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Abstract—When developing children interaction systems, such
as serious games in educational technology context, it is im-
portant to take into account and address relevant cognitive
and emotional child's experiences that may influence learning
outcomes. Some works were done to analyze and automatically
recognize these cognitive and affective states from nonverbal
expressive behaviors. However, there is a lack of knowledge
about visually impaired children and their body language to
convey those states during learning tasks. In this paper, we
present an analysis of nonverbal expressive behaviors of both
blind and low-vision children, aiming at understanding what
type of body communication can be an indicator of two cognitive
states: engagement and confidence. In the study we consider the
data collected along the EU-ICT H2020 weDRAW Project, while
children were asked to solve mathematical tasks with their body.
For such dataset, we propose a list of 31 nonverbal behaviors,
annotated both by visually impaired rehabilitators and naive
observers. In the last part of the paper, we propose a preliminary
study on automatic recognition of engagement and confidence
states from 2D positional data. The classification results are up
to 0.71 (F-score) on three class classification task.

Index Terms—visually impaired children, engagement, con-
fidence, learning, cognition, nonverbal behaviors, classification,
machine learning

I. INTRODUCTION

Nonverbal communication is the first stage of communi-
cation development [39], representing a fundamental part of
what people use to convey information when they interact and
communicate with each other [22]. Since the visual modality is
crucial to develop social and communication abilities, visually
impaired children may show different nonverbal behaviors
[44]. In this paper, we focus on nonverbal indicators of cogni-
tive states in blind and low impaired children in mathematical
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task-oriented settings. The work is realized in the framework
of the weDRAW Project that aimed at developing adaptive
multisensory technologies to enhance comprehension of math-
ematical concepts in primary school children. According to
the project objectives, a unique technology design will suit
both typically developed and visual- or learning- impaired (e.g.
blind, or dyslexic ) children's needs. In this framework, a set
of serious games has been developed to teach children the
basic concepts of mathematics. Such systems would benefit
from an adaptive feedback based on child’s specific learning
needs and her involvement in the task, e.g., with automatic
measurement of her/his cognitive engagement and confidence.
While several works exist on the recognition of cognitive
states (e.g., engagement in [25], [34]) they do not focus on
nonverbal behaviors of visually impaired subjects. In next
sections, Section II, Section III, Section V, starting from state-
of-the-art on nonverbal communication in visually impaired
children and from weDRAW Project dataset, we describe
relevant nonverbal cues of engagement and confidence for
this population. We then introduce the annotation procedure
we followed in this study in Section VI, and we present our
preliminary work on automatic classification of these states
from video in Section VII.

II. BACKGROUND: GESTURES AND UNCONSTRAINED
BODY MOVEMENT IN VISUALLY IMPAIRED CHILDREN

The level of visual functioning can greatly influence child
early development. A visual disability may therefore lead to
developmental delays, especially if an early intervention does
not take place [47]. Developmental delays can have a negative
effect on child's participation both in rehabilitation and educa-
tional settings. In addition, poorer immediate problem-solving



Fig. 1. Picture of a blind child exploring angles with his arms during the
weDRAW data collection

[12] and mathematical skills [28] have been found in children
with a visual impairment.

Nonverbal behaviors in visually impaired children were
expected to be semantically different from those of typically
developing ones. For these reasons, considering the state-of-
the-art, it is relevant to research to what extent visual impair-
ment may affect the development of nonverbal communication
patterns and the ability to produce such patterns in various
social interactions. For instance, head orientation, proxemics
and distance from the objects (e.g. walls) might have different
meaning [44] when displayed by visually impaired individuals.
Iverson and Golden-Meadow [24], for example, discussed
gestures used by congenitally blind children who never saw
gestures before nor experienced their communicative func-
tions. Results showed that visually impaired children produced
gestures but not in all situations as it was for sighted and
blindfolded ones. The study suggested that gestures provide
speaker with functions that are independent by the listeners.

