METHODS 

State, Action and Reward Definitions 

The state formulation consists of the joint states, q, 

desired position, Xdesired, and achieved position, Xachieved. The 

proximal configuration has three rotational DOFs, ψ, ϕ 
and θ about the x, y and z axis and a prismatic DOF, r, 

about the z axis. The distal configuration has a rotational 

DOF, γi,, about the z-axis and prismatic DOF, li , about 

the z-axis for each tube i of a n tube CTR. The state s is 

defined in equations 1, 2, 3. 

(1) 𝑠 = [𝑞 𝑋𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 𝑋𝑑𝑒𝑠𝑖𝑟𝑒𝑑] 
(2) qdistal = [γ1 l1 … γn ln] 
(3) qproximal = [ψ  ϕ  θ  r ] 

(4)  𝑞𝑑𝑖𝑠𝑡𝑎𝑙 = [ψ  ϕ  θ  r  γ1 𝑙1 … γ𝑛 𝑙𝑛] 

The action is defined as the change in joint state, q in 

equation 4. 

(5) a = Δq 

A novel reward function was formulated specific to 

CTRs. α and β are normalization constants for equal 

weighting of the norm-distance error term and change in 

joint states term. α is the multiplicative inverse of the 

longest normal distance between two points in the 

achievable workspace. In most cases, the minimum and 

maximum joint state values provide the two points with 

the largest normal distance. β is the multiplicative 

inverse of the number of active joints depending on the 

configuration. 

(6) 𝑟 = −α|𝑋𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 − 𝑋𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − β√∑ (
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Agent Model 

The exploration strategy chosen was zero-mean 

Gaussian noise where the variance of the noise 
decreases with each time step t, proportional to a decay 

period, given the starting variance σmax, and final variance 

σmin. 

(7) σ𝑡   =  σ𝑚𝑎𝑥   −  ( σ𝑚𝑎𝑥   −  σ𝑚𝑖𝑛  ) × min(1,
𝑡

𝑇
) 

The fully-connected neural network architectures of the 

actor and critic (including target networks)  have 2 

hidden layers. The number of neurons at each hidden 

layer differs based on the configuration of the CTR as 

show in table 1. 
Configuration Hidden Layer 1 Hidden Layer 2 

Distal 50 10 
Proximal 100 50 
Full 200 100 

Table. 1. Hidden Layer Configurations. 



Environment Model 

The forward kinematics model utilized the dominating 

stiffness model [1] for CTRs which assumes that the 

bending stiffness of one tube is much larger than the 

neighboring tube, resulting in the neighboring tube 

conforming to the curvature of the stiffer tube. This 

model was used to generate achievable 3D goal positions 

for the end effector and track the current position of the 

end effector in simulation. Given k is the curvature of all 

tubes and ltip is the length of the tip of the end effector the 
transformations from the remote center of motion to the 

end effector (ltip) were formulated. 

(8) 𝑇𝑠ℎ𝑎𝑓𝑡
𝑅𝐶𝑀 (𝜔,𝜙, 𝜃, 𝑟) = 𝑇𝑅𝑜𝑡𝑋(𝜓)𝑇𝑅𝑜𝑡𝑌(𝜙)𝑇𝑅𝑜𝑡𝑍(𝜃)𝑇𝑇𝑟𝑎𝑛𝑠𝑍(𝑟) 

(9) Tn
shaft(γ1 𝑙1 … γ𝑛 𝑙𝑛) =

∏ TRotZ(γi)TTransX (
1−cos(kli)

k
)TTransZ (

1−sin(kli)

k
)TRotY(kli)

n
i=1   

(10) Tltip
RCM = Tshaft

RCM(ω,ϕ, θ, r)Tn
shaft(γ1 𝑙1 … γ𝑛 𝑙𝑛) 

RESULTS 

For the distal configuration with n = 1, after every 200 

episodes, a 100 episode rollout was performed. The 

rollout gave an accuracy measure based on the number 

times the desired goal was reached. For the other 

configurations, the desired goal was never within the 

tolerance, so this measure was not possible. After 3000 

episodes, the distal configuration rollout gave an average 

accuracy of 18.3%, a minimum accuracy of 13.0% and a 
maximum accuracy 23.3% done over 3 seeds with the 

error plot shown in figure 2. 

 
Figure. 2. Error for distal configuration. 

 

Figure. 3. Error for proximal configuration. 

For the proximal configuration n = 1, after 10000 

episodes, the goal tolerance was not achieved. Over 3 

seeds, the average error was 0.004 meters, minimum 

error was 0.001 meters and maximum error was 0.005 

meters. For the full configuration n = 1, after 10000 

episodes, the goal tolerance was not achieved. Over 3 
seeds, the average error was 0.010 meters, minimum 

error was 0.005 meters and maximum error was 0.013 

meters. 

 

Figure. 4. Error for full configuration. 

CONCLUSION AND DISCUSSION 

Figure 2, 3 and 4 all demonstrate learning and 

optimization is occurring which is promising for future 

work in continuum robot control applications. Note 

however, the results are no where accurate to either te 
iterative Jacobian methods or the feed-forward neural 

network approach [5]. Because of the low accuracy, a 

physical robot was not used for experimentation. Three 

main domains of interest to improve the accuracy of 

DDPG are the exploration strategy, reward function 

formulation and transfer learning. First, without fully 

exploring the solution space, DDPG cannot find a good 

policy, better exploration strategies such as parameter 

noise exploration can be investigated. Second, the reward 

function can be improved upon by better representing the 

requirements of the solution mathematically. Last, 

DDPG must learn with no prior knowledge of the model 
resulting in long convergence. Contextualizing the 

learning by incrementally advancing the complexity 

using transfer learning could help convergence times as 

shown in autonomous RC car drifting [4]. In the future, a 

more complex model should be used along with this 

simple model and a physical CTR to perform deep 

learning with forward and reverse transfer learning. 

Although no expermintation was done, the results are a 

first step to introduce a data efficent deep learning 

approach for CTRs. 
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