The Use of Templates and The Handle System for Large-Scale Provision of Security and IoT in the Built (i

Environment
Peter T. Kirstein, Angel Ruiz-Zafra

University College London, United Kingdom, {p.kirstein, a.ruiz-zafra}(@ucl.ac.uk

Keywords: [oT, BIM, Security, Handle System, Digital Objects.

Abstract

Building Information Modeling (BIM) is the main standard for constructions in the Built Environment. However, the
currently agreed BIM interchange standards (1FC, COBie) are not suited for much further extension, lacking features
needed for the incorporation of ToT and security. In addition, these standards are used to describe buildings and other
assets through files, where the different building assets are entities with a fixed data structure and no relations between
them, That is, two assets represented in the file, even described with the same data structure, are treated as separated
elements, so that changes in one element do not affect the data structure of the other one. This will cause functional
problems in future Building Automation Systems, such as the lack of provision for handling all the doors of a specific
type at the same time when adding specific or general security features. To address these issues (lack of IoT and
security in BIM and the independent and fixed data structure used to represent built assets). we present in this paper
a novel approach, which is part of our research work in the EBIS project (Extending BIM Level 2 to support loT &
Security). The approach is based in the use of digital objects (DOs), instead of files, to represent built environments
with loT and security features. Also, these DOs could be used to define customised hierarchical structures to represent
flexible data structures and relate built assets between them, what we called templates. These DOs to represent assets
are supported by the Handle System, a Secure Identity Data Management System (SIDMS). This approach will allow
the incorporation of generic and specific security features to all assets of a specific class. It will allow also the
incorporation of assets defined generically in other domains to become templates, after appropriate processing, in the
BIM databases. In order to validate our proposal, a Proof of Concept (PoC) is conducted in this research. We conclude
with some comments on future work in the advertising of building features in a catalogue system — working in
collaboration with our approach.

1 Introduction

The construction of a building is a long process that involves activities such as design or planning, cost estimation,
assets, etc. This process is evolving, and new solutions are emerging to replace classical approaches in the built
environment, as for example BIM (Building Information Modeling): an approach to address the lifecycle of a
building, supporting the different activities involved through the use of models [1-3].

The models used in BIM, called BIMs (Building Information Models), are digital descriptions of every aspect of the
built assets. To encourage wide adoption of this technology, there has been a broad international standardisation
effort in the BIM activity. Indeed, the UK government has mandated its use since 2016. The actual standardisation
so far has only progressed to BIM Level-2. Here, the interested parties have been able to agree interchange standards
at the level of files (IFC [4], Industry Foundation Classes) and spreadsheets (COBie [5], Construction-Operations
Building information exchange) that are quite inadequate for current requirements. Their use is not suitable to address
the deployment of novel smart built environments (e.g. smart home, smart cities, smart buildings), because three
main drawbacks: lack of [oT features, limited security capability and fixed asset data structures.

The Internet of Things (IoT) is a promising topic nowadays applied in several areas [6-9], including the built
environments [10]. [oT has several benefits [1 1], but also several challenges, with being-the-security one of the major
ones [12].

&0

Current BIM models (IFC, COBie) and current BIM version (BIM Level-2) do not support loT and security features,
that is, the standards specifications are not ready to address the design of a smart built environments with loT and
security from early stages of the building design. This used to be added at a later stage through a Building Automation
System (BAS) [13].

In addition, the different built assets described in the models (e.g. door, wall, light, chair, table) are described with a
fixed data structure, that is, all the assets of a same category (e.g. door) are represented in the same manner, with the
same data structure and regardless of the scenario or requirements.

In a novel smart built environment this is an issue, because in a real loT scenario there are assets that belongs to the
same category but with different features or objectives. For instance, in a smart building, there are different types of
doors, classic doors, doors with RFID-based badge readers, smart door controlled by the building manager. etc..
where each one works in a different way. is composed by different elements and, therefore, is described with a
different structure.

In this paper we present an integrated solution to support loT and security features, and the possibility to use dynamic
asset data structures in built environments. These solutions are part of the EBIS (Extending BIM Level-2 to support
loT & Security) project, where we propose a framework to address the deployment of 10T scenarios in the built
environments from scratch, providing the procedures to be followed as well as the software and techniques required.

To address the problem of lack of IoT and security, the proposal presented in this research focuses on the idea to give
a hierarchic identity to each physical component. That is, create a digital representation (digital object -DO) to each
physical asset, to hold the original attribute data in a secured database, where new loT and security attributes can be
added to the digital representation. The DOs will be supported by The Handle system, a Secure Identity Data
Management System (SIDMS).