III. ENGAGEMENT AND CONFIDENCE BEHAVIORS IN
CHILDREN

Important developmental and social changes occur in chil-
dren starting from the age of 6. Through these years, they
contribute to create a personal identity, a self-concept, and
an orientation toward achievement that will be relevant for
shaping their success in school, work, and life. In this work,
we investigate confidence and engagement in primary school
children with visual impairments during embodied mathemati-
cal tasks solving. The educational literature shows (see [36] for
a review) that in interactive learning task-oriented environment
it is crucial to be able to recognize these two cognitive states in
order to avoid the potentially negative outcomes of learning
experience. The lack of engagement, or low self-confidence
might lead to negative emotions such as boredom or anxiety
[9] and, even to the complete abandon of the task. Below, we
provide the definitions of the two states as they were given to
the annotators:

Engagement can be considered a cognitive construct, based
on the interrelation between behavior, cognition and emotion.

In young children, it can be deduced interacting with teachers,
other peers and materials in a way that is appropriate from
a developmental and contextual point of view [29], [46]. In
learning studies, engagement is often defined as the amount
of energy that the student devotes to learning experience.
In literature, research highlighted three different types of
students’ engagement: cognitive, emotional, and behavioral
[17]. Cognitive engagement is related to how much students
invested cognitive efforts and resources in learning; the emo-
tional one considered students’ motivation and commitment;
instead behavioral engagement deals with students on-task
behaviors. [33].

On the other hand, confidence results from the appreciation
of one’s own abilities or qualities. Scientific literature [13],
[38] has corroborated Erikson's idea [14] that feelings of
competence and personal esteem are of central importance to
a child’s well-being [23]. For example, children who do not
consider themselves competent in academic, social or other
fields (such as athletics, music, theatre or scouting) during their
elementary school years report depression and social isolation
more often than their peers [11]. Self-confidence is closely
related to the task for which the solution is being sought and
can also be observed in short intervals of time.

Cognitive engagement has a great impact on learning out-
comes and this is why it is such considered also in e-learning
technology research [15]. Analogously, self-confidence is one
of the states that teachers used to monitor children learning
outcomes [19].

IV. AUTOMATIC RECOGNITION OF ENGAGEMENT AND
CONFIDENCE

Several works were proposed in the literature to compu-
tationally address the level of engagement from nonverbal
behaviors [27]. Most of them focused on engagement detection
or estimation in human-human [16], human-virtual [31] agent
or human-robot [3] dyadic or group interactions from gaze
[31], back-channels [41] and facial expressions [20]. Frank
and colleagues [16] proposed the Engagement Classification
Framework composed of six states from ”disengagement” to
”involved action”. Their framework implementation detects the
3 levels of engagement from 3D data by detecting a set of
features of the upper body movements such as hand vertical
positions and speed, leaning and body direction as well as
specific postures. In [26], a multimodal approach was pro-
posed to detect levels of engagement, using nonverbal features
extracted from audio and visual data, and using rank learning.
Finally, recent works included the application of deep learning
techniques to compute intensity of engagement from video in
e-learning tasks (see, e.g., papers of the Engagement in the
Wild track of EmotiW 2018 Challenge at ICMI conference1).

In the context of single-user activity, Ge and colleagues [18]
proposed model for engagement / disengagement detection
in autistic children from body movements. They detected
child's concentration on a given task (e.g. playing a game

1https://sites.google.com/view/emotiw2018



on a tablet) by extracting a set of features from kinematics
data obtained from a RGB-D camera and applying machine
learning techniques. Several features were computed using
angles and distances between child's joints and an object of
interest (e.g., table).

Using standard algorithms such as SVM, Random Forest,
and AdaBoost they achieved a recognition rate up to 97%
for two-class pattern recognition problem. Shaker and Shaker
[43] detected the level of engagement from nonverbal cues in
a context of single-user video game. They extracted several
low-level visual features, and combined them with high-level
facial expressions labels. Next, they apply Neuroevolutionary
Preference Learning (NPL) to obtain the accuracy of 96%.

Computational approaches of confidence level are more
rare. Most frequently researchers focused similar topics such
as on leadership detection in multi-user scenarios, e.g., social
games [4], and self-efficacy in physical rehabilitation [35]. We
are not unaware, at this stage, of any existing model for the
recognition of confidence level from full body cues in context
of single-user task in education (for physical rehabilitation
context, see [35]).

V. THE WEDRAW DATASET

Body movements play multiple roles in weDRAW project:
first, it is a means both for the child and the teacher to explore,
construct and understand some arithmetical and geometrical
concepts; second: it allows an observer (either the teacher
or the technology) to gain insights on child's cognitive and
affective processes that affect learning. In particular, in this
paper we only focus on its second aspect, i.e., a communica-
tion channel allowing humans to express and perceive implicit
high-level messages, such emotional and cognitive states or
social boundaries. Thus, it is out of the scope of this paper to
recognize whether the child was able to perform correctly the
task through the appropriate choice of gestures and poses.

