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Abstract. Classical pairwise image registration methods search for a spatial 
transformation that optimises a numerical measure that indicates how well a pair 
of moving and fixed images are aligned. Current learning-based registration 
methods have adopted the same paradigm and typically predict, for any new input 
image pair, dense correspondences in the form of a dense displacement field or 
parameters of a spatial transformation model. However, in many applications of 
registration, the spatial transformation itself is only required to propagate points 
or regions of interest (ROIs). In such cases, detailed pixel- or voxel-level corre-
spondence within or outside of these ROIs often have little clinical value. In this 
paper, we propose an alternative paradigm in which the location of corresponding 
image-specific ROIs, defined in one image, within another image is learnt. This 
results in replacing image registration by a conditional segmentation algorithm, 
which can build on typical image segmentation networks and their widely-
adopted training strategies. Using the registration of 3D MRI and ultrasound im-
ages of the prostate as an example to demonstrate this new approach, we report a 
median target registration error (TRE) of 2.1 mm between the ground-truth ROIs 
defined on intraoperative ultrasound images and those propagated from the pre-
operative MR images. Significantly lower (>34%) TREs were obtained using the 
proposed conditional segmentation compared with those obtained from a previ-
ously-proposed spatial-transformation-predicting registration network trained 
with the same multiple ROI labels for individual image pairs. We conclude this 
work by using a quantitative bias-variance analysis to provide one explanation of 
the observed improvement in registration accuracy. 
 

1 Introduction 

Recent medical image registration methods based on convolutional neural networks 
have adopted an end-to-end learning framework, in which a moving and fixed image 
pair is the input of the network that directly predicts a dense displacement field (DDF) 
or parameters of a parametric spatial transformation model [1]. These capture pixel- or 
voxel-level dense correspondences. Such networks have been trained by minimising 
unsupervised losses [2], adapted from classical or learned dissimilarity measures within 



pairs of images, or supervised losses measuring the difference to ground-truth transfor-
mations [3, 4]. Label similarity between anatomical segmentations has also been pro-
posed to measure image alignment as a form of weak supervision [5] and has been 
combined with other losses [6, 7].  

Predicting spatial transformations, as in the above-mentioned methods, enables phys-
ically-motivated prior knowledge on the deformation fields to be incorporated in the 
network training. Examples include parameterising the spatial transformation using 
rigid, spline-based models [1-3] or velocity fields [4], penalising implausible transfor-
mation through a regularisation term such as L2-norm of DDF and bending energy [5-
7], and minimising divergence between the predicted and the unpaired ground-truth 
deformations [8]. Fig. 1 illustrates the training and prediction stages of these typical 
spatial-transformation-predicting registration networks. 

 
Fig. 1. Left: illustration of the training of spatial-transformation-predicting registration networks; 
Right: the ROIs are propagated from moving image to fixed image by the spatial transformation 
(predicted transform), predicted by the trained neural network.  

A common purpose of image registration in medical applications is region-of-interest 
(ROI) propagation, also illustrated in Fig. 1. In multimodal image guided interventions, 
for instance, the registration-generated spatial transformation is used to warp one or 
more clinically useful ROIs, defined by inseparable pixel/voxel locations in the pre-
operative moving images, to intraoperative fixed images. These ROIs, such as patient-
specific biopsy or pathology locations in a preoperative-image-derived procedure plan, 
are not necessarily anatomically-defined landmarks or identifiable in both images, and 
therefore are not consistently available for all cases a priori. Different to segmentation, 
a registration network predicts spatial transformation that defines dense correspond-
ence, which can propagate any given ROI from a moving image to a fixed image. 

However, clinically useful ROIs are often sparse for individual patients (e.g. a single 
target tumour), therefore propagating ROIs (equivalent to searching for a region-level 
correspondence) and searching for dense correspondence present very different chal-
lenges. This is partly because the regularised dense correspondence prediction encour-
ages spatial smoothness and topology preservation, which may over-constrain localis-
ing ROIs in the fixed images that is of much greater clinical value. We postulate that, 
with the increasing availability in training data, predicting spatial transformation may 
limit the clinically relevant registration accuracy in such applications. 