About the fixed asset data structure described in the building models, we introduce the concept of template, a
customized hierarchical structure to support any physical asset structure or data description through digital objects
supported by the Handle system and inheriting their security aspects.

In order to validate our proposal in this work, a Proof of Concept (PoC) in a built environment (smart building) is
already presented in the paper.

This paper is organized as follows. Section 2 introduces the Handle system, describing the architecture and showing
their main features and benefits. Section 3 shows how the Handle system can be used to support loT and security
features. Section 4 introduces the template concept, describing the model as well as the real implementation supported
by the Handle system. Section 5 shows the PoC and, finally, Section 6 summarizes with the conclusions and the
future work.

2 The Handle System

The Handle system is a comprehensive system for assigning, managing. and resolving persistent identifiers for digital
objects on the Internet [14,15]. The features mentioned here are those included in the current implementation, version
8.1.

The Handle system is not just a database to store information and represent digital objects accessed via an identifier,
also it includes an open set of protocols, an identifier space and an implementation of the protocols. These protocols
enable a distributed computer system with two different levels: Global Handle Registry (GHR), managed by their
developers (CNRI) on behalf of the international DONA foundation [16], and Local Handle Services (LHS), managed
by individual administrators, corporations, universities, etc.

In Handle, a digital object identifier is composed of two different parts: a prefix and a custom (and unique) name
called suffix, separated by the character */”, that is, prefix/suffix. For instance, handle “1234/handlel” is defined
under a LHS with the prefix 1234 and has the unique name “handlel”, as suffix.

()

30

Each digital object is composed of a set of equal data structures known as indices, where each index is identified by
an integer number. Usually, each one is used for a specific purpose, according to the type.

The Handle architecture provides several features, such as scalability, extensibility, replicated storage (will run across
as many computers as are required to provide the desired functionality) and performance (providing caching and
hashing), among others [15]. However, one of the most useful features provided by Handle is the security.

The Handle system provides two different mechanisms to ensure the security of the different digital objects:
Authentication and Authorisation. The authentication is the process to be identified as a digital object, while the
authorisation is the possibility to be able to creates read, update or delete (CRUD) a specific digital object.

The authorisation is automatically managed by the Handle system, so if a user (identified as a specific handle) is not
authorised to perform a specific operation, because is not authorised, The Handle system returns a non-authorised
message. The authentication to be identified as a handle (using secret key or public/private key methods), is done
through the protocols implemented by Handle: Basic Authorisation and Challenge-Response method [17]. Both
protocols can be used directly through the Handle Software (in Java) or using the REST API provided by The Handle
system, as the documentation shows [15].

These features provide several benefits and allow many possibilities in the goals presented in this paper: provides
10T and security features in built environments, using The Handle system as support for the different loT scenarios
(IoT applications, end-users, loT devices, sensitive information, etc).

3 IloT and security through digital objects

Built environments deployed using BIM technologies have a lack of loT and security. BIM technologies as IFC or
COBie only support classical assets of a building such as doors, walls or lights, but are not able to represent loT and
security aspects, as for example, an IoT device which required a specific security token to be accessed or set who is
authorised to access to a specific space (e.g. room).

To address this issue, the use of digital objects (DOs) is a promising approach, where the different built assets related
to loT are represented as digital objects. The Handle system provides the technological support to reach this approach,
adding, among others, security constrains to the DOs.

Using the Handle System it is possible to represent built assets, store sensitive information and, through the security
mechanisms (Authentication and Authorisation). ensure that only authenticated and authorised users (or digital
objects) can access to the DO. In this way. it is possible, for instance, to define who is authorised to get access to a
room or get the temperature value of a sensor hosted in an loT device.

Figure 1 shows how with BIM technologies (IFC) we are able to represent a built environment using the Handle
system, where each digital object could be accessed by users, [oT applications or application servers, through the
security mechanisms provided by Handle.

Figure 1: From BIM (IFC) o the Handle System.

2SO

However, the use of the Handle system to represent loT & security from BIM technologies has, at least, two main
challenges:

1. Translation process from BIM (IFC) to Digital Objects (the Handle system)

2. Representation of IoT devices & security not specified in [FC

IFC files are composed by a set of entities (one per line) to define the different assets of a built environment, their
relationships and features. Not all the entities of the IFC file are required in an [oT scenario, only the sensitive ones,
that is, only those which should be considered part of an IoT scenario (e.g. sensor, smart door, an entire floor where
are deployed [oT devices, restricted area accessed by a RFID-based door, etc.).

