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Abstract

This paper focuses on frequency division duplex (FDD) massive multiple-input multiple-output

(MIMO) systems and proposes a transceiver design that fully exploits the downlink spatial multiplexing

gain with only a small amount of overhead. The bottleneck lies in the acquisition of downlink channel

state information (CSI), which occurs when large scale antenna array is employed in FDD transmission

systems. Fortunately, the spatial reciprocity between uplink and downlink inspires us to reconstruct

the downlink channel based on the frequency-independent parameters (downtilts, azimuths and delays)

that can be derived in the uplink. We first extract these parameters through an enhanced Newtonized

orthogonal matching pursuit (e-NOMP) algorithm which is proposed in this paper to fit the massive

MIMO orthogonal frequency division multiplexing (OFDM) system. After formulating the requirement

to achieve an acceptable estimation error rate, we propose a low-cost downlink training scheme to

estimate the downlink gains of each user channel. This scheme saves the training time resource by

introducing a predefined spatial angle grid which corresponds to a beam set and by minimizing the

number of selected beams which is equal to the number of OFDM symbols used for downlink training.

Having obtained the reconstructed multiuser channel, the BS can maximize the spatial multiplexing gain

by serving all the users simultaneously without causing severe interference. Numerical results verify the

precision of the e-NOMP algorithm, and demonstrate that sum-rate performance of the reconstruction-

based transceiver design approximates that of using perfect CSI.
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I. INTRODUCTION

Massive multiple input multiple output (MIMO) has been recognized as one of the key enablers

of the fifth generation and future mobile communications networks [1]. Large scale antenna

arrays are equipped at the base stations (BSs) to fully exploit the spatial degrees of freedom,

providing huge room for spatial division multiplexing [2]–[4]. Multiple users can be served

by the BS on a same time-frequency resource block, and the spatial multiplexing dimension

can be further expanded by scaling up the antenna array at the BS. The large array is usually

structured in planar or circular topology, thereby exploits both the horizontal and the vertical

space, contributing to three dimensional (3D) MIMO techniques. A beam formed by the array

can flexibly target at any direction in the 3D space according to practical requirements [5]–[7].

We can also design beam weights to produce a set of spatially orthogonal beams using the large

scale array and transmit multiple data streams on these beams without causing interference [8].

These advantages promise the high sum-rate performance of multiuser massive MIMO systems.

One essential foundation to gain these advantages is the acquisition of channel state informa-

tion (CSI). Due to the lack of uplink-downlink reciprocity in frequency division duplex (FDD)

systems, downlink training and feedback is a typical solution of downlink channel estimation.

In the fourth generation mobile communication era and before, the number of BS antennas

is relatively small and downlink CSI can be easily acquired by sending orthogonal downlink

pilots, applying linear channel estimation at user side and finally feeding the estimates back to the

BS. While in massive MIMO systems, using completely orthogonal downlink pilots and sending

back high dimensional complex channel matrix are not applicable in practical systems. Obtaining

downlink CSI at BS side becomes a bottleneck in FDD massive MIMO system. Researchers have

started to search for new solutions to obtain downlink CSI and design corresponding transmission

schemes.

A. Related work

Some methods follow the traditional approach by transmitting downlink pilots and sending

back the estimates to the BS. For instance, compressed sensing is introduced to estimate the

sparse channel through a small amount of downlink measurements [9], [10], but comprehensive

signal processing is conducted at the user side, raising an exorbitant requirement on the capability

of user equipment. For another instance, time-correlation of the wireless channel can be utilized
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in both downlink training and feedback phases. [11] suggested that user can estimate downlink

CSI based on the currently received downlink pilots as well as the estimated CSI that is obtained

at previous moment. Before feeding back the estimates, [12] and [13] proposed to quantize the

channel based on previous results within the coherence time by using a trellis-extended codebook

and an angle of departure-adaptive subspace codebook, respectively. These methods rely heavily

on the accuracy of the initial estimates.

During recent years, the spatial reciprocity between uplink and downlink has attracted in-

creasing attentions. There has been existing work that suggests to acquire downlink CSI by

using the information obtained from uplink. The existing work generally aims to obtain two

categories of downlink CSI. The first category is partial CSI, such as the spatial information

or the reduced dimensional channel. For example, only the angles of propagation paths are

estimated during the training phase. Or instead, channel sparsity in beamspace is utilized and

spatial angle estimation is translated to searching for the non-zero elements in the beamspace

channel. In this condition, only spatial directions or beam indices are known at BS and user

scheduling is required to avoid spatial overlapping among different users [8], [14]. The second

category is full CSI, which describes the full-dimensional channel and contains the complete

information in the propagation environment. Full CSI is usually obtained by channel estimation

or reconstruction scheme. With full CSI, the BS is able to serve more users simultaneously by

employing linear precoding scheme and eliminate the interference perfectly. The BS also can

conduct a comprehensive user scheduling scheme to maximize the sum-rate performance and to

fully exploit the spatial multiplexing gain.

The majority of latest work focuses on the acquisition of full CSI [15]–[19]. Facing to the

clustering channel that covers a continuous angular region, [16]–[18] suggested to estimate

channel based on the downlink channel covariance matrix which describes the angular domain

energy distribution and can be derived from its uplink version. [18] further selected users by

maximizing the downlink multiplexing gain based on the uplink channel covariance matrices.

When it comes to the limited scattering channel where multiple distinct paths exist, authors of

[19] proposed a unified transmission strategy with the aid of the spatial basis expansion model.

Based on channel sparsity, the reduced-dimensional angular-domain downlink channel from each

user was first estimated and then transformed back to the full-dimensional antenna domain.

With the obtained full CSI, the BS conducted greedy scheduling before downlink multiuser
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transmission to achieve sub-optimal sum-rate performance. All of the above are based on a

beam or angular domain which uniformly over-samples the space. Instead, [20], [21] proposed

to detect the frequency-independent parameters of each path from the uplink and reconstruct

the downlink channel using these parameters as well as limited amount of downlink training

overhead. They also demonstrated the effectiveness of the proposed scheme in over-the-air tests.

However, the schemes introduced in [20], [21] are designed for single-antenna or small-scale

antenna array systems and are not applicable in massive MIMO scenario.

B. Contributions

Based on the spatial reciprocity in FDD systems, this paper proposes an FDD massive MIMO

transceiver design based on an efficient multiuser downlink channel reconstruction scheme when

large scale antenna array is equipped at the BS and orthogonal frequency division multiplexing

(OFDM) is applied. To acquire downlink CSI, an enhanced Newtonized orthogonal matching

pursuit (e-NOMP) algorithm is proposed to extract the frequency-independent parameters during

the uplink sounding phase. Then, an efficient downlink training scheme is proposed to estimate

the downlink gains for multiple users based on the uplink-estimated frequency-independent

parameters. Using the reconstructed channels, the BS can design a multiuser transmission scheme

with strong interference cancellation capability. The major contributions are as follows:

1) An e-NOMP algorithm to extract frequency-independent parameters in a 3D MIMO wide-

band channel. Uniform planar array (UPA) is employed at the BS to exploit both the

horizontal and the vertical planes. In this condition, the frequency-independent parameters

in the wireless channel include the downtilt, azimuth and delay of each propagation path.

