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Highlights: 

⚫ We investigate carbon emissions performance in logistics at the city level. 

⚫ An empirical study on sixteen cities in China is conducted. 

⚫ Logistics-related carbon emissions of sixteen cities have increased from 2011 to 2015. 

⚫ Carbon emissions performance in logistics vary across cities. 

⚫ Carbon emissions performance in logistics attributes to different driving factors. 

 

Abstract: The importance of good performance in the logistics industry contributing towards a low-

carbon economy is widely recognized. However, there are few studies on carbon emissions 

performance for the logistics industry, especially at the city level. Therefore, this study attempts to 

analyse the carbon emissions performance of the logistics industry at the city level by examining 

sixteen cities within Yunnan Province. In particular, the Data envelopment analysis (DEA) model 

and Malmquist Index from both the static and dynamic perspective were explored. To further 

capture the driving factors of the carbon emissions performance in logistics, the Tobit model was 

applied to perform regression analysis. The results indicate that (1) with regards to static 
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performance, two northwest cities, Nujiang and Diqing, have reached the technological frontier; (2) 

regarding dynamic performance, although six cities have improved, the average dynamic logistics 

carbon emissions performance of all the cities decreases by approximately 5.9% from 2011 to 2015; 

(3) in terms of driving factors, the economic development factor is found to be positively and 

significantly related to static carbon emissions performance, whereas others indicate negative and 

significant relationships. 

Keywords: Carbon emissions performance; Logistics industry; City level; Data envelopment 

analysis; Malmquist index 

1.  Introduction 

Energy consumption in China has increased rapidly due to continuous economic growth (Dong et 

al., 2017). More specifically, China’s energy consumption increased from approximately 1,359 

million tons of standard coal equivalent (Mt) in 1997 to 4,299 Mt in 2015, with an increase in GDP 

from 7,971 billion yuan to 68,905 billion yuan, respectively (National Bureau Statistics of China, 

2018). As a result, China’s carbon emissions increased significantly from 3,309 Mt to 11,603 Mt 

during this period (Shan et al., 2018), and China became the world’s largest emitter of carbon 

dioxide since 2006 (Mi et al., 2017). Based on China’s energy structure, the logistics industry has 

become one of the largest and most important energy consumers and contributors of carbon 

emissions. According to the China Energy Statistical Yearbook, the logistics industry’s energy 

consumption has increased dramatically, from 58.63 Mt in 1995 to 383.18 Mt in 2015, which 

accounts for approximately 10% of China’s total energy consumption. Therefore, the logistics 

industry is influential in reducing energy consumption and mitigating carbon emissions.  

The logistics industry contains a range of activities involved in moving products from the point 

of origin, through the production system and on to the point of consumption to meet the 

requirements of customers or corporations (Mckinnon and Piecyk, 2012). For the logistics industry, 

transport and warehouse are clearly core activities and are also important sources of emission 

savings. Throughout the most recent decade, China has focused on carbon emissions mitigation, 

especially in the logistics industry. For corresponding government planning, “green and low-carbon 

logistics development” has been explored in China through the announcement of several new energy 



3 

 

and carbon emissions goals, and an emission offset plan that aims to reduce energy consumption 

and carbon emissions by road transport operators has been issued by China’s Ministry of Transport 

(Zhang et al., 2015). 

As one of China’s low-carbon economy pilot programmes and the radiation centre of Southern 

and Southeast Asia, the Yunnan provincial government noted the necessity of developing low-

carbon logistics in its 12th and 13th Five-Year Plans. According to the Yunnan Statistical Yearbook, 

the output of the logistics industry in Yunnan Province has increased by 40%, from 21,722 million 

yuan in 2005 to 30,449 million yuan in 2014, and the growth rate of energy consumption in logistics 

has been approximately 80%, from 570.30 Mt to 1032.41 Mt during the same period. Since the 

cities in Yunnan Province vary greatly based on their development stage, industry composition and 

geographical conditions, their energy consumption and carbon emissions are also variable. 

Therefore, further investigation into carbon emissions mitigation in the logistics industry based on 

these different cities provides opportunities for the advancement of a low-carbon economy. 

According to existing studies, carbon emissions performance has been widely analysed in 

different sectors. Analysing carbon emissions performance in the industrial sector represents a 

growing trend; these studies focus mainly on electricity generation or fossil fuel power plants (Wang 

and Du, 2017; Yan et al., 2017; Zhang et al., 2013). Researchers have also investigated other sectors, 

such as agriculture (Fei and Lin, 2016; Lin and Fei, 2015) and construction (Hu et al., 2017). 

Regarding the logistics industry, although there have been numerous studies focusing on its carbon 

emissions (Tian et al., 2018; Behnke and Kirschstein, 2017; Li and Tang, 2018), the research on its 

carbon emissions efficiency or performance is rare (Zhang et al., 2015). Moreover, from the 

perspective of spatial scale, carbon emissions performance has typically been analysed at the 

national or provincial level (Wu et al., 2018; Lin and Du, 2015; Zhou et al., 2014; Zhou and Wang, 

2012), whereas research at the city level is insufficient (Li et al., 2018; Mariano et al., 2017). It is 

generally true that cities are the basic components of administrative regions, and they are critical for 

implementing carbon emissions mitigation policies (Mi et al., 2019a). Studying cities’ carbon 

emissions and their performance is fundamental to proposing mitigation actions. Although a few 

studies have focused on different cities’ carbon emissions, such as Mi et al. (2016), Cai et al. (2018), 

Zhang et al. (2018) and Mi et al. (2019b), more work remains to be done on carbon emissions 
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efficiency and climate policy analysis, particularly for new and different cities. Therefore, this study 

fills the literature gap by exploring the carbon emissions performance in the logistics industry at the 

city level. 