The direct translation process from sensitive IFC entities is carry out by a user using the tools provided by the Handle
system, however, this is a slow process, because the user should create one by one the different DOs (reading the
IFC file). In addition, the credentials, security tokens, identifier, etc. should be defined manually, which can cause
data error or even security gaps.

In order to improve this task, and as a part of our research and the EBIS project, we propose an automatic tool called
IFC2Handle: a cross platform application (Windows, Linux, MacOS) which uses the REST API provided by the
Handle system to transform an IFC file into digital objects supported by Handle.

Through this application, an IFC file is used as input data. The application parses the IFC file and generates a
checkbox tree structure, representing the structure of the building organized by levels, spaces. rooms, etc. The user
selects (checking the checkboxes) the different parts of the building that he/she wants to be a sensitive part. That is,
which parts of the building should be translated into digital objects (e.g. a specific door in a specific floor, an entire
floor, etc).

With the selected parts of the building, and an additional information required to create the Handle structure (project
name, prefix, Project Manager username and password, administrator credentials to be authorised, etc), the
application generates automatically the Handle structure. creating all the handles (DOs) as well as configuring the
authentication and authorisation of each handle.

IFC2Handle constructs each handle identifier automatically, according to the building levels (hierarchical) using a
URL structure. For instance, if in the building model (IFC file) there is a sensor called sensorl, hosted in the rooml
of the /evel3 (third floor), all under the project name ucl, and using the prefix 555535, the handle identifier will be

55555/ucl/level3/room1/sensorl. It is this routine that must be replaced if the original BIM information is provided
in a form different from IFC.

Figure 2 (a) shows the main screen of the IFC2Handle application and Figure 2 (b) shows an example about how the
handle identifiers structured is created.

e
s < P Options
B tosductie | poctuampie sc Gommiste¥Cs iy | Demnicednce tin
Hete Peofec Optians
o refin
L materpiace e o
¥ Clangratony
¥ Clowiz
¥
Teed
am
anr
- Livosr
fifesey
R

[R iogies [Cimats Hende, | Bimows Profas

Figure 2 (a): IFC2Handle main screen

i

T A LR R L AL 8 D A eap
Figure 2 (b): DOs hierarchical structure to represent a building

The possibility to define a specific Handle structure under a prefix and a project name allows the possibility to support
different loT scenarios (e.g. different buildings) under the same Handle prefix (Handle installation) but with different

credentials and users depending of the project (Figure 3).

- ——— - .. --—- o A
Figure 3: Handle Structure to support different loT scenarios
This way to support loT scenarios for built-environments, through a hierarchical digital object structure with security

constraints has several benefits, such as support of large-scale built environments, well-identified 1oT elements,
different types of loT elements according to the type of the DO, etc.

However, this Handle structure created through the [IFC2Handle application is just a first version of the DO structure
to represent the loT scenario, because new DOs should be added to support new entities required, such as end-users,
additional security tokens, additional building assets, etc. as well as elements which are not supported by IFC.

To address this issue, a new application has been developed as a part of our work and the EBIS project. foTW platform
is a web platform to manage IoT scenarios represented by DOs supported by the Handle system.

Through 1oTW platform, the user(s) are able to create new DOs to represent new loT elements (IoT devices, sensors,
actuators, security tokens, data fields), define the credentials (who is authorised to access to a DO), define new users
(also represented as DOs), etc.

Figure 4 shows a screen of [oTW platform, which represent the completion process of an empty room. New loT
elements, not supported by IFC (e.g. end-node LoRa device, sensor with security token, etc), are added through this

tool, creating new DOs.

30

{E}‘ Building Management
Enis

Sbtandrmctor

Mot send

Figure 4: Creation of new DOs to represent built assets

Each new DO created could be accessed through the REST API provided by The Handle system. according to the
authentication and authorisation methods described in the official documentation [15]. In this way, different loT
applications of the IoT scenario or built environment are able to access to these DOs, in order to obtain relevant
information or the security tokens to access to the real loT devices.

4 Templates to support flexible data structures

4.1 Introduction

In a built environment there are many assets, such as doors, walls, lights, chairs, tables, etc. However, not all the
assets of the same type are equals. For instance, in a built environment, there are classic doors, RFID-based doors,
doors to enter to a public space, doors to enter to a private area, exit doors, etc.

In IFC, each entity to represent a specific asset has a static data structure to describe it, according to the [FC
specification (id, owner, history, description, etc). Although could be possible add additional attributes to an IFC
entity, two IFC entities of the same type with the same additional attributes are considered non-related entities, and,
when they are translated to DOs, there are two different DOs without any relations, so changes in the data structure
in one of them, do not affect the structure of the other one.