We introduce an e-NOMP algorithm that can detect the component paths from their noised

mixture and extract the downtilt, azimuth and delay of each path. A codebook whose

structure fits well with the model of a component path is first generated. Then, the Newton

step is adjusted to refine the downtilt, azimuth and delay simultaneously. By the end of

the e-NOMP algorithm, the BS obtains all the frequency-independent parameters from all

the user channels.

2) An efficient multiuser downlink channel reconstruction scheme. To avoid the one-path-

by-one-path training mode which costs extremely long training time, we first study the

main factor that determines the error rate of the estimated downlink gains and formulate



5

the requirement to achieve an acceptable error rate. Theoretical analysis tells us that the

downlink training beamforming can be flexibly designed if the formulated requirement is

satisfied. Therefore, we first introduce a spatial angle grid and project the estimated spatial

angles on the sampled angles. Each sampled angle corresponds to a downlink training

beam. The spatial angle grid translates the beamformed user-dedicated downlink pilots to

cell-common pilots, and meanwhile the beam selection strategy promises a relatively high

receiving SNR at user side. Then, a beam scheduling scheme is proposed to minimize

the number of selected beams and reduce the downlink training overhead. We remove the

beams with the least contribution first and keep the beams that are needed by most users.

By means of the previously formulated requirement to achieve an acceptable error rate,

extra beams are removed from the selected beam set as long as the requirement still can be

satisfied. This beam scheduling scheme promises the low-cost advantage of the proposed

multiuser downlink channel reconstruction scheme.

3) Design and evaluation of the reconstruction-based transmission scheme. If the number of

users is far less than the number of BS antennas, the BS can serve all the users simul-

taneously because the inter-user interference can be well eliminated using the precisely

reconstructed multiuser channel. We apply zero-forcing (ZF) precoding in the downlink

and evaluate the multiuser sum-rate performance by studying signal-to-interference-noise

ratio (SINR) at a user. We find that the toleration of estimation error will impact the target

signal power and introduce interference, further driving down the SINR. Numerical results

show that the decrease of tolerate error rate contributes to the increase of sum-rate, but

meanwhile calls for much more downlink training overhead. Therefore, we should make a

balance between performance and overhead, and find a proper metric to design our scheme.

The rest of this paper is organized as follows. Section II describes the massive MIMO-OFDM

system working in FDD transmission mode, introduces the uplink and downlink channel models

based on the frequency-independent parameters and briefly overview the proposed downlink

channel reconstruction and multiuser transmission scheme. Section III presents the e-NOMP

algorithm, highlighting the new codebook and the updated Newton step designed for massive

MIMO-OFDM scenario. Section IV gives a detailed description about the theoretical rationale

and the working principle of the proposed low-cost downlink training strategy for the multiuser
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Fig. 1. The BS is equipped with UPA and serves multiple users simultaneously. Buildings, trees and cars are all scatters in
the wireless channel.

system. Section V applies the reconstruction results to the downlink multiuser transmission

scheme and analyzes the sum-rate performance. Section VI presents the numerical results of the

developed NOMP algorithm and the proposed downlink channel reconstruction scheme. Section

VII concludes the paper.

Notations—We denote the matrices and vectors by uppercase and lowercase boldface let-

ters, respectively, while use the superscripts (·)†, (·)H , and (·)T as taking the pseudo-inverse,

conjugate-transpose, and transpose, respectively. We also denote [A]i,: and [A]:,j as the ith row

and the jth column of matrix A, and [A]i,j as the (i, j)th entry of A. R{·} represents taking

the real component of a complex number, while E{·} represents taking the expectation with

respect to the random variables inside the brackets. |·| and ‖·‖ means taking the absolute value

and modulus operations, and b·c and d·e means rounding a decimal number to its nearest lower

and higher integers, respectively.

II. SYSTEM MODEL

A. Channel Model

A single cell of a massive MIMO system is considered to function in FDD transmission mode

and OFDM modulation is applied. We denote the uplink and downlink carrier frequencies as

ful and fdl, respectively, and assume that each of the uplink and downlink frequency bands
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has N sub-carriers with spacing 4f . The BS simultaneously serves K users who are randomly

distributed in the cell. The BS is equipped with a uniform planar array (UPA) and each user

has a single antenna. This UPA contains M = MhMv antenna elements, including Mh elements

in each row and Mv elements in each column. The distance between two horizontal or vertical

elements is d = λ/2, where λ is the carrier wavelength. As shown in Fig. 1, scatters exist in the

space, and the user channel is composed of multiple propagation paths. The wireless signal can

arrive at the user side along the line-of-sight path, or be reflected by these scatters. Different

user channels may share a common scatter and are spatially overlapped with each other.

For user k, when down-converted to the baseband, its uplink multipath channel is expressed

as

hul
k =

Lk∑
l=1

gul
k,la(θk,l, φk,l)⊗ p(τk,l), (1)

where Lk is the number of propagation paths of user k, ⊗ denotes taking Kronecker product,

a(θ, φ) is the is the steering vector of UPA and can be expressed as

a(θ, φ) = av(θ)⊗ ah(θ, φ),

av(θ) =
[
1, ej2π

d
λ

sin θ, . . . , ej2π(Mv−1) d
λ

sin θ
]T
,

ah(θ, φ) =
[
1, ej2π

d
λ

cos θ sinφ, . . . , ej2π(Mh−1) d
λ

cos θ sinφ
]T
,

(2)

where θk,l ∈ [−π/2, π/2) and φk,l ∈ [−π/2, π/2) are the downtilt and the azimuth of the lth

propagation path of user k,

p(τ) =
[
1, ej2π4fτ , . . . , ej2π(N−1)4fτ]T (3)

is the delay vector on the OFDM sub-carriers, and τk,l is the delay of the lth propagation path

of user k.

Based on the frequency-independent feature of the delays and angles, in the downlink, the

baseband channel of user k can be modeled as

hdl
k =

Lk∑
l=1

gdl
k,la

T (θk,l, φk,l)⊗ pT (τk,l)e
j2π(fdl−ful)τk,l , (4)

where gdl
k,l is the downlink complex gain of the lth propagation path in the kth user’s channel.
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B. Channel Reconstruct Based Downlink Multiuser Transmission

The spatial reciprocity reflected through these frequency-independent parameters provides the

possibility of reconstructing downlink channel by utilizing the uplink derived delays and angles.

