
American Economic Review 2020, 110(1): 1–47 
https://doi.org/10.1257/aer.20190789

1

Putting the Cycle Back into Business Cycle Analysis†

By Paul Beaudry, Dana Galizia, and Franck Portier*

Are business cycles mainly a response to persistent exogenous shocks, 
or do they instead reflect a strong endogenous mechanism which 
produces recurrent boom-bust phenomena? In this paper we present 
evidence in favor of the second interpretation and we highlight the 
set of key elements that influence our answer. The elements that tend 
to favor this type of interpretation of business cycles are (i) slightly 
extending the frequency window one associates with business cycle 
phenomena, (ii) allowing for strategic complementarities across 
agents that arise due to financial frictions, and (iii) allowing for a 
locally unstable steady state in estimation. (JEL E22, E24, E23, E44)

Market economies repeatedly go through periods where, for sustained periods 
of time, productive factors are used very intensively, with low rates of unemploy-
ment, high levels of hours worked per capita, and intensive use of productive cap-
ital, followed by periods where these utilization rates are reversed. The types of 
forces and mechanisms that drive these fluctuations remain a highly debated subject. 
As an organizational framework, two conceptual views are worth distinguishing. 
On the one hand, there is the view that business cycles are primarily driven by 
persistent exogenous shocks. In models reflecting this view, such shocks are gen-
erally propagated through a variety of endogenous mechanisms, including those 
that may ultimately prolong their effects such as adjustment costs, capital accu-
mulation, and habit persistence. However, it generally remains the case that, if the 
persistence of the exogenous shocks in such models were substantially reduced, 
business cycle-type fluctuations would largely disappear. As a result, such models 
can be viewed as supporting the notion that persistent exogenous shocks are central 
to understanding business cycles. On the other hand, there is an alternative view 
wherein the bulk of business cycle fluctuations is believed to be the result of forces 
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that are internal to the economy and that endogenously favor recurrent periods of 
boom and bust. According to this alternative view, even if shocks to the economy are 
not persistent, large and/or prolonged business cycles nevertheless arise due to the 
equilibrium incentives present in a decentralized economy.1

Even though from a theoretical point of view both of the possibilities above are 
reasonable, there are at least two important empirical reasons why mainstream mac-
roeconomics has broadly coalesced around the first class of explanations. The first 
reason is based on the estimation of a vast array of structural models that allow 
for internal propagation mechanisms and exogenous driving forces to compete in 
explaining observed fluctuations. Overwhelmingly, the results of such estimations 
suggest that persistent exogenous driving forces are required to explain the data, with 
estimated internal propagation mechanisms being far too weak to explain business 
cycle fluctuations without them.2 The second reason is based on reduced-form evi-
dence on the spectral properties of many macroeconomic aggregates. Since Granger 
(1966) and Sargent (1987), it has been argued that the auto-covariance patterns 
in the data are generally not supportive of strong internal boom-bust mechanisms, 
which would typically imply pronounced peaks in the spectral densities of macro 
aggregates at business cycle frequencies. However, such peaks, it has been argued, 
do not appear to be present in the data.

The objective of this paper is to provide new impetus to the second class of 
explanations noted above. In particular, we provide both reduced-form and struc-
tural evidence in support of this view, and further show why certain procedures that 
are commonly used in macroeconomic research may have biased previous research 
against it. To this end, we proceed in three steps. The first step is purely empirical. 
We examine anew the spectral density properties of many trendless macroeconomic 
aggregates, such as work hours, rates of unemployment, and risk premia. We high-
light a recurrent peak in several spectral densities in US macroeconomic and finan-
cial data at periodicities around 9 to 10 years. We complement this visual inspection 
with a set of tests aimed at documenting the statistical significance of this local peak. 
While the presence of such a peak does not necessarily imply strong endogenous 
cyclical forces,3 it is an important first step in our argument, as it runs counter to the 
notion that the spectral properties of the data rule out such a possibility. In addition 
to providing motivation for the following sections, these spectral densities play a 
central role in our later structural estimation exercises.

In a second step, we present a simple framework aimed at highlighting key 
economic elements that favor the endogenous emergence of peaks in the spectral 

1 While we present these two frameworks as distinct, there is actually a continuum between the two. To get a 
sense of whether a business cycle model relies more on persistent shocks versus internal propagation mechanisms 
in explaining the data, one could compute the fraction of some data feature explained by the model (for example, 
the auto-correlation or variance of a variable) that is lost if one reduces the persistence of the shocks to zero. If this 
fraction is close to 100 percent, then the model can be said to rely primarily on persistent exogenous shocks, while 
if this fraction is close to zero, we can say that the model relies primarily on endogenous mechanisms. Frisch (1933) 
first introduced this distinction between the “propagation problem” and the “impulse problem.”

2 Certain credit cycle models, such as the seminal piece by Kiyotaki and Moore (1997), have internal propaga-
tion mechanism that can potentially be very strong. However, when such models are estimated, the implied param-
eters generally do not generate quantitatively meaningful endogenous cyclical behavior. Instead, the estimated 
versions of these models most often maintain a reliance on persistent exogenous shocks to explain business cycles 
features. The current paper offers insights into why this may be the case. 

3 One could in principle obtain such patterns with strongly cyclical exogenous forces.
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density of equilibrium outcomes. In particular, we focus on understanding the types 
of market forces, i.e., the types of interactions between agents, that would give rise 
to cyclicality and spectral peaks in situations where the individual-level decisions 
on their own do not favor them. The framework emphasizes that there are two main 
ingredients that, in combination, favor spectral peaks: allowing for strategic comple-
mentarities across agents, and having some accumulation (i.e., stock) variable that, 
when high, tends to depress the individual value of accumulating more. We then 
discuss the extent to which such forces are present in existing models and use these 
properties to motivate the type of model we bring to the data in the subsequent sec-
tion. We also discuss the connection between models that are capable of producing 
spectral peaks and models in which limit cycles may emerge.

In the third step, we present a dynamic stochastic general equilibrium (DSGE)
model that builds on a simple New Keynesian model in a manner that incorporates 
the two elements discussed above in the second step. In particular, the model con-
tains real-financial linkages that produce complementarities, and an accumulated 
capital stock that exhibits diminishing returns. In the model, unemployment risk, 
default risk, and risk premia on borrowing are jointly determined. The model aims to 
capture the common narrative of an accumulation-credit cycle, wherein booms are 
periods in which banks perceive lending to be safe and risk premia are correspond-
ingly low, which allows households to spend more on durable goods and housing, 
which in turn contributes to making lending safe by keeping unemployment low.4 
The model allows for endogenous propagation forces that can potentially gener-
ate boom-bust cycles as the unique equilibrium outcome.5 The model also features 
a persistent exogenous driving force, and in estimating the model we allow this 
stochastic force to compete with the endogenous forces in order to evaluate their 
respective roles. We use this model to illustrate how, depending on the estimation 
approach, one may draw very different conclusions regarding the relative impor-
tance of exogenous and endogenous forces in driving business cycle movements. In 
particular, we show that if one targets the spectral densities documented in our first 
step, and if one adopts an estimation method that allows for a locally unstable steady 
state, then the estimation results suggest that business cycles are mainly driven by 
internal forces buffeted by temporary shocks. In particular, our point estimates in 
this case actually suggest the presence of stochastic limit cycles, where the stochas-
tic component is essentially an i.i.d. process.6 In contrast, if we use more standard 
estimation techniques, if we focus less on explaining business cycle properties, or if 
we restrict the presence of complementarities, then we find more evidence in favor 
of persistent exogenous forces being the main driver of business cycles.

4 It should be emphasized that there are many possible sources of complementarity that could be embedded in 
the general class of models we describe in our second step and that could potentially generate similar dynamics to 
our accumulation-credit cycle model. While we focus on credit market frictions since we believe they likely play a 
role in business cycle fluctuations (see Section ID), we by no means wish to rule out the possibility of other relevant 
sources of complementarity.

5 Note that the endogenous boom-bust cycles that arise in our model do not reflect multiple equilibria or 
indeterminacy. 

6 While the idea that business cycles may possibly reflect stochastic limit cycle forces is not new, our empirical 
finding of support for such a view within the confines of a stochastic general equilibrium model with forward-looking 
agents appears unprecedented. 
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While we view our results as providing novel support for the idea that business 
cycles may be largely driven by endogenous cyclical forces, we do not claim that 
these results, which are based on the estimation of only one model, constitute a 
definitive answer to this question. Instead, we believe an important contribution 
of the paper is to illustrate why the current consensus regarding the importance of 
persistent exogenous shocks may reflect some arbitrary choices. In particular, we 
highlight how different estimation targets and methods can greatly influence one’s 
conclusions regarding the relative contribution of internal versus external mech-
anisms in driving business cycles. For example, we show how, when adopting an 
estimation approach that allows for stochastic limit cycles, one finds little need for 
persistent exogenous shocks. We hope that these results will motivate exploration 
into other business cycle models in order to assess how sensitive inferences regard-
ing the relative importance of internal versus external propagation are to three fac-
tors: focusing on frequencies that are slightly lower than the traditional focus of 
business cycle analysis, allowing for the possibility of locally unstable steady states, 
and finally, not unduly restricting strategic complementarities across agents. Our 
results provide a clear, even extreme, example of these sensitivities where, depend-
ing on how these factors are treated, the economy may appear to be driven primarily 
by exogenous shocks, or may instead appear to be driven primarily by endogenous 
mechanisms.

It is important to note that the idea that macroeconomic fluctuations may pre-
dominantly reflect strong internal propagation mechanisms, and even the possibil-
ity of limit cycle forces, is not at all novel, having been advocated by many in 
the past, including early incarnations due to Kalecki (1937), Kaldor (1940), Hicks 
(1950), and Goodwin (1951).7 In the 1970s and 1980s, a larger literature emerged 
that examined the conditions under which qualitatively and quantitatively reason-
able economic fluctuations might occur in purely deterministic settings (see, e.g., 
Benhabib and Nishimura 1979, 1985; Day 1982, 1983; Grandmont 1985; Boldrin 
and  Montrucchio 1986; Day and  Shafer 1987. For surveys of the literature, see 
Boldrin and Woodford 1990 and Scheinkman 1990.). By the early 1990s, however, 
the interest in such models for understanding business cycle fluctuations greatly 
diminished and became quite removed from the mainstream research agenda.8 There 
are at least two reasons for this. First, if the economy exhibited a deterministic limit 
cycle, the cycles would be highly regular and predictable, which is inconsistent with 
the data. Second, the literature on limit cycles has generally made neither a clear 
empirical nor a strong theoretical case for their relevance. An important contribution 
of this paper can therefore be seen as reviving the limit cycle view of fluctuations by 
offering new perspectives on these two arguments. In particular, with respect to the 
first argument, we directly address the criticism of the excessive regularity of limit 

7 An earlier mention of self-sustaining cycles as a model for economic fluctuations is found in Le Corbeiller 
(1933), in the first volume of Econometrica.

8 There are at least two strands of the macroeconomic literature that has productively continued to pursue ideas 
related to limit cycles: a literature on innovation cycles and growth (see, for example, Shleifer 1986 and Matsuyama 
1999), and a literature on endogenous credit cycles in an overlapping generations (OLG) setting (see, for example, 
Azariadis and Smith 1998; Matsuyama 2007, 2013; Myerson 2012; and Gu et al. 2013). One should also mention 
a large literature on endogenous business cycles under bounded rationality and learning, following early ideas of 
Grandmont (1998). Hommes (2013) reviews this literature and the debate on endogenous business cycles versus 
exogenous shocks, and particularly the role of stochastic shocks in models with limit cycles and chaos.
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cycles by examining the notion of stochastic limit cycles, wherein the system is buf-
feted by exogenous shocks, but where the deterministic part of the system admits a 
limit cycle. Such systems have been studied little by quantitative macroeconomists, 
but recent solution techniques now make this a tractable endeavor.9

The remaining sections of the paper are organized as follows. In Section I, we 
document the spectral properties of US data on hours worked, unemployment, and 
several indicators of financial conditions. These properties motivate our analysis 
and will be used later on in estimating our model. In Section II, we present a simple 
mechanical setup where agents both accumulate goods and interact strategically 
with one another. Following Cooper and John (1988), these strategic interactions 
can be characterized either by substitutability or complementarity. We use this 
framework to highlight when complementaries are likely to produce cyclical out-
comes. In Section III, we extend a standard three-equation New Keynesian model 
in a manner that allows for the features highlighted in the model of Section II to 
be present. We report several estimations of this model to clarify what choices and 
restrictions would lead one to conclude that the economy is driven primarily by per-
sistent exogenous shocks versus inferring that it is driven by a strong endogenous 
propagation mechanism, including the possibility of limit cycles. Finally, in the last 
section we offer concluding comments.

I.  Motivating Observations

The objective of this section is to reassess certain properties of US business 
cycles.10 In particular, we question the common view that business cycle fluctua-
tions are best described as being acyclical by providing evidence suggesting that 
they may embed or reflect cyclical forces. Moreover, we examine whether there 
may be concurrent cyclical forces in financial markets, as would be implied by 
models of real-financial linkages. To illustrate what defines our notion of cyclical-
ity, consider a stationary zero-mean series ​​x​t​​​ (possibly expressed as deviations from 
an appropriate long-run trend), and let ​​γ​q​​  ≡  E​[​x​t​​ ​x​t+q​​]​​ be its auto-covariance func-
tion (ACF). Compare the following two cases. In the first, suppose that ​​γ​q​​  >  0​ for 
all ​q​, which would, for example, be the case if ​​x​t​​​ follows a simple AR(1) process 
with positive auto-regressive parameter. In this case, positive values of ​x​ will, on 
average, be followed by positive values in each subsequent period. We refer to 
this ​​x​t​​​ as being acyclical, since a large boom today is not a predictor of a large 
recession to come; that is, there is no sense in which a current boom is sowing the 
seeds of a subsequent bust. In contrast, suppose instead that there is some ​n​ for 
which ​​γ​kn​​​ is negative when ​k​ is odd and positive when ​k​ is even. In this case, posi-
tive values of ​x​ in one period are, on average, followed by negative values ​n​ periods 
in the future and positive values ​n​ periods after that. We refer to such a process as 
being cyclical, since a large boom today is predicted to be followed by a large bust 
in the future, with subsequent echo effects.

9 See Galizia (2018).
10 Our analysis is primarily focused on the United States, but in online Appendix Section D we also document 

that the properties we emphasize are present in several other industrialized economies. 
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As the example above illustrates, this notion of cyclicality is simply a property of 
the ACF: if the ACF displays oscillations, then we will say that the series exhibits 
cyclicality; if it does not, then we will say it is acyclical. It should be emphasized 
that, according to this definition, cyclicality does not imply the presence of deter-
ministic cycles of constant length, nor does it imply that the cycle is highly predict-
able. In particular, even if a series exhibits cyclicality, both the realized amplitude 
and realized length of cycles will generally be random.

There are two well-known practical difficulties that arise when attempting to 
assess whether macroeconomic phenomena exhibit cyclicality. First, there are no 
generally accepted macroeconomic series that are thought to reflect only business 
cycle forces. Instead, most macroeconomic series are believed to reflect both busi-
ness cycle forces and lower-frequency forces unrelated to business cycles (e.g., 
demographic factors, trend growth, etc.). Therefore, in order to evaluate business 
cycle properties, one needs to find a way to extract properties of the data that are 
unlikely to be contaminated by the lower-frequency forces that are not of direct 
interest. For this reason, simple plots of the ACF are not usually very informative. 
Second, since we are only interested in evaluating cyclical forces that are potentially 
attributable to business cycle phenomena, one needs to define the relevant range of 
periodicities, that is, cycle lengths, to focus on.

To address these two issues, we proceed in steps. First, to address the issue of cycle 
lengths, we exploit NBER recession dates to examine the probability distribution 
governing the arrival of recessions; in particular, we look at the conditional proba-
bility of the economy being in recession at time ​t + k​ given that it was in recession 
at time ​t​. Using this information, we propose a range of periodicities within which 
one should look for cyclical forces.11 Second, we look at the spectral densities of a 
set of non-trending variables that can be reasonably taken to be stationary (based on 
unit root tests). For example, this is the case for many labor market variables (such 
as hours worked per capita, employment rates, job finding rates, and unemployment 
rates) and many financial variables. We focus on such series since it is not necessary 
to transform them before looking at their spectral densities. This is especially attrac-
tive since standard data transformations can spuriously induce the appearance of 
cyclicality in acyclical data. The reason we focus on spectral densities, meanwhile, 
is that they are a representation of the ACF that allows the cyclical properties of a 
series to emerge even in the presence of low-frequency confounders. Specifically, a 
local peak (or hump) in the spectrum of a series would be an indicator that it exhib-
its cyclicality at that periodicity. Thus, to evaluate whether a given series displays 
business-cycle-relevant cyclicality, we check whether its spectral density exhibits 
a peak within the range of business cycle periodicities (i.e., those suggested by the 
NBER recession dates). In addition to simply plotting spectral density estimates, 
which allows for an easy visual inspection for any peaks, we provide formal tests to 
evaluate whether any such peaks are statistically significant.