Furthermore, the absence of relation between the entities avoid the definition of a hierarchical structure with super
types and subtypes, in order to be able to manage groups of entities at the same time, or apply changes in all the
assets of the same type.

As a part of our work and the EBIS project. we have defined an approach based on a hierarchical structure of digital
objects to represent dynamic data structures called femplates. These digital objects are supported by the Handle
system, inheriting their security features

4.2 Template description

In the EBIS project, a template is a custom and flexible data structure that includes a set of attributes, where each
attribute is composed by the pair key-value (Hash table), where the key is the identifier (or name) of the attribute and
the value is the data type. Each identifier of the data structure is unique, as well as the template name, to be uniquely
referenced.

The different data types supported in our template approach are the primitive data types (string-char, integer, float,
boolean), a recursive array of attributes (using the tag array), a reference to a different template (using the tag
template) and a reference where the value can be stored (using the tag reference).

The template specification is structured using JSON notation and following the JSON specification [18], where types
are restricted to the following tags: string, integer. float, boolean, array. reference and template.

230

This way to understand the templates allows the possibility to define any item using attributes, using primitive
datatypes or the custom defined (array. template, reference). If the object_contains—+s-eempesed-by an attribute
composed by several objects, the array tag can be used. If the future value of an attribute is stored using a different
template, the template tag can be used and, finally, if the value is stored in a different place (e.g. server, file, database),

an URL can be setted using the reference tag.

Understanding a template as a data structure without any values, from a single template can exist several instances
with different values. Figure 5 shows an example, where two different templates have instances. related between

them.
1 template2C

template1C] |
{ "™ "string”, "state™: “integer”,
“security”: "boolean”, “object”:
“template”)

| 17" “string”, “state™: “integer",
“security”: "boolean®, "object”
| “amayrparace-reference” |

Y - — "
[e rvouer, |

“state": 0, “security™; “security™ true, “objects™
faise, "object”: 1 (param 1™ valueparsm1®} [“pars
“template201° } m2"4), “paraml®:u" |

“lemplate202° }

as)

[— — - S—— - - 2 SN
Figure 5: Templates instances

Finally, following this proposal, where a template can reference a different template, it is possible to construct a
hierarchical organization, where a set of templates (sub-templates) can be under a template (super-template). In this
way, a set of templates can be identified by the same type, but with differences according to the templates values or
data structure. Figure 6 shows an example of a hierarchical organization/structure using the concept of “door” and
templates instances (classicdoor, smartdoor, lockeddoor and unlockeddoor).

daor

17471, "eolour™. "black,
“yioe™ 407 price™: 14,75}

{"paramd™ 15, "typelock”:“hey” {params” e, (
| parent”“casdoor” | “parent”: chassctoor”) ;—_B‘.ﬁ
JoAr dokdd

[W — S— - - Y — - — -
Figure 6: Hierarchical structure using templates

Template model has been designed to be malleable, so, new tags or changes in the data structure (e.g. add metadata
to each template) could be added to support new requirements and cover useful functionalities.

4.3 Templates as digital objects supported by the Handle System

The current Handle system official release version supports templates, but with a different meaning. In thate Handle
System_Release, a template is a handle (Digital object) created to solved full handles in a simple request, according
to a specific pattern [15]. For instance, get URL values stored in different indices in the same handle in just one

request, instead perform one request per each URL value (index).

In our work, as a part of the EBIS project, we have redefined a new template concept, according to the description
of the previous section. However, the conceptual template description presented in the previous section is a generic

730

approach, and therefore, should be implemented to have a real (and ready to use) solution which can be applied to
any domain, not just in the EBIS related area (BIM). To achieve a real implementation, the generic approach
explained in Section 4.2 has been implemented using the Handle system.

In this implementation, each template is represented by a handle (Digital Object), identified by an identifier
(prefix/suffix), where the data structure (JSON) is stored properly in the DO and with their own ACL (Access Control
List). The use of ACLs can guarantee, for instance, that only authorised users are able to use or modify (read and
write) the template. In some occasions, it could be useful to describe and publish templates only accessed by some
types of users. For instance, all the templates related to a “sensor”, could be accessed by the maintenance engineer
of the building. '

The representation of a template as a digital object (handle) ensures that two templates cannot have the same
identifier, and a template cannot have two attributes with the same identifier. This guarantees that each template is
unique, although can be used several times (sub-templates), but ensuring that if the template changes, the sub-
templates should be modified according to the new changes.