However, since different carrier frequencies are applied in uplink and downlink, wireless signal

experiences different phase shifts when reflection happens during propagation. Thus, gdl
k,l 6= gul

k,l,

demonstrating that gul
k,l obtained from uplink can not be applied in the downlink channel model,

and we must estimate gdl
k,l specially from downlink. Once the gains, delays and angles are known

by the BS, the downlink channel can be reconstructed at the transmitter side.

Based on this, we design an FDD massive MIMO transceiver via downlink channel reconstruc-

tion. We first extract the delays and angles from uplink, and then estimate the downlink gains

through downlink training. After reconstructing the downlink channels based on the frequency-

independent parameters and the downlink estimated gains fed back from the users, the BS designs

interference-eliminable precoders based on the full CSI and transmits data to all users on a same

time-frequency resource block.

In this paper, the employment of large scale antenna array and the exploitation of vertical

space bring new challenges in the reconstruction of downlink channel. On the one hand, three

types of spatial parameters are frequency-independent and to be detected in this system, including

downtilts, azimuths and delays. On the other hand, we should reconstruct downlink channels for

multiple users with an acceptable amount of overhead to promise that enough time resources

are remained for data transmission. These two key problems will be solved one by one in the

following sections.

III. EXTRACT DELAYS AND ANGLES IN THE UPLINK

In this section, we focus on the first challenge mentioned above and investigate how to obtain

the frequency-independent parameters, including the delays, azimuths and downtilts of each user

channel for this massive MIMO-OFDM system. Frequency-independence of these parameters

inspires us to extract them in the uplink.

A. Uplink Sounding RS Model

During the uplink sounding phase, each user sends sounding RSs to the BS. Sounding RSs

from different users are frequency-separated or time-separated, and the BS knows the time-
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frequency resource positions of the RS from each user. Assume that all-1 type sounding RSs

are applied and the sounding RS from user k occupy the kth OFDM symbol in the uplink slot.

The received sounding RS at BS from user k is expressed as

yul
k =

Lk∑
l=1

gul
k,la(θk,l, φk,l)⊗ p(τk,l) + zul

k , (5)

where zul
k ∈ CMN×1 is the additive noise vector on all subcarriers of OFDM symbol k and on

all antenna elements, and each element of zul
k is i.i.d. with zero mean and unit variance. We aim

to extract {τk,l, θk,l, φk,l}l=1,...,Lk from the noised mixture yul
k .

This frequency estimation problem can be solved by utilizing the NOMP algorithm which

detects frequencies from the noised mixture of multiple sinusoids. However, both the original

NOMP algorithm in [22] and the extended NOMP algorithm proposed in [21] do not cover the

case when three types of frequencies are to be extracted. Hence, in this paper, we further propose

an e-NOMP algorithm to suit the massive MIMO-OFDM system.

B. e-NOMP for Massive MIMO-OFDM System

E-NOMP is an iteration-based algorithm which extracts a new component within each iteration.

To precisely match the practical component, e-NOMP refines the e-OMP results through e-

Newton steps. When the algorithm terminates, the number of extracted components is exactly

the number of practical components if each component is accurately estimated.

By the end of the ith iteration of the e-NOMP algorithm, the ith component path will be

removed from the noised mixture. If the parameters are precisely estimated, the ith component

path will be completely eliminated and the residual of noised mixture will be minimized. The

e-OMP step and the e-Newton step in the ith iteration are designed base on this target. Now we

give a detailed description of the e-OMP step and the e-Newton step in the ith iteration of the

e-NOMP algorithm.

1) e-OMP Step: At the beginning, the residual of noised mixture is expressed as

yul
r,k(i) = yul

k −
i−1∑
l=1

ĝul
k,la(θ̂k,l, φ̂k,l)⊗ p(τ̂k,l), (6)

where ĝul
k,l, θ̂k,l, φ̂k,l and τ̂k,l are the gain, downtilt, azimuth and delay estimated in the lth iteration.

In the e-OMP step, we exhaustively search a pre-defined codebook and find the optimal codeword
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 1 1, 

 1, hM
 

 ,
v hM M   

 1,
vM

 

1
 1 1, 

2
 1 1, 

N

 1, hM
 

 ,
v hM M   

 1,
vM

 

 1, hM
 

 ,
v hM M   

 1,
vM

 

Fig. 2. Codebook used in the e-NOMP algorithm. Each vertical plane represents a lower dimensional sub-codebook that covers
the sampled downtilts and azimuths on a sampled delay.

that best matches yul
r,k(i).

To fit the massive MIMO-OFDM scenario, here, we design the codebook according to the

structure of a component path in (5). A codeword is expressed as

c(θ̄, φ̄, τ̄) = a(θ̄, φ̄)⊗ p(τ̄), (7)

where θ̄ ∈ [−π/2, π/2), φ̄ ∈ [−π/2, π/2) and τ̄ ∈ [0, 1/4f) are the downtilt, azimuth and delay

that c represents. The codebook covers the 3D space and the delay domain that are concerned.

Thus, we sample the angles and delays uniformly as

θ̄ ∈ {θ̄1 = −π
2
, θ̄2 = −π

2
+

π

βθMv

, . . . , θ̄βθMv = −π
2

+
(βθMv − 1)π

βθMv

},

φ̄ ∈ {φ̄1 = −π
2
, φ̄2 = −π

2
+

π

βφMh

, . . . , φ̄βφMh
= −π

2
+

(βφMh − 1)π

βφMh

},

τ̄ ∈ {τ̄1 = 0, τ̄2 =
1

βτN4f
, . . . , τ̄βτN =

βτN − 1

βτN4f
},

(8)

where βθ, βφ and βτ are the over-sampling rates of the downtilt, azimuth and delay, respectively.

As shown in Fig. 2, the black circles are the codewords. Each codeword points to a sampled

spatial direction and covers a sampled delay. The e-OMP step selects the codeword that has the
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maximum projection power from yul
r,k(i), that is,

c(θ̂k,i, φ̂k,i, τ̂k,i) = arg max
(θ̄,φ̄,τ̄)

|cH(θ̄, φ̄, τ̄)yul
r,k(i)|2

‖c(θ̄, φ̄, τ̄)‖2
, (9)

where θ̂k,i, φ̂k,i and τ̂k,i are the coarsely estimated downtilt, azimuth and delay of the ith

component path. Then, the gain of the ith component path is calculated by

ĝul
k,i =

cH(θ̂k,i, φ̂k,i, τ̂k,i)y
ul
r,k(i)

‖c(θ̂k,i, φ̂k,i, τ̂k,i)‖2
. (10)

It can be observed that the total number of codewords equals βθMv×βφMh×βτN . Increasing

the over-sampling rates helps improve the matching between yul
r,k(i) and c(θ̂k,i, φ̂k,i, τ̂k,i). How-

ever, it also multiplies the searching time and severely depresses the efficiency, especially when

Mv, Mh and N are large. Therefore, the over-sampling rates are usually small when we design

codebook for massive MIMO systems.