11 As we shall see, the proposed range of periodicities suggested by our analysis is slightly longer than that usu-
ally associated with business cycle phenomena. However, given that our conclusions come directly from recession 
dates, it would be difficult to argue that the phenomena we capture are somehow distinct from the business cycle 
(e.g., that they may better be thought of as some alternative “medium-run” cyclical phenomena as, for example, in 
Comin and Gertler 2006).
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A. Conditional Probabilities of NBER Recession Dates

In this subsection we use NBER recession dates to suggest the range of period-
icities that may be associated with cyclicality in macroeconomic data.12 One of the 
attractive features of NBER recession dates is that they are a synthesis of a number 
of different variables that are, by design, associated with standard ideas about busi-
ness cycle activity. In panel A of Figure 1, we plot the probability that the economy 
will be declared by the NBER dating committee to be in a recession at some point 
in a ± ​x​-quarter window around time ​t + k​, given that it is in a (NBER) recession 
at time ​t​. The figure plots this probability as we vary ​k​ between 12 and 90 quarters, 
using all NBER recession dates from 1946:I to 2017:II. We look in a ​± x​-quarter 
window around date ​t + k​ since NBER recessions are rather short-lived, showing 
results for different window widths ranging from ​x  =  3​ to ​x  =  5​ quarters. We start 
at ​k  =  12​ to ensure that the recession under way at ​t​ is excluded from the window.

As can be seen in panel A of Figure 1, regardless of the window width, a rather 
clear pattern emerges. The probability that the economy is in a recession ​k​ quar-
ters from now, given that it is in a recession currently, increases as ​k​ goes from 12 
quarters up to around 36–40 quarters, then decreases until around 56–60 quarters, 
at which point it starts increasing again. This pattern, which can be roughly approx-
imated by a sine wave with a period of around 38 quarters, suggests the possibility 
that business cycles may reflect cyclical elements at a periodicity of around 9 to 
10 years. Particularly interesting is the fall in the probability of a recession after 
9–10 years, and the subsequent increase after reaching a minimum at around 14–15 
years. Panel B plots confidence intervals for the ​x  =  5​ case, which confirms that 
the general pattern we highlighted in panel A, namely, a local peak in the probabil-
ity for ​k  ≈​ 36–40 quarters, followed by a local trough around 56–60 quarters, is 
unlikely to have occurred simply by chance.13 In online Appendix Section B, we 
present confidence intervals for the ​x  =  3​ and ​x  =  4​ cases, which yield similar 
conclusions.

We take the observations above as the basis for formulating the hypothesis that 
postwar business cycles may contain cyclical elements that express themselves at a 
periodicity roughly between 36 and 40 quarters. It should be noted that these peri-
odicities are slightly longer than the ones commonly associated with business cycle 
phenomena, as first proposed by Burns and Mitchell (1946).14 This may reflect the 
fact that Burns and Mitchell (1946) was focusing on prewar data, where recessions 

12 Sources for all data series are provided in online Appendix Section A.
13 See online Appendix Section B for details of how these confidence intervals were constructed. In that 

Appendix, we also provide a joint test of the null hypothesis that the conditional probability is constant in ​k​, and 
find that the null is rejected at conventional levels of significance.

14 The traditional definition of the business cycle focuses on movements in macroeconomic variables at period-
icities between 6 and 32 quarters. According to Baxter and King (1999) and Stock and Watson (1999), the reason 
was that the NBER chronology lists 30 complete cycles since 1858, with the shortest full cycle (peak to peak) being 
6 quarters, and the longest 39 quarters and 90 percent of these cycles being no longer than 32 quarters. While this 
definition may have seemed appropriate 30 years ago, it appears overly restrictive now given the more recent NBER 
cycle dates. For example, the cycle in the 1990s lasted 43 quarters from the peak in July 1990 to the subsequent 
peak in March 2001. Similarly, the cycle that started from the peak in 2007 has lasted more than 40 quarters so far, 
having apparently not yet reached another peak. For this reason, and this will be supported by our spectral evidence 
below, we argue that the definition of the business cycle should include fluctuations up to periodicities of at least 40 
quarters, and maybe even up to 50 quarters. 
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were more frequent. The pattern in Figure 1 suggests that it may not be appropriate 
to focus business cycle analysis only on fluctuations lasting less than 8 years, as is 
often taken as a benchmark, but rather a wider window that includes periodicities 
up to at least 10 years. In online Appendix Section D, we document that a similar 
pattern to that observed in Figure 1 is also present in most other G7 countries. 
This may not be too surprising, as this set of countries often share recessions and 
expansions.

B. Looking for a Peak in Spectral Densities

We now examine the spectral properties of a set of non-trending US macroeco-
nomic variables. As noted previously, one potential way of describing the cyclical 
properties of stationary data is to focus on the spectral density, which depicts the 
importance of cycles of different frequencies in explaining the data. If the spec-
tral density of a time series displays a substantial peak at a given frequency, this 
is an indication of recurrent cyclical phenomena at that frequency. The traditional 
view, as expressed for example in Granger (1966) and Sargent (1987), is that most 
macroeconomic time series do not exhibit peaks in their spectral densities at busi-
ness cycle frequencies. This view accordingly suggests that business cycle theory 
should not seek to explain macroeconomic fluctuations as cyclical phenomena.15 In 
this section, we reexamine the validity of this consensus relative to the alternative 
view in which business cycles may reflect cyclical forces that express themselves 

15 In light of this, it is generally agreed upon (see, e.g., Sargent 1987) that business cycle research should focus 
mainly on explaining the co-movement properties of macro variables, as there is substantial co-movement across 
variables at business cycle frequencies. It is worth emphasizing that we do not question here the view that most 
macroeconomic aggregates co-move substantially over the business cycle, only the view that cyclical phenomena 
are not present as well.
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Figure 1. Conditional Probability of Being in a Recession

Notes: Panel A displays the fraction of time the economy was in a recession within an ​x​-quarter window around 
time ​t + k​, conditional on being in a recession at time ​t​, where ​x​ is allowed to vary between 3 and 5 quarters. Panel 
B shows confidence intervals for the ​x  =  5​ case. See online Appendix Section B for the ​x  =  3​ and ​x  =  4​ cases, 
as well as for details of how these confidence intervals were constructed. The figure was constructed using NBER 
recession dates over the period 1946:I–2017:II.
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at a periodicity of around 36–40 quarters (i.e., the timing motivated by our analysis 
above of conditional recession probabilities).

The main challenge faced in using spectral methods relates to the long-run prop-
erties of the data. In particular, spectral densities are only well defined for stationary 
data, while many macroeconomic variables are nonstationary. It has therefore been 
common to substantially transform (i.e., detrend) nonstationary variables before 
looking at their spectral properties. However, if a variable is thought to be the sum 
of a stationary cyclical component and a nonstationary trend component, there is no 
theory-free way of isolating the cyclical component. Moreover, it is well known that 
detrending procedures can create spurious cycles. Thus, the use of spectral meth-
ods is most informative if it can be applied to series that can plausibly be argued to 
be stationary prior to any transformation.16 For example, this may be the case for 
many labor market variables, such as the employment and unemployment rates. For 
this reason, we begin by examining the spectral densities of labor market variables. 
Even if we accept that such labor market indicators can be thought of as stationary, 
however, we nevertheless believe that such measures most likely reflect both busi-
ness cycle and longer-run phenomena. For example, demographic factors, which 
are typically thought of as being quite distinct from business cycle movements, tend 
to produce low-frequency movements in employment patterns. For this reason, we 
focus on the shape of a spectral density at periodicities shorter than 60 quarters, with 
the rationale that fluctuations at periodicities longer than 60 quarters most likely 
reflect factors distinct from business cycle phenomena.

We begin by examining the properties of the (log) of US non-farm business 
(NFB) hours worked per capita from 1948:I–2015:II. This series is plotted in panel 
A of Figure 2. As the figure shows, hours exhibited substantial fluctuations over the 
sample period, but there is little evidence of any long-run trend. For this reason, 
it seems plausible to treat this series as stationary, as is also confirmed formally 
by Dickey-Fuller tests.17 Accordingly, we begin by looking directly at the spectral 
density of this series without any prior transformation (except de-meaning). The 
dark line in panel B of Figure 2 plots this spectral density over the range of peri-
odicities from 4 to 60 quarters.18 Since it is common in macroeconomics to try to 
remove very low-frequency movements, that is, movements at frequencies much 
lower than business cycle frequencies, for comparison we also plot on the same 
axes the spectra obtained when first passing the series through a high-pass filter. In 
particular, each gray line in the figure represents the spectral density of the series 
after it has been transformed using a high-pass filter that removes fluctuations with 
periodicities greater than ​P​ quarters in length, where ​P​ ranges from 100 to 200. The 

16 If a series is nonstationary but known to be ​I​(1)​​, then in principle one can look at the spectrum of the first 
difference of the series. However, since the first-difference filter heavily emphasizes movements at the highest 
frequencies and deemphasizes those at lower frequencies, doing so may substantially mask the properties of any 
cyclical component that may be present at somewhat lower frequencies.

17 Specifically, we perform an augmented Dickey-Fuller test on the series. Akaike, Bayesian, and Hannan-Quinn 
information criteria all suggest using a single lag. With this specification, the presence of a unit root is rejected at 
5 percent significance.

18 We obtain nonparametric power spectral density estimates by computing the discrete Fourier transform 
(DFT) of the series using a fast Fourier transform algorithm, and then smoothing it with a Hamming kernel. One 
key element is the number of points in the DFT, which determines the graphical resolution. In order to be able to 
clearly observe the spectral density between periodicities of 32 to 50 quarters, we use zero-padding to interpolate 
the DFT (see online Appendix Section C for more details on spectral density estimation).



10 THE AMERICAN ECONOMIC REVIEW JANUARY 2020

results suggest that the spectral properties of hours at periodicities around 36–40 
quarters, the range of periodicities that interest us most, are, as we would expect, 
invariant to whether or not one first removes very low-frequency movements from 
this series.

What does panel B of Figure 2 reveal about the cyclical properties of hours? To 
us, the dominant feature is the distinct hump in the spectral density surrounding the 
local peak at around 38 quarters, the bulk of which is contained in the 32–50 quarter 
range. This hump is much more pronounced than anything found at periodicities 
less than 32 quarters, which suggests that a significant proportion of the fluctuations 
in hours may come from some cyclical force with a periodicity of about 9–10 years, 
precisely in line with our earlier analysis using conditional recession probabilities. 
To make it clear that this is not simply a coincidence, and that the fluctuations in 
hours in this range of frequencies should indeed be thought of as business cycle phe-
nomena, in panel C of Figure 2 we plot the hours series after having removed fluctu-
ations longer than 60 quarters using the high-pass filter. In panels A and C, we have 
also highlighted NBER recessions in gray. Unlike in panel A, where there are clearly 
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Notes: Panel A plots the log of non-farm business hours divided by total population. Panel B is an estimate of the 
spectral density of hours in levels (black line) and for 101 series that are high-pass (​P​) filtered version of the levels 
series, with ​P​ between 100 and 200 (gray lines). A high-pass (​P​) filter removes all fluctuations of period greater 
than ​P​. Panel C displays high-pass (60) filtered hours. Panel D shows bootstrapped 66 percent, 80 percent, and 
90 percent point-wise confidence bands for the spectral density.
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significant long-run fluctuations in hours that are unrelated to the NBER recessions, 
the fluctuations remaining in the detrended hours series of panel C correspond very 
closely to the standard narrative of the business cycle.19 In fact, to the extent that 
there are fluctuations in panel C that do not correspond to NBER recessions, they 
are evidently due to unrelated movements much shorter, not longer, than the 32–50 
quarter range in which the spectral hump appears.

Testing for a Local Peak.—The local peak in the spectral density of hours worked 
observed in panel B of Figure 2 suggests that the labor market may be subject to 
cyclical forces that play out at periodicities around 38 quarters. However, as illus-
trated by the point-wise confidence bands shown in panel D of Figure 2,20 there is 
substantial uncertainty surrounding our estimates of the spectral density. For this 
reason, it is desirable to examine the statistical significance of this observed local 
peak.21

To this end, we test a shape restriction on the spectral density; namely, that it is 
hump-shaped over a certain range of frequencies. The choice of these frequencies is 
dictated by the pattern of conditional probabilities of NBER recessions that we high-
lighted in Figure 1, which suggests important cyclical forces in the 32–40 quarter 
range. We therefore test for a peak in the following way. We select three intervals of 
frequencies: a “lower trough range” interval ​​Ω​​T​1​​​​​, which contains frequencies corre-
sponding to cycles 16–32 quarters long; a “peak range” ​​Ω​P​​​ for 32–40 quarters; and 
an “upper trough range” ​​Ω​​T​2​​​​​ for 40–60 quarters. We report results under two differ-
ent null hypotheses. The first null hypothesis is that the spectral density is flat over 
the region in question. While we do not believe this null hypothesis is especially per-
tinent, we provide results for it for the sake of completeness. We refer to this as the 
flat null. The second and, in our view, more relevant null hypothesis that we consider 
is one motivated by the influential work of Granger (1966), which argued that the 
spectral densities of most macroeconomic variables have shapes similar to those of 
persistent ​AR​(1)​​ processes, an argument that has since become the consensus view. 
Accordingly, the second null hypothesis is that the spectral density is that of the 
​AR​(1)​​ process that best fits the data.22 We refer to this as the ​AR​(1)​​ null. We then 
test whether the spectral density over the interval ​​Ω​P​​​ is higher relative to the ​​Ω​​T​1​​​​​ 
and ​​Ω​​T​2​​​​​ intervals than is predicted by the null.

19 For the typical real business cycle (RBC) moments (i.e., output, consumption, investment and hours stan-
dard deviations, standard deviations relative to the output one, autocorrelations, correlations with output, and 
hours-average labor productivity correlation), we obtain the same overall patterns with band-pass(6, 32) or (6, 50) 
filtered data.

20 We use a bootstrap procedure to compute these confidence intervals. See online Appendix Section C.4 for 
details.

21 Note that confidence bands (including those in panel D of Figure 2) are insufficient for this task, since 
“peaked-ness” is inherently a property of the size of the spectrum at one group of frequencies relative to another. For 
example, confidence bands can tell you about the likelihood that, due purely to sampling error, the point estimate at 
some frequency is high. They cannot tell you, however, about the likelihood that, due to sampling error, the point 
estimate is both high at one frequency and simultaneously low at some other frequency. Since the latter is precisely 
the type of event that could produce a spurious peak in the estimated spectral density, some other approach is needed 
in order to evaluate its likelihood.