    In this work, we propose to use a machine learning approach for any given ROI on a 
moving image to predict the image-specific ROI on a fixed image directly. This ap-
proach does not predict a spatial transformation and does not require deformation reg-
ularisation. Replacing the task of finding a spatial transformation with ROI propagation 
leads to a conditional segmentation approach, which is described in Section 2.  
    We report experimental results from a multimodal image registration application, in 
which MR and ultrasound images are aligned to guide targeted biopsy [9] and focal 
therapy [10] for prostate cancer patients. The contributions of this work include: 1) a 
novel conditional segmentation paradigm for ROI propagation tasks, which replaces 
commonly-adopted image registration methods; 2) the demonstration using clinical 
data that significantly improved registration accuracy can be achieved using the pro-
posed conditional segmentation approach compared with a spatial-transformation-pre-
dicting registration network for a real-world application; and 3) a bias-variance analysis 
to further investigate the source of improvement shown for this application. 

2 Method 

2.1 Conditional Image Segmentation Paradigm for ROI Propagation 

 

Fig. 2. Left: illustration of the training of the proposed conditional segmentation network; Right: 
individually propagated ROIs are directly predicted by the trained neural network.  

With clinically relevant ROIs having varying quantities, shapes, sizes and locations for 
each image pair, we formulate the ROI propagation task as a joint binary classification 
problem where each voxel on the fixed image is to be classified as either “belonging 
to” (𝐶௞ୀଵ) or “not belonging to” (𝐶௞ୀଶ) the ROI propagated from the moving image. 
Using a convolutional neural network with parameters 𝛉, the posterior class probabili-
ties, modelled by the network output, are given by 𝑝𝛉(𝐶௞ห𝐈௙௜௫, 𝐈௠௢௩, 𝐑௠௢௩), where ran-
dom vectors 𝐈௙௜௫, 𝐈௠௢௩  and 𝐑௠௢௩  represent the fixed image, the moving image and 
the ROI in the moving image (hereafter referred to as the “moving ROI”), respectively. 
Predicting 𝑝𝛉(𝐶௞ห𝐈௙௜௫ , 𝐈௠௢௩, 𝐑௠௢௩) , in turn, represents a conditional segmentation 
problem, conditioned on a given moving image 𝐈௠௢௩  and a given moving ROI 𝐑௠௢௩.  



    As illustrated in Fig. 2, the conditional segmentation can be implemented with min-
imal adaptation to a standard image segmentation network by, for instance, concatenat-
ing the image pair (𝐈௙௜௫ , 𝐈௠௢௩) and moving ROI 𝐑௠௢௩  in the input layer. Unlike con-
ventional spatial-transformation-predicting registration or multi-ROI segmentation 
methods, this network predicts any one single propagated ROI 𝐑௙௜௫  (potentially with 
single foreground voxel) at a time during inference stage and can be trained with mul-
tiple training ROIs labelled from each of the training image pairs. 

2.2 A Supervised Training Approach 

In this work, we implement a supervised conditional segmentation training approach, 
suitable for the multimodality 3D image registration application described in Section 3. 

In training, 𝑁 pairs of moving images {𝐢௡
௠௢௩} and fixed images ൛𝐢௡

௙௜௫ൟ are available, 
𝑛 = 1, … , 𝑁. For every 𝑛௧௛  image pair, 𝑀௡ pairs of corresponding ROI labels {𝐫௠௡

௠௢௩} 

and ൛𝐫௠௡
௙௜௫

ൟ, 𝑚 = 1, … , 𝑀௡ , are delineated in the moving- and fixed images, respec-

tively. ൛𝐫௠௡
௙௜௫

ൟ denotes the ground-truth for the propagated “fixed ROI” 𝐑௙௜௫ . These 
ROIs need not to be labelled consistently across image pairs, individual images pairs 
may have different types anatomical structures or regions as training ROI labels and 
may have different numbers of ROI pairs, i.e. in general, 𝑀ଵ ≠ 𝑀ଶ …  ≠ 𝑀௡.  