A. Dataset and Participant Profile

For the purpose of the work we created, with the partici-
pation of visually impaired children, the VI-weDraw dataset
which comprises body movement data, captured during math-
ematical problem-solving specifically designed for the experi-
mental setting. The tasks were based on project premises and
comprised: angles, symmetry and reflection, considered as a
type of isometric transformation of shapes. The dataset con-
sists of two synchronized video recordings (frontal and lateral)
with corresponding audio data. All the children recruited for
the experiment were studying in Genoa and participating in
a rehabilitation programme at Chiossone Institute in Genoa
at the time of the data collection. We collected the data
from 3 blind and 14 low-vision children. The visual acuity
of the collective group ranged from no perception of the
light to visual acuity of 1/20 from an eye. To understand
the level of cognitive impairment, the verbal QI (QIV) and
performance QI (QIP) items of the Weschler Intelligence Scale
for Children (WISC-IV) [45] were used as well as the IAG
and the Griffiths-III [21] tests. Collectively, the cognitive tests

showed that 3 of the 17 children had levels of cognitive
impairments.

B. The mathematical problem-solving tasks

Following the procedure described in [37] with typical
developing children, the data collection session started with
an exploration of static representation of angles using child's
arms, whose movements were supported with sonification
technology. Sounds were realized using a tonal scale played
by strings instruments, and the pitch was mapped to the inner
angle (along the vertical plane) between child's arms. It was
played in real-time, according to child's arms aperture (see
Fig. 1).

In this activity, the child was trained to additionally use
proprioceptive feedbacks and tactile information from a flat
wall, used as a reference. Child's arms extended outwards
ipsilaterally (and against the wall) to form 180 degrees an-
gle. Extending one arm outward ipsilaterally and the other
contralaterally the children formed 0 degrees angle while
extending one arm outward ipsilaterally and the other in
the anterior they created 90 degrees angle. For each child
the task was first explained by the instructor, who helped
their exploration of angles 0 degrees angle, 90 degrees angle
and 180 degrees angle as described above. Next, they were
encouraged to explore sounds feedbacks of their own. Finally,
it was asked to the child to represent 45 degrees angle and
135 degrees angle. In the second task, each child was asked
to represent 45 degrees angle (and 135 degrees angle) by
rotating their body about the vertical axis. Differently from
[37], the children were also trained to use proprioceptive and
tactile feedbacks with a flat wall as reference: standing with
the back flat against the wall represents 90 degrees angle. This
additional proprioceptive and tactile exploration was suggested
by the Blind psychotherapist working in the project.

VI. ANNOTATION AND LABELING

From the video data, we extracted the episodes in which
each child answered to given mathematical problems. We
collected in this way 92 episodes with total duration of 12
minutes and 10 seconds. All the episodes were presented in
random order and without audio information. Although in the
literature there are findings suggesting that for learning related
tasks, also untrained observers can provide reliable ratings, we
decided firstly to ask to four experts (co-authors of this paper)
to annotate each episode. The group was composed of one
rehabilitation specialist from Chiossone Institute for visually
impaired people, and three experts in movement analysis from
University of Genoa. They used a 1-to-5 Likert scale, with
3 as neutral state, for each of the degrees of confidence and
engagement . Each vote was a result of the informal consensus
between all the experts. Meanwhile, they also discussed and
jointly reported the nonverbal behaviors observed. The same
experts propose a list of the 31 observed nonverbal behaviors
(see Tab. I). For the second turn of annotations, we chose 20
episodes from the initial 92, which in the above mentioned
ranking were annotated as representing high/low engagement