In the research field of carbon emissions performance, combining DEA with the Malmquist 

index is a dominant and effective method (Lin and Fei, 2015; Mariano et al., 2017; Zhang and Choi, 

2013a). Compared with other efficient approaches, DEA has the following advantages. First, it can 

be used to avoid the assumptions of measurement functional forms and prior conditions (Molinos-

Senante et al., 2016). Second, it does not require the same measurement units for all variables and 

can clearly identify benchmark technologies (Hu et al., 2017). Third, it can identify the best-practice 

technologies and inefficient DMUs by comparing every individual production technology. However, 

the DEA method can only capture the static carbon emissions performance, whereas combined with 

the Malmquist index, it can be used to measure dynamic carbon emissions performance. Malmquist 

is an index determined by the distance of DMUs from efficiency scores (Caves et al., 1982; 

Malmquist, 1953). This index measures productivity changes over time and can be calculated using 

the DEA model (Mariano et al., 2017). Moreover, the Malmquist index is decomposed into 

efficiency change and technological change, which can identify the factors for performance change. 

Therefore, this paper explores DEA and the Malmquist index to measure carbon emissions 

performance in logistics from both a static and a dynamic perspective. 

Furthermore, carbon emissions, as an undesirable output, can be managed by DEA using three 

approaches (Wu et al., 2018). The first approach treats the undesirable outputs as inputs, based on 

the economic argument that this approach violates the law of mass conservation; the second 

approach introduces an abatement factor reflecting the weak disposability between desirable and 

undesirable outputs, known as Shephard production; and the third approach transforms the data of 

undesirable outputs and then uses the conventional efficiency evaluation mode (Seiford and Zhu, 

2002; Zhou et al., 2013; Zhou et al., 2018). By comparison, the third approach (i.e., data 

transformation approach) can be applied to treat the undesirable outputs in the standard linear DEA 

model (i.e., BC2-DEA). Therefore, this study introduced the data transformation approach into the 

BC2-DEA model to address undesirable outputs.  

In this study, we first estimate the carbon emissions in the logistics industry for sixteen cities 
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within Yunnan Province. Second, we explore the BC2-DEA model and Malmquist index to measure 

the carbon emissions performance in the logistics industry from both a static and dynamic 

perspective. Finally, we capture the driving factors of carbon emissions performance in logistics. 

Relative to existing research, this study makes major contributions in the following two areas: (1) it 

attempts to investigate carbon emissions performance in logistics at the city level, and (2) it 

examines sixteen cities in Yunnan Province as a case study to measure their carbon emissions 

performance in the logistics industry. 

The remainder of the paper is organized as follows. Section 2 presents the methodology, which 

consists of carbon emissions estimation, environmental DEA technology, the Malmquist Index and 

the Tobit regression model. Section 3 describes the data used in the empirical study. In Section 4, 

the carbon emissions performance in logistics and related contributing factors for sixteen cities in 

Yunnan Province are examined from 2011 to 2015. Finally, Section 5 presents the conclusions and 

policy implications. 

 

2. Methodology 

To measure carbon emissions performance in the logistics industry, it is important to calculate the 

logistics carbon emissions. At present, the carbon emissions monitoring data for China’s logistics 

industry is insufficient, and there are no carbon emissions data for the logistics industry in Yunnan 

Province. Therefore, we calculate the logistics industry’s carbon emissions for sixteen cities within 

Yunnan Province in Subsection 2.1. Moreover, we measure the logistics industry’s carbon emissions 

performance for these sixteen cities based on the BC2-DEA model and Malmquist index from both 

a static and dynamic perspective, which are introduced and described in Subsections 2.2 and 2.3. 

Finally, we introduce a Tobit regression model to conduct regression analysis in Subsection 2.4. 
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Fig. 1. The framework of carbon emissions performance analysis in logistics. 

 

2.1. Carbon emissions estimation 

According to the method provided by IPCC (2006), we calculate the carbon emissions from each 

energy consumption and then sum these values according to the following equation: 

2 2

1 1

(44 /12),
n n

i i i i i

i i

CO CO E NCV CEF COF
= =

= =                    (1) 

where 𝐶𝑂2  is the estimated value, E signifies the consumption of energy, NCV represents the 

average low calorific value, CEF is the carbon emission coefficient, COF denotes the carbon 

oxidation factor, and 44 and 12 represent the molecular weight of carbon dioxide and carbon, 

respectively. The value of the carbon oxidation factor (COF) is 1 in IPCC (2006). Considering the 

energy consumption structure of the logistics industry, we use the following energy types to estimate 

the logistics industry’s carbon emissions (Zhou et al., 2013).  
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Table 1 The average low calorific value and carbon emission coefficient for five different energy types. 

Energy type Raw coal Gasoline Kerosene Diesel oil Natural gas 

Average low calorific value 

(kJ/kg) 

20908 43070 43070 42652 38931 

Carbon emission coefficient 

(kg C/GJ) 

25.8 18.9 19.6 20.2 15.3 

Source：Yunnan Energy Statistical Yearbook “2014-2015” and IPCC (2006).  

 

In our model, carbon emissions are an undesirable output that must be reduced. However, in a 

traditional DEA model, a higher output is expected. Therefore, we use a data transformation 

approach to manage the undesirable outputs (Seiford and Zhu, 2002). Technically, assuming there 

are 𝑗 = 1,2, ⋯ ,16 cities, for each city 𝑗, the logistics carbon emissions for a specific year k is 𝐶𝑘𝑗, 

and the maximal logistics carbon emissions among all cities in a year is 𝑚𝑎𝑥(𝐶𝑘). Note that 𝜂 =

𝑚𝑎𝑥(𝐶𝑘) + 1; thus, the transformed desirable output is 𝐶𝑘𝑗
∗ = 𝜂 − 𝐶𝑘𝑗, where 𝐶𝑘𝑗

∗ ≥ 1. Through the 

data transformation approach, the undesirable output that must be reduced was transformed to a 

desirable output that is expected to increase. 