The fixed ROIs in this work are represented by binary masks, indicating ground-truth 

class probabilities at each voxel 𝑝൫𝐶௞|𝐫௠௡
௙௜௫൯, for a foreground 𝐶௞ୀଵ and a background 

class 𝐶௞ୀ଴. Without loss of generality, the moving ROIs are also represented by binary 
masks, each as an input of the neural network that predicts the conditional class proba-

bilities 𝑝𝛉൫𝐶௞ห𝐢௡
௙௜௫

, 𝐢௡
௠௢௩ , 𝐫௠௡

௠௢௩൯. Given 𝑛௧௛ image pair and 𝑀௡ associated ROI pairs, the 
negative log-likelihood leads to a weighted cross-entropy loss function: 𝐽௡(𝛉) =

− ∑ ∑ 𝑝൫𝐶௞|𝐫௠௡
௙௜௫

൯ log 𝑝𝛉൫𝐶௞|𝐢௡
௙௜௫

, 𝐢௡
௠௢௩ , 𝐫௠௡

௠௢௩൯ 𝑤௞
ଶ
௞ୀଵ

ெ೙
௠ୀଵ , where the weighting parame-

ter 𝑤௞ is the sample ratio between foreground and background voxels [11].  
A typical image segmentation network, such as a 3D U-Net [12], can be adapted to 

take the input of an image pair and one of the moving ROI labels ൫𝐢௡
௙௜௫

, 𝐢௡
௠௢௩ , 𝐫௠௡

௠௢௩൯. 
The previously-proposed two-stage sampling is adopted in a stochastic minibatch gra-
dient descent optimisation, in which, image pairs are sampled first before sampling im-
age-specific ROI labels. Thus, each minibatch has the same number of first-stage-sam-

pled image pairs ൫𝐢௡
௙௜௫

, 𝐢௡
௠௢௩൯ and second-stage-sampled ROI pairs (𝐫௠௡

௠௢௩ , 𝐫௠௡
௠௢௩) and, 

collectively, they contribute to an unbiased estimator of the batch gradient [5]. During 
inference, given a new pair of images and a moving ROI, the trained network can pre-
dict where this ROI is propagated (or warped) to in the fixed image space.   

2.3 Comparison to a DDF-Predicting Registration Network 

We compared the proposed conditional segmentation network with a previously-pro-
posed weakly-supervised registration network [5], because 1) it uses the same types of 
image and ROI data in training; and 2) it was proposed with a clinical aim for predicting 
ROIs, including the prostate gland, one or more image-visible lesions (potentially tu-
mours) and surrounding organs, so these can be identified during ultrasound-guided 



interventional procedures [5, 8-10]. Once trained, the registration network does not 
need the moving ROI as input to predict a DDF for each image pair. Instead, it warps 
the ROI using the predicted DDF. The conditional segmentation network predicts a 
moved ROI directly, given the additional moving ROI. This difference is illustrated in 
Figs. 1 and 2. The details of both networks are summarised in Section 3. 

Registration Accuracy: Two accuracy measures were computed in this study: Target 
registration error (TRE), defined as root-mean-square centroid distance, between the 
propagated moving ROIs and the ground-truth fixed ROIs, calculated over all ROI pairs 
for each test patient, and the Dice similarity coefficient (DSC) calculated between the 
pairs of ROIs representing the entire prostate. The training-independent TREs and 
DSCs are clinically informative in targeting the regions of surgical interest, such as 
prostate lesions, and in identifying vulnerable structures, such as rectum [9, 10]. They 
are reported based on the cross-validation experiments described in Section 3.  

Physically Plausible Correspondence Prediction for Out-of-Sample ROIs: Predict-
ing a new ROI at the inference stage could fail if this ROI is not within the ROI distri-
bution represented by the training labels. However, it is reasonable to expect that a 
physically plausible mapping can be predicted on these novel landmarks using condi-
tional segmentation without explicit deformation regularisation. This generalisability 
across different types of ROIs may be a result of potential anatomical, spatial and in-
tensity correlations between these novel test ROIs and the training ROIs.  