Following with the description of Section 4.1, the tag template is replaced here using a specific index inside the
handle, to specify the parent of the current template, using the name parent. The tag reference is known in this
implementation with name handle, and can contains a URL, a database or even a handle identifier where the value is
stored.

The use of handle identifiers as reference for other templates allows, like in the generic approach, the description of
a hierarchical structure, where several templates (handles) are under one (or several) template (s). Figure 7 shows an
example.

Handle: S$55ftomplateld)
£ Temgplate
| Cname”:"string’, "type”: "integer”, | |
I |, “eonnector” “integer”] L]
™

Handie: $s555/ausz) |
templateid b

“typevalue” “string”,
measureinterval®:“integer}

f NE— S ——) RS— S————"_ 4 - SRR

pte 4] ‘

| | integer” “masvalue® “integer”}

Figure 7: Use of The Handle system to represent template hierarchical structure

The templates implemented using handle have instances, that is, the data structure filled with values. These instances
are represented as handles as well (DOs), where each template, stored in a handle, has an indeterminate (and
unlimited) numbers of instances (handles) to store the values.

Furthermore, if the original template changes (e.g. add a new attribute), the handles that use the template (instances)
also change, adding the new attribute. Although this option is not naturally supported by The Handle system. new
services have been added to the original Handle Server to support it.

5 Proof of Concept

5.1 Background: EBIS Framework

The outcome of the EBIS project is the EBIS framework, designed to address, from scratch, the deployment of secure
loT scenarios for smart buildings.

) 30

The aim of the EBIS framework is, using BIM level-2 model(s) (IFC), deploy an entire 10T scenario for a smart
building in the most automatic possible way with security constrains, where different [oT applications, loT devices
and users can interact between them.

So far, this PoC is based on the initial BIM data being expressed as an IFC file. However, we do not consider this a
good basis, but it was the only one standardised to date. In the later APBIM work we will use a different form of
that data such as databases, mainly because we expect two differences as a result of using a different form of the BIM
data. First, there may be a richer set of types of component. Secondly, the routines for transforming the BIM data
into databases accessible via Handle need to be rewritten.

The EBIS framework is composed by four different elements:

* A three-phases methodology to address the deployment of a multi stakeholder loT scenario based on BIM.

e Support technology used to support the methodology proposed and the different processes through the three phases
(The Handle system, Section 2).

e Design elements to enable loT scenarios from BIM files. These elements are IFC+ (an extension of [FC to support
10T and security features) and templates (Section 4).

e Support software to improve and automate as much as it is possible all the processes related to the deployment of
the system (IFC2Handle and lIoTW, Section 3).

Through the methodology, the different users involved conduet the procedure to deploy the IoT scenario (using the
support technology, design elements and support software), carrying out a set of tasks or processes, such as create
the different DOs to represent the building, fill the values of the data structures and implements IoT applications,
deploy sensor networks, etc.

The process starts with the creation of the first DO structure using [FC2Handle application (Section 3), and continues
with the use of 1o0TW, where the different users complete the IoT scenario filling the different building assets (Section
3).

At this point, besides the representation of the different building assets as DOs through the IoTW platform, the users
define the different templates. That is, define general templates to assign them to specific assets, according to the
type, in order to categorize a set of assets of the same type and with the same data structure.

Because the description of the full PoC is out of the scope of this paper, in this section only will be addressed the part
of the PoC related to the creation of the DOs structure (Section 3) and the templates (Section 4).

5.2 DO structure and templates in the EBIS PoC

The PoC defined to validate the EBIS framework is described as follows: There is a smart area inside of a building
with two different rooms (R1 and R2) where the access is through R1. Each room have a temperature sensor, air
conditioner machine as well as some lights, and the access is through a RFID badge reader hosted in the R1’s door.
In this scenario, we must define the different IoT elements, who is authorised to use them, who defines these
authorisations, etc.

While the scale of this PoC is very small, it does exercise all the elements of the framework. The terms validate, and
Proof of Concept are far-fetched, but at least this exercise both shows how the framework is applied and has shown
up no insuperable bars to scaling up to more realistic scenarios.

In this section, we describe only the first steps or.processes of this PoC, where the creation of the DO structure and
templates are involved.

First of all, the EBIS framework starts with the first phase of the methodology: Construction and Deployment. The
architect, using an open-source or private vendor CAD software, design the building and generate an IFC file to
represent the building or built environment.