 

2.2. Environmental DEA technology 

When using DEA to measure logistics carbon emissions performance with undesirable outputs, we 

first must introduce environmental production technology. Assume that each decision-making unit 

(DMU), i.e., the sixteen cities in Yunnan Province, employs capital stock (K), labour force (L) and 

energy consumption (E) as inputs to produce added value (Y) and carbon emissions (C) as the single 

desirable output and undesirable output, respectively. The environmental production technology T 

can be described as: 

 ( , , ) ( , ) : ( , , , , ) ,f K L E Y C K L E Y C T=                         (2) 

where T denotes the environmental production technology, focusing on a specific input-output 

process, and f (K, L, E) is a production set that represents all possible outputs (Fare and Grosskopf, 

2003). 
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In production economic theory, T is typically assumed to be a closed and bounded set in which 

finite inputs can only generate finite outputs. In addition, the inputs (K, L, E) and the desirable 

outputs (Y) are often supposed to be strongly or freely disposable. This implies that the desirable 

output can be freely reduced using the same amount of inputs or the inputs can be freely increased 

using the same amount of outputs. Moreover, two additional assumptions, i.e., weak disposability 

and null-jointness, must be imposed to make the production technology more reasonable (Fare et 

al., 1989). Technically, the two assumptions can be formulated as: 

(a)  ( , , , , )  and 0 1,  then ( , , , , )if K L E Y C T K L E Y C T       

(b)  ( , , , , )  and 0, then 0if K L E Y C T C Y = =  

The weak disposability assumption (a) implies that the reduction of undesirable output will 

cause the same proportion of reduction on desirable output. The null-jointness assumption (b) 

implies that it is inevitable to generate undesirable output in the production process and the only 

way to remove all undesirable output is to discontinue production activities.  

To achieve a better understanding of environmental production technology and apply it to 

specific empirical studies, researchers have attempted to characterize the environmental production 

technology within the DEA framework (Lin and Fei, 2015; Zhou et al., 2014). Specifically, using 

DEA enables a strong disposability between inputs and desirable outputs to be clearly expressed by 

constrained inequalities, and a weak disposability and null-jointness between inputs and undesirable 

outputs can be represented by the relationship equation. Thus, DEA has gained considerable 

popularity in environmental production technology and researchers have termed it an environmental 

DEA technology (Cheng and Shi, 2018; Wu et al., 2012). 

As for the DEA model, this paper uses BC2-DEA based on the research of Banker et al. (1984). 

Suppose there are 𝑗 = 1,2, ⋯ ,16 cities, and for each city 𝑗 the vector of inputs and desirable and 

undesirable outputs of the logistics industry are (𝐾𝑗 , 𝐿𝑗 , 𝐸𝑗 , 𝑌𝑗 , 𝐶𝑗) . The environmental DEA 

technology exhibiting variant returns of scale based on input-orientation can be described as follows: 

min                                           (3) 

 
1

. .  
n

j j

j

s t K S K −

=

+                              (3a) 

1

n

j j

j

L S L −

=

+                                 (3b) 
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1

n

j j

j

E S E −

=

+                                (3c) 

1

n

j j

j

Y S Y +

=

−                                 (3d) 

     
1

n

j j

j

C C
=

=                                   (3e) 

 +0,  0,  S 0,  1,2, 16j S j −   = .               

In this model, 𝜃 is the DMU efficiency, and 𝑆− and 𝑆+ are slack variables. 𝜆𝑗 refers to the 

intensity levels at which the DMUs conduct production activities, and it provides the weights for 

constructing the environmental DEA technology. The model attempts to reduce the input to the 

greatest extent, whereas the resulting input must be less than or equal to the current level (Eqs. (3a), 

(3b) and (3c)); the resulting desirable output must be at least the same as the current level (Eq. (3d)); 

and the resulting undesirable output remains the same (Eq. (3e)).  

This paper uses the BC2-DEA model to measure the static carbon emissions performance in 

the logistics industry, represented by the static carbon emissions performance index (SCPI). The 

SCPI describes the ratio of potential carbon emissions to actual carbon emissions. Specifically, a 

larger SCPI indicates better logistics carbon emissions performance, and when SCPI = 1, the city 

arrived at the current technological frontier. The SCPI can be decomposed into pure technical 

efficiency (PTE) and scale efficiency (SE). Mathematically, SCPI = PTE × SE. 

 

2.3. Malmquist index 

The Malmquist index, which was inspired by Malmquist (1953) and developed by Caves et al. 

(1982), is an index number determined by the distances of DMUs from the efficiency scores. Fare 

et al. (1994) extend the Malmquist index by decomposing productivity growth into changes in 

efficiency and changes in technology with nonparametric programming methods. Since then, the 

Malmquist index has been widely applied in different areas. For environmental studies, Zhou et al. 

(2010) proposed a Malmquist carbon emissions performance index to measure the total carbon 

emissions performance of the world’s 18 top CO2 emitters within environmental DEA technology. 



10 

 

Empirical studies of such issues using the Malmquist index can be found in Zhang et al. (2015), 

Emrouznejad and Yang (2016), Mariano et al. (2017), Houshyar et al. (2017) and Wang and Li 

(2018). 

Following the spirit of the Malmquist index, we propose a DCPI for evaluating the change in 

logistics carbon emissions performance over the period 2011−2015. In this paper, we measure the 

logistics carbon emissions performance of each city in Yunnan Province and employ capital stock 

(K), labour force (L) and energy consumption (E) as inputs to produce logistics value added (Y) and 

carbon dioxide emissions (C) as the outputs. In accordance with the Malmquist index developed by 

Fare et al. (1994), we define the dynamic carbon emissions performance index (DCPI) as follows: 

1

1 1 1 1 1 1 1 1 1 1 1 2
, 1

1

( , , , , ) ( , , , , )
.

( , , , , ) ( , , , , )

t t t t t t t t t t t t

j jt t

j t t t t t t t t t t t t

j j

D K L E Y C D K L E Y C
DCPI

D K L E Y C D K L E Y C

+ + + + + + + + + + +

+

+

 
=  
  

        (4) 

In Eq. (4), t indicates the time periods and j represents each city. This equation measures the 

dynamic changes of performance from the t period to the t+1 period. If the value of the DCPI is 

greater than 1, that indicates improvements in performance from year t to year t+1; if the value is 

less than 1, that denotes regression or deterioration in the relevant performance ; if the value is equal 

to 1, that indicates that the performance remained constant during the period and maintained its 

original level. Similar to the Malmquist index, the DCPI can be decomposed into two components: 

changes in efficiency (ECH) and changes in technology (TCH). 