2) e-Newton Step: Before removing the ith component path from the noised mixture at the

final stage of e-OMP, the e-Newton step is applied to tackle the off-grid effect and adjust the

estimates towards the real values. The goal of minimizing the residual of noised mixture can be

translated to maximizing

S(gul, θ, φ, τ) = 2<
{
yulH

r (i)gulc(θ, φ, τ)
}
− |gul|2‖c(θ, φ, τ)‖2. (11)

The e-Newton step is designed to refine the downtilt, azimuth and delay simultaneously by
θ̂′k,i

φ̂′k,i

τ̂ ′k,i

 =


θ̂k,i

φ̂k,i

τ̂k,i

− S̈
(
ĝul
k,l, θ̂k,i, φ̂k,i, τ̂k,i

)−1

Ṡ
(
ĝul
k,l, θ̂k,i, φ̂k,i, τ̂k,i

)
, (12)

where

Ṡ
(
gul, θ, φ, τ

)
=


∂S
∂θ

∂S
∂φ

∂S
∂τ

 , S̈ (gul, θ, φ, τ
)

=


∂2S
∂θ2

∂2S
∂θ∂φ

∂2S
∂θ∂τ

∂2S
∂φ∂θ

∂2S
∂φ2

∂2S
∂φ∂τ

∂2S
∂τ∂θ

∂2S
∂τ∂φ

∂2S
∂τ2

 . (13)

In (11), we regard yul
r and gul as constant, and the derivation of S is transformed to the derivation

of the codeword c. We take the partial derivatives of S versus θ as the examples. The first-order
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Algorithm 1 Working Steps of An Iteration in e-NOMP
Step 1: New detection. Coarsely estimate downtilt, azimuth and delay of a component path by
searching for the best-matched codeword in the codebook.
Step 2: Single Newton Refinement. Apply Newton refinement to the newly detected component
path.
Step 3: Cyclic Newton Refinement. Cyclicly apply Newton refinement to all the detected
component paths one by one.
Step 4: Gains Update. Update the gains of all the detected component paths by utilizing the
refined parameters.

partial derivative is calculated as

∂S

∂θ
= 2<

{
yulH

r gul∂c

∂θ
−
∣∣gul
∣∣2cH ∂c

∂θ

}
. (14)

The second-order partial derivative and the cross partial derivative are

∂2S

∂θ2
= 2<

{(
yulH

r gul −
∣∣gul
∣∣2 cH

) ∂2c

∂θ2

}
− 2

∣∣gul
∣∣2 ‖∂c

∂θ
‖2 (15)

and
∂2S

∂θ∂φ
= 2<

{(
yulH

r gul −
∣∣gul
∣∣2 cH

) ∂2c

∂θ∂φ
−
∣∣gul
∣∣2 ∂cH

∂φ

∂c

∂θ

}
(16)

respectively. Other derivatives can be derived in a similar way. The gain of the ith component

path will be updated through (10) by replacing (θ̂k,i, φ̂k,i, τ̂k,i) with (θ̂′k,i, φ̂
′
k,i, τ̂

′
k,i). Then, the

refined ith component path will be removed from yul
r,k(i).

Alg. 1 briefly summarizes the working steps of an iteration in the e-NOMP algorithm for

massive MIMO-OFDM system. Stopping criterion of the e-NOMP iterations is designed based

on the required false alarm rate Pfa [22]. The algorithm terminates when

‖F{yul
r,k}‖2

∞ > − log(1− (1− Pfa)
1

MN ), (17)

where F{·} represents taking Fourier transformation, and ‖·‖∞ denotes the infinite norm. Finally,

the BS obtains the estimated frequency-independent parameters of all the user channels, which

are denoted by {τ̂k,l, θ̂k,l, φ̂k,l}, where l = 1, . . . , L̂k, k = 1, . . . , K.



13

IV. EFFICIENT DOWNLINK CHANNEL RECONSTRUCTION

This section aims to solve the second problem mentioned in Section II, that is, how to

estimate the downlink gains for multiple users by using limited overhead. Here, we formulate the

requirement on a successful estimation and propose an efficient downlink channel reconstruction

scheme which utilizes a small amount of overhead to estimate the downlink gains of each user

channel.

A. Beamforming for Downlink Training

To reconstruct the downlink channel, we need to estimate the downlink gains, which will

cost downlink resources for pilots and uplink resources for the feedback of gains. Since the BS

has known the majority of spatial parameters (angles and delays) to reconstruct the downlink

channel, the amount of required resources for downlink training and feedback is small.

We first analyze the requirements for successful downlink training. For a certain user in the

system, its real spatial parameters are {τl, θl, φl}l=1,...,L and their estimates are {τ̂l, θ̂l, φ̂l}l=1,...,L̂.

During the downlink gain refinement phase, the BS transmits downlink pilots in J successive

OFDM symbols and alters the beamforming weight every OFDM symbol.

Suppose comb-type all-1 pilots are used and these pilots are sparsely and uniformly inserted

in the downlink frequency band. The received pilots on the jth OFDM symbol are

y(j) =
L−1∑
l=0

√
Pgdl

l pp(τl)a
T (θl, φl)bj + z(j), (18)

where P is the transmit power,

pp(τ) =
[
ej2π(fdl−ful+n14f)τ , . . . , ej2π(fdl−ful+nNp4f)4fτ

]T
(19)

describes the delay on Np downlink subcarriers that are occupied by downlink pilots, bj ∈ CM×1

represents the beamforming weight that is used on the jth OFDM symbol, and z(k) is the noise

vector on the jth OFDM symbol whose elements are i.i.d. with zero mean and unit variance.

Since L, θl, φl and τl have been estimated in the uplink and will be sent to this user, in the

following derivation we replace them by L̂, θ̂l, φ̂l and τ̂l. We denote

Θl,j = aT (θ̂l, φ̂l)bj (20)



14

to simplify the expressions. By stacking all the received pilots into a big vector, we obtain

y =
√
PAgdl + z, (21)

where

y =


y(1)

...

y(J)

 ,gdl =


gdl

1

...

gdl
L̂

 , z =


z(1)

...

z(J)

 (22)

are the stacked received pilot, downlink gain and noise vectors, respectively, and

A =


A(1, 1) · · · A(1, L̂)

...
...

A(J, 1) · · · A(J, L̂)

 (23)

is the coefficient matrix with submatrix

A(j, l) = ej2π(fdl−ful)τ̂lΘl,jp(τ̂l). (24)

Then, the gains can be LS estimated by

ĝdl =
1√
P

A†y =
1√
P

(AHA)−1AHy. (25)

Obviously, the first requirement for the successful estimation of gdl is that AHA is invertible.