230

With the IFC file, and using the IFC2Handle software already described in section 3 (Fig. 2 - a), the administrator of’
the system generates the first instance of the DO structure, following a URL path structure as Fig.2 (b) shows. In this
case, and according to the PoC description, the administrator only selects the room number one and two (R1, R2) of
the third floor, defined as Space, as sensitive parts of the building, and therefore, digital objects.

When the first instance of the DO structure is created (R1 and R2 defined as DO), the Project Manager (PM), defined
through the [FC2Handle, use the [oTW platform (Figure 4) to define the rest of users involved in the PoC: Information
Security Officer (ISO), Subl and Sub2 (subcontractor as architects, experts) to design R1 and R2, different end-user
of the loT applications and loT developers (Fig. 8 — a).

2

{ :} Users Management

SIS E e
SR - =3
- o=
- o=
o o=
- =
A — B A LR ERE T —— A
Figure 8 (a): User Management
7< !}' Permissions Management a
[
R ;]
S - SRR — []
“ ST Pt

Figure 8 (b): Permissions maT1agcment

The ISO can now login into the loTW platform, and gives permissions to subl to manage R1 and sub2 to manage
R2 (Fig. 8§ - b)

At this point, the different subcontractors (sub1 and sub2) are able to:

1. Complete the different empty spaces (R1 and R2) with different elements to represent the [oT scenario. That is,
create new digital objects as digital representations of the physical assets in the room one and two.

2. Define the data structure of each element (DO) through the use of templates.

The creation of new DOs as well as the definition of templates is done through the loTW platform, which provides a
friendly interface using a three-based chart. Starting from the root, the subcontractor can add as many nodes
(Children) as he/she needs, with several levels or deep (no limits) and where each node is defined by a name and a

type.

In this PoC, the R1 contains a RFID badge reader and an End-Node LoRa device to open/close the door and manage
the air conditioning machine. The user sub1 defines an end-node LoRa device, with the identifier loral and a RFID
badge reader, as a sensor, with the identifier rfid. In addition, the Joral element has several children, to represent the
temperature sensor (with the identifier temp/) and an actuator used to calibrate several parameters (act/).

130

User subl can modify as many times as he/she needs the design of the room one, just clicking the “Save” button,
being able to complete a difficult design during an undetermined period of time. Once the design is completed, subl
click on the “Send” button. Figure 9 shows the view of the design of the R1 by the user subl.

<E>" Building Management !
EbIS |
sebconcie ez e Not send fi

Figure 9: Building management by the user subl (editing Room 1)

When subl sends the design, this is now able to be evaluated by the PM (Project Manager) and is no longer available
to be modified by the user subl, showing the state “Not Send” to “Under Review”. Sub2 do the same process to
complete the R2.

The PM access to their profile in the [oTW platform and click in the “Structure Validation™ option. In this view, the
PM selects, from a list, the different spaces to be validated.

In this case, there are two, related to the room one and room two. When the user clicks on each one of them, the PM
can review the structure/design, through the same three-based chart used by the subcontractor. In the same view, the
PM can “Accept” the proposal/design or “Reject” it. In case the PM accept the design, the platform makes a request
to the Handle Server and create the different handles identifier according to the design. For instance, in this PoC, if
it is accepted, the following handles are created (for room 1):

® 55555/ucl/maletplace/engbuilding/space/level3/r1/loral

® 55555/ucl/maletplace/engbuilding/space/level3/r1/loral /temp |

* 55555/ucl/maletplace/engbuilding/space/level3/r1/rfid

Once a space structure or design has been validated/accepted by the PM, the subcontractor, in their “Building
Management” section, see their space structure as “Accepted”. At this point, the subcontractor, is able to set the data
structure (template) of each asset/part of the building,

Although the data structure or template is setted in the “Building Management” section, the [oTW platform provides
a dedicated section to manage the templates. In the “Templates Management”, the subcontractors are able to define
template structure from scratch (root node template) or from already defined templates (sub-templates). In this PoC,
and for the user subl, we define three new templates. Two of them are for the temperature sensor and the actuator,
and are sub-templates of the template sensor. The other one is for the RFID badge reader, and there is a new template
with the parent root, that is, is in the top of the hierarchical template structure. Figure 10 shows the definition of the
templates related to the temperature sensor and Figure 11 shows the template to describe the RFID badge reader

"'< E>' Templates Management a

230

<E>' Templates Management a
S,

St ey

i

TFigure 11: Template defined for RFID-badge reader

With the templates defined, the subl is able now to set this templates as data structures to define the different assets
of the R1 (rfid, temp1 and actl).