1 1 1 1 1 1

, 1
( , , , , )

,
( , , , , )

t t t t t t

jt t
j t t t t t t

j

D K L E Y C
ECH

D K L E Y C

+ + + + + +

+ =                     (5) 

1

1 1 1 1 1 2
, 1

+1 1 +1 +1 +1 +1 +1

( , , , , ) ( , , , , )
,

( , , , , ) ( , , , , )

t t t t t t t t t t t t

j jt t

j t t t t t t t t t t t t

j j

D K L E Y C D K L E Y C
TCH

D K L E Y C D K L E Y C

+ + + + +

+

+

 
=  
  

         (6) 

where the ratio outside the brackets measures the efficiency change between years t and t+1, i.e., 

the change in how far observed production is from maximum potential production. The geometric 

mean of the two ratios inside the brackets captures the technology change between the two periods 

evaluated at 𝑥𝑡 and 𝑥𝑡+1 , i.e., the movement of the production frontier under the influence of 

technological progress. 
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2.4. Tobit regression model  

The Tobit regression model, which was proposed by Tobin (1958), indicates the association between 

a non-negative dependent variable (latent variable) and independent variable (s) when the data are 

censored or truncated (Saglam, 2018). The values of SCPI are between 0 and 1, and the values of 

DCPI are greater than 0. There is a minimum value limit of 0, which is the truncated data. If the 

performance value is regarded as a dependent variable, a general ordinary least square (OLS) 

estimation method leads to biased and inconsistent estimating results (Wang et al., 2017). Therefore, 

the Tobit model has been widely used for analysing driving factors of energy and environmental 

performance (Feng et al., 2017). In this study, we use the Tobit regression model to analyse the 

driving factors of carbon emissions performance in logistics. The model is as follows (Tobin,1958): 

* *

*

       0

0                         0

Y X Y
Y

Y

  = + 
= 


 ，                         (7) 

where 𝛽 is a vector of unknown coefficients that depicts the relationship between the vector of 

independent variables (X) and the latent variable (𝑌∗), and 𝜇 is the stochastic error that yields to 

𝑁(0, 𝜎𝜇
2). 

 

3. Data 

The data, spanning from 2011−2015, was primarily based on the Yunnan Statistical Yearbook and 

the Yunnan Energy Statistical Yearbook. In this study, sixteen cities in Yunnan Province are 

examined as a case study to measure carbon emissions performance in logistics. Table 2 shows the 

socio-economic information of these sixteen cities in 2015. The data for population and gross 

regional product (GRP) of each city were taken from Yunnan Statistical Yearbook, and the data for 

area were collected from the government’s official website for each city.  
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Table 2 Socio-economic information for sixteen cities in 2015. 

City Population (Million) Area (km2) GRP (Million yuan) 

Kunming 6.67 21,473 396,801 

Qujing 6.04 28,900 163,026 

Yuxi 2.36 15,000 124,452 

Baoshan 2.58 19,630 55,196 

Zhaotong 5.43 23,021 70,838 

Lijiang 1.28 20,600 28,961 

Puer 2.60 45,000 51,401 

Lincang 2.50 24,000 50,212 

Chuxiong 2.73 28,438 76,297 

Honghe 4.65 32,931 122,108 

Wenshan 3.60 31,456 67,004 

Xishuangbanna 1.16 19,124 33,591 

Dali 3.54 29,459 90,010 

Dehong 1.27 11,500 29,232 

Nujiang 0.54 14,703 11,315 

Diqing 0.40 23,870 16,114 

 

We now employ models described in Section 2 to examine the logistics carbon emissions 

performance and its driving factors for sixteen cities within Yunnan Province. Specifically, we use 

the investment in fixed assets, number of employees and energy consumption data within the 

logistics industry to represent the capital stock (K), labour force (L) and energy (E), respectively. 

Regarding output, we use gross product in the logistics to indicate desirable output (Y) and choose 

carbon emissions in the logistics as undesirable output (C) (Feng et al., 2017; Zhang et al., 2015). It 

should be noted that the data quality and statistical specifications in China’s logistics industry are 

different from international standards, for instance, data on the transport and postal service are 

collected together (Li and Tang, 2017). Moreover, data directly related to the logistics industry in 

China’s Statistical Yearbooks, especially at the city level, is limited. Since transport and 
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warehousing are relatively core activities and are important sources of emission savings in logistics, 

we use the data for transport, storage, and postal industries recorded in China’s Statistical Yearbooks 

to represent the logistics industry in this paper (Zhou et al., 2013). 

To analyse the driving factors of logistics carbon emissions performance, we consider several 

factors. First, economic development is analysed because the relationship between economic growth 

and carbon emissions has been widely recognised (Zhang and Choi, 2013b). Second, energy 

intensity, which measures an economy’s energy efficiency, is calculated as units of energy per unit 

of GDP. Third, since the movement of the rural population to the cities can accelerate the growth in 

the usage of energy and transport (Wang and Ma, 2018), urbanization is considered a driving factor. 

Fourth, endowment structure is used, as it can reflect the relationship between capital, labour and 

energy. Endowment structure can be defined as the ratio of capital to labour. If the value is low, it 

indicates that the regional logistics type tends to be labour-intensive; otherwise, it tends to be capital-

intensive (Cheng and Shi, 2018). Finally, technology is considered because technological progress 

promotes industrial productivity and may affect logistics carbon emissions performance. In this 

paper, we use R&D expenditure to represent technological progress. The information on driving 

factors is presented in Table 3. 

Table 3 Definitions and data source for the five driving factors.  