Thus, A must have full column-rank, that is, rank(A) = L̂. An implied condition for full

column-rank is that NpJ ≥ L̂, which means the number of downlink pilots should be no less

than the number of downlink gains to be estimated. We apply singular-value-decomposition on

the coefficient matrix A by A = UΛVH , where U ∈ CNpJ×NpJ and V ∈ CL̂×L̂ are unitary

matrices, and Λ ∈ CNpJ×L̂ satisfies

Λ =


λ1 0

. . .

0 λL̂

0 · · · 0

 , (26)

where λ1 ≥ . . . ≥ λL̂ are the singular values. To make sure that AHA = UΛHΛVH has inverse,
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the smallest singular value must hold that |λL̂|2 > 0.

We rewrite (21) by

y =
√
PΛgdl + z, (27)

where y = UHy, gdl = VHgdl and z = UHz. Then, the LS estimation of gdl can be derived by

ĝdl = gdl +
1√
P

(ΛHΛ)−1ΛHz. (28)

To be specific, for the lth estimated path,

ĝdl

l
= gdl

l
+

λ∗l√
P |λl|2

zl. (29)

The normalized mean square error (NMSE) of the estimated downlink gains is defined as

NMSE =
E{‖ĝdl − gdl‖2}

E{‖gdl‖2}
=

1

P‖gdl‖2

L̂∑
l=1

E{|zl|2}
|λl|2

. (30)

The unitary character of U determines that the new noise vector z holds the same statistic

characters with z. Thus, the elements of z are also i.i.d. with zero mean and unit variance, that

is, E{|zl|2} = 1. Besides, according to [16], the spatial power difference between the uplink and

downlink is small. We use ‖gul‖2 to approximates ‖gdl‖2. Then, the NMSE of the gains can be

calculated as

NMSE =
1

P‖gul‖2

L̂∑
l=1

1

|λl|2
. (31)

Definition 1: Estimation of the downlink gains of a user is successful when the practical

NMSE is below an acceptable error rate δ, that is,

1

P‖gul‖2

L̂∑
l=1

1

|λl|2
< δ (32)

where 0 < δ < 1 is the acceptable error rate.

Thus, from (31) we can formulate the requirement for a successful estimation as

L̂∑
l=1

1

|λl|2
< δP‖gul‖2. (33)

In the following subsection, we will base on (33) and design downlink training beamforming
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vectors bj, j = 1, . . . , J to achieve successful estimations.

B. Spatial Angle Grid

If there is only one user in the cell, all the downlink pilots can be dedicated to this us-

er and beamformed to the uplink estimated spatial angles. In this condition, J = L̂, bj =

a∗(θ̂l, φ̂l)/
√
M , and Θj,j is equal to its maximum value

√
M . From (31), we can see that

the estimation error is inversely proportional to |λ1|2, . . . , |λL̂|2. If Θj,j � Θl,j for l 6= j,

|λ1|, . . . , |λL̂| approaches
√
M . Then, we can obtain a precise estimate with extremely small

error.

However, in the multiuser system that is concerned, it has a high probability that different

user channels have entirely different spatial angles. A simple extension to the multiuser scenario

is to perform the single user downlink gain estimation process for each user one by one. This

method will be extremely time consuming if the total number of the paths to be estimated are

large. More than that is exceeding the correlation time of the channel, which will destroy the

effectiveness of the reconstruction results.

To make a balance between precision and efficiency, we introduce a spatial angle grid and

project the original angles to the angles on the grid. The downlink pilots are beamformed to

the angles on the grid, instead of on the estimated angles. The spatial angle grid covers the

whole space and samples the spatial directions uniformly. We have defined a codebook with

similar usage in e-NOMP algorithm. As shown Fig. 2, each vertical plane represents a lower

dimensional sub-codebook that uniformly samples the whole 3D space. Therefore, we can reuse

this sub-codebook as the spatial angle grid. Each spatial angle on the grid corresponds to a

downlink training beam. Here, we set βθ = βφ = 1 to restrict the quantity of downlink training

beams.

For the ith grid point, i = 1, . . . ,MvMh, we denote (θ̄, φ̄)i = (θ̄iv , φ̄ih), where

θ̄iv =
π

Mv

(iv −
Mv

2
− 1), φ̄ih =

π

Mh

(ih −
Mh

2
− 1), (34)

and the corresponding indices of the sampled downtilt and azimuth angles are

iv = d i

Mh

e, ih = i−Mh(iv − 1), (35)

respectively. Each grid point corresponds to a beamforming vector a∗(θ̄, φ̄)/
√
M .
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Each estimated pair of downtilt and azimuth angles is rounded to its “nearest” spatial grid

point which has the largest projection power from the original estimated angle pair. For the lth

estimated path of user k, the projection power on grid point (θ̄, φ̄) is defined as

P k,l
e→g(θ̄, φ̄) =

1

M
|aT (θ̂k,l, φ̂k,l)a

∗(θ̄, φ̄)|2. (36)

To enhance the receiving power at the user side, we calculate the projection power on all the

grid points, select the one with the maximum value

(θ̄k,l, φ̄k,l) = arg max
θ̄ = θ̄1, · · · , θ̄Mv

φ̄ = φ̄1, · · · , φ̄Mh

P k,l
e→g(θ̄, φ̄) (37)

and mark this grid point.

The main advantages of using a spatial angle grid are: (1) The estimated angle pair can be

projected to a grid point and the projection power is large enough for the successful estimation

of downlink gains. (2) The downlink dedicated pilots are translated to downlink common pilots,

and all the users can receive these common pilots simultaneously without causing interference.

C. DL Training Strategy

Having known the projected grid points from K users, the BS records all the marked grid

points (θ̄, φ̄)i1 , . . . , (θ̄, φ̄)ib and includes them in the selected grid angle set Φ. Then, b OFDM

symbols will be occupied by the downlink pilots for the estimation of the downlink gains of

each user. In a massive MIMO system, M and K are always large, then b is large as well. To

ensure that enough time is remained for data transmission within the correlation period, we hope

to reduce the overhead for training.

To satisfy the requirement for a successful estimation of the gains, we project each estimated

angle pair to its nearest grid point to promise the high receiving SNR. If the downlink pilot

transmit power is large, the resulted
∑L̂

l=1 1/|λl|2 is much lower than the threshold δ|gul|2.

Hence, the nearest grid points are the optimal but not necessary solutions. According to [19],

when the number of antennas is large but not unlimited, the estimated angle pair has significant

projection power on more than one grid angle. If the projection power on other grid points is

large enough and the resulted singular values of A satisfy (33), the suboptimal options can work

as well. This gives the possibility to cut down grid points in Φ.
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1) Share A Common Grid Point: Suppose only one user exists in the cell. A special case is

that the propagation paths are spatially-closed with each other. Even if these paths are projected

on different optimal grid points, it may happen that they share a common suboptimal grid point.