TABLE I
THE LIST OF NONVERBAL BEHAVIORS AND THEIR FREQUENCIES OF APPEARANCE IN THE DATASET

Movement quality Posture Gesture
Id Cues % Id Cues % Id Cues %
1 Focused, direct movement 34.44 10 Gaze down 38.99 21 Exp. of positive emotions (e.g. laughter) 18.33
2 Jerky movement 25.00 11 Tendency to act 25.00 22 Nervous smile or laughter 13.99
3 Hesitating movement 22.78 12 Listening predisposition 25.00 12 Open mouth 10.00
4 Fluid movement 21.11 13 Body as a reference point 20.00 21 Nodding during tasks resolution 7.88
5 Impulsive movement 20.00 14 Gaze contact with the interlocutor 18.33 25 Grabbing clothes 7.88
6 Inhibited movement 17.22 15 Withdraw from action 16.77 26 Rocking 7.88
7 Not goal-oriented movement 16.77 16 Outward-facing gaze 13.99 27 Lips biting 6.77
8 Slow movement 15.00 17 A loss of posture alignment 13.33 28 Deictic gestures 5.00
9 Misalignment 18 A loss of balance 29 Hands kept together 5.00

of different body planes 11.11 (feet support instability) 13.32 30 Hands hold behind back 4.44
19 Posture openness 8.89 31 Touching face or mouth 0
20 Legs are moved while body is still 7.78

and high/low confidence. Three experts (one psychomotrician
and two specialists in orientation and mobility for visually
impairments) and six non-experts annotated all 20 episodes
displayed in random order. We decided to perform a second
annotation of both experts and non experts to be able to con-
sider whether particular patterns could be differently recognize
by these two groups of annotators, meanwhile we expected the
same types of observations by these three experts compared to
those of the first round annotation. They were asked to indicate
the relevant nonverbal behaviors from the list presented in
Tab. I, and the perceived level of child's engagement and
confidence (defined as above), using a Likert scale 1-5.

To measure the inter-rater agreement on perceived engage-
ment and confidence, we computed two-ways random ICC
average agreement of the Likert values. Results are 0.5291
for engagement and 0.4662 for confidence. We believe these
results are acceptable considering the number of annotators,
as well as the fact that only some of them were experts.

For what concerns the nonverbal behaviors annotation, we
firstly computed frequency with which each cue was selected
as relevant. The nonverbal behaviors 1) related to gaze di-
rection, 2) movements qualities, such as directness, hesitation
or jerkiness, 3) involvement or retraction from the action,
and preparation to listen were frequently chosen as relevant
annotating the dataset (see Tab. I).

To understand the relation between behaviors and the tar-
geted cognitive states we computed annotation frequency of
each behavior in only videos ranked as ”high engagement”
and ”high confidence”. We used the median value for each
cognitive state (for engagement equal to 4 and for confidence
to 3) as a threshold separating the episodes rated ”high”
from ”low” ones. Next, for each behavior, we computed
annotation frequency separately for videos above and below
these thresholds. The most frequent behavior for each state
can be read in Tab. II (high engagement), and Tab. III (high
confidence). As it can be seen, only two of them are presented
in both the states: focused movement and tendency to act.
Thus, they can be indicators of both high engagement and
confidence.

We used the same approach to find nonverbal cues of
low engagement and confidence. Results in Tab. IV and V

showed that low level engagement and confidence are mostly
expressed with gaze down, jerky and hesitating movement and
non goal-oriented movement. Interestingly, some cues appear
frequently for low levels of both cognitive states (e.g., gaze
down, or jerky movement). As can be seen from the Tab. III-
V some cues were frequently annotated 1) for both cognitive
states 2) in high and low level of the same cognitive state.
This might give to the Reader the impression that these cues
are not discriminative. There can be, however, few possible
explanations for this observation.

Regarding case 1), it is possible that such cues, e.g. focused
movement, are relevant for a cognitive state only if they co-
occur with some other behaviors. The sharing of specific
cues between low confidence and engagement may also be
explained by the fact that the two states often co-occur. Indeed
frequently, low level of self-confidence tends to influence
engagement and participation in task, especially considering
the learning tasks and children's young age [13].

Regarding case 2), it is important to notice that some of the
cues are binary (e.g., appearance of laughter as expression of
positive emotion) while others can be considered as a contin-
uous cues (e.g., fluid movement)). In the case of continuous
cues, it might be that different ”degrees” of such a cue can be
associated with different levels of the corresponding cognitive
state. This example shows a shortcoming of our annotation
schema, as so far we have not used the continuous scales for
the annotation of the nonverbal behaviors. Thus, future works
are needed to address this shortcoming.