Driving factor Definition Data source 

Economic development GDP per capita of each city Yunnan Statistical Yearbook (2012-2016) 

Energy intensity Logistics energy consumption divided 

by logistics gross product 

Yunnan Energy Statistical Yearbook 

(2014-2015) 

Urbanization level Urban inhabitants divided by total 

population 

Yunnan Statistical Yearbook (2012-2016) 

Endowment structure Value of investment in fixed assets 

divided by the number of employees 

Yunnan Statistical Yearbook (2012-2016)  

Technological progress R&D expenditure of each city Yunnan Statistical Yearbook (2012-2016) 

 



14 

 

4. Results and discussions 

4.1. Carbon emissions in logistics 

The results in Table 4 show that the logistics carbon emissions for the sixteen cities in Yunnan 

Province have increased throughout the research period. In 2011, carbon emissions were greater 

than 100 (104 tons) for only 30% of the cities (Kunming, Qujing, Yuxi, Honghe and Dali) in the 

logistics industry. However, in 2015, the rate had increased to 50% (Kunming, Qujing, Yuxi, 

Zhaotong, Chuxiong, Honghe, Wenshan and Dali). Furthermore, Kunming has the highest level of 

carbon emissions in the logistics industry, with 457.52 (104 tons) in 2011 and 522.16 (104 tons) in 

2015, whereas Nujiang has the lowest levels of carbon emissions, with 14.34 (104 tons) in 2011 and 

20.74 (104 tons) in 2015. As shown in Fig. 2, a large proportion of carbon emissions in the logistics 

industry is produced within developed cities. For example, an intensive logistics-related carbon 

emissions area is located in eastern and central Yunnan Province, containing Kunming, Qujing, Yuxi 

and Honghe, whose GRP all exceeded 100,000 million yuan, as shown in table 2. However, 

logistics-related carbon emissions are lower in western Yunnan Province, such as in Nujiang and 

Diqing, located in remote and less economically developed areas with GRP 11,315 and 16,114 

million yuan, respectively.  
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Table 4 Logistics carbon emissions (104 tons) of 16 cities within Yunnan Province during 2011–2015. 

City 2011 2012 2013 2014 2015 

Kunming 457.52 501.16 469.88 480.50 522.16 

Qujing 305.71 347.39 336.78 334.86 375.12 

Yuxi 220.32 238.80 219.55 222.01 241.31 

Baoshan 62.59 70.06 67.32 72.96 80.70 

Zhaotong 92.68 103.56 98.68 99.11 108.93 

Lijiang 39.90 45.04 43.44 42.39 47.89 

Puer 53.69 60.54 58.15 61.58 68.61 

Lincang 36.69 42.19 40.75 44.64 50.70 

Chuxiong 89.81 97.92 91.21 94.20 102.06 

Honghe 216.68 237.00 221.99 234.01 256.03 

Wenshan 79.40 88.43 84.69 91.32 102.06 

Xishuangbanna 27.05 30.27 29.42 32.43 36.36 

Dali 117.47 130.16 122.78 127.13 139.12 

Dehong 38.95 42.19 42.82 42.59 50.92 

Nujiang 14.34 15.52 17.18 18.36 20.74 

Diqing 17.80 20.17 19.31 21.02 23.62 
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Fig. 2. Logistics carbon emissions of 16 cities within Yunnan Province in 2015. 

 

4.2. Static carbon emissions performance in logistics  

Table 5 shows the empirical results of the static carbon emissions performance index (SCPI) 

in the logistics industry from 2011 to 2015. According to the calculated results from sixteen cities, 

we find that Nujiang and Diqing have always been benchmarks for the technological frontier during 

the whole period, having achieved the best carbon emissions performance in logistics. Nujiang and 

Diqing are located in northwestern Yunnan Province, where the ecological environment is excellent, 

and the population is sparse (0.54 and 0.40 million people, respectively). The smaller economies 

and minimal amount of logistics-related carbon emissions might have resulted in better 

performances for these two cities. However, Honghe, which is an important chemical base in 

Yunnan Province, had the lowest SCPI (its average SCPI is 0.42) from 2011 to 2015. As an essential 

part of the chemical industry, logistics in Honghe contributed to higher energy consumption. Thus, 
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energy consumption and pollution-intensive development might have caused a lower SCPI in 

Honghe. This factor also indicates that there is considerable potential for Honghe to improve its 

carbon emissions performance in logistics. Other cities, such as Yuxi, Xishuangbanna, Dali and 

Dehong, have good performance levels, i.e., the SCPI of these cities reach the technological frontier 

most of the time. 

Table 5 Static logistics carbon emissions performance index (SCPI) for sixteen cities. 

City 2011 2012 2013 2014 2015 

Kunming 0.467 0.550 0.563 0.649 0.778 

Qujing 1.000 1.000 0.762 0.835 0.854 

Yuxi 1.000 1.000 1.000 0.751 0.816 

Baoshan 0.799 1.000 1.000 0.733 0.836 

Zhaotong 0.583 0.644 0.682 0.602 0.734 

Lijiang 0.585 0.708 0.568 1.000 1.000 

Puer 0.574 0.597 0.584 0.661 0.731 

Lincang 0.575 0.565 0.559 0.577 0.649 

Chuxiong 0.731 0.901 0.828 0.814 0.985 

Honghe 0.287 0.327 0.383 0.559 0.558 

Wenshan 0.610 0.763 0.797 0.467 0.433 

Xishuangbanna 1.000 1.000 1.000 1.000 0.800 

Dali 0.804 1.000 0.939 1.000 1.000 

Dehong 0.675 0.815 1.000 1.000 1.000 

Nujiang 1.000 1.000 1.000 1.000 1.000 

Diqing 1.000 1.000 1.000 1.000 1.000 

 

Recall that the SCPI can be decomposed into pure technical efficiency (PTE) and scale efficiency 

(SE). We now turn to a brief description of the PTE and SE of sixteen cities. As shown in Fig. 3, the 

difference among sixteen cities in SCPI is mainly due to the difference in PTE; Honghe had the 

lowest PTE, with a value of 0.362 in 2012. Moreover, both the PTE and SE of Nujiang and Diqing 

consistently achieved 100% performance and attained the technological frontier. Although Kunming 
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had the lowest SE values, Kunming’s SE has demonstrably increased slightly and is approaching 

the technological frontier. 

 

Fig. 3. The decomposition of SCPI for sixteen cities. 