When BS beamforms the downlink pilots on the direction of suboptimal grid point, the coefficient

matrix A becomes

A =
[
Θ1,1pp(τ̂1),Θ2,1pp(τ̂2), . . . ,ΘL̂,1pp(τ̂L̂)

]
. (38)

Firstly, pp(τ̂l) is a vector with completely different elements, and τ̂l is not equal to each other

for l = 1, . . . , L̂. If A satisfies (33), then the downlink gains can still be successfully estimated,

showing that multiple optimal grid points can be replaced by this single suboptimal grid point.

In this condition, |Φ| equals 1 rather than L̂, saving training overhead by L̂−1 OFDM symbols.

2) Utilize Grid Points Selected by Other Users: In the multiuser system that is concerned, Φ

contains a large number of optimal grid points selected by different users. For the l1th estimated

path of user k1, it has a high possibility that one of the path’s suboptimal grid point is selected

as an optimal grid point by the l2th estimated path of user k2. Since user k1 is able to receive the

broadcasted downlink pilots that are beamformed to the optimal grid point selected by user k2,

the suboptimal grid point can be utilized by user k1 as well. Besides, receiving useless downlink

pilots does not impact the success of estimation. When A already satisfies (33), the newly added

low-SNR measurements makes negligible contribution to the LS estimation, further making little

difference to the estimation results. Thus, each user can receive all the downlink pilots, whether

they are useful or useless.

3) Beam Scheduling Scheme: Based on these findings, we now exclude the redundant grid

points in Φ and only remain the useful grid points shared by multiple users. For each user, if the

derived A satisfies (33) and no more grid points can be excluded in Φ, then we obtain the final

set of selected grid points. Each selected grid point will be transformed to a downlink beam. To

save the downlink training overhead, we write the target of the beam scheduling scheme as

arg min |Φ|, s.t. (33) holds for k = 1, . . . , K. (39)

If we exhaustively search all the possible grid angle subsets of Φ to find the optimum subset,

the scheduling will be extremely time-consuming. Thus, we follow a similar approach as the

Greedy method but use it in a converse way. The redundant grid angles will be found out and
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Fig. 3. Weights of grid points. Grid point (θ̄, φ̄)2 has the first minimum weight and will be abandoned first.

excluded from Φ one by one. Here, we introduce the concept of “weight” for each grid point.

For grid point (θ̄, φ̄)i, if it is chosen by K̄ users, then its weight is calculated as w(i) = K̄.

As shown in Fig. 3, the weights of grid points (θ̄, φ̄)2 and (θ̄, φ̄)9 are 1 and 2, respectively. We

remain the grid points that are shared by most users and abandon the grid points that are chosen

by only one user. Thus, we compare w(i1), . . . , w(ib) and find the first smallest weight w(ij).

Then, grid point (θ̄, φ̄)ij will be excluded in Φ first if needed. In Fig. 3, grid point (θ̄, φ̄)2 has

the first smallest weight and it will be abandoned first.

We keep excluding grid points whose weights are small, till no more grid points can be

excluded in Φ. Working principle of the beam scheduling scheme is summarized in Alg 2. We

denote the final beam scheduling results as follows:

• Selected grid points with indices i1, . . . , iTp .

Before the start of the downlink pilot transmission phase, each selected user is informed with

its delays, angles, and the grid angles for the downlink pilots. Then, the BS broadcasts cell-

common pilots in successive Tp OFDM symbols. Each user receives all the pilots and calculates

their downlink gains according to (25). The estimated downlink gains are sent back to the BS.

Utilizing the uplink-estimated downtilts, azimuths and delays and the downlink-estimated gains,

the BS reconstructs the downlink channel of user k as

ĥdl
k =

L̂k∑
l=1

ĝdl
k,la

T (θ̂k,l, φ̂k,l)⊗ pT (τ̂k,l)e
j2π(fdl−ful)τ̂k,l . (40)

Finally, the BS obtains ĥdl
1 , . . . , ĥ

dl
K .
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Algorithm 2 Beam Scheduling Strategy
Require: Selected grid point set Φ
Initialize: Φ = {i1, . . . , ib}
1: Calculate weights of grid points in Φ
2: Reorder Φ in increasing weight
for j = 1, . . . , b do

1) Set Φtemp = [Φ\ij], flag = 1
2) for k = 1, . . . , K do

a) if (33) does not hold
b) set flag = 0, break,
c) end if

3) end for
4) if flag = 1, set Φ = Φtemp

5) else if flag = 0, set Φ = Φ
6) end if

end for
Output: Φ

V. DOWNLINK MULTIUSER TRANSMISSION

With the downlink reconstructed channels of all the users, the BS is able to make user

scheduling and design transmission schemes. It is worth noticing that the BS has obtained full

CSI. Therefore, if the number of users is much smaller than the number of BS antennas, user

scheduling is not necessary and these users can be simultaneously served.

During the downlink transmission phase, the BS sends data streams to all the K users

simultaneously. To overcome interference, the BS adopts ZF precoding before transmitting

downlink data. The ZF precoder on downlink subcarrier n is expressed as

W(n) = Ĥ†(n)Λ(n), (41)

where Ĥ(n) ∈ CK×M is the multiuser channel matrix on downlink subcarrier n satisfying

[Ĥ(n)]k,: = ĥdl
k (n), and Λ(n) = diag{α1, . . . , αK} is the normalization matrix. Here, we choose

uniform power allocation strategy and set

αk =
1

√
K‖
[
Ĥ†(n)

]
:,k
‖
. (42)

For user k, its received data on subcarrier n comprises both the target data and the inter-user
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interference, that is,

rk(n) =
√
Phdl

k (n) [W(n)]:,k dk(n) +
∑
j 6=s

√
Phdl

k (n) [W(n)]:,k dj(n) + zk(n)

=
√
Pαkh

dl
k (n)

[
Ĥ†(n)

]
:,k
dk(n) +

∑
j 6=s

√
Pαjh

dl
k (n)

[
Ĥ†(n)

]
:,k
dj(n) + zk(n),

(43)

where rk(n) is the received data by user k on subcarrier n, P is the total downlink transmit

power, dk(n) is the transmit data with unit power, and zk(n) is the noise with unit variance.

The average multiuser sum-rate of this system is calculated as

R =
1

N

N∑
n=1

K∑
k=1

log2(1 + SINRk(n)), (44)

where SINRk(n) is the signal-to-interference-noise ratio (SINR) at user k on subcarrier n and

can be expressed as

SINRk(n) =
Pα2

k|hdl
k (n)

[
Ĥ†(n)

]
:,k
|2∑

j 6=k
Pα2

j |hdl
k (n)

[
Ĥ†(n)

]
:,j
|2 + |zk(n)|2

. (45)

It can be observed that the multiuser sum-rate increases in proportion to SINR. Thus, we

evaluate the achievable rate of a single user k by analyzing its SINR. To simplify the expres-

sions, we neglect the subcarrier index n in the following derivations. Theorem 1 provides the

approximation of the expectation of SINRk when the acceptable error rate equals δ.