22 We estimate the ​AR​(1)​​ parameters by ordinary least squares.
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Formally, let ​X​ be the series under consideration and ​​γ​k​​  =  cov​(​X​t​​, ​X​t−k​​)​​ its 
auto-covariance function. The associated spectral density function is

	​ f ​(ω)​  ≡ ​  1 _ 
2π ​ ​  ∑ 

k=−∞
​ 

∞
 ​​​ e​​ −ikω​ ​γ​k​​,​

and the periodogram for a ​T​-period sample is given by

	​ I​(ω)​  ≡ ​   1 _ 
2πT

 ​ ​​|​ ∑ 
t=1

​ 
T

  ​​ ​X​t​​ ​e​​ −iωt​|​​​ 2​.​
Let ​​ω​j​​  ≡  2πj / T​, ​j  =  0,  …  , ​T​​   ⁎​​, ​​T​​   ⁎​  ≡ ​​ ⌊​​T / 2​⌋​​​​, denote the Fourier frequencies. A 
useful statistical result (Hamilton 1994, p. 164) is that, asymptotically,

(1)	 ​R​(​ω​j​​)​  ≡ ​ 
2I​(​ω​j​​)​ _ 
f ​(​ω​j​​)​

 ​ ​  ∼​​ i.i.d.​ ​ χ​ 2​ 2​,   ​ω​j​​  ∉ ​ {0, π}​,​

where i.i.d.s are across different ​j​ s. This result implies that

	​ ​D​q​​  ≡ ​  1 _ ​m​q​​ ​ ​ ∑ 
​ω​j​​∈​Ω​q​​

​ 
 
 ​​ R​(​ω​j​​)​  ∼ ​  1 _ ​m​q​​ ​ ​χ​ 2​m​q​​​ 

2  ​,​

and that the statistic ​​D​q​​​ is i.i.d. across ​q  ∈ ​ {P, ​T​1​​, ​T​2​​}​​, where ​​m​q​​​ is the number of 
Fourier frequencies in ​​Ω​q​​​. Our shape test is then as follows: conditional on a null 
for the spectral density ​f​ (either flat or derived from an ​AR​(1)​​), we compute the 
observed value of ​​D​q​​​, denoted ​​d​q​​​. For the frequencies ​​ω​j​​  ∈ ​ Ω​​T​1​​​​ ∪ ​Ω​P​​ ∪ ​Ω​​T​2​​​​​, the 
“flat” null corresponds to

	​ f ​(​ω​j​​)​  = ​  f ¯ ​,​

and the ​AR​(1)​​ null, with the autocorrelation parameter ​ρ​ and innovation variance ​​σ​​ 2​​, 
corresponds to

	​ f ​(​ω​j​​)​  = ​   ​σ​​ 2​ _ 
2πg​(​ω​j​​; ρ)​ ​,​

where ​g​(ω; ρ)​  ≡  1 + ​ρ​​ 2​ − 2ρ cos​(ω)​​. The ​p​-value we seek is then

	​ p  =  Pr​{​ ​D​P​​ _ ​D​​T​1​​​​
 ​  ≥ ​  ​d​P​​ _ ​d​​T​1​​​​

 ​  and  ​ ​D​P​​ _ ​D​​T​2​​​​
 ​  ≥ ​  ​d​P​​ _ ​d​​T​2​​​​

 ​}​.​

Since the joint distribution for ​​D​P​​ / ​D​​T​1​​​​​ and ​​D​P​​ / ​D​​T​2​​​​​ is complicated, we use a Monte 
Carlo approach to compute ​p​: we randomly draw ​​​D ̃ ​​q​​  = ​ χ​ 2​m​q​​​ 

2  ​/​m​q​​​ for each ​q​, then 
compute ​​​D ̃ ​​P​​ / ​​D ̃ ​​​T​1​​​​​ and ​​​D ̃ ​​P​​ / ​​D ̃ ​​​T​2​​​​​. This is repeated ​N  =  1,000,000​ times, and the result-
ing simulated distribution is used to obtain ​p​. When we apply this shape test to the 
hours series from Figure 2, we obtain ​p​-values of 1.5 percent for the flat null and 
3.9 percent for the ​AR​(1)​​ null.23 At standard significance levels, we therefore reject 

23 Assuming the underlying data-generating process is Gaussian, the statistic ​R​(​ω​j​​)​​ in (1) is distributed 
as ​​χ​ 2​ 2​​ even in finite samples. However, independence across ​j​s holds only asymptotically, potentially making our 
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both that the spectrum is flat in the relevant region, and also that it has the Granger 
shape.

Other Related Variables.—Above, we provide evidence that aggregate hours 
worked per capita appears to contain an important cyclical component, as captured 
by the peak in its spectrum in a window near 38 quarters. It is immediately relevant 
to ask whether this property is representative of other cyclical measures. To this end, 
in Figure 3 we present estimates of the spectral density for two other closely related 
labor market measures (the employment rate and the unemployment rate), as well as 
for the investment-to-GDP ratio, which is often viewed as a cyclical indicator. The 
employment rate and investment ratio cover the same postwar period as our hours 
series, while for the unemployment rate, in the hopes of obtaining more precise 
estimates, we take advantage of the longer series constructed by Ramey and Zubairy 
(2018) that covers 1890:I–2015:II. We also report results for the unemployment rate 

​p​-values, which were computed under this independence assumption, inappropriate. To check this, we tried an 
alternative bootstrap-based method to compute ​p​-values that explicitly accounted for the finite size of our sample, 
and the results were nearly identical (available upon request). Thus, possible dependence across the ​R​(​ω​j​​)​​s does not 
appear to be driving any of our results.

Figure 3. Spectral Density of Other US Series

Notes: These panels display estimates of the spectral density of the employment rate (panel A), unemployment rate 
(panel B and C), and investment/GDP ratio (panel D) in levels (black line) and for 101 series that are high-pass 
(​P​) filtered version of the levels series, with ​P​ between 100 and 200 (gray lines). A high-pass (​P​) filter removes 
all fluctuations of period greater than ​P​. For employment rate, investment/GDP ratio and postwar unemployment 
rate, the sample is 1948:I–2015:II and it is 1890:I–2015:II for the long sample. For long sample unemployment, the 
smoothing window width has been reduced from 13 to 9 quarters as we have roughly twice as many observations.

Panel B. Post war unemployment rate
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for the postwar period alone. Note that, as with the hours series, we first tested each 
series to check that it could plausibly be treated as stationary before obtaining its 
spectral density.

In each case, we again see a peak in the spectral density in the same general 
range as observed for hours. Note that the longer unemployment series has its 
peak at a slightly shorter periodicity of around 35–36 quarters.24 Rows 2 to 5 of 
Table 1 report, for each series, the ​p​-values for the same hump-shape test we per-
formed above for hours worked (reproduced in the first row of the table). As can be 
seen, the flat null is clearly rejected for all series at the 5 percent level, while the  
​AR​(1)​​ null is rejected for three of the series at a 5 percent level, and 6 percent for 
fourth (the employment rate). We take these results as strong additional evidence 
that the real sector of the economy may reflect cyclical forces.25 In online Appendix 
Section D, we document that such cyclical features also appear to be present for 
unemployment rates in other countries of the G7.

C. Spectral Implications for Hours in Standard Models

In the previous sections we have shown that several measures of labor market 
activity, as well as another cyclical indicator of real activity (the investment-to-GDP 
ratio), exhibit significant spectral peaks at a periodicity of around 38 quarters. In this 
subsection, we argue that this observation conflicts with the spectra implied by many 
modern business cycle models. To illustrate this, we report in Figure 4 the spectral 

24 The observation that the cyclical component of unemployment may have a shorter periodicity in the prewar 
period is not too surprising, given that it is well known that business cycles tended to be shorter on average in the 
prewar period.

25 One may also be interested in knowing whether quantity variables (such as output) also exhibit a hump in 
their spectral densities in a similar range to that observed for the other variables. The difficulty with such variables, 
however, is that they are clearly nonstationary, so that some type of transformation is needed before one can exam-
ine the spectral density. For several different measures of output per capita, we have explored using the (controver-
sial) method of passing the series through a high-pass filter to remove the nonstationary component. For the cases 
we examined, we did not find much evidence of a peak in filtered output. As we discuss in online Appendix Section 
F, however, we provide evidence in support of the idea that this is likely the result of certain properties of produc-
tivity (as measured by utilization-adjusted TFP), rather than an absence of underlying cyclical forces altogether.

Table 1—Hump-Shape (w/Peak at 32–40Q) Test ( ​p​-values)

Flat null ​AR​(1)​​ null

Real variables
NFB hours 1.5 3.9
Employment 2.4 5.8
Unemployment (postwar) 1.1 3.6
Unemployment (long sample) 0.2 5.0
Investment/GDP ratio 0.6 0.8

Financial variables
BAA/FF spread 2.4 6.1
NFCI 0.1 0.1
AAA/T-bill spread 0.1 0.4
Shiller P/E ratio 1.9 1.9

Note: Table displays simulated ​p​-values for the hump-shape test with peak at 32–40 quarters, 
under both the flat and ​AR​(1)​​ null hypotheses.
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density of hours implied by six models that we think span the range of quantitative 
models: two real models, a New Keynesian one, and three models with financial fric-
tions. The first model is the simplest Real Business Cycle model described in Cooley 
and Prescott (1995). In that stripped-down model, fluctuations only come from per-
sistent technology shocks. The second model is an RBC model augmented to include 
variable capital utilization, as well as investment-specific technology shocks as a 
second source of fluctuations.26 The third model is the rich New Keynesian model 
of Smets and Wouters (2007), which features seven shocks and a variety of real and 
nominal frictions. The fourth model is the financial frictions model of Carlstrom 
and Fuerst (1997), while the fifth is the financial-accelerator model of Bernanke, 
Gertler, and  Gilchrist (1999), as estimated on US data by Christensen and  Dib 
(2008). The sixth and final model, as proposed by Christiano, Motto, and Rostagno 
(2014), incorporates the microeconomics of the debt-contracting framework of 
Bernanke, Gertler, and Gilchrist (1999) into an otherwise standard monetary model 
of the business cycle, and features a large number of shocks, including news and 

26 This augmented model is calibrated following Fernandez-Villaverde (2016).
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Figure 4. Spectral Densities of Hours in Some Standard Models

Notes: The figure displays the mean spectral density of hours over 10,000 simulations of length 270. Models 
and parameters values are Cooley and Prescott (1995) for the standard RBC model, Fernandez-Villaverde (2016) 
for the augmented RBC (with variable capital utilization and investment-specific technology shocks), Smets 
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Gertler, and Gilchrist (1999) estimated on US data and Christiano, Motto, and Rostagno (2014). For better visual 
display, all the series have been standardized to have unit variance.
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risk shocks.27 In each case, we see essentially the same thing: the spectrum does 
not have a peak, but rather is monotonically-increasing in the periodicity, similar 
to an ​AR​(1)​​ process (i.e., it has the Granger shape). This observation should not be 
too surprising: as is well known, internal propagation in these models is generally 
quite weak, and therefore the endogenous variables largely inherit the properties of 
the exogenous driving forces, which in these cases are either equal to or close to 
​AR​(1)​​ processes. Although these examples are only illustrative, in our exploration 
of different models we have not yet found an estimated model that produces a peak 
in the spectral density of hours similar to the one we find in the data.

D. Is There a Related Financial Cycle?

The financial crisis of 2007 has revived interest in connecting business cycles to 
financial conditions.28 As such, we now turn to looking at the spectral properties 
of a set of financial market indicators. In parallel to our exploration of real vari-
ables, we again restrict attention to variables that appear to be stationary (based on 
Dickey-Fuller tests), allowing us to directly examine their spectral densities without 
prior transformation.29 In particular, we examine whether indicators of financial 
market conditions also exhibit peaks in their spectral densities in a range of fre-
quencies similar to that observed for hours worked. Knowing whether this is the 
case will be important in helping to identify the type of model that may best explain 
the employment cycle we emphasized previously. To this end, we report estimates 
for four financial market indicators in Figure 5. Our main series of interest, which 
we will later also use in model estimation, is the spread between the Federal Funds 
(FF) rate and the rate on BAA bonds. This series runs from 1954:III to 2015:II. This 
interest spread is a common measure of financial market risk discussed throughout 
the macrofinancial linkage literature, and is typically interpreted as a measure of 
the market risk premium. The estimated spectral density for this measure of the risk 
premium is presented in panel A of Figure 5. As is clear from the figure, we again 
find evidence of a hump in the spectral density in the range just above the standard 
business cycle range, though the actual peak is located slightly below the ones found 
for our postwar real measures.30

To verify this visual impression, in the sixth row of Table 1 we report results for 
the same hump-shape test as performed for the real variables above. The data reject 
that the spectral density is flat or similar to an ​AR​(1)​​ in the relevant range, in favor 

27 To simulate this model, we use the Dynare code provided in the replication package of the Macroeconomic 
Model Data Base (see Wieland et al. 2016).

28 See, for example, Borio (2014).
29 We nevertheless again also show that the results are robust to first filtering the data with a high-pass filter in 

order to remove very low-frequency movements.
30 For this interest rate spread measure there is also a second, smaller, peak near 21 quarters. This second peak, 

which also appears for two other spread series we consider (including the one in panel C of the figure) but not in 
any of the other series, could be indicative of a second source of cyclicality relevant only for interest rate spreads. 
Alternatively, as is well known, a peak at periodicity ​n​ with a second peak at periodicity ​n / k​ for some integer ​k​ 
(e.g., at one-half of the periodicity of the original) is indicative of a recurrent cyclical pattern with periodicity ​n​, but 
where that pattern is not well captured by a simple sine wave. Even though 21 quarters is not exactly one-half of 
34 quarters, one would not be able to reject the null hypothesis that, in the population spectrum, the smaller peak 
is at exactly one-half of the periodicity of the larger one (i.e., that the smaller peak is simply a reflection of cyclical 
behavior at the larger periodicity). While this issue bears further study, for now we concentrate on the peak near 
38 quarters. 
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of the alternative that there is a local peak centered somewhere between 32 and 40 
quarters. In online Appendix Section E, we also examine the co-movement between 
this risk premium measure and our previous hours worked measure. We find the cor-
relation between the two to be highest (in absolute value) at precisely the frequen-
cies emphasized by the peaks in their spectral densities. We also find that, within the 
4–60 quarter range of periodicities, the spectral coherence between the two series is 
maximized at 38 quarters. Together, these observations suggest that the labor market 
and the financial market may share cyclical forces that express themselves at a peri-
odicity of around nine years. In a later section our goal will be to explore one class 
of explanations for these shared cyclical patterns.

The other variables presented in Figure 5 are as follows. In panel B we show the 
spectral density for the Chicago Fed’s National Financial Conditions Index (NFCI), 
which begins in 1971:I. As described in Brave and Butters (2011), the NFCI, which 
is computed from a large sample of financial indicators, is a synthetic index between 
−1 and 1 that attempts to summarize financial conditions. In panel C, we show 
the spectrum of the spread between the 3-month T-bill rate and the rate on AAA 
bonds. Relative to the series shown in panel A, the advantage of this series is that 
it goes back to 1920:I, potentially allowing for more precise estimates. In panel D, 
we show the spectrum of a price-earnings ratio series that goes back to 1871. All 
of these series exhibit humps in their spectral densities in the range slightly beyond 
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Notes: Panels A to D show estimates of the spectral density for the series in levels (black line) and for 101 series 
that are high-pass (​P​) filtered version of the levels series, with ​P​ between 100 and 200 (gray lines). A high-pass (​P​) 
filter aims to remove all fluctuations of period greater than ​P​. All series end in 2015:II, and start, respectively, in 
1954:III for panel A, 1973:I for panel B, 1920:I for panel C, and 1871:I for panel D.
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the standard business cycle range. The AAA risk premium and price-earnings ratio 
series have shapes quite similar to our baseline spread series in panel A, while the 
synthetic NFCI series has a hump that is slightly more spread out than the others. 
In the final three rows of Table 1, we report the results of our formal peak tests for 
these variables. In each case, the data quite strongly reject the null hypothesis that 
there is no peak in the spectrum in the 32–40 quarter range. Thus, the overall picture 
that emerges from our visual and statistical evidence suggests a close link between 
the cycle in employment and the cycle in financial market conditions. This suggests 
to us that, in attempting to explain the cyclical patterns in the data, one should look 
toward models that feature real-financial linkages.

II.  Explaining Spectral Peaks: A Class of Models

In the previous section we documented the presence of a significant peak in the 
spectral densities of several non-trending macroeconomic variables at a periodicity 
near 38 quarters. In particular, we emphasized the presence of this peak in variables 
related to both employment and financial market conditions. The presence of such 
peaks suggests that the macroeconomy may embed cyclical forces that manifest 
themselves at a frequency slightly lower than what has traditionally been associated 
with business cycle fluctuations. However, as we have discussed, we believe that 
such forces should nevertheless be viewed as a part of the business cycle, rather than 
something distinct from it, since they appear intimately linked to the occurrence of 
recessions. The object of the next two sections is to explore mechanisms that may 
lie behind such phenomena.

There are at least three classes of explanations for such cyclical behavior: expla-
nations based mainly on properties of the exogenous driving forces, explanations 
based primarily on the properties of individual level behavior, and, finally, expla-
nations based on equilibrium interactions, that is, explanations where cyclical out-
comes arise as the result of market interactions between individuals who, in the 
absence of such interactions, would not tend to make cyclical choices. Our main 
goal in this section is to better understand the mechanisms that may give rise to this 
latter possibility. To this end, we begin by examining how a hump-shaped spectral 
density can arise in a mechanical model where agent interactions are captured by a 
market-determined variable that each agent takes as given. The framework allows 
us to isolate simple conditions under which endogenous cyclical outcomes emerge 
purely as the result of equilibrium forces. We also use the framework to clar-
ify potential challenges that may arise when attempting to explain hump-shaped 
spectral densities in an equilibrium framework, especially when local instability 
and limit cycles cannot be ruled out. In Section III, we will explore the empir-
ical relevance of these notions using an optimization-based forward-looking  
model.