 

4.3. Dynamic carbon emissions performance in logistics 

Table 6 illustrates the dynamic carbon emissions performance index (DCPI) for sixteen cities within 

Yunnan Province for the period 2011 to 2015. On average, the DCPI is 0.941, indicating the dynamic 

logistics carbon emissions performance of all these cities decreased by approximately 5.9% from 

2011 to 2015. This result implies that, on average, the ratio of target carbon intensity to actual carbon 

intensity has decreased by 5.9% per year over the research period. Longitudinally, only 2011-2012 

shows improvement in performance, with a value of 1.113, whereas the other periods reflect 

regression. 

Turning to the city-by-city results, the DCPI of six cities (Kunming, Lijiang, Chuxiong, Honghe, 

Dali and Dehong) improved, and of these, Kunming has the highest DCPI value (1.054). However, 

the DCPI of other cities has decreased, especially in Yuxi, which has the lowest DCPI value (0.756). 

Yuxi clearly had the lowest DCPI value in 2013−2014 (0.243). According to Yunnan Statistical 

Yearbook, the lowest DCPI value can be explained by the sharp decrease of gross product in Yuxi’s 
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logistics, falling from 35.79 million yuan in 2013 to 18.96 million yuan in 2014, while its investment 

in fixed assets and carbon emissions in logistics continued to grow. Declining productivity and 

growing inputs caused the deterioration in Yuxi’s logistics carbon emissions performance during the 

research period.  

Table 6 Dynamic logistics carbon emissions performance index (DCPI) for sixteen cities.  

City 2011−2012 2012−2013 2013−2014 2014−2015 Mean 

Kunming 1.148 1.060 1.006 1.007 1.054 

Qujing 1.161 0.596 0.692 0.916 0.814 

Yuxi 1.231 1.118 0.243 0.976 0.756 

Baoshan 1.295 0.982 0.656 0.990 0.953 

Zhaotong 1.134 1.006 0.744 1.059 0.974 

Lijiang 1.061 0.709 1.575 0.900 1.016 

Puer 1.013 1.017 1.050 0.889 0.990 

Lincang 0.940 1.015 1.018 0.920 0.972 

Chuxiong 1.276 0.905 0.882 1.088 1.026 

Honghe 1.083 0.987 1.060 0.905 1.006 

Wenshan 1.298 0.936 0.507 0.805 0.839 

Xishuangbanna 0.840 0.970 0.949 0.631 0.836 

Dali 1.744 0.803 0.885 0.970 1.047 

Dehong 1.051 0.960 0.965 1.117 1.021 

Nujiang 0.929 0.810 0.892 0.996 0.904 

Diqing 0.888 0.794 1.061 0.922 0.912 

Mean 1.113 0.906 0.830 0.936 0.941 

 

To investigate the source of logistics-related carbon emissions performance change, the DCPI 

can be decomposed into efficiency change (ECH) and technology change (TCH) components. Fig. 

4 gives information about the average ECH and TCH values for each city from 2011−2015. Most 

cities experienced an increase in ECH, i.e., the values of ECH are greater than 1. Honghe’s ECH is 

the highest (1.181) in the sample, which indicates that the logistics in Honghe have moved towards 
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the contemporaneous technology frontier over the study period and reflects catch-up efficiency in 

carbon emissions performance. Regarding TCH, all sixteen cities exhibited a state of technological 

decline. As shown in Fig. 4, the TCH values of all sixteen cities are lower than 1, which suggests a 

lack of technological innovation in low-carbon technology within the logistics industry during the 

research period. 

 

 

Fig. 4. The decomposition of DCPI (2011−2015) for sixteen cities. 

 

4.4. Regression analysis 

The main purpose of this section is testing the driving factors of carbon emissions performance 

in logistics. As the results in Table 7 show, the coefficients of five driving factors and their 

significance vary. The positive correlation coefficient between SCPI and economic development is 

0.149, indicating that a 1% increase in economic growth would lead to a 0.149% increase in SCPI. 

However, the relationship between DCPI and economic development is not significant. Regarding 

energy intensity, the regression results show that the variable is negatively related to SCPI and DCPI, 

with a significance of 1% and 10%, respectively, implying that the energy consumption per unit of 

logistics added value is higher and that the SCPI and DCPI values are lower because logistics growth 

is accompanied by more energy consumption and leads to more carbon emissions. Urbanization 

level is shown to be significantly negatively correlated to SCPI, implying that a higher urbanization 
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level results in a lower SCPI. It is generally true that the rapid development of urbanization and 

population have led to increased demand for energy and materials, resulting in substantial carbon 

emissions in industry, including logistics. The endowment structure coefficient is significantly 

negatively related to SCPI and DCPI, with both being significant at the 1% level, indicating that if 

the endowment structure is higher, i.e., the logistics type is capital-intensive with more carbon 

emissions, the SCPI and the DCPI are lower. The technological progress shows a negatively related 

coefficient to SCPI, which suggests that the environmental technology has not been effective in 

improving the logistics carbon emissions performance.  

Table 7 Tobit regression analysis. 

 SCPI DCPI 

Economic development 0.149*** 

(0.000) 

0.043 

(0.270) 

Energy intensity -0.051*** 

(0.000) 

-0.030* 

(0.110) 

Urbanization level  -0.706** 

(0.069) 

-0.397 

(0.495) 

Endowment structure  -0.001*** 

(0.006) 

-0.001*** 

(0.019) 

Technological progress -0.019*** 

(0.000) 

-0.001 

(0.908) 

Constant 1.005*** 

(0.000) 

1.173*** 

(0.000) 

Note: * Denotes statistical significance at the 10% level; ** denotes statistical significance at the 5% level; and *** 

denotes statistical significance at the 1% level. 

 

5. Conclusions 

This study analyses carbon emissions performance in the logistics industry from both a static and a 

dynamic perspective by examining sixteen cities within Yunnan Province; then uses the Tobit model 

to capture the driving factors of the sector’s carbon emissions performance. This study provides two 

main contributions: (1) it attempts to investigate carbon emissions performance in logistics at the 

city level, and (2) it examines sixteen cities in Yunnan Province as a case study to measure their 

carbon emissions performance in the logistics industry.  