Theorem 1: The expectation of the SINR at user k approximates

E{SINRk} ≈
Sk

Ik + 1
, (46)

where

Sk =
P (1 + δ

∑M
m=1 | [H]k,m

[
H†
]
m,k
|2)

K(‖ [H†]:,k ‖2 + δ
∑K

j=1 ‖ [H†]:,j ‖2
∑M

m=1 | [H]j,m [H†]m,k |2)
,

Ik =
∑
j 6=k

P (δ
∑M

m=1 | [H]k,m
[
H†
]
m,j
|2)

K(‖ [H†]:,j ‖2 + δ
∑K

i=1 ‖ [H†]:,i ‖2
∑M

m=1 | [H]i,m [H†]m,j |2)

(47)

can be viewed as the expected signal power and the expected interference power, respectively.

Proof: The proof of Theorem 1 can be found in Appendix.
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From Theorem 1, we can see that

Sk =
P (1 + δ

∑M
m=1 | [H]k,m

[
H†
]
m,k
|2)

K‖ [H†]:,k ‖2(1 + δ
∑M

m=1 | [H]k,m [H†]m,k |2) +KδX
, (48)

where X =
∑

j 6=k ‖
[
H†
]

:,j
‖2
∑M

m=1 | [H]j,m
[
H†
]
m,k
|2 > 0. Then, it holds that

Sk <
P (1 + δ

∑M
m=1 | [H]k,m

[
H†
]
m,k
|2)

K‖ [H†]:,k ‖2(1 + δ
∑M

m=1 | [H]k,m [H†]m,k |2)
=

P

K‖ [H†]:,k ‖2
, (49)

which is the expected signal power when δ = 0. The expected signal power degrades if error

is acceptable during the LS estimation. When the the value of δ becomes large, the expected

signal power decreases.

As to the interference item, it can be found that only if δ = 0 and the reconstructed downlink

multiuser channel are precise, the interference can be completely eliminated. Otherwise, Ik > 0,

showing that the interference exists. After rewriting the expression of Ik by

Ik =
∑
j 6=k

P (
∑M

m=1 | [H]k,m
[
H†
]
m,j
|2)

K(δ−1‖ [H†]:,j ‖2 +
∑K

i=1 ‖ [H†]:,i ‖2
∑M

m=1 | [H]i,m [H†]m,j |2)
, (50)

we can easily see that the interference increases in proportion to δ.

In summary, when δ increases, signal power degrades and interference becomes more severe.

Then, SINR decreases, which further results in a significant degradation of multiuser sum-rate.

To prevent the slash of multiuser sum-rate performance, the value of δ should be small enough.

However, the amount of downlink training resource will not be efficiently reduced when the

NMSE requirement is too strict. Therefore, we should choose a proper δ to balance between the

rate performance and the resources economization.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the downlink channel reconstruction-based

FDD massive MIMO transceiver design. There are 16 antenna elements in a row of the UPA

at the BS and 8 elements in a column. The uplink/downlink frequency band is comprised of

256 sub-carriers and the subcarrier space is 75 kHz. The carrier separation between uplink

and downlink is 300 MHz. In the downlink training phase, the pilots are inserted in every 4

subcarriers. We set Pfa = 10−2 and βτ = 1, βθ = βφ = 2 when conducting the developed
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(a) (b)

Fig. 4. Results of two implementations of the e-NOMP algorithm. The real frequency-independent parameters are illustrated
by circles and their estimates are stars.

NOMP algorithm. Each user channel contains 5 propagation paths. The angles and the delays

of the paths from different users are set independently. For each user, the delays are randomly

distributed in [0, 1/4f). The downtilts and azimuths of each user are randomly distributed in

[−π/2, π/2). Power attenuation happens during the propagation of a wireless signal and the total

attenuation for each user channel is randomly set within [0,−10] dB. Both the uplink and the

downlink transmit SNR are equal to 10 dB.

A. Evaluate the e-NOMP algorithm

We first evaluate the estimation precision of the e-NOMP algorithm by checking if the values

of extracted frequency-independent parameters are equal to their real values. Fig. 4 examines two

implementations of the e-NOMP algorithm when both the channel attenuation and the transmit

power equals 0 dB and displays the results in a 3D coordinate system. The coordinate of each

point in the 3D coordinate system is composed by the delay, azimuth and downtilt. The blue

circles are the real frequency-independent parameters and the red stars are their estimates. We

can observe from Fig. 4(a) that the estimates coincide with the real values and the number of

extracted paths is exactly the real number of paths. It demonstrates that the e-NOMP algorithm

can precisely detect each path from the mixture. While in Fig. 4(b), an extra and fake path is

detected, reflecting that false alarm may happen during the implementation of e-NOMP. This is

because that the estimated parameters are not accurate enough, then the component paths can
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Fig. 5. MSE performance of the e-NOMP algorithm. The e-NOMP-reconstructed uplink channel is even more accurate than
the LMMSE-estimated uplink channel.

not be completely eliminated from the mixture. The integration of the residual components will

result in a new fake component path, which is falsely detected by the algorithm.

Even though the occurrence of false alarm is inevitable, the e-NOMP algorithm can still

provide a globally precise reconstruction result. We examine the global precision of the e-

NOMP-based uplink channel reconstruction by evaluating the MSE which is calculated as

MSE =
E{‖ĥ− h‖2}
E{‖z‖2}

. (51)

The classical LS and linear minimum mean square error (LMMSE) channel estimation methods

are introduced as benchmarks. Fig. 5 compares the MSE performances of the estimated or

reconstructed uplink channels. Here, the wireless channel attenuation is set to 0 dB, and SNR

equals the transmit power. As expected, the LS estimated channel has the worst precision and

LMMSE improves the performance by a large margin. While the e-NOMP-based uplink channel

reconstruction further brings down the MSE significantly. When SNR equals 0 dB, e-NOMP is

able to achieve almost 10−3 MSE, and the value continuously drops with the increase of SNR.

These results strongly demonstrate the high global-precision of the e-NOMP algorithm.
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Fig. 6. Evaluation of the MSE and multiuser sum-rate performance of the proposed transceiver design by setting K = 10.

B. Evaluate the Reconstruction Based Transceiver

To compare the performance of the proposed downlink channel reconstruction based FDD

massive MIMO transceiver design, we introduce LMMSE channel estimation as a benchmark

again and assume that TDD mode is adopted and the downlink channel is derived from the

LMMSE estimated uplink channel. We also evaluate the case when perfect downlink CSI is

known at the BS.