A. Demand Complementarities as a Source of Cyclicality

The Environment.—To understand the economic forces that may generate cycli-
cality, let us consider an environment with a large number ​N​ of agents indexed by ​j​, 
where agent ​j​ makes a decision ​​e​jt​​​. Here, ​​e​jt​​​ could represent a decision regarding an 
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expenditure, a level of output or a level of investment. The decision rule of the indi-
vidual is assumed to take the form31

(2)	 ​​e​jt​​  = ​ α​0​​ + ​α​1​​ ​X​jt​​ + ​α​2​​ ​e​jt−1​​ + ​α​3​​ ​q​t​​ + ​μ​t​​,​

where ​​X​jt​​​ is a stock variable that could represent, for example, capital, net worth, or 
a habit stock, and which satisfies an accumulation equation of the form

(3)	 ​​X​jt+1​​  = ​ (1 − δ)​ ​X​jt​​ + ψ​e​jt​​,  0  <  δ  <  1.​

The term ​​μ​t​​​ in equation (2) represents an exogenous driving force,32 and ​​q​t​​​ rep-
resents some market-determined variable, such as a price or a matching rate. Since 
we allow ​​α​1​​​ to be positive or negative (or zero), for simplicity and without loss of 
generality we henceforth normalize ​ψ  =  1​. The inclusion of ​​e​jt−1​​​ in (2), mean-
while, is intended to capture potential inertial effects. A key aspect of this setup 
is the interaction between individuals, as captured by the market-determined vari-
able ​​q​t​​​. In particular, to capture equilibrium forces, we allow ​​q​t​​​ to be an arbitrary 
function of the average behavior of others, i.e.,

(4)	 ​​q​t​​  =  Q​(​ 1 _ 
N ​ ​ ∑ 

j=1
​ 

N

 ​​ ​e​jt​​)​,​

where, following Cooper and John (1988), we will refer to the actions of agents 
as being (strategic) complements if ​​α​3​​Q′( · )  >  0​ and (strategic) substitutes if 
​​α​3​​Q′( · )  <  0​. Compared with Cooper and  John (1988), our framework embeds 
their static game within each period, with dynamic elements added through both the 
inertial forces captured by ​​α​2​​ ​e​jt−1​​​ and the accumulation forces captured by ​​α​1​​ ​X​jt​​​. 
For now we will consider ​Q​ to be a linear function of aggregate behavior, i.e., we 
take ​​q​t​​  = ​ α​4​​ ​e​t​​​, where ​​e​t​​  = ​ N​​ −1​ ​∑ j​   ​​ ​e​jt​​​. Later we will discuss the effect of allow-
ing the function ​Q( · )​ to be nonlinear. We also restrict attention to situations where 
​​α​3​​Q′​(e)​  <  1​ so as to rule out the possibility of multiple equilibria. Moreover, 
we will assume that ​​μ​t​​​ is a stationary stochastic process of the form ​​μ​t​​  =  D​(L)​ ​ϵ​t​​​ 
where ​D​(L)​​ is a polynomial in the lag operator ​L​, and ​​ϵ​t​​​ are i.i.d. shocks with unit 
variance. Finally, as we are interested here in understanding the role of agent inter-
actions in creating cyclical aggregate outcomes, we will exclude the possibility of 
exogenously driven cyclicality by making the following assumption.

ASSUMPTION 1: The spectral density ​​s​μ​​​(ω)​​ of ​​μ​t​​​ is monotonic on frequencies  
​ω  ∈ ​ [0, π]​​.

Note that Assumption 1 would hold if, for example, ​μ​ followed an AR(1) pro-
cess. We now derive conditions under which aggregate behavior in this setup could 
feature cyclical behavior, as captured by a hump-shaped spectral density. To see the 

31 In Beaudry, Galizia, and  Portier (2016), we show that most of the properties that we derive here 
are also present if the model includes a forward-looking component; that is, if we specify behavior 
as ​​e​jt​​  =  ​α​0​​ + ​α​1​​ ​X​jt​​ + ​α​2​​ ​e​jt−1​​ + ​α​5​​ ​E​t​​ ​e​jt+1​​ + ​α​3​​ ​q​t​​ + ​μ​t​​​.

32 The analysis can be easily extended to include idiosyncratic shocks as well.
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forces at play explicitly, it is useful to write out the spectral density of ​​e​t​​​. Focusing 
on the symmetric outcome where ​​e​jt​​  = ​ e​t​​​, the evolution of ​​e​t​​​ can be written as

	​ ​e​t​​  = ​ (​ ​α​1​​ + ​α​2​​ _ 
1 − ​α​3​​​α​4​​

 ​ + 1 − δ)​ ​e​t−1​​ − ​ 
​α​2​​​(1 − δ)​
 _ 

1 − ​α​3​​​α​4​​
 ​ ​e​t−2​​ + ​ 

1 − ​(1 − δ)​L
 _ 

1 − ​α​3​​​α​4​​
 ​ ​ μ​t​​,​

and accordingly the spectrum of ​​e​t​​​ can be written as

(5)	 ​​s​e​​​(ω)​  = ​ s​μ​​​(ω)​ × ​ 
​[1 − ​(1 − δ)​exp​{iω}​]​​[1 − ​(1 − δ)​exp​{− iω}​]​    _______________________________   

​​(1 − ​α​3​​​α​4​​)​​​ 2​
 ​  × g​(ω)​,​

where

	  ​i  = ​ √ 
_

 − 1 ​​, ​ g​(ω)​  ≡ ​​ [B​(exp​{iω}​)​B​(exp​{− iω}​)​]​​​ 
−1

​​,

and

	​ B​(L)​  ≡  1 −​ ​​(​ 
​α​1​​ + ​α​2​​ ________ 

1 − ​α​3​​ ​α​4​​
 ​ + 1 − δ)​L + ​ 

​α​2​​​(1 − δ)​
 ________ 

1 − ​α​3​​ ​α​4​​
 ​ ​L​​ 2​​.

From equation (5), we see the different forces that can cause the spectrum to 
have a local peak. The first term represents the properties of the exogenous driving 
force. Assumption 1 implies that this term is monotonic, and so rules out that it can, 
by itself, be the source of a hump-shaped spectral density for ​e​. It can be verified 
that the second term, which captures the direct impact of the capital accumulation 
process (3), is also monotonic on ​​[0, π]​​, and therefore also cannot directly create a 
hump-shaped spectral density for ​e​. This leaves the last term, ​g​(ω)​​, which captures 
the transitional dynamic forces generated by the interaction of individual decision 
rules and the market-determined value of ​q​.33 The question we now ask is: under 
what conditions will agent interaction (through the endogenous determination of ​q​) 
be the cause of a hump in the spectral density? To make the results as clear as possi-
ble, we focus on situations where the following assumption is also satisfied.

ASSUMPTION 2: ​​α​1​​​, ​​α​2​​​, and ​δ​ are such that, when ​​α​3​​ ​α​4​​  =  0​, the eigenvalues of 
the system34 represented by equations (2)–(4) are real, positive, and smaller than 1.

Assumption 2 implies that, if there were no forces linking agents’ decisions 
together, as would be the case if either ​​α​3​​  =  0​ or ​​α​4​​  =  0​, then ​g​(ω)​​ would be 
monotonic and, accordingly, would not by itself introduce a local peak in the 
spectral density of ​e​.35 In other words, Assumption 2 rules out the possibility that 

33 It should be noted that, even if each of these components were monotonic, their product could nevertheless 
exhibit a local peak. Such an interaction could be an alternative avenue to explain the observed pattern in the data. 
In our model of Section III that we take to the data, such a possibility will be allowed, but in the end it is not favored 
by the data, and so we do not focus on it here.

34 By the eigenvalues of the system, we mean the eigenvalues of the deterministic version of the system (i.e., 
the eigenvalues of the system when ​​μ​t​​​ does not appear in (2)). Equivalently, these are the eigenvalues of the AR(2) 
process for ​​e​t​​​ defined by ​B​(L)​ ​e​t​​  =  ​ν​t​​​ with ​​ν​t​​​ i.i.d.

35 See the proof of Proposition 1.
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individual-level choices are cyclical when ​q​ is constant. This brings us to the main 
proposition for this section, which indicates necessary conditions for agent interac-
tions to create a hump-shaped spectral density.36

PROPOSITION 1: Under Assumptions 1 and 2, for agent interactions to produce 
a hump in the spectral density, i.e., for ​g​(ω)​​ to have a maximum on the interior of  
​​[0, π]​​, it is necessary to have ​​α​3​​ ​α​4​​  >  0​, ​​α​1​​  <  0​, and ​​α​2​​  >  0​.

Proposition 1 highlights three forces that are necessary for aggregate outcomes 
to exhibit a spectral hump even when individual-level forces are not sufficient to 
produce one. The first of these conditions is that the decisions of agents act as stra-
tegic complements. This is captured by the condition ​​α​3​​ ​α​4​​  >  0​; that is, ​​α​3​​​ and ​​α​4​​​ 
need to be such that the decision by one agent to increase ​​e​jt​​​ causes others to do 
the same. In addition to this complementarity property, it is also necessary that the 
stock ​​X​jt​​​ tends to have a dampening effect on ​​e​jt​​​. Finally, the inertial effect must be 
positive, i.e., there must be sluggishness in the adjustment of ​​e​jt​​​ over time. The intu-
ition for these results is most easily understood in the case where ​e​ is interpreted as 
an investment decision and ​X​ is interpreted as a stock of capital. Complementarity 
(​​α​3​​ ​α​4​​  >  0​) causes agents to want to invest at the same time, but as they invest 
together, this leads to an increase in ​X​ which, due to decreasing returns (​​α​1​​  <  0​), 
eventually leads them to want to disinvest. These countervailing forces can produce 
oscillations in ​e​. Finally, sluggishness (​​α​2​​  >  0​) is necessary to prevent the result-
ing cycles from occurring too rapidly to produce a hump in the spectrum.37

That the conditions highlighted in Proposition 1 may lead to cyclicality in this 
simple setup may not be too surprising. However, what to us is more interesting is 
that these conditions are in fact necessary here. In particular, as we discuss later, 
few of the commonly estimated types of models in the literature embed these forces 
simultaneously, and therefore many models appear, by design, limited in their 
capacity to endogenously explain aggregate cyclicality.

B. Pushing the Complementarities Further: Local Instability and Limit Cycles

The second issue we want to address with the model represented by equations 
(2)–(4) relates to how such a system behaves if the complementarity, as captured 
by ​​α​3​​ ​α​4​​​, becomes strong enough. In particular, Proposition 2 indicates that, even if 
we restrict our focus to the case where ​​α​3​​ ​α​4​​  <  1​, as the complementarity becomes 
sufficiently strong, this system will become unstable.

PROPOSITION 2: There exists an ​​α​​ ⋆​  ∈ ​ (0, 1)​​ such that if ​​α​​ ⋆​  < ​ α​3​​ ​α​4​​  <  1​ then 
the system represented by (2)–(4) is unstable. Moreover, as ​​α​3​​ ​α​4​​​ increases from 
zero, at the point where stability is lost the eigenvalues of the system are complex 
if ​​δ​​ 2​  <  − ​α​1​​/​α​2​​  < ​​ (2 − δ)​​​ 2​​.

36 Proofs of all propositions are presented in the Appendix at the end of this article.
37 Specifically, cycles would last two periods, and thus the “peak” in ​g​(ω)​​ would occur at frequency ​π​, rather 

than an interior point of ​​[0, π]​​ as desired.
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Proposition 1 and Proposition 2 together suggest that one needs to be aware of 
certain difficulties if one builds on a structure similar to equations (2)–(4). In par-
ticular, Proposition 1 suggests that allowing for complementarities may be neces-
sary to understand endogenously generated hump-shaped spectral densities, while 
Proposition 2 suggests that it is precisely in such a case that instability can arise. At 
first pass, one may be tempted to disregard the possibility of instability since market 
economies do not appear to be explosive. However, as we discuss below, this may be 
too dismissive. In contrast, we take Proposition 2 as suggesting that, in frameworks 
that embed complementarities and dynamics together, one should take seriously the 
possibility of local instability.

Since equations (2) and (3) are linear, and since we have assumed thus far that ​Q​ 
is also linear, any form of local instability in this setup necessarily implies explo-
siveness, and therefore could be ruled out by the observation that the economy is not 
explosive. But this equivalence between instability and explosiveness is a knife-edge 
feature that depends on not having any nonlinearity in the model. In contrast, if we 
were to allow for some nonlinearities in the model, for example, by allowing ​Q​ to 
be nonlinear, then Proposition 2 suggests that, as complementarities (e.g., ​​α​3​​​ ​​α​4​​​) 
increase, the system can experience a Hopf bifurcation38 resulting in the emergence 
of a locally unstable steady state surrounded by a stochastic limit cycle,39 which is 
a situation where the internal dynamics of the system (i.e., when the stochastic ele-
ments are set to zero) support a perpetual (limit) cycle. As discussed in the introduc-
tion, the idea that macroeconomic fluctuations may reflect limit cycle forces has a 
long history in the literature, even though it has played a minor role in modern mac-
roeconomics. The value of Propositions 1 and 2 is to emphasize that the equilibrium 
and behavioral features that may allow a linear model to produce a hump-shaped 
spectral density may simultaneously be features that allow a nonlinear version of 
the same model to produce the same pattern as the result of a limit cycle. Hence, 
when attempting to explain hump-shaped spectral densities, it appears warranted to 
explore whether such a pattern may reflect limit cycle forces, or whether it can be 
well captured by a stable linear structure. We explore this issue further in Section III.

C. Discussion

While the reduced-form model represented by equations (2)–(4) is largely 
mechanical, we believe it nevertheless suggests some general modeling features 
that could help to explain the spectral density features we documented in Section I. 
In particular, Proposition 1 emphasizes that, to produce a hump-shaped spectral 
density as the result of equilibrium interactions, one likely needs agents’ decisions 
to positively affect the decisions of others; that is, the decisions should be strategic 
complements. However, in many macroeconomic models, individual-level deci-
sions tend to act as strategic substitutes (as would be captured in our model by 
having ​​α​3​​ ​α​4​​  <  0​) due to standard price effects. This property remains true even in 

38 Since the system under consideration is in discrete time, the bifurcation that occurs is more accurately referred 
to as a Neimark-Sacker bifurcation (see Kuznetsov 1998).

39 See Beaudry, Galizia, and Portier (2015, 2016) for further details about this statement including an extension 
to models with a forward-looking component in which a saddle-path limit cycle can arise.
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most New Keynesian models, since the central bank typically raises interest rates if 
one group increases their purchases, thereby causing others to decrease their pur-
chases. Hence, to produce a hump-shaped spectral density, a model will likely need 
to depart sufficiently from standard neoclassical principles, which favor substitut-
ability, to a model in which actions can act as strategic complements. Our empirical 
observations regarding the risk premium on borrowing suggest that this premium 
tends to fall when activity is high, which may represent such a source of comple-
mentarity. This suggests that one promising avenue to explain spectral peaks may be 
models of financial frictions.40

It should be noted that many macro models of financial frictions do not in fact 
have a structure that, according to the framework presented above, is likely to 
generate a hump-shaped spectral density. For example, relative to, say, a simple 
neoclassical benchmark, workhorse models of financial frictions such as Carlstrom 
and Fuerst (1997) and Bernanke, Gertler, and Gilchrist (1999) introduce net worth 
as a relevant determinant of activity. This net worth can be thought of as a stock vari-
able ​​X​it​​​ that favors, rather than dampens, activity (i.e., it features ​​α​1​​  >  0​),41 with 
agents’ choices of current activity typically continuing to act as substitutes (through 
standard price effects), rather than complements. Thus, the net worth channel may 
amplify and prolong the effects of shocks, but is unlikely to generate a hump-shaped 
spectral density. Accordingly, in the next section, we explore a model in which 
financial frictions do allow for complementarity, and where the accumulation of 
household capital has a dampening effect on new purchases.42 We use this model to 
explore a set of issues, namely, (i) how allowing for complementarities can change 
one’s inference regarding the role played by exogenous forces in explaining the 
data, (ii) the sensitivity of such inferences to the data frequencies used in estimation, 
and (iii) the implications of allowing for limit cycles in the estimation of the model.

III.  A New Keynesian Model

In this section, we use an extended New Keynesian model to explore how, depend-
ing on the mechanisms allowed, the frequency range targeted in the estimation, and 
the estimation method, inferences regarding the relative importance of endogenous 
and exogenous forces in explaining the data can differ. To this end, we study an envi-
ronment with real-financial linkages that focuses on the household, and emphasizes 
how labor market risk (in particular, unemployment risk) can affect financial condi-
tions through its effect on default risk, which in turn can affect consumer demand, 
thereby feeding back to the labor market. Our focus on the household is motivated 
in part by the work of Mian and Sufi (2018) and the main elements of the models 
are meant to capture ideas of the credit cycle as emphasized in the work by Minsky 
(1986).