The empirical study reveals that the logistics-related carbon emissions of sixteen cities have 
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increased from 2011 to 2015; Kunming had the highest carbon emissions levels in logistics, with 

457.52 (104 tons) in 2011 and 522.16 (104 tons) in 2015. Regarding logistic carbon emissions 

performance, although the SCPI in some cities is not strong, such as in Kunming and Honghe, their 

DCPI has significantly improved, mainly driven by efficiency change (the catch-up effect). The 

SCPI of Nujiang and Diqing attained the technological frontier throughout the period under 

examination, whereas their DCPI values decreased due to the low value of efficiency change (ECH) 

and technology change (TCH). The average DCPI in all cities decreased by approximately 5.9% 

due to a decline in TCH. In terms of driving factors, the economic development factor is found to 

be positively and significantly related to static carbon emissions performance, whereas others 

indicate negative and significant relationships. Energy intensity and endowment structure were the 

main impact factors on DCPI and showed negative relationships. 

Based on the above conclusions, some policy recommendations are provided for achieving a 

low-carbon economy in the logistics industry. First, the factors related to economic development 

greatly increased carbon emissions performance; thus, more attention should be focused on low-

carbon development in logistics by implementing relevant regulations, for example, by 

incorporating “green logistics” in government plans. Second, since energy intensity, endowment 

structure and urbanization level negatively impact logistics carbon emissions performance, a shift 

in the fuel consumption model should be stressed in the logistics sector, and the consciousness of 

low-carbon processes should be addressed to actively guide residents towards low-carbon 

commuting. Third, logistics-related technological innovations should be further promoted, not only 

in logistics equipment manufacturing but also in logistics planning and management, such as 

reducing freight transport intensity, increasing vehicle utilization and decarbonising warehousing 

operations. Fourth, the statistical data in logistics, especially at the city level, need to be improved 

and updated, as well-functioning logistics databases can be of great assistance for further empirical 

research.  

This paper also has several limitations. The empirical study is based on data from 2011 to 2015, 

due to limited energy data for the sixteen cities studied. As a result, the driving factors with DCPI 

are not sufficiently significant. Thus, future research should consider a longer period of study. 

Furthermore, the empirical study focuses on the logistics industry, and more specific logistics factors 
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need to be considered in future studies. 

 

Acknowledgements 

This work is supported by the National Natural Science Foundation of China (NSFC No.71862035). 

 

References 

Banker, R.D., Charnes, A., Cooper, W.W., 1984. Some models for estimating technical and scale 

inefficiencies in Data Envelopment Analysis. Manage. Sci. 30(9), 1078–1092. 

Behnke, M., Kirschstein, T., 2017. The impact of path selection on GHG emissions in city logistics. 

Transport. Res. E-Log. 106, 320−336. 

Cai, B., Guo, H., Cao, L., Guan, D., Bai, H., 2018. Local strategies for China’s carbon mitigation: An 

investigation of Chinese city-level CO2 emissions. J. Clean. Prod. 178, 890−902. 

Caves, D.W., Christensen, L.R., Diewert, W.E., 1982. The economic theory of index numbers and the 

measurement of input, output, and productivity. Econometrica 50(6), 1393–1414. 

Cheng, Z., Shi, X., 2018. Can industrial structural adjustment improve the total-factor carbon emission 

performance in China? Int. J. Environ. Res. Public Health 15(10), 2291. 

Dong, K., Sun, R., Li, H., Jiang, H., 2017. A review of China’s energy consumption structure and outlook 

based on a long-range energy alternatives modeling tool. Petrol. Sci. 14(1), 214–227. 

Emrouznejad, A., Yang, G., 2016. CO2 emissions reduction of Chinese light manufacturing industries: 

A novel RAM-based global Malmquist-Luenberger productivity index. Energy Policy 96, 

397−410. 

Fare, R., Grosskopf, S., Lovell, C.A.K., Pasurka, C., 1989. Multilateral productivity comparisons when 

some outputs are undesirable: a nonparametric approach. Rev. Econ. Stat. 71(1), 90–98. 

Fare, R., Grosskopf, S., 2003. New directions: efficiency and productivity. Stud. Product. Effi. 17, 979–

995. 

Fare, R., Grosskopf, S., Norris, M., Zhang, Z., 1994. Productivity growth, technical progress, and 

efficiency change in industrialized countries. Am. Econ. Rev. 84(1), 66−83. 



24 

 

Fei, R., Lin, B., 2016. The integrated efficiency of inputs-outputs and energy-CO2 emissions performance 

of China’s agricultural sector. Renew. Sust. Energ. Rev. 75, 668–676. 

Feng, C., Wang, M., Liu, G., Huang, J., 2017. Green development performance and its influencing 

factors: A global perspective. J. Clean. Prod. 144, 323−333. 

Houshyar, E., Mahmoodi-Eshkaftaki, M., Azadi, H., 2017. Impacts of technological change on energy 

use efficiency and GHG mitigation of pomegranate: Application of dynamic data envelopment 

analysis models. J. Clean. Prod. 162, 1180−1191. 

Hu, X., Liu, C., Si, T., 2017. Total factor carbon emission performance measurement and development. 

J. Clean. Prod. 142, 2804–2815. 

Li, J., Huang, X., Kwan, M.P., Yang, H., Chuai, X., 2018. The effect of urbanization on carbon dioxide 

emissions efficiency in the Yangtze River Delta, China. J. Clean. Prod. 188, 38−48. 

Li, X., Tang, B., 2017. Incorporating the transport sector into carbon emission trading scheme: an 

overview and outlook. Nat. Hazards 88(2), 683−698. 

Lin, B., Du, K., 2015. Modeling the dynamics of carbon emission performance in China: A parametric 

Malmquist index approach. Energy Econ. 49, 550–557. 

Lin, B., Fei, R., 2015. Regional differences of CO2 emissions performance in China’s agricultural sector: 

A Malmquist index approach. Eur. J. Agron. 70, 33–40. 

Malmquist, S., 1953. Index numbers and indifference surfaces. Trab Estad. 4(1), 209–242. 