To test this generalisability, a set of ad hoc ROIs were selected if they do not have 
apparent representatives in the training data. For example, several patient-specific cal-
cification clusters were found on unusual locations such as anterior regions of the pros-
tate gland. The TREs on these ROIs are reported in addition to the overall results. 

Bias-Variance versus Training Data Size: One of the potential advantages of avoid-
ing deformation regularisation is to reduce the bias from the smoothness assumptions, 
such that more complicated correspondence can be learned from data, such as one-to-
many or many-to-one mapping at voxel-level. Examples in this application include top-
ological changes (presence of catheter in urethra and swelling during ablation) and high 
nonlinearity (between glandular zones and other structures). 
    To quantitatively investigate the bias for the two networks, we ran repeated experi-
ments with bootstrap-sampled training/testing sets to decompose the variance due to 
random training data sampling and stochastic model training from the bias observed 
consistently across experiments. We propose two hypotheses, Hypothesis A: compared 
to the DDF-predicting network constrained by deformation regularisation (here, bend-
ing energy), the conditional segmentation would reduce the prediction bias, which is a 
component of the TRE; Hypothesis B: potential high-bias can limit generalisability in 
registration performance, represented by larger TREs on testing data, as training data 
increase. The Hypothesis B has an important practical value in informing the choice 
between these two types of networks, when training data size changes.  
    To test these hypotheses, we adopted a patient-level repeated cross-validation proce-
dure [13] for both networks, by which, a set of training data sizes of interest is tested. 
The square of the bias and the variance on each ROI are then represented by the 
squared-distance 𝑑௕௜௔௦

ଶ  from the centre of the predicted centroids to the ground-truth 



and the average squared-distance 𝑑௩௔௥
ଶ  to the centre from the centroids, respectively, 

over all samples estimated from the repeated cross-validation. This experiment does 
not take into account inter-training-data variability that will change as the training data 
size changes in cross-validation experiments, but it has been shown to be effective in 
estimating bias and variance of altering training data size [14], which was the concern 
in this study. The experiment details are described in Section 3. 

3 Experiments 

Without any initial alignment, a total of 115 pairs of T2-weighted MR and 3D transrec-
tal ultrasound (TRUS) images from 80 prostate cancer patients who underwent TRUS-
guided biopsy or therapy procedures were randomly sampled from clinical trial data 
(anonymised trial names and identifiers) for this study. Each patient may have multiple 
MR-TRUS image pairs according to the trial protocols. 3D TRUS volumes were recon-
structed by rotational sagittal frames acquired by a bi-plane transrectal probe (Hitachi 
HI-VISION Preirus). All image volumes were normalised to zero-mean with unit-var-
iance intensities after being resampled to 0.8×0.8×0.8 mm3 isotropic voxels. From these 
patients, a total of 910 pairs of corresponding anatomical ROIs were labelled and veri-
fied by second observers including consultant radiologists and senior imaging research 
fellows. Besides full gland segmentations for all cases, the ROIs defined landmarks 
including the apex and base of the prostate, the urethra, image-visible lesions, gland 
zonal separations, the vas deference and the seminal vesicles, and other patient-specific 
landmarks such as calcifications and fluid-filled cysts, with similar spatial and size dis-
tributions to those reported in the previous work [5].  

Compared to the registration network architecture, only two changes were made to 
the original input and output layers to implement the conditional segmentation network: 
First, the additional single moving ROI label for each image pair, after being linearly-
resampled to the fixed image size, is concatenated to the input layer with the image 
pair; second, instead of three displacement components, in x-, y- and z-channels, the 
conditional segmentation network outputs a single-channel logits layer, with a sigmoid 
function, to represent the foreground class probabilities in the fixed image space.  