40 See Beaudry, Galizia, and Portier (2018) for such a model which is a flexible price alternative to the New 
Keynesian model of the next section.

41 Recall that Proposition 1 emphasizes that an accumulation variable should affect activity negatively if it is to 
generate spectral peaks.

42 One alternative possibility would be to pursue mechanisms more akin to those emphasized in Kiyotaki 
and Moore (1997). We choose not to follow this route as we want to place financial frictions that affect households, 
as opposed to firms, central to the mechanism. See Mian and Sufi (2018) for an exposition of the importance of 
financial frictions on the household side in the business cycle. 
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A. The Model

We begin by presenting the household setup and the determination of lending 
rates in the banking sector. In online Appendix Section I, we present all the details 
of the model.

The Determination of Household Consumption Decisions and Risk Premia on 
Loans.—Consider an environment with a mass one continuum of identical house-
holds, each composed of a mass one continuum of identical members (workers) 
and a household head. Each household, through its members, purchases consump-
tion services on the market at nominal price ​​P​t​​​. Letting variables with ​h​ subscripts 
denote variables for household ​h​, and those without denote aggregate variables, 
household ​h​’s preferences are given by

	​ ​E​0​​ ​∑ 
t
​ 
 
 ​​ ​ β​​ t​​ξ​t−1​​​[U​(​C​ht​​ − γ​C​t−1​​)​ + ν​(1 − ​e​ht​​)​]​​,

where ​​E​t​​​ is the expectation operator, ​​C​ht​​​ is the consumption services purchased by 
the household at time ​t​, ​​C​t​​​ is aggregate consumption services (so that there is exter-
nal habit formation), ​​e​ht​​​ is the fraction of employed household members, ​U( · )​ and 
​ν( · )​ are standard concave utility functions, and ​​ξ​t​​​ represents an exogenous prefer-
ence shifter. The worker-members of the household look for jobs and are ready to 
accept employment as long as the real wage ​​W​t​​/​P​t​​​ is no smaller than the reservation 
value of their time to the household. In addition to purchasing consumption services 
on the market, the household also invests in durable goods. These durable goods 
could represent, for example, clothes, furniture, cars, or houses. To avoid issues of 
indivisibility, we assume that households do not directly consume the services from 
their durable goods, but instead rent their durable goods to firms, who use them to 
produce and sell consumption services back to the households. This is why we spec-
ify utility over consumption services instead of consumption goods. A household’s 
holding of durable goods is denoted by ​​X​t​​​,43 the nominal rental rate on durable 
goods is denoted by ​​R​ t​ X​​, and the nominal price of durables is ​​P​ t​ X​​. Durable goods 
accumulate according to

(6)	 ​​X​t​​  = ​ (1 − δ)​ ​X​t−1​​ + ​I​t​​​ ,

where ​​I​t​​​ is the total amount of durable goods purchased by the household at time ​t​ 
and ​δ​ is the depreciation rate.

In order for the financial market to play a role, we assume that members of the 
household need to place orders with firms at the beginning of each period before 
they have received any wage or rental payments. For this reason, household mem-
bers take out loans at the beginning of each period, with the plan to pay them back 
at the beginning of the next period after they have received their income payments. 
The uncertainty at this stage is only idiosyncratic, and comes from the fact that 
jobs are indivisible. All the workers inelastically supply one unit of labor, but firms 

43 Since all households will be identical, for notational simplicity we will often drop ​h​ subscripts where no 
confusion should arise.
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will demand only ​​e​t​​  ≤  1​ jobs, so that a fraction ​1 − ​e​t​​​ of workers will be unem-
ployed. The key market imperfection we introduce is that the financial link between 
a household and its members is imperfect, in the sense that if a household member 
cannot pay back its loan, it may be costly for banks to recover the loan amount 
from the household. In particular, if a household member is unable to pay back 
a loan, which will be the case when she cannot find a job, then with exogenous 
probability ​ϕ​ the bank can pay a cost ​Φ  <  1​ (per unit of the loan) to recover the 
funds from the household, while with probability ​1 − ϕ​ it is prohibitively costly 
to pursue the household, in which case the bank is forced to accept a default. The 
variables ​ϕ​ and ​Φ​ will therefore control the degree of financial market imperfection, 
with ​ϕ  =  1​ and ​Φ  =  0​ creating a frictionless credit market. As we show in online 
Appendix Section I, this financial market imperfection yields a budget constraint for 
household ​h​ of the form

(7)	 ​​D​ht+1​​  = ​ [​​e ¯ ​​t​​ + ​(1 − ​​e ¯ ​​t​​)​ϕ]​​(1 + ​r​t​​)​​(​D​ht​​ + ​P​t​​ ​C​ht​​ + ​P​ t​ X​ ​I​ ht​ X ​)​ − ​(1 + ​i​t​​)​​Y​ht​​,​

where ​​D​ht​​​ is debt owed by the household when entering period ​t​, ​​r​t​​​ is the nom-
inal interest rate charged on one-period loans by the banking sector, ​​i​t​​​ is the 
risk-free interest rate banks pay on deposits, ​​​e ¯ ​​t​​​ is the aggregate employment rate, 
and ​​Y​ht​​  ≡ ​ e​t​​​W​t​​ + ​R​ t​ X​​X​ht​​ + ​Π​t​​​ is total nominal household income, where ​Π​ is total 
firm profits (of which each household receives an equal share). Note that the effec-
tive borrowing rate for the household is ​​[​​e ¯ ​​t​​ + ​(1 − ​​e ¯ ​​t​​)​ϕ]​​(1 + ​r​t​​)​​, which is the loan 
rate times the probability that the household will have to pay the loan back. The 
household has an Euler equation associated with the optimal choice of consumption 
services given by

(8)	 ​​U ′ ​​(​C​t​​ − γ​C​t−1​​)​  =  β ​  ​ξ​t​​ _ ​ξ​t−1​​
 ​​[​​e ¯ ​​t​​ + ​(1 − ​​e ¯ ​​t​​)​ϕ]​​(1 + ​r​t​​)​ ​E​t​​​[​ 

​U ′ ​​(​C​t+1​​ − γ​C​t​​)​  ___________  
1 + ​π​t+1​​

 ​ ]​,​

where ​​π​t+1​​  ≡ ​ P​t+1​​/​P​t​​ − 1​ is the inflation rate from period ​t​ to ​t + 1​. If ​ϕ  =  1​ then 
we have a standard Euler equation where the marginal rate of substitution in con-
sumption across periods is set equal to the real rate of interest faced by households. 
When ​ϕ  <  1​, equation (8) reflects the fact that the household knows that it may 
default on some fraction of its loans. The household will also have an Euler equation 
associated with the purchase of durables given by44

(9)  ​​U ′ ​​(​C​t​​ − γ ​C​t−1​​)​ 

� =  β ​  ​ξ​t​​ _ ​ξ​t−1​​
 ​​E​t​​​[

​ 
​U ′ ​​(​C​t+1​​ − γ​C​t​​)​  ___________  
​(1 + ​π​t+1​​)​​P​ t​ X​

 ​​
{

​ 
​R​ t+1​ X  ​​(1 + ​i​t+1​​)​  _____________________   

​[​​e ¯ ​​t+1​​ + ​(1 − ​​e ¯ ​​t+1​​)​ϕ]​​(1 + ​r​t+1​​)​
 ​ + ​(1 − δ)​​P​ t+1​ X  ​

}
​
]
​.​

Equation (9), when combined with (8), can be interpreted as an arbitrage condition 
that the return to holding a durable good must satisfy.45

44 Note that the household treats the purchase of durable goods as it would any other asset.
45 In the case where ​ϕ  =  1​ and ​​i​t​​  = ​ r​t​​​, equation (9) reduces to the standard asset-pricing condition

​​U ′ ​​(​C​t​​ − γ​C​t−1​​)​  =  β ​  ​ξ​t​​ _ ​ξ​t−1​​
 ​ ​E​t​​​[​ 

​U ′ ​​(​C​t+1​​ − γ​C​t​​)​  ___________  
​(1 + ​π​t+1​​)​ ​P​ t​ X​

 ​​{​R​ t+1​ X  ​ + ​(1 − δ)​ ​P​ t+1​ X  ​}​]​.​
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The central bank sets the nominal interest rate for safe debt ​​i​t​​​, which is also the 
bank deposit rate, and competition will lead ​​r​t​​​ to be such that banks make zero 
profits. The increased probability of loan defaults when unemployment is high will 
cause banks to compensate by increasing their margins over the risk-free interest 
rate. In particular, as shown in online Appendix Section I, in a zero profit equilib-
rium we will have

(10)	 ​1 + ​r​t​​  = ​ (1 + ​i​t​​)​​ 
1 + ​(1 − ​​e ¯ ​​t​​)​ϕΦ

  ___________  
​​e ¯ ​​t​​ + ​(1 − ​​e ¯ ​​t​​)​ϕ

 ​.​

We refer to ​​r​ t​  p​  ≡  (1 + ​r​t​​)/(1 + ​i​t​​) − 1​ as the risk premium. Note here that the risk 
premium does not represent an excess return but simply corresponds to the amount 
needed to compensate for expected default. Using (10) to replace ​​r​t​​​ in (8) we get

(11)  ​​U ′ ​​(​C​t​​ − γ​C​t−1​​)​  =  β ​  ​ξ​t​​ _ ​ξ​t−1​​
 ​​[1 + ​(1 − ​​e ¯ ​​t​​)​ϕΦ]​​(1 + ​i​t​​)​ ​E​t​​​[​ 

​U ′ ​​(​C​t+1​​ − γ​C​t​​)​  ___________  
1 + ​π​t+1​​

 ​ ]​.​

From equations (8) and (10) we see how unemployment risk, financial condi-
tions, and purchasing decisions all become interrelated due to the fact that loans to 
households occasionally involve default and the rate of default ​​(1 − ​​e ¯ ​​t​​)​ϕ​ is endoge-
nously determined. Equation (10) implies that as unemployment increases so does 
the risk premium on loans, while equation (8) indicates that a higher risk premium 
on loans will lead households to delay their purchases. Equation (11) gathers these 
two forces together indicating that higher unemployment (i.e., a fall in ​​​e ¯ ​​t​​​) will lead 
to a delay of consumption. This is the source of strategic complementarity in this 
model: if an agent decides to purchase more goods, this will tend to lower the unem-
ployment rate, which in turn allows banks to charge a lower borrowing rate, thereby 
stimulating other agents to purchase more. Note that this effect runs through ​​e ¯ ​​, so it 
is external to the household, as was the case in Section II.

The household can dictate the reservation wage to household members which 
implies that workers accept all jobs for which the real wage satisfies

(12)� ​​ ​W​t​​ _ ​P​t​​
 ​  ≥ ​ 

​v ′ ​​(1 − ​e​t​​)​  ___________  
​U ′ ​​(​C​t​​ − γ​C​t−1​​)​

 ​ ​ 
​[​e​t​​ + ​(1 − ​e​t​​)​ϕ]​​(1 + ​r​t​​)​  _________________  

​(1 + ​i​t​​)​
 ​  + ​ 1 + ​r​t​​ _ 

1 + ​i​t​​
 ​​(1 − ϕ)​​(​C​t​​ + ​ ​P​ t​ X​ _ ​P​t​​

 ​ ​I​ t​ X​)​.​

In equilibrium, firms will offer wages that satisfy (12) with equality. Note that 
if ​ϕ  =  1​ and ​​r​t​​  = ​ i​t​​​, then (12) implies accepting all wage offers where the real wage 
is higher than the marginal rate of substitution between leisure and consumption.46

Firms.—There are two types of firms in the model: final good firms, and inter-
mediate service firms. The final good sector is competitive and provides consump-
tion services to households by buying a set of differentiated intermediate services, 
denoted ​​C​kt​​​, from the unit mass of intermediate service firms, and combining them 

46 Note that the extra term on the right-hand side of (12) reflects the fact that, by accepting a job, the household 
loses the possibility of being allowed to default on that worker’s loan.
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in a standard way according to a Dixit-Stiglitz aggregator.47 Intermediate service 
producers, meanwhile, are monopolistically competitive in the supply of differ-
entiated consumption services, and take the demand for such services from final 
good firms as given. These intermediate firms produce consumption services using 
durable goods, which can either be rented from households or produced anew 
according to the production technology ​F​(​e​kt​​, ​θ​t​​)​​, where ​​e​kt​​​ is labor hired by firm ​k​, 
and ​​θ​t​​​ is exogenous productivity. We assume that newly produced durable goods can 
immediately produce consumption services, and that the total output of consump-
tion services is simply linear in the total quantity of durables; that is, we assume 
​​C​kt​​  =  s​[​X​kt​​ + F​(​e​kt​​, ​θ​t​​)​]​​, ​s  >  0​, where ​​X​kt​​​ is the amount of durable goods rented 
by firm ​k​ from households.48 Moreover, after using newly produced durables to pro-
duce consumption services, the firm can sell the remaining undepreciated amount 
to households at the market price ​​P​ t​ X​​.49 To increase generality, we will assume that 
the depreciation of new durable goods is given by ​1 − ψ  ≥  δ​, which allows new 
durable goods to potentially depreciate faster in the first period than in subsequent 
periods. This extension allows for the possibility of interpreting that a fraction of 
the new goods depreciate fully within the first period (i.e., are nondurable) and the 
remaining fraction depreciates at the standard durables rate ​δ​.

Since intermediate service producers have a choice between two ways of obtain-
ing durables for use in production (i.e., renting existing durables and producing new 
ones using labor), if both ways are to be used in equilibrium then the net marginal 
cost of an additional unit of durables must be equalized across the two methods. For 
a new unit of durables, this marginal cost is equal to the wage cost per additional 
unit produced, less the value of the undepreciated portion sold to households. For 
rented durables, this marginal cost is simply the rental rate. Thus, we must have

(13)	 ​​R​ t​ X​  = ​   ​W​t​​ _ 
​F​e​​​(​e​kt​​, ​θ​t​​)​

 ​ − ψ​P​ t​ X​​.

Following the New Keynesian literature, we assume that the market for interme-
diate services is subject to sticky prices à la Calvo (1983). This yields a standard 
New Keynesian Phillips curve, though as will become clear shortly, for our purposes 
we will not need to derive it.

The Central Bank and Equilibrium Outcomes.—To close the model, we still need 
to specify how the central bank determines the risk-free interest rate. In order to 
keep the model tractable, we restrict attention to a monetary policy rule governed 

47 See online Appendix Section I for further details.
48 Note that in the production of consumption services, the capital stock variable ​​X​t​​​ and the employment level ​​e​t​​​ 

enter in a separable manner as opposed to entering in the more common form of complements. We adopt this for-
mulation for two reasons. First, from a theoretical point of view, this formulation implies that when ​​X​t​​​ is high it 
necessarily tends to depress the desired level of employment since utility is concave in services. In contrast, if ​​e​t​​​ 
and ​​X​t​​​ where assumed to be complements, then when ​​X​t​​​ is high it becomes ambiguous whether it depresses or favors 
current employment. Since from Section II, we know that having an accumulation variable that has a negative effect 
of new purchases is important for allowing a model to endogenously produce hump-shaped spectral densities, this 
formulation is as easy way of permitting such a possibility. Second, from a conceptual point of view, when thinking 
of ​​X​t​​​ as household capital, it appears more appropriate to assume that it does not directly increase the marginal 
product of labor in the market sector. 