26

10-3 10-2 10-1
0

50

100

nu
m

be
r 

of
 s

el
ec

te
d 

be
am

s Beam Scheduling Scheme

10-3 10-2 10-1
10-4

10-3

10-2

re
al

 N
M

S
E

 o
f c

ha
nn

el

TDD-LMMSE
Reconstruction

10-3 10-2 10-1

required NMSE of gain

110

120

130

140

su
m

-r
at

e 
(b

/s
/H

z)

Perfect CSI
TDD-LMMSE 
Reconstruction

Fig. 7. Evaluation of the MSE and multiuser sum-rate performance of the proposed transceiver design by setting K = 20.

Fig. 6 evaluate the performance of the transceiver design when we have different requirements

on the NMSE of the estimated downlink gains. We first test the case when there are only a small

number of users in the cell by setting K = 10. If we set δ = 10−3, there must be enough pilots

to promise the high estimation precision of the downlink gains. Thus, seldom grid points are

excluded in the selected grid point set. In this condition, error rate of the reconstructed downlink

channel is even lower than the LMMSE estimation results and the achieved multiuser sum-rate
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becomes higher. With the increase of δ, the high precision requirement is relaxed gradually.

The number of remained grid points decreases as well. The reduction of training pilots results

in the inaccuracy of the estimates, which further leads to the decrease of multiuser sum-rate.

Fortunately, the sum-rate gap between the case of δ = 10−3 and that of δ = 10−2 is small

and acceptable, while the number of OFDM symbols for downlink training is reduced almostly

from 56 to 32. However, if we further release the error rate requirement and set δ = 10−1, the

multiuser sum-rate performance will be significantly damaged, validating the theoretical analysis

in Section V.

Then, Fig. 7 displays the results when we increase the number of users in the cell by setting

K = 20. Comparing with Fig. 6, we can find from the top sub-figure that if δ = 10−3 and

seldom beams are removed, the number of selected beams will not double, even though the

number of users doubles. This is because that with the increase of the user number, it has

a higher probability that a grid point is marked simultaneously by multiple users. Sharing of

a common training beam is always appreciated in downlink training process. By comparing

the real NMSE performance, we can easily find that with more users, the number of selected

beams increases, and the NMSE performance of the efficient reconstruction scheme improves

significantly. Therefore, the proposed reconstruction based transceiver design performs better

when increasing the users in the massive MIMO system.

VII. CONCLUSION

In this paper, we focused on the FDD massive MIMO system and proposed a reconstruction-

based transceiver design by utilizing the spatial reciprocity between uplink and downlink. An

e-NOMP algorithm was first introduced to extract the frequency-independent parameters in the

uplink. Then, we formulated the requirement to achieve an acceptable NMSE of the estimated

downlink gains and designed the downlink training scheme based on this requirement. A spatial

angle grid was introduced and we proposed a beam scheduling scheme to further reduce the

training overhead. The reconstructed multiuser channels enabled the downlink multiuser trans-

mission using linear precoding methods, and theoretical analysis revealed the effect of the value

of acceptable NMSE on the sum-rate performance. Numerical results proved that the frequency-

parameters can be precisely estimated through the e-NOMP algorithm and near optimal sum-rate

can be achieved by utilizing the downlink reconstruction results.
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APPENDIX

According to (45), the SINR at user k satisfies

E{SINRk} ≈
E{P |αk|2|hdl

k (n)
[
Ĥ†(n)

]
:,k
|2}∑

j 6=k E{P |αj|2|hdl
k (n)

[
Ĥ†(n)

]
:,j
|2}+ E{|zk|2}

. (52)

Firstly, it is obvious that E{|zk|2} = 1. When it comes to the signal and the interference items,

they can be approximated to, respectively,

E{P |αk|2|hdl
k (n)

[
Ĥ†(n)

]
:,k
|2} ≈

PE{|hdl
k (n)

[
Ĥ†(n)

]
:,k
|2}

KE{‖
[
Ĥ†(n)

]
:,k
‖2}

(53)

and

E{P |αj|2|hdl
k (n)

[
Ĥ†(n)

]
:,j
|2} ≈

PE{|hdl
k (n)

[
Ĥ†(n)

]
:,j
|2}

KE{‖
[
Ĥ†(n)

]
:,j
‖2}

, (54)

when (42) is applied. Since error exists in the reconstructed multiuser channel, we model the

reconstructed multiuser channel by Ĥ = H+E, where H ∈ CK×M is the real downlink channel

matrix, [H]k,: = hdl
k , E is the reconstruction error whose elements are i.i.d Gaussian with zero

mean. According to (33), the NMSE of ĝdl
k approximates δ, and the NMSE of ĥdl

k approximates

δ as well. Thus, we make the following approximation

E{| [E]k,i |
2} ≈ δ| [H]k,i |

2. (55)

Besides, Ĥ† can be Taylor expanded by [23]

Ĥ† = (H + E)† ≈ H† −H†EH†, (56)

then its kth column is expressed as[
Ĥ†
]

:,k
≈
[
H†
]

:,k
−H†E

[
H†
]

:,k
. (57)

Since

hdl
k

[
H†
]

:,j
=

 1, j = k,

0, j 6= k,
(58)
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we can derive that

|hdl
k

[
Ĥ†
]

:,j
|2 =

 1−
[
H†
]H

:,k
[E]Hk,: − [E]k,:

[
H†
]

:,k
+
[
H†
]H

:,k
[E]Hk,: [E]k,:

[
H†
]

:,k
, j = k[

H†
]H

:,j
[E]Hk,: [E]k,:

[
H†
]

:,j
, j 6= k

(59)

whose expectation approximates

E{|hdl
k

[
Ĥ†
]

:,j
|2} ≈

 1 + δ
∑M

m=1 | [H]k,m
[
H†
]
m,k
|2, j = k

δ
∑M

m=1 | [H]k,m
[
H†
]
m,j
|2, j 6= k

(60)

when applying (55) to (59). Besides,

‖
[
Ĥ†
]

:,k
‖2 ≈‖

[
H†
]

:,k
‖2 −

[
H†
]H

:,k
H†E

[
H†
]

:,k

−
[
H†
]H

:,k
EHH†H

[
H†
]

:,k
+
[
H†
]H

:,k
EHH†HH†E

[
H†
]
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(61)

and its expectation satisfies

E{‖
[
Ĥ†
]

:,k
‖2} ≈ ‖

[
H†
]

:,k
‖2 + δ

K∑
j=1

‖
[
H†
]

:,j
‖2

M∑
m=1

| [H]j,m
[
H†
]
m,k
|2. (62)

By applying (60) and (62) into (53), we obtain

E{P |αk|2|hdl
k (n)

[
Ĥ†(n)

]
:,k
|2}

≈
P (1 + δ

∑M
m=1 | [H]k,m

[
H†
]
m,k
|2)

K(‖ [H†]:,k ‖2 + δ
∑K

j=1 ‖ [H†]:,j ‖2
∑M

m=1 | [H]j,m [H†]m,k |2)

(63)

which is exactly Sk. Similarly, E{I} ≈ Ik. Therefore, (46) is obtained.
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