TABLE II
CUES ASSOCIATED WITH HIGH-LEVEL OF ENGAGEMENT ANNOTATION,

EXPRESSED IN FREQUENCY ABOVE MEDIAN VALUE.

id Nonverbal Cues % Annotation Frequency
1 Focused, direct movement 25.56
11 Tendency to act 18.99
12 Listening predisposition 17.22
4 Fluid movement 16.11
21 Expressing positive emotions

(e.g. laughter) 15.00

Considering these preliminary results and the final aim of



TABLE III
CUES ASSOCIATED WITH HIGH-LEVEL OF CONFIDENCE ANNOTATION,

EXPRESSED IN FREQUENCY ABOVE MEDIAN VALUE.

id Nonverbal Cues % Annotation Frequency
1 Focused, direct movement 31.66
11 Tendency to act 21.77
10 Gaze down 21.11
12 Listening predisposition 15.66
5 Impulsive movement 15.00

TABLE IV
CUES ASSOCIATED WITH LOW-LEVEL OF ENGAGEMENT ANNOTATION,

EXPRESSED IN FREQUENCY BELOW MEDIAN VALUE.

id Nonverbal Cues % Annotation Frequency
10 Gaze down 19.44
2 Jerky movement 13.89
15 Withdraw from the action 12.78
3 Hesitating movement 10.56
7 Not goal-oriented movement 10.56

the work, it is interesting to highlight that cues as gaze,
generally considered as one of the fundamental cue in video
detection of children and students engagement [40], [42], had
a relevant role for human annotators also in the context of
visually impaired people, especially in the case of low en-
gagement and confidence. Literature on early-social cognitive
development, deeply analyzed the use of gaze, starting from
infancy, as a privileged cue of social interaction and others’
attention and intention. When mutual gazed occurs, according
to theorists [30], it is a sign of social engagement and mutual
interaction, while following gaze is considered a sign of
understanding others’ attention. Gaze alternation, in dyadic or
group interaction, is used to assessed joint attention [1]. Those
cues were largely considered, for example, in understanding
engagement in autistic children [10]. From the literature, we
know that blind children have difficulties on detecting patterns
of social interactions, meanwhile sighted people surrounded
them may have difficulties assessing where a blind child
focuses her attention, since there is neither visual orienting and
pointing, and gazing and facial expressions are more neutral
[5]. For this reason, we may suppose that the absence of such
common patterns of joint attention and engagement, leaded
annotators (who were in majority non-experts), to consider
still position of gaze, looking down, as a cue of both lack of

TABLE V
CUES ASSOCIATED WITH LOW-LEVEL OF CONFIDENCE ANNOTATION,

EXPRESSED IN FREQUENCY BELOW MEDIAN VALUE.

id Nonverbal Cues % Annotation Frequency
10 Gaze down 19.44
3 Hesitating movement 14.44
2 Jerky movement 13.33
6 Inhibited movement 10.00
7 Not goal-oriented movement 10.00

engagement and self-confidence, as this is how it is perceived
by typical development people in social interaction contexts.
To check this hypothesis (and be able to perform comparative
analysis between non-experts and experts), we need, however,
to collect more annotation from experts.

VII. AUTOMATED CLASSIFICATION

A. Features extraction

To check whether it is possible to detect the levels of
engagement and confidence from visual data in the context
of single-user task we performed a series of preliminary
experiments with standard machine learning techniques on
the dataset presented in Section V. Due to small number
of the annotated episodes, we subdivided them into smaller
segments of fixed duration of 50 frames (corresponding to
1 second), obtaining 758 segments. The labels for each of
the two states were not balanced. The same shortcoming
was observed after the sub-segmentation. Thus, we decided
to regroup the rates: 1) levels 3 and 4 on the engagement
scale were regrouped into high level engagement, 2) levels
1 and 2 on the confidence scale were regrouped into low
engagement level. We obtained in this way, 294 segments
for high engagement, 176 for medium and 288 for low
engagement and 172 segments for high confidence, 317 for
medium and 269 segments for low confidence. 15 features
were extracted from 2D positional data obtained by applying
OpenPose [7] to the frontal view recordings. The features are
computed on 1) front head, 2) left and right elbow, 3) left
and right knee, 4) Cervical vertebrae (C7). First eight features
compute low-level kinematics features: Right and Left Arm
Position Variances, Velocities, Kinetic Energies, Head Velocity
and Kinetic Energy. Head Side Leaning is computed as a
difference between the x coordinate of the head and the mean
of the x coordinates of the upper limbs. The algorithm by [32]
is used to compute Right Arm and Left Arm Stability, [2] to
compute Arms Fluidity Index and [8] to compute Closure Area.
Body Symmetry Index is the sum of: 1) the sum of absolute
differences between X (resp. Y) coordinates of the upper body
limbs and C7, 2) the absolute difference of the head and
C7 X coordinates. Finally Foot Symmetry is computed as the
distance between the X coordinates of the child lower body
limbs and C7 X coordinate. It is important to state that these
features cover only a subset of the cues listed in Tab. III- V.
The kinematics features are low-level components of various
expressive qualities (first column of Tab. I), such as fluidity or
impulsivity, [6]. The remaining features correspond to some
of observed postures and gestures (second and third column
of Tab. I), e.g., loss of balance (19), posture openness (20).