As in the previous step, the definition of a new building asset should be accepted by the PM (and sometimes by_the
1SQ, if there are security attributes involved). The PM (and ISO), using their options in the loTW platform, access to
the -the-“Structure Validation” and check the different data structure (templates) of each building asset.

As a part of the second phase of the methodology (loT applications applications), if the data structure is accepted, is
now ready to be assigned to IoT developers, in order to fill each template or data structure with specific values
(template instance).

The ToT developer (devl), through the 1oTW platform is able to define a template instance. The platform,
automatically, generate a_user- friendly -web form to represent the template and to be filled by the developer.

The developer can fill the form, save it and send it when is completed. The PM and ISO should accept the data values
(sensitive data is encrypted and not shown). When the PM and ISO accept the different values, the different handles
to represent the different attributes of the template, with their values, are created. These DOs, with the inherited
security restrictions can be accessed through the REST API by the different loT applications to support the required
functionalities.

In the same way, if at any point, a new attribute i1s added in a super-template, the sub-templates inherit the attribute,
and the user-friendly_-forms change, showing a new attribute to be filled, creating a new DO to represent the new
attribute with the new value (Fig. 12)

P

T e -
Figure 12: Web form generated from template to be filled by loT developer

In this second phase, the different loT applications for end-users are also implemented. When the second phase is
completed, the third phase starts (Operations), where run the different application servers, loT applications, exchange
information between users and servers, users and loT devices, get access from the sensors, etc

6 Conclusions and further work

230

BIM (Building Information Modeling) is the future in so far as it is the most information rich approach to planning
and construction that we have nowadays. However, the Internet of Things (IoT), with its huge potential, is not
supported in the BIM Level-2 Standard Specifications such as IFC and COBie or other parts of the standard. These
aspects must be added at a later stage of the design or even construction.

To address this lack of 10T and security, in this paper we have proposed an approach based on the use of secured
digital objects instead of files, to represent building assets. Each relevant building asset in a secure IoT scenario (e.g.
private room, temperature sensor, RFID-badge reader, etc) is represented as a digital object (DO), supported by the
Handle System. Each digital object has its own structure and security mechanisms (authentication, integrity and
authorisation) and could be accessed by any type of device, anywhere and at any time from the REST API provided

In this way, it is possible to safeguard relevant information in the DOs and ensure that only authenticated and
authorised users can get access. These DOs can be used to store security tokens, private and encrypted data, etc. At
the same time, we must stress that this approach provides only a technology base; Part 5 of the BIM Level-2 Standard
[19] stresses that the large-scale publishing of building properties is by itself potentially dangerous, particularly when
combined with data published in other ways.

This technology does not address the resulting threats, though it may give tools for mitigating them. For example, in
the PoC example above, there are two secure rooms. To publish the location of these rooms, even without revealing
details on how they may be accessed, gives undesirable information to potential attackers. It may be much more
desirable to put all sensitive information, including as much information as possible about how to find it, into areas
that are not accessible at all to unauthorised entities.

Another aspect stressed in [19] is the need to run secure servers. This includes many aspects of their operating systems
and operational environment. The security of the global decentralised servers-arehiteeture of the Handle System, as
defined in Section 2, need not be of major concern. That allows access only to the local system, which can take its
own precautions. However, vulnerabilities in the application-specific servers could endanger the security of the BIM
data. Similarly use of external templates, if they run on vulnerable systems, could contain malware that must be
carefully inspected prior to use. While this sort of consideration is vital for the real security of the BIM data, it is
ignored in EBIS and other projects currently planned.

In the representation of a physical asset as a DO, there is a data structure store in the DO which is used to record the
physical asset definition (e.g. an asset is described by a height, weight, colour, width, type. etc). This data structure
is different depending of the type of asset, because two different assets are described in a different way. (e.g. a classic
door and one equipped with an RFID badge reader).

Although it is possible to describe different data structures into DOs, there are not related at all, so changes in a data
structure do not affect other DO with the same data structure. To provide facilities allowing a closer link between the
type of component and its basic structure, we have proposed in this paper the concept of template: a customised
hierarchical structure to support any physical asset structure or data description of digital objects supported by the
Handle system and inheriting their security aspects.

Both the representation of assets as DOs and the use of template for related data structure are part of the EBIS
framework. To validate this framework, a Proof of Concept (PoC) has been carried out. In this paper, we have present
the part of the PoC related to the goals this work, showing how it is possible to represent building information as
DOs and use template to describe data structure.