49 Note that in the market for durable goods the intermediate firms are price takers, while they are price setters 
in the consumption service market.
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by only one parameter ​​φ​e​​​, which allows the central bank to only imperfectly control 
its objective of stabilizing inflation and employment. To this end, we assume that 
the central bank sets the nominal interest rate to induce an expected real interest 
rate that rises and falls with expected employment. By allowing the central bank 
to adjust only to expected variables, it can only imperfectly stabilize the economy. 
To be more precise, we assume that the central bank sets the nominal interest rate 
according to a rule of the form

(14)	 ​1 + ​i​t​​  ≈  Θ​E​t​​​[​e​ t+1​ 
​φ​e​​ ​​(1 + ​π​t+1​​)​]​​,

where ​​φ​e​​​ controls the extent to which the central bank tries to stabilize inflation 
and employment, and ​Θ​ controls the steady state level of ​i​. As we show shortly, the 
attractive feature of this monetary policy rule is that it gives the equilibrium equa-
tions a block recursive structure.50

The equilibrium outcomes for this model are given by a set of nine equations 
determining the two aggregate quantities ​​{​C​t​​, ​I​t​​}​​, the employment level ​​e​t​​​, the relative 
prices ​​{​i​t​​, ​r​t​​, ​R​ t​ X​/​P​t​​, ​P​ t​ X​/​P​t​​, ​W​t​​/​P​t​​}​​ and the inflation rate ​​π​t+1​​​.51 Using the monetary 
policy rule (14), as shown in online Appendix Section I, the equilibrium equations 
have a convenient block-recursive structure whereby the variables ​​e​t​​​, ​​X​t+1​​​, and ​​r​ t​  p​​ 
can be solved for first using the equations52

(15)	 ​1 + ​r​ t​  p​  = ​ 
1 + ​(1 − ​e​t​​)​ϕΦ

  ___________  
​e​t​​ + ​(1 − ​e​t​​)​ϕ

 ​​,

(16)	 ​​X​t+1​​  = ​ (1 − δ)​​X​t​​ + ψF​(​e​t​​, ​θ​t​​)​,​

(17)	 ​​U ′ ​​(s​(​X​t​​ + F​(​e​t​​, ​θ​t​​)​)​ − γs​(​X​t−1​​ + F​(​e​t−1​​, ​θ​t−1​​)​)​)​ 

	     =  βΘ ​  ​ξ​t​​ _ ​ξ​t−1​​
 ​​[​e​t​​ + ​(1 − ​e​t​​)​ϕ]​​(1 + ​r​ t​  p​)​

	 × ​E​t​​​[​U ′ ​​(s​(​X​t+1​​ + F​(​e​t+1​​, ​θ​t+1​​)​)​ − γs​(​X​t​​ + F​(​e​t​​, ​θ​t​​)​)​)​​e​ t+1​ 
​φ​e​​ ​]​.​

These three equations will provide our basis for exploring whether such a model can 
capture the spectral properties for hours and the risk premium that we documented 
in Section I.

50 The precise form of the Taylor rule we use to obtain the block recursive property is

​1 + ​i​t​​  =  Θ ​E​t​​​
⎡
 ⎢ 

⎣

​e​ t+1​ 
​φ​e​​ ​ ​ 

​U ′ ​​(​C​t+1​​ − γ ​C​t​​)​  _____________  
​E​t​​​[​ 

​U ′ ​​(​C​t+1​​ − γ ​C​t​​)​  _ 1 + ​π​t+1​​
 ​ ]​

 ​
⎤
 ⎥ 

⎦

​.​

This deviates slightly from (14) due to Jensen’s inequality, which is why (14) is expressed with an ​≈​ symbol. 
51 The relevant equilibrium equations correspond to (8), (9), (10), (12) with equality, (13), the aggregate con-

sumption equation ​​C​t​​  =  s​[​X​t​​ + F​(​e​t​​, ​θ​t​​]​)​​, the accumulation equation (6), the Phillips curve, and the Taylor rule.
52 Given the values of ​​e​t​​​, ​​X​t+1​​​, and ​​r​ t​  p​​ obtained from this system, the remaining equations simultaneously deter-

mine the remaining variables ​​{​C​t​​, ​R​ t​ X​/​P​t​​, ​P​ t​ X​/​P​t​​, ​W​t​​/​P​t​​, ​π​t​​}​​. Note that, as we do not consider the implications of the 
model for inflation, we will not need to explicitly derive the optimal pricing behavior of firms.
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Shocks.—There are two exogenous forces in the model that affect the determi-
nation of hours and the risk premium: the preference shifter ​​ξ​t​​​ and the level of tech-
nology ​​θ​t​​​. Note that the preference shifter could alternatively be interpreted as a 
monetary shock, since allowing for a monetary shock gives rise to the exact same 
equations for the determination of hours and the risk premium. We use the more 
abstract interpretation of it as a preference shifter, since it allows for several differ-
ent interpretations. In our estimation, we will focus on the case where technology is 
constant and the only stochastic driving force is the preference shifter, so as to see 
whether such a minimalist exogenous structure, once embedded in an environment 
with a potentially rich endogenous propagation mechanism, can capture the spectral 
properties of the data.

Limit Cycles and Arbitrage.—As will become clear when we present our estima-
tion results below, for certain parameterizations our model will feature limit cycles. 
A common criticism of earlier models featuring limit cycles is that these cycles 
would be subject to arbitrage forces that would tend to erase them. We wish to 
emphasize that, while this criticism may have been valid for models that did not fea-
ture rationally optimizing forward-looking agents (e.g., Hicks 1950 and Goodwin 
1951), it does not apply to our model, since agents are rationally optimizing and 
forward-looking. For example, even though there may be predictable cyclical ele-
ments in the price of durable goods, so that agents could potentially borrow to pur-
chase durables when the price is low and then sell them for a profit in the future 
when the price is high, the return they would earn from this strategy in equilibrium 
is necessarily less than the cost of servicing the associated debt, and would therefore 
not be optimal.

Equilibrium Narrative.—Before proceeding to the estimation of this model, it 
is useful to briefly discuss how agents in this environment would perceive macro-
economic fluctuations and why their behavior could generate endogenous cyclical 
outcomes. To this end, suppose the economy has been in recession for a while. 
Banks in this environment are reluctant to lend to people because unemployment 
is high. This leads them to charge a high premium on loans so as to cover expected 
defaults. However, if the recession has been going on for long enough, household 
capital will have depreciated significantly, causing the marginal utility of new pur-
chases to be high. In fact, the marginal utility will eventually become sufficiently 
high that an agent will be ready to increase their borrowing in order to make new 
purchases, even if the risk premium on borrowing remains high. At that point the 
tide starts to turn. As some individuals start purchasing more, demand increases, 
which reduces unemployment. Banks respond to this reduced unemployment risk 
by decreasing the risk premium they charge on loans, which favors more purchasing 
by households. As a result, a boom period emerges. The boom will continue with 
households continuing to accumulate capital until, at some point, the marginal util-
ity of new purchases becomes low. The low marginal utility induces households to 
reduce their borrowing, even if the risk premium on loans charged by banks is low. 
This is how a recession would endogenously start. Importantly, agents in this econ-
omy understand these boom-bust dynamics, but this does not stop them from taking 
part, even if, individually, they would prefer stable consumption. In fact, knowledge 
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of the endogenous boom-bust cycle further pushes agents to go along with the cycle, 
knowing that a boom is a good time to accumulate, even over-accumulate, since the 
risk premium is currently low and a recession is known to be coming eventually. 
Similarly, during a downturn, agents prefer to hold back from making purchases, 
since they know that financial conditions are temporarily bad. Note that this mech-
anism could be self-sustaining, which would be the case if it reflected a limit cycle. 
Alternatively, the mechanism could dampen over time, requiring exogenous shocks 
to sustain it.

The addition of shocks to this model eliminates the perfect predictability of 
the endogenous cyclical forces, but does not change the endogenous mechanisms. 
Agents would no longer know exactly when a boom or a bust would finish, but they 
would know that the system is more susceptible to a bust if it has been booming for a 
while, and would know that the economy is more susceptible to a boom if it has been 
in a prolonged downturn.53 It is also important to emphasize that the description 
above of the economy does not involve indeterminacy or self-fulfilling beliefs.54 
A boom does not arise in this set up simply because people believe it will arise. It 
arises because the main capital stock has been depleted sufficiently, and this pushes 
people to take risks and borrow more. Changes in expectations are not the driving 
force; rather, they act more like an amplification mechanism. It should also be noted 
that the model narrative is not especially novel, being meant to capture many ele-
ments that are common to descriptions of the financial cycle.

B. Functional Forms and Estimation

To bring our model to the data, it remains to specify functional forms and the sto-
chastic process. We assume that period utility is constant relative risk aversion (CRRA) 
and given by ​U​(c)​  = ​ (​c​​ 1−ω​ − 1)​ / ​(1 − ω)​​, while the production function is given 
by ​F​(e, θ)​  =  θ​e​​ α​​. As noted above, we take technology ​θ​ as constant, and normalize 
it to 1.55 We also normalize ​s  =  1​. As shown above, we may reduce our system to 
three equations in the variables ​X​, ​e​, and ​​r​​ p​​. Linearizing the two dynamic equations 
(16)–(17) with respect to ​log​(X)​​, ​log​(e)​​, ​​r​​ p​​, and ​​μ​t​​  ≡  − Δlog​(​ξ​t​​)​​, we obtain equa-
tions of the form56

(18)	 ​​​X ˆ ​​ t+1​ ⋆ ​   = ​ (1 − δ)​​​X ˆ ​​ t​ ⋆​ + ψ​​e ˆ ​​t​​,​

(19)	 ​​​e ˆ ​​t​​  = ​ α​1​​ ​​X ˆ ​​ t​ ⋆​ + ​α​2​​ ​E​ 
t
​ ​  ​​e ˆ ​​t−1​​ + ​α​3​​ ​​e ˆ ​​t+1​​ − ​α​4​​ ​​r ˆ ​​ t​  p​ + ​α​4​​ ​μ​t​​,​

(20)	 ​​​r ˆ ​​ t​  p​  = ​ ϱ​1​​​​e ˆ ​​t​​,​

53 Note that these implied patterns are consistent with the properties of the conditional probability of recession 
described in Section I.

54 In Beaudry, Galizia, and Portier (2016), it is shown that this type of model does not in general allow for 
self-fulfilling fluctuations unless one allows the complementarities to be sufficiently strong to create multiple steady 
states.

55 Allowing for deterministic growth in the model does not change any results.
56 See online Appendix Section J for details.
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where ​​X ˆ ​​ and ​​e ˆ ​​ are log-deviations from steady state, ​​​r ˆ ​​​  p​​ is the deviation in levels, 
​​​X ˆ ​​​ ⋆​  ≡  ψ​X ˆ ​ / ​(αδ)​​, and the ​​α​j​​​ s are functions of the structural parameters with ​​α​1​​  <  0​ 
and ​​α​2​​, ​α​3​​, ​α​4​​  >  0​. Note that, since the risk premium is a negative function of 
employment (​​ϱ​1​​  <  0​), the system above has a structure similar to the model of 
Section II. We assume that ​​μ​t​​​ follows a stationary AR(1) process ​​μ​t​​  =  ρ​μ​t−1​​ + ​ϵ​t​​​, 
where ​​ϵ​t​​​ is a Gaussian white noise with variance ​​σ​​ 2​​.

We estimate four different versions of our three-equation model. In all versions 
we use the dynamic equations in their linearized forms (18) and (19). In one ver-
sion, which we refer to as the linear risk premium (RP) model, we use as the third 
equation the static risk premium equation (15) in its (log-)linearized form as given 
by (20). In another version, which we refer to as the no friction model, we assume 
that all household members receive the backing of the household (i.e., ​ϕ  =  1​) and 
recovery from the household is costless (i.e., ​Φ  =  0​), so that the risk premium 
is always zero, and thus there is no complementarity. This estimation will help to 
illustrate the importance of the complementarity in allowing our model to match 
the key features of the data. In a third version, we shut down both the complemen-
tarity channel (by setting ​ϕ  =  1​, ​Φ  =  0​) and the accumulation channel (by set-
ting ​ψ  =  0​, so that ​​X​t​​  =  0​ for all t). We refer to this as the canonical model, since 
it corresponds closely to the canonical New Keynesian model with habit.

In the final version of the model, which we refer to as the nonlinear RP model, 
we allow the risk premium to be a nonlinear function of (log-)employment.57 As 
discussed in Section II, allowing for nonlinearity in the strength of the complemen-
tarity will allow us to expand the parameter space to include situations where there 
may be local instability and limit cycles. In particular, to allow for a greater set of 
possibilities, for this case we let the debt-backing probability be a function of the 
employment rate, i.e., ​​ϕ​t​​  =  ϕ​(​e​t​​)​​, and approximate (15) to the third-order as

(21)	 ​​​r ˆ ​​ t​  p​  = ​ ϱ​1​​ ​​e ˆ ​​t​​ + ​ϱ​2​​ ​​e ˆ ​​ t​ 2​ + ​ϱ​3​​​​e ˆ ​​ t​ 3​,​

where the coefficients ​​ϱ​1​​​, ​​ϱ​2​​​, and ​​ϱ​3​​​ are functions of the model parameters and of 
the three first derivatives of ​ϕ​ (​​ϕ ′ ​​, ​​ϕ ″ ​​, and ​​ϕ ‴ ​​) evaluated at the steady state.58 To 
facilitate comparison with the linear RP model and to avoid issues of identification, 
we will fix ​​ϕ ′ ​  =  0​ in the estimation. Note that we take a third-order approximation 
since, for the model to be capable of producing (attractive) limit cycles, we will typ-
ically need the third-order coefficient ​​ϱ​3​​​ to be sufficiently positive (see Kuznetsov 
1998 for details).

We estimate this model using the indirect inference method of Gourieroux, 
Monfort, and Renault (1993), where for each parameterization the model is solved by 
a first-order (linear RP, canonical, and no friction models) or third-order (nonlinear 
RP model) perturbation method.59 In the nonlinear RP model, the solution and esti-
mation are somewhat involved, as it allows for the possibility of a locally unstable 
steady state and limit cycles in a stochastic model with forward-looking agents. 

57 We could also allow for nonlinearities in both (18) and (19). However, we chose to allow for nonlinearities in 
the risk premium so as to make the analysis more transparent, since it allows us to refer to results from Section II. 

58 See online Appendix Section J.1.
59 Details of the solution and estimation are given in online Appendix Section J.
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To our knowledge, such an exercise is novel.60 For each version of the model, the 
parameters are chosen so as to minimize its distance to a set of features of the data 
that we have already emphasized. We focus on three sets of observations. The first 
set, which is used for all four models, corresponds to the spectral density of hours 
worked per capita (as shown in panel B of Figure 2).61 The second set, which is 
used for both the linear and nonlinear RP models, adds the spectral density of the 
risk premium (as shown in panel C of Figure 5).62 For these first two sets, we aim 
to fit the point estimates of the spectral densities (using the non-detrended data) at 
periodicities between 2 and 50 quarters.63 The last set of observations, which is used 
only for the nonlinear RP model, is a set of five additional moments of the data: 
the correlation between hours and the risk premium, as well as the skewness and 
kurtosis of each of these two variables. Each of the data moments in this last set are 
obtained after first detrending the data series using a high-pass filter that removes 
fluctuations longer than 50 quarters. This is in line with our objective of using the 
current model to explain macroeconomic fluctuations arising at periodicities rang-
ing from 2–50 quarters.

We calibrate three parameters for all four models: the depreciation rate is set 
to ​δ  =  0.05​ in order to match the average depreciation of houses and durable 
goods, the elasticity of the production function with respect to employment is set 
to ​α  =  2/3​, and the monetary policy scale variable ​Θ​ is set so as to yield a steady-
state unemployment rate of 0.0583 (the average over our sample period). Depending 
on the particular model, we then estimate as many as ten parameters. For the two 
risk premium models, we estimate ​ω​, ​γ​, ​ψ​, ​​φ​e​​​, ​ϕ​, ​Φ​, ​ρ​, and ​σ​, plus for the nonlinear 
RP model, ​​ϱ​2​​​ and ​​ϱ​3​​​ (from which we can back out ​​ϱ​1​​​, ​​ϕ ″ ​​, and ​​ϕ ‴ ​​). Because of the 
structure of the no friction and canonical models, and the fact that they are esti-
mated only on the hours spectrum, to avoid identification issues we fix a number of 
the parameters in estimation. In addition to the parameters restricted by definition 
(​ϕ​ and ​Φ​, plus ​ψ​ in the canonical model), we fix ​ω​ and ​​φ​e​​​, plus ​ψ​ in the no friction 
model and ​γ​ in the canonical model, at the corresponding estimated values from the 
linear RP model.

Figures 6–8 illustrate the fit of the estimated model along the targeted dimen-
sions for the four different versions of the model. Consider first panel B of Figures 
6 and 7, which show the estimated spectral densities of hours and the risk pre-
mium, respectively, for the linear RP model. While our parsimonious model does 
not capture all the bumps and wiggles in the spectrum of hours in Figure 6, it none-
theless fits the overall pattern nicely, most importantly the peak in the spectrum 
near 40 quarters, though that peak is noticeably flatter than the one observed in the 

60 For details about the solution method, see Galizia (2018).
61 Note that, in our model, since employed workers each work the same number of hours, hours is simply pro-

portional to employment.
62 We use the BAA Corporate Bond spread series, rather than a series that directly measures interest rates faced 

by households, as the former is available going back to 1954, while we have only found quarterly measures of the 
latter that go back to the early 1970s. The coherences between the bond spread and those consumer spread series 
over the 32–50 quarter range, the range straddling the spectral peaks, are around 0.8, suggesting that fluctuations 
in the bond spread may be a reasonable proxy for fluctuations in consumer spreads. As a check on our results, we 
reestimated the model also including a measurement error process on the risk premium, and found little change in 
the results (available upon request).