Compared to the registration network training, the conditional segmentation network 
training was found to be less sensitive to initialisation and learning rate as a result of 
not-predicting spatial transformations, required less memory without the 3D intensity 
resampler and did not need to tune the weighted deformation regularisation. Both net-
works had 32 initial channels and were trained with the same data using the Adam 
optimiser starting at a learning rate of 10-5. For brevity, readers are referred to the ref-
erenced publication and the published demonstration code [5] for additional details, 
which were kept unchanged in this work to enable comparison. The networks were 
implemented in TensorFlow™ with open-source code from NiftyNet [15]. Each of the 
conditional segmentation networks and registration networks was trained for 48 and 72 
hours, respectively, both with a minibatch size of 2 using GeForce® GTX 1080Ti GPU 
cards with 11GB memory on a high-performance computing cluster.  

As part of the patient-level repeated k-fold cross-validation procedure, the TREs of 
individual patients were calculated. The cross-validation was repeated ten times, for 



each of the four tested training patient sizes 40, 60, 70, and 75 with k = 2, 4, 8, and 16, 
respectively, with increasing yet varying numbers of image pairs (ranging from 40 to 
110). This resulted in 600 networks trained in total (~36,000 GPU-hours) to compare 
the two types of networks. For each tested training size, the errors 𝑑௕௜௔௦

ଶ  and 𝑑௩௔௥
ଶ  (de-

scribed in Section 2.3), which represent the bias and variance in estimating ROI cen-
troids, were estimated for individual ROIs from these ten samples. 

4 Results 

 

Fig. 3. Upper: example MR slices (1st row) with moving ROIs in blue contours, which are prop-
agated to TRUS slices (2nd row) with the ground-truth ROIs in red areas; Lower: plots of mean 
TREs (left) and median 𝑑௕௜௔௦

ଶ  (right) versus training-set sizes. See the text for details. 

From the 16-fold cross-validation, the median (25th - 75th percentiles) TRE and DSC 
are 2.1 (1.4-3.5) mm and 0.92 (0.90- 0.94), respectively, for the proposed conditional 
segmentation networks, and 3.2 (2.3-6.4) mm and 0.90 (0.87-0.92) for the DDF-
predicting registration networks. A statistically significant (p<0.001) improvement of 
34% in TREs was observed based on a paired Wilcoxon signed-rank test at a signifi-
cance level α=0.05. TREs from the 70 manually selected ad hoc landmarks were also 
found to yield a lower median TRE of 2.8 (2.3-4.9) mm from the conditional segmen-
tation, compared with 4.2 (3.0-7.8) mm using the registration network (p<0.001). 
    As training set sizes increase, the TREs were found to decrease for both networks 
with lower mean TREs being obtained from the conditional segmentation for all differ-
ent training set sizes, as shown in Fig. 3. Furthermore, the estimated variance decreased 
with more training data, although detecting differences in variance between the two 



networks was difficult due to the small sample sizes (10 from the repeated cross-vali-
dation). The estimated bias from the conditional segmentation is considerably lower for 
all training set sizes as shown in the median (25th - 75th percentiles) 𝑑௕௜௔௦

ଶ  in Fig. 3. This 
suggests that 1) the prediction of spatial transformation may not be optimised for this 
task (here, a regularised DDF); 2) due to the high-and-non-decreasing bias observed 
from the registration network, the accuracy may not be improved by further increasing 
the training data; and 3) the lower TREs reported in this case can be attributed largely 
to the low-bias from the conditional segmentation network.  

5 Conclusion 

While prior knowledge, such as deformation regularisation, has proven useful for im-
proving the generalisation ability of registration networks with limited training data [8], 
the bias-variance analysis presented in this paper revealed that this approach can also 
produce a high prediction bias, which may not be reduced by increasing the training 
data size. Thus, we have proposed a conditional segmentation paradigm for ROI prop-
agation applications that avoids estimating a spatial transformation to overcome this 
issue. Using a supervised neural network, we have demonstrated significantly improved 
TREs in a real-world surgical application where clinically meaningful ROIs corre-
sponding to those defined in MR images are predicted in prostate ultrasound images. 
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