We stated that validating the whole technology is a goal of EBIS. Clearly the range and extent of the PoC deployment
too small to give a real validation. Although EBIS project shows promising and interesting results, it is not yet
complete and several areas need further study. We have not yet considered seriously how to integrate in current
building management systems. Also, although the Handle System is a very useful specification and support tool, it
is difficult, for instance, discover the different DOs or identifiers in a building information database. That is. only 1t
is possible access to a DO if you know their identifier.

230

It 1s not obvious how to list all the different building assets represented as DOs of a building, to know about its
resources or elements. To address this issue, as future work, we are researching about the potential use of Hypercat.
Hypercat is a standard driving secure and interoperable Internet of Things (IoT) for Industry. Of course, it is not
really the Hypercat Standard that matters, but the actual implementations. For instance, one part of the Hypercat
Standard (Section 7 of the official Hypercat documentation) defines security facilities in Hypercat. However, it gives
a wide choice of algorithms and mechanisms, with no comment on what should be used. In any real use of Hypercat,
it is the properties of its implementation that must be studied if one wishes to consider what should be done in the
Hypercat servers and what in the Handle ones.

By a combined use of Hypercat, as well as the Handle System, it should be possible to publish all the resources of a
building, with Handle identifiers, in order to be used by third-party software or users. Although Hypercat will list the
different resources, the security 1s still supported by the Handle System.

Finally, part of our future work under APBIM and PETRAS auspices will extend the validation to work through the
whole technology in the context of the deployment of'a smart, instrumented home with provision for loT and security.
This work will be supported by the use of the EBIS framework with the collaboration of the Building Research
Establishment (BRE), who will provide the real BIM data and access to their Innovation House

Acknowledgements

We acknowledge the support of the EPSRC and UCL Enterprise for their support for the EBIS project and EPSRC
and PETRAS for their support for the APBIM project in the conduct of this research. The general technology and the
concentration on IFC was part of EBIS; the IFC attivity will not be pursued under APBIM.

References

[1] Eastman, C. M., Eastman, C., Teicholz, P., & Sacks, R. (2011). BIM handbook: A guide to building information
modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons.

[2] Azhar, S. (2011). Building information modeling (BIM): Trends, benefits, risks, and challenges for the AEC
industry. Leadership and management in engineering, 11(3), 241-252.

[3] Standard, P. A. S. 1192-3: 2014. Specification for information management for the operational phase of assets
using building information modelling.

[4] Liebich, T. (2013). IFC4—The new buildingSMART standard. In IC Meeting Helsinki, Finland: bSI
Publications. ISO 690.

[5] East, W. (2007). COBIE (Construction-Operations Building Information Exchange). US Army Engineer
Research and Development Center, US Army Corps of Engineers, Washington, DC, USA.

[6] Evans, D.(2011). The internet of things: How the next evolution of the internet is changing everything. CISCO
white paper, 1(2011), 1-11.

[7]1 Gubbi, J., Buyya, R., Marusic, S., &; Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural
elements, and future directions. Future generation computer systems, 29(7), 1645-1660.

[8] Atzori, L., lera, A., &, Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-
2805.

[9] Sanchez, L., Mufioz, L., Galache, J. A., Sotres, P., Santana, I. R., Gutierrez. V., ... & Pfisterer, D. (2014).
SmartSantander: [oT experimentation over a smart city testbed. Computer Networks, 61, 217-238.

[10] Jie, Y., Pei, J. Y., Jun, L., Yun, G., & Wei, X. (2013, June). Smart home system based on iot technologies. In
Computational and Information Sciences (ICCIS), 2013 Fifth International Conference on (pp. 1789-1791).
IEEE. ISO 690. ;

[11] Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon. D. (2015). Unlocking the
Potential of the Internet of Things. McKinsey Global Institute.

[12] Lee, 1., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for
enterprises. Business Horizons, 58(4), 431-440. 1SO 690.

[13] Jung, M., Reinisch, C., & Kastner, W. (2012, July). Integrating building automation systems and ipv6 in the
internet of things. In [nnovative Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth
International Conference on (pp. 683-688). IEEE.

[14] 14. Sun, S., Lannom, L., & Boesch, B. (2003). The Handle system overview (No. RFC 3650).
[15] http://hdl.handle.net/20.1000/105,
[16] https://www.dona.net /, e
[17] SWIFT, Michael M.; SHAH, Bharat. Challenge-response authentication and key exchange for a connectionless “~.
security protocol. U.S. Patent No 6,377,691, 23 Abr. 2002

[18] https://tools.ietf.org/html/rfe7159, .
[19] BSI, “PAS 1192-5:2015 Specification for security-minded building information modelling, digital built ~
environments and smart asset management,” 2015