63 See Christiano and Vigfusson (2003), Tkachenko and Qu (2012), and Sala (2015) for previous work estimat-
ing DSGE type models in the frequency domain.
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data. Meanwhile, while the model does not capture the smaller peak in the spectral 
density of the risk premium in Figure 7 observed around 21 quarters, it again fits 
reasonably well the overall hump-shaped pattern with a peak close to 40 quarters, 
though again that peak is flatter than the one observed in the data. Consider next 
panel C of Figure 6, which shows the fit of the hours spectrum for the no friction 
model, obtained by reestimating the model after shutting down the complementarity 
channel. Despite the fact that for this model the estimation is no longer constrained 
to simultaneously match the risk premium spectrum, the fit of the hours spectrum 
is significantly worse than in the linear RP model, and in particular the no friction 
model is unable to replicate the peak in the spectrum of hours near 40 quarters. Thus, 
evidently the “complementarities” part of our accumulation-with-complementarities 
mechanism is of fundamental importance in allowing our model to capture the salient 
business cycle features of the data. As shown in panel D of Figure 6, the canonical 
model, which is obtained by reestimating the model with both the complementarity 
and accumulation channels shut down, tells a similar story. Lastly, consider panel A 
of Figures 6 and 7, which show the results for the nonlinear RP model. Relative to 
the linear RP model, both spectra fit noticeably better, and in particular while both 
models have peaks near 40 quarters, unlike in the linear RP model the peaks in the 
nonlinear RP model are almost as pronounced as they are in the data.

Panel A. Nonlinear RP

Panel C. No friction Panel D. Canonical

0

5

10

15

20
Data

Model

0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

605040322464

Periodicity
605040322464

Periodicity

605040322464

Periodicity
605040322464

Periodicity

Panel B. Linear RP

Figure 6. Fit of Hours Spectral Density

Note: This figure compares the estimate of the spectral density of US non-farm business hours per capita with the 
ones obtained from our four estimated models.
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The parameter estimates for the four models are presented in Table 2, along with 
bootstrap standard error estimates in parentheses.64 Comparing columns (a) and 
(b) of the table, we see that the non-shock parameter estimates are broadly similar 
between our two preferred models (the linear and nonlinear RP models). Further, 
the estimated habit parameter (​γ​) of 0.53–0.59 is well in line with the values com-
monly found in the literature. The two parameter estimates that may be considered 
somewhat low relative to the literature are our estimates of the CRRA parameter 
(​ω​) of 0.24–0.3, implying a relatively high intertemporal elasticity of substitution 
of around 3–4, and of the Taylor rule elasticity (​​φ​e​​​) of 0.042–0.047, which implies 
that a one percentage point increase in expected employment is associated with an 
increase in the annualized policy rate of about 17–19 basis points. The first of these 
parameters implies a strong response of consumption to the interest rate faced by 
households. Since the household interest rate is the sum of the procyclical policy 
rate and the countercyclical risk premium, the second of these parameters tends to 
favor countercyclicality in the overall household interest rate. Taken together, these 
parameters help to increase the effect of the complementarity in the model, which, 
as we have shown, is helpful in matching key features of the data, by increasing both 
the countercyclicality of the household interest rate and the response of consump-
tion to that countercyclicality.

The most interesting finding regarding our parameter estimates revolves around 
the shock process parameters ​ρ​ and ​σ​. In particular, as one moves leftward begin-
ning from the canonical model (column D of Table 2) to the no friction model, the 
linear RP model, and finally to the nonlinear RP model, both the estimated per-
sistence and standard deviation of the shock process monotonically decrease. As 
a result, the unconditional standard deviation of the shock process (reported in the 
bottom row of the table) also monotonically decreases. Thus, sequentially allowing 

64 Standard errors were obtained by simulating ​N  =  200​ datasets from the corresponding model (using the 
point estimates for the parameters), and then reestimating the model on each simulated dataset.

Panel A. Nonlinear RP Panel B. Linear RP

605040322464
0

1

2

3

4

5

6

7

8

9
Data
Model

0

1

2

3

4

5

6

7

8

9

Periodicity
605040322464

Periodicity

Figure 7. Fit of Risk Premium Spectral Density

Note: This figure compares the estimate of the spectral density of US risk premium with the one obtained from our 
estimated nonlinear and linear RP models.
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for accumulation, complementarity, and then nonlinearity in the complementar-
ity lets the model better fit the data (as discussed above), while also relying less 
on exogenous stochastic forces. The upshot is that in the nonlinear RP model, the 
shock is effectively i.i.d., so that the model’s dynamics are almost entirely due to 
endogenous forces. Further, the largest factor in reducing reliance on exogenous 
shocks comes from the introduction of the complementarity (i.e., moving from (c) 
to (b)), which is associated with a fall of more than 90 percent in the unconditional 
standard deviation of the estimated shock process. These results suggest that our 
accumulation-with-complementarities mechanism may be a promising avenue for 
those seeking to introduce stronger internal propagation and a lower reliance on 
exogenous shocks into business cycle models.

The strength and form of the internal propagation in each model can be seen 
more clearly in Table 3, which reports the eigenvalues of the first-order approxi-
mation to the solved model around the nonstochastic steady state, along with their 
moduli. In the canonical and no friction models, these eigenvalues are real, positive, 
and stable, with values given by 0.5617 and 0.5202, respectively. Thus, these mod-
els are characterized by monotonic convergence, which may explain their inability 
to capture the hump in the spectral densities near 40 quarters, and a relatively low 
degree of endogenous persistence. For example, in the canonical model, deviations 
from steady state have an endogenous half-life of slightly more than one quarter. For 
the no friction model, the larger eigenvalue is close to 0.95, but it can be verified that 
the smaller eigenvalue is the one driving most of the variance in hours, and it too is 

Table 2—Estimated Parameter Values

Nonlinear RP Linear RP No friction Canonical
(a) (b) (c) (d)

​ω​ CRRA parameter 0.2997​​​ 0.2408​​​ ​​0.2408​​ ⋆​​ ​​0.2408​​ ⋆​​
(0.0200) (0.0423) — —

​γ​ Habit 0.5335​​​ 0.5876​​​ 0.9405​​​ ​​0.5876​​ ⋆​​
(0.0031) (0.0512) (0.0836) —

​ψ​ 1 minus initial depreciation 0.4000​​​ 0.2994​​​ ​​0.2994​​ ⋆​​ ​​0​​ ⋆​​
(0.0028) (0.0644) — —

​​φ​e​​​ Taylor rule 0.0421​​​ 0.0467​​​ ​​0.0467​​ ⋆​​ ​​0.0467​​ ⋆​​
(0.0028) (0.0057) — —

​ϕ​ Debt backing 0.8668​​​ 0.8827​​​ ​​1​​ ⋆​​ ​​1​​ ⋆​​
(0.0067) (0.0074) — —

​Φ​ Recovery cost 0.0421​​​ 0.0458​​​ ​​0​​ ⋆​​ ​​0​​ ⋆​​
(0.0029) (0.0067) — —

​​ϱ​2​​​ Risk premium (second-order) 0.0167​​​ — — —
(0.0008) — — —

​​ϱ​3​​​ Risk premium (third-order) 0.5929​​​ — — —
(0.0575) — — —

​ρ​ Autocorrelation −0.0000​​​ 0.1387​​​ 0.8541​​​ 0.8609​​​
(0.0000) (0.0799) (0.1118) (0.1077)

​σ​ Innovation SD 0.00016​​​ 0.00027​​​ 0.00148​​​ 0.00148​​​
(0.00003) (0.00010) (0.00076) (0.00075)

std​ ​(μ)​​ Implied unconditional SD 0.00016 0.00027 0.00285 0.00292

Notes: Table displays the estimated parameters of the model for each of the four estimation scenarios with standard 
errors in parentheses. ​​​​​ ⋆​​ indicates calibrated values. Estimates for the nonlinear RP model imply ​​ϱ​1​​  =  − 0.1624​, ​​
ϕ ″ ​  =  − 3.1​, and ​​ϕ ‴ ​  =  − 227.1​, while for the linear RP model we have ​​ϱ​1​​  =  − 0.1506​. In the bottom row, we 
report the unconditional standard deviation of the shock process ​​μ​t​​​ implied by the point estimates for ​ρ​ and ​σ​.
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associated with an endogenous half-life of just over one quarter. In contrast, the lin-
ear RP model has a pair of complex eigenvalues, which allows it to generate spectral 
peaks, and these eigenvalues both have a modulus of 0.93, which is suggestive of 
a relatively larger degree of endogenous persistence (endogenous half-life of nine 
quarters). Finally, the nonlinear RP model also has a pair of complex eigenvalues, but 
with a modulus exceeding 1 (1.12).65 That is, when given the option, the data appear 
to favor a configuration featuring local instability and limit cycles, which generates 
significant internal propagation and a correspondingly lower reliance on exogenous 
processes to drive fluctuations. This suggests a more general point, which is that, 

65 Note that we constrained the parameter space to allow only for parameterizations producing a determinate 
solution; that is, where the third eigenvalue (not shown in Table 3) of the unsolved system is unstable. However, we 
found no indication that this constraint was binding for the linear or nonlinear RP models, suggesting that the data 
do not favor a configuration yielding indeterminacy.

Table 3—Eigenvalues at the Steady State

Nonlinear RP Linear RP No friction Canonical

​​λ​11​​, ​λ​12​​​ 1.1032 ​±​ 0.2164​i​ 0.9258 ​±​ 0.1372​i​ 0.5617, 0.9488 0.5202
​|​λ​11​​|​ 1.1242 0.9359 0.5617 0.5202
​|​λ​12​​|​ 1.1242 0.9359 0.9488 —

Notes: Table reports the eigenvalues of the first-order approximation to the solved model around the nonstochastic 
steady state. Note that the solved canonical model has only one dimension (​X​ is no longer a relevant state variable) 
and therefore has only one eigenvalue.
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Notes: This figure compares various moments estimated using US data with the ones obtained from the estimated 
nonlinear RP model. All series have been high-pass (​50​) filtered, in order to remove all fluctuations of period greater 
than 50 quarters.
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by ruling out parameterizations that produce local instability and limit cycles, as is 
implicitly done by standard solution methods (e.g., standard perturbation methods 
implemented in Dynare),  one may be significantly biasing the results of estimation.

To illustrate the deterministic mechanisms implied by the parameter estimates 
in the nonlinear RP model, Figure 9 reports results from feeding in a constant 
value of ​​μ​t​​  =  0​ for the exogenous process.66 Panel A of Figure 9 plots a simu-
lated 270-quarter sample67 of hours generated from this deterministic version of the 
model. Two key properties should be noted. First, the estimated parameters produce 
endogenous cyclical behavior, with cycles of a reasonable length (around 38 quar-
ters). This is consistent with Table 3, which indicates that the steady state is unstable 
and features two complex eigenvalues. The difficulty that some earlier models had 
in generating cycles of quantitatively reasonable lengths may have been one of the 
factors leading to limited interest in using a limit cycle framework to understand 
business cycles. However, as this exercise demonstrates, reasonable-length endog-
enous cycles can be generated in our framework relatively easily, precisely because 
the model possesses the two key features we highlighted in the previous section: 
complementarities, and an accumulation variable that affects current demand neg-
atively. Second, notwithstanding the reasonable cycle length, it is clear when com-
paring the simulated data in panel A of Figure 9 to actual economic data that the 

66 Note that, as typically done when computing transitional dynamics, the model was solved (and simulated) 
using the estimated parameters presented in column A of Table 2, and in particular we did not first resolve the 
model with ​σ  =  0​. Thus, agents in this deterministic simulation implicitly behave as though they live in the sto-
chastic world. As a result, any differences between the deterministic and stochastic results are due exclusively to 
differences in the realized sequence of shocks, rather than differences in, say, agents’ beliefs about the underlying 
data-generating process.

67 This is equal to the length of the sample period of the data.
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Figure 9. Nonlinear RP Model When Shocks Are Turned Off

Notes: This figure corresponds to the counterfactual simulation of the estimated nonlinear RP model when shocks 
are turned off, and initial conditions place the system on the limit cycle. Panel A shows the evolution of hours along 
the limit cycle. Panel B compares the spectral density of hours in the data (black line) and in the estimated model 
when simulated without shocks (gray line).
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fluctuations in the deterministic model are far too regular. These two properties of 
the deterministic model, i.e., a highly regular 38-quarter cycle, can also be seen 
clearly in the frequency domain. Panel B of Figure 9 plots the spectral density of 
hours for the deterministic model (gray line), along with the spectral density for the 
data (black line) for comparison. This spectral density exhibits an extremely large 
peak, characteristic of a highly regular cycle, at the 38-quarter periodicity,68 while 
the spectral density of the data is much flatter.

Reintroducing the estimated shocks into the nonlinear RP model, we see a mark-
edly different picture in both the time and frequency domains. Figure 10 plots an 
arbitrary 270-quarter sample of log-hours generated from the full stochastic model. 
While clear cyclical patterns are evident, it is immediately obvious that the inclu-
sion of shocks, even the (essentially) i.i.d. shocks that are present in our model, 
results in fluctuations that are significantly less regular than those generated in the 
deterministic model, appearing qualitatively quite similar to the fluctuations found 
in actual data. This is confirmed by the hours spectral density (panel A of Figure 6), 
which matches the data quite well. In particular, the spectral density of the stochas-
tic model includes a distinct peak close to 40 quarters, suggesting some degree of 
regularity at that periodicity, but without the exaggerated peak observed at this point 
in the deterministic model.

It should be emphasized that the exogenous shock process in the nonlinear RP 
model primarily acts to accelerate and decelerate the endogenous cyclical dynamics, 
causing significant random fluctuations in the length of the cycle, while only mod-
estly affecting its amplitude. In fact, somewhat counterintuitively, when the shock is 
shut down (as in Figure 9), the variance of log-hours actually increases relative to 
the full stochastic case (the variance of log-hours in the stochastic case is 6.88, while 
in the deterministic case it is 7.48).69 The role of complementarities in the model, 
however, is extremely important: if we shut down the endogenous risk premium 
(i.e., set ​ϕ  =  1​ and ​Φ  = ​ ϱ​2​​  = ​ ϱ​3​​  =  0​), but keep all other parameters at their 
estimated levels, the variance of log-hours in the model is less than 0.1 (compared 
with 6.88 with the complementarity). Thus, without the complementarities to 
amplify them, the small i.i.d. disturbances can only generate a tiny amount of vola-
tility in hours.

C. Sensitivity of Results to Target Frequency Range

As we noted in Section I, the spectral densities of several key macroeconomic 
variables exhibit peaks around 38 quarters, declining from there before reaching a 

68 The deterministic model spectral density also contains smaller peaks at integer multiples of the frequency 
of the main cycle (i.e., at around ​19  =  38 / 2​ quarters, ​12.67  =  38 / 3​ quarters, etc.). Such secondary peaks arise 
when the data exhibit a regular but not perfectly sinusoidal cycle, as is clearly the case in panel A of the figure.

69 Note that, since we have simply fed a constant sequence ​​μ​t​​  =  0​ of shocks into our model without first 
resolving it under the assumption that ​σ  =  0​, this phenomenon is not due in any way to rational-expectations 
effects. The fact that a fall in shock volatility can lead to a rise in the volatility of endogenous variables in a limit 
cycle model was pointed out in Beaudry, Galizia, and Portier (2017). Roughly speaking, because of the nonlinear 
forces at play, shocks that push the system “inside” the limit cycle have more persistent effects than those that push 
it “outside.” For relatively small shocks, this leads to a decrease in outcome volatility when the shock volatility 
increases. See Beaudry, Galizia, and Portier (2017) for a more detailed discussion of these mechanisms in the con-
text of an estimated reduced-form univariate equation.
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local minimum at around 50 quarters, then increasing again beyond that point. This 
was our motivation for choosing to target the 2–50 quarter range in our estimation. 
We turn now to evaluating how this choice affects the results. First, since the lower 
end of the standard business cycle range in the literature is 6 quarters, we consider 
what happens if we restrict attention to periodicities from 6 to 50 quarters in the 
estimation. We also consider what happens if we restrict attention further to only the 
range beyond the traditional upper bound of 32 quarters (i.e., restricting to periodic-
ities between 32 and 50 quarters), and then repeat each of these exercises using 60 
quarters as the upper bound instead of 50. We do these exercises for the nonlinear 
RP model, though the results are similar for the linear RP model (available upon 
request). As we will see, the choices above make little difference to our results. As 
a final exercise, we consider what happens when targeting the 2–100 quarter range, 
and show that in this case the results do fundamentally change.