Mariano, E.B., Gobbo Jr, J.A., De Castro Camioto, F., Do Nascimento Rebelatto, D.A., 2017. CO2 

emissions and logistics performance: a composite index proposal. J. Clean. Prod. 163, 166–178. 

Mckinnon, A., Piecyk, M., 2012. Setting targets for reducing carbon emissions from logistics: current 

practice and guiding principles. Carbon Manag. 3(6), 629−639. 

Mi, Z., Guan, D., Liu, Z., Liu, J., Viguié, V., Fromer, N., Wang, Y., 2019a. Cities: The core of climate 

change mitigation. J. Clean. Prod. 207, 582−589. 

Mi, Z., Meng, J., Guan, D., Shan, Y., Song, M., Wei, Y., Liu, Z., Hubacek, K., 2017. Chinese CO2 

emission flows have reversed since the global financial crisis. Nat.Commun. 8(1), 1712. 

Mi, Z., Zhang, Y., Guan, D., Shan, Y., Liu, Z., Cong, R., Yuan, X., Wei, Y., 2016. Consumption-based 

emission accounting for Chinese cities. Appl. Energ. 184, 1073–1081. 



25 

 

Mi, Z., Zheng, J., Meng, J., Zheng, H., Li, X., Coffman, D.M., Woltjer, J., Wang, S., Guan, D., 2019b. 

Carbon emissions of cities from a consumption-based perspective. Appl. Energ. 235, 509−518. 

Molinos-Senante, M., Sala-Garrido, R., Hernández-Sancho, F., 2016. Development and application of 

the Hicks-Moorsteen productivity index for the total factor productivity assessment of wastewater 

treatment plants. J. Clean. Prod. 112(2), 3116–3123. 

National Bureau Statistics of China, 2018. China Statistical Yearbook. China Statistical Press, Beijing.   

Saglam, U., 2018. A two-stage performance assessment of utility-scale wind farms in Texas using data 

envelopment analysis and Tobit models. J. Clean. Prod. 201, 580–598. 

Seiford, L. M., Zhu, J., 2002. Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 

142(1), 16–20. 

Shan, Y., Guan, D., Zheng, H., Ou, J., Li, Y., Meng, J., Mi, Z., Liu, Z., Zhang, Q., 2018. China CO2 

emission accounts 1997–2015. Sci. data 5, 170201. 

Tian, X., Geng, Y., Zhong, S., Wilson, J., Gao, C., Chen, W., Yu, Z., Hao, H., 2018. A bibliometric 

analysis on trends and characters of carbon emissions from transport sector. Transport. Res. D-

TR. E. 59, 1−10. 

Tobin, J., 1958. Estimation of relationships for limited dependent variables. Econometrica 26(1), 24-36. 

Wang, D., Li, T., 2018. Carbon Emission Performance of Independent Oil and Natural Gas Producers in 

the United States. Sustainability 10(1), 1−18. 

Wang, S., Ma, Y., 2018. Influencing factors and regional discrepancies of the efficiency of carbon 

dioxide emissions in Jiangsu, China. Ecol. Indic. 90, 460−468. 

Wang, J., Shi, Y., Zhang, J., 2017. Energy efficiency and influencing factors analysis on Beijing 

industrial sectors. J. Clean. Prod. 167, 653–664. 

Wang, X., Du, L., 2017. Carbon emission performance of China’s power industry: regional disparity and 

spatial analysis. J. Ind. Ecol. 21(5), 1323–1332. 

Wu, F., Fan, L., Zhou, P., Zhou, D., 2012. Industrial energy efficiency with CO2 emissions in China: A 

nonparametric analysis. Energy Policy 49(1), 164–172. 

Wu, T., Chen, Y., Shang, W., Wu, J., 2018. Measuring energy use and CO2 emission performances for 

APEC economies. J. Clean. Prod. 183, 590–601. 



26 

 

Yan, D., Lei, Y., Li, L., Song, W., 2017. Carbon emission efficiency and spatial clustering analyses in 

China’s thermal power industry: Evidence from the provincial level. J. Clean. Prod. 156, 518–

527. 

Zhang, L., Kou, C., Zheng, J., Li, Y., 2018. Decoupling Analysis of CO2 Emissions in Transportation 

Sector from Economic Growth during 1995–2015 for Six Cities in Hebei, China. Sustainability 

10(11), 4149. 

Zhang, N., Choi, Y., 2013a. A comparative study of dynamic changes in CO2 emission performance of 

fossil fuel power plants in China and Korea. Energy Policy 62(9), 324–332. 

Zhang, N., Choi, Y., 2013b. Total-factor carbon emission performance of fossil fuel power plants in 

China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 40(2), 549–559. 

Zhang, N., Zhou, P., Choi, Y., 2013. Energy efficiency, CO2 emission performance and technology gaps 

in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance 

functionanalysis. Energy Policy 56(2), 653–662. 

Zhang, N., Zhou, P., Kung, C.C., 2015. Total-factor carbon emission performance of the Chinese 

transportation industry: A bootstrapped non-radial Malmquist index analysis. Renew. Sust. Energ. 

Rev. 41, 584–593. 

Zhou, G., Chung, W., Zhang, X., 2013. A study of carbon dioxide emissions performance of China’s 

transport sector. Energy 50(1), 302–314. 

Zhou, G., Chung, W., Zhang, Y., 2014. Measuring energy efficiency performance of China’s transport 

sector: A data envelopment analysis approach. Expert Syst. Appl. 41(2), 709–722. 

Zhou, P., Ang, B., Han, J., 2010. Total factor carbon emission performance: a Malmquist index analysis. 

Energ. Econ. 32(1), 194−201. 

Zhou, P., Wang, H., 2012. Energy and CO2 emission performance in electricity generation: A non-radial 

directional distance function approach. Eur. J. Oper. Res. 221(3), 625–635. 

Zhou, Z., Liu, C., Zeng, X., Jiang, Y., Liu, W., 2018. Carbon emission performance evaluation and 

allocation in Chinese cities. J. Clean. Prod. 172, 1254–1272. 