Next, three aggregation operators (average, maximum, and
minimum) were applied to the values computed on the sin-
gle observations. Thus, a 45-feature vector was used for
each segment. Finally, the data was normalized using the z-
normalization method.



B. Classification

We performed a set of machine learning experiments to
automatically classify 3 levels of confidence and engagement
(low, medium, high) from video data. We explored a set
of traditional machine learning algorithms: Support Vector
Machine with polynomial (SVM-poll) and radial basis kernel
(SVM-rbf), Random Forest (RF), BayesNet (BN), and Multi-
Layer Perceptron (MLP). The experiments were performed us-
ing feature reduction techniques and dimensionality reduction
technique:

• PCA - 16 principal components extracted from the data
(obtained with a threshold of 95% of variance covered),

• Greedy - 12 features obtained from Greedy Stepwise
Search combined with Correlation-based Feature Selec-
tion.

We have used 10-fold validation procedure. The results for
the three-class classification task are shown in Table VI. All
experiments were performed in Weka 3.8 software 2.

C. Discussion

As can be seen in Table VI, the best results were obtained
with Random Forest and Greedy feature reduction. In gen-
eral, the results are not perfect, but it has to be taken into
account that the experiments were performed on noisy 2D
data extracted using OpenPose. Some of the tasks given to
the children required the rotation of the whole body, leading
to a lack of 2D data during child’s rotation. We believe that
the results could improve using 3D positional data (e.g., from
Kinect or Notch). The other important shortcoming of this
experiment to be noticed is that we have not implemented so
far the algorithms to compute features for all relevant cues
from Tab. III- V. By implementing the remaining cues we
hope in future to improve the classification results.

TABLE VI
RESULTS (IN TERMS OF F-SCORE) FOR 3-CLASS CLASSIFICATION TASK

Engagement Confidence
PCA Greedy PCA Greedy

SVM-rbf 0.63 0.63 0.6 0.62
SVM-poll 0.61 0.56 0.56 0.57

RF 0.65 0.73 0.61 0.7
MLP 0.57 0.54 0.49 0.5

BayesNet 0.52 0.6 0.47 0.56

VIII. CONCLUSIONS AND FUTURE STEPS

In accordance to the the main theme of this year conference
which is Affective Computing for ALL (AC4ALL), in this
paper we focused on the specific group of users of AC
technology. We hope that this work may help include such
specific-needs users to beneficiaries of the AC technologies.
In particular, we analyzed full-body indicators of engagement
and confidence in visually impaired primary school children. A
two steps annotation was performed by expert and non expert
annotators to identify a set of nonverbal cues of engagement

2https://www.cs.waikato.ac.nz/ml/weka/downloading.html

and confidence. We also proposed a preliminary classification
models of engagement and confidence levels from a set of
cues extracted from 2D positional data.

The main contributions of the paper are:

• to the authors knowledge, this is the first analysis of the
nonverbal full-body cues of cognitive states in visually
impaired children, and a first attempt to create a model
of descriptors of nonverbal full-body communication for
visually impaired children in learning context

• it is one of the first attempts to automatically classify the
confidence levels in context of the single-user learning
tasks

As future steps, we plan to perform a similar analysis of
nonverbal behaviors in the same context on control group
of sighted children to further understand differences and
commonalities in nonverbal behaviors compared to visually
impaired ones. As part of future works, then, we will record
more children's data, and extend, through other rounds of
human annotation, the nonverbal behaviors model. Even if
first results of the automatic classification are promising, we
will extract more features to improve the results, as well as
we will test different machine learning techniques. The other
possible extensions involve the multimodal data collection and