The top row of plots in Figure 11 shows the hours and risk premium spectral 
densities for period ranges of the form (​x​, 50), ​x  =  2, 6, 32​,70 while the second row 
shows results for ranges of the form (​x​, 60). The corresponding data spectral den-
sities are also plotted (solid black lines) for comparison. In all cases, the effect of 
changing the lower bound to 6 or 32 quarters, or the upper bound to 60 quarters, has 
minimal effect on the parameter values, and this translates into a minimal change in 
the overall fit of the spectral densities: in all cases the nonlinear RP model continues 
to match the spectral peak near 40 quarters well. Further, as shown in the first six 
rows of Table 4, the eigenvalues associated with the solved system remain complex 

70 Note that the (2, 50) results simply reproduce the information in Figures 6 and 7.
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when we target different period ranges.
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(indicating cyclicality) and outside the unit circle (indicating the presence of a limit 
cycle) for all six of these different period ranges.

While increasing the upper bound of the target periodicities from 50 to 60 quar-
ters has little effect on the results, the same is not true if we include even more 
low-frequency fluctuations. The last row of plots in Figure 11 shows the fit if we 
extend the upper bound to 100 quarters (note the scale change in the horizontal 
axis), while the last row of Table 4 reports the associated eigenvalues. The model no 
longer captures the peak in the hours spectrum near 40 quarters, since this is no lon-
ger the dominant feature of the data. Instead, the dominant feature is now the steep 
increase that occurs beyond 60 quarters, which reflects large but slow-moving forces 
(such as demographic changes) unrelated to the business cycle. The estimated auto-
correlation of the exogenous driving force is now above 0.8, with an unconditional 
standard deviation of 0.0017 (an order of magnitude greater than in the baseline 
case), suggesting that the dynamics are mainly driven by exogenous forces. This 
highlights the more general point that if one attempts to simultaneously explain fluc-
tuations in hours data at all frequencies, not just those related to the business cycle, 
one may likely miss important business cycle features unless one explicitly includes 
in the model mechanisms to explain the lower frequencies movements. This may 
help to explain why few modern business cycle models, which are typically implic-
itly estimated to simultaneously fit all frequencies, generate a peak in the spectrum 
near 40 quarters.

We have also explored the effect of estimating the model only on frequencies 
between 2–32 quarters (results available upon request). This tends to favor inferring, 
as found in much of the literature, that persistent exogenous shocks drive business 
cycles. For example, estimating the linear RP model to fit only the 2–32 quarter 
range, the resulting shock process has an autoregressive parameter of 0.99. In com-
parison, when estimating this same model to fit the 2–50 quarter range, we get an 
autoregressive parameter of only 0.14.

D. Is Allowing for Nonlinearities and Local Instability Important?

As noted above, the fit of the estimated linear and nonlinear RP models are quite 
similar, as are a number of the estimated structural parameters. One may then natu-
rally ask: in what ways (if any) are the nonlinearities important? We highlighted one 
way above, which is that allowing for nonlinearities expands the parameter space to 

Table 4—Eigenvalues at the Steady State for Various Estimations

Estimation range ​​λ​11​​, ​λ​12​​​ ​|​λ​1j​​|​

(2, 50) 1.1032 ​±​ 0.2164​i​ 1.1242
(6, 50) 1.1048 ​±​ 0.2175​i​ 1.1260
(32, 50) 1.0626 ​±​ 0.2258​i​ 1.0864
(2, 60) 1.1182 ​±​ 0.1987​i​ 1.1358
(6, 60) 1.1212 ​±​ 0.1959​i​ 1.1382
(32, 60) 1.0671 ​±​ 0.2230​i​ 1.0902
(2, 100) 0.6055, 0.9453 0.6055, 0.9453

Notes: Each line of this table corresponds to a different estimation of the nonlinear RP model. In 
each estimation we target a different range of periods.
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include parameterizations that produce limit cycles. If the dynamics of the economy 
does indeed feature limit cycles, by considering only a linear approximation (and the 
parameterizations that yield a valid rational expectations solution for this approx-
imation), the estimation will necessarily be biased. For example, if the estimated 
nonlinear RP model were the true model, but one employed the linear approxima-
tion to it (i.e., the linear RP model) in estimation, one would incorrectly conclude 
that the steady state is locally stable.

Allowing for nonlinearities also has implications for (a)symmetry in the model. 
For example, in the estimated nonlinear RP model, the business cycle is asymmetric, 
with booms lasting longer on average than recessions. This can be seen most clearly 
by looking at the deterministic component of the business cycle (i.e., the limit cycle 
illustrated in panel A of Figure 9), which features booms that last 23 quarters (trough 
to peak) and downturns in employment that last 15.5 quarters (peak to trough). 
There are also implications for the symmetry of the response of the economy to 
shocks. To illustrate this, panel A of Figure 12 plots the response of hours in the 
nonlinear RP model to a one standard deviation positive shock, along with minus the 
response to a one standard deviation negative shock, conditional on initially being 
at the peak of the cycle. Panel B plots the same except beginning from the trough 
of the cycle.71 The responses are clearly different depending both on whether the 
shock is positive or negative, and on whether the economy is initially in a boom or a 
bust. One particularly interesting implication of the figure is that when the economy 
is at the peak of a boom period and is hit by a negative (i.e., contractionary) shock, 
the magnitude of the response is substantially larger than if it is initially in a bust. 
This suggests that peak times could be periods where the economy is particularly 
sensitive to negative shocks (e.g., a financial disruption).

IV.  Conclusion

Why do market economies experience business cycles? There are at least two 
broad classes of explanations. On the one hand, it could be that market economies 
are inherently stable and that observed booms and busts are mainly due to persistent 
outside disturbances. On the other hand, it could be that the economy is locally 
unstable, or close to unstable, in that there are not strong forces that tend to push it 
towards a stable resting position. Instead, the economy’s internal forces may endog-
enously favor cyclical outcomes, where booms tend to cause busts, and vice versa. 
The contribution of this paper has been to provide theory and evidence in support of 
this second view, while simultaneously highlighting the key elements that influence 
inference in this dimension.

We have emphasized several features that have led us to infer that business cycles 
may be generated by strong endogenous forces, as opposed to persistent exogenous 
shocks. However, in concluding, we would like to emphasize what we view as the 
most important issue for this debate: the question of what business cycle theory 
should aim to explain. If one adopts the conventional consensus that business cycle 
theory should be mainly concerned with movements in macroeconomic aggregates 

71 See Notes to Figure 12 for further details.
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that arise at periodicities between 6 and 32 quarters, then standard models with weak 
internal propagation mechanisms can offer a reasonable explanation of the data. In 
contrast, if one agrees that business cycle theory should extend its focus to include 
slightly lower frequency movements, such as those associated with fluctuations of 
up to 50 quarters,72 then the need to consider strong internal propagation mecha-
nisms becomes much more relevant. In particular, we have documented that many 
macroeconomic aggregates appear to exhibit a peak in their spectral densities at 
periodicities between 32 and 50 quarters, and that the implied movements coincide 
with NBER cycle dating. Moreover, we have emphasized that such a pattern is very 
unlikely to have been a spurious draw from an AR(1) process. Given that cyclically 
sensitive variables such as unemployment and risk premia all exhibit such a peak, 
we believe that explaining this cyclical pattern should be a priority in business cycle 
analysis. If one accepts this, then, in our opinion, the existence of a strong internal 
propagation mechanism in the economy becomes more likely. While we have made 
an explicit case for this inference using one particular model, we conjecture that suc-
cessfully explaining the observed humps in the spectral densities using any model 
will likely require it to feature complementarities that generate a strong internal 

72 A popular approach in the estimation of macroeconomic models is to include (almost) all frequencies. For 
example, this is the case when using likelihood-based methods to fit unfiltered (or, at most, first-differenced) data. 
In principle this is fine if the model is built to explain both business cycle fluctuations and the relatively large 
lower-frequency fluctuations associated with, for example, demographic changes. However, if the model is built 
to understand business cycles but is estimated using all frequencies, then the estimation may favor parameters that 
help to explain the large lower-frequency movements at the detriment of explaining business cycle movements. This 
point was illustrated in Section III.
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Figure 12. Hours Impulse Response at Cycle Peak (Nonlinear RP)

Notes: Figure shows the average response of hours in the nonlinear RP model to a one standard deviation shock 
to ​​ϵ​t​​​ as at date ​t + k​, for ​k  =  0, … , 80​, conditional on initially being at a peak (panel A) or trough (panel B) of 
the business cycle. Dark gray line shows response to a positive shock, light gray shows minus the response to a 
negative shock. Responses obtained as an average across 100,000 simulations, where for each simulation we com-
pute the difference between a random simulation for the path of hours and the path that would occur if the first 
simulated shock were one standard deviation higher and the rest unchanged. For panel A we set the initial state as ​​
(​X​t​​, ​I​t−1​​, ​μ​t−1​​)​  =  ​(0.127, 1.731, 0)​​, while for panel B we set it as ​​(− 8.210, − 6.030, 0)​​, which correspond respec-
tively to the peak and trough of the deterministic cycle.
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cyclical mechanism.73 Whether the resulting model delivers the more extreme form 
of endogenous propagation associated with limit cycles, or if instead it favors damp-
ened fluctuations (as we observed when estimating a linear version of our model) 
will likely depend on model details. Nonetheless, in either case, we conjecture that 
the role played by shocks in driving the business cycle is likely to be greatly dimin-
ished if one attempts to explain the features of the data we have emphasized.

Appendix

PROOF OF PROPOSITION 1:
The proof requires showing that, under Assumption 2, ​​α​3​​ ​α​4​​  >  0​, ​​α​2​​  >  0​, 

and ​​α​1​​  <  0​ are necessary for ​g​(ω)​​ to be hump-shaped on ​ω  ∈ ​ [0, π]​​. Sargent (1987, 
pp. 262–65) shows that for such a hump shape to arise it is necessary that the roots 
of ​B​(z)​  =  0​ be complex, and that if we write ​B​(L)​​ as ​1 − ​t​1​​ L − ​t​2​​ ​L​​ 2​​, then it must 
also be the case that ​4 ​t​2​​ + ​t​1​​​(1 − ​t​2​​)​  <  0​.

The proof will proceed in two steps. The first step will be to show that ​​α​2​​  >  0​ 
and ​​α​1​​  <  0​ are necessary for the roots of ​B​(z)​  =  0​ be to complex under 
Assumption 2. The second step will be to show that ​​α​3​​ ​α​4​​  >  0​ is necessary 
for ​4 ​t​2​​ + ​t​1​​​(1 − ​t​2​​)​  <  0​ under Assumption 2. Before proceeding with these two 
steps, it is helpful to make explicit some of the implications of Assumption 2. It is 
straightforward to verify that Assumption 2 requires that

(A.1)	 ​​α​1​​  <  δ​(1 − ​α​2​​)​,​

(A.2)	 ​​​(1 − δ + ​α​1​​ + ​α​2​​)​​​ 2​  >  4 ​α​2​​​(1 − δ)​,​

which in turn imply

(A.3)	 ​​α​1​​ + ​α​2​​  <  1,​

(A.4)	 ​​(1 − δ + ​α​1​​ + ​α​2​​)​​[1 + ​α​2​​​(1 − δ)​]​  >  4 ​α​2​​​(1 − δ)​.​

First Step.—For the roots of ​B​(z)​  =  0​ to be complex, there must exist a 
real ​ϕ  ≡ ​   1 _ 1 − ​α​3​​ ​α​4​​

 ​​ such that

(A.5)	 ​​​[1 − δ + ​(​α​1​​ + ​α​2​​)​ϕ]​​​ 
2​  <  4​α​2​​​(1 − δ)​ϕ.​

Since the left-hand side of (A.5) is non-negative, it can only hold if the right-hand 
side is strictly positive. Since ​​α​3​​ ​α​4​​  <  1​ by assumption, ​ϕ  >  0​, and since ​δ  <  1​, 
it follows that the right-hand side is strictly positive only if ​​α​2​​  >  0​, which confirms 

73 An alternative class of explanations would be one where the exogenous force itself is highly cyclical. While 
this is certainly possible, we have not been able to find evidence of cyclicality in variables commonly considered to 
be drivers of business cycles, such as technological change or oil prices.
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the first necessary condition. Assume henceforth that indeed ​​α​2​​  >  0​. Next, (A.5) 
is equivalent to

	​ ​​(1 − δ)​​​ 2​ + 2ϕ​(​α​1​​ − ​α​2​​)​​(1 − δ)​ϕ + ​​(​α​1​​ + ​α​2​​)​​​ 2​ ​ϕ​​ 2​  <  0.​

Since the left-hand side of this expression is a convex quadratic function of ​ϕ​, a nec-
essary condition for it to hold for some range of ​ϕ​ is that the roots of that quadratic 
function are real. One can verify that this is only the case if ​​​(​α​1​​ − ​α​2​​)​​​ 2​  > ​​ (​α​1​​ + ​α​2​​)​​​ 2​​. 
Since ​​α​2​​  >  0​, this is not possible if ​​α​1​​  ≥  0​. Thus, we need ​​α​1​​  <  0​ for ​g​(ω)​​ to be 
hump-shaped.

Second Step.—To have ​4​t​2​​ + ​t​1​​​(1 − ​t​2​​)​  <  0​, we need

	​ ​[1 − δ + ​(​α​1​​ + ​α​2​​)​ϕ]​​[1 + ​α​2​​​(1 − δ)​ϕ]​  <  4​α​2​​​(1 − δ)​ϕ,​

which is in turn equivalent to the condition

(A.6)  ​4​α​2​​​(1 − δ)​ − ​(​α​1​​ + ​α​2​​)​ − ​α​2​​ ​​(1 − δ)​​​ 2​  > ​ (1 − δ)​​[​ 
1 _ ϕ ​ + ​(​α​1​​ + ​α​2​​)​ ​α​2​​ ϕ]​.​

Assumption 2 implies that the first of these two inequalities is reversed when ​ϕ  =  1​ 
(see condition (A.4)), and therefore so is the second. Since only the right-hand 
side of (A.6) depends on ​ϕ​, in order for (A.6) to hold for some ​ϕ  <  1​ (i.e., 
some ​​α​3​​ ​α​4​​  <  0​), the right-hand side of (A.6) must be increasing in ​ϕ​ over some 
range of ​ϕ  <  1​. But this in turn requires ​​(​α​1​​ + ​α​2​​)​  >  1 / ​ϕ​​ 2​​ for some ​ϕ  <  1​, which 
is ruled out by Assumption 2 (see condition (A.4)). Hence, ​​α​3​​ ​α​4​​  >  0​ (​ϕ  >  1​) is 
necessary for ​g​(ω)​​ to be hump-shaped. This completes the proof. ∎

PROOF OF PROPOSITION 2:
The eigenvalues of the system are given by the roots of ​B​(​z​​ −1​)​  =  0​, 

where ​B​(L)​  =  1 − ​[1 − δ + ​(​α​1​​ + ​α​2​​)​ϕ]​L + ϕ ​α​2​​​(1 − δ)​​L​​ 2​​, and ​ϕ  ≡ ​   1 _ 1 − ​α​3​​ ​α​4​​
 ​​ . A 

sufficient condition for the system to be unstable is that ​ϕ ​α​2​​​(1 − δ)​  >  1​. Since 
​​α​2​​​(1 − δ)​  >  1​ by Assumption 2, there must exist a ​​ϕ​​ ⋆​  >  1​ for which the system is 
unstable, and accordingly there exists an ​​α​​ ⋆​  <  1​ as stated in the proposition.

If the system has complex roots when it loses stability as ​ϕ​ increases, this 

will happen at the point where ​ϕ  = ​   1 _ 
​α​2​​​(1 − δ)​ ​​. For the roots to be complex 

when ​ϕ  = ​   1 _ 
​α​2​​​(1 − δ)​ ​​, it must be the case that ​​​[1 − δ + ​ ​α​1​​ + ​α​2​​ _ 

​α​2​​​(1 − δ)​ ​]​​​ 
2
​  <  4​. This will 

happen if ​− ​α​1​​  > ​ δ​​ 2​​α​2​​​ and ​​α​2​​  >  − ​  ​α​1​​ _ 
​​(2 − δ)​​​ 2​ ​​, that is, when ​​α​1​​​ is sufficiently negative 

and ​​α​2​​​ sufficiently positive. ∎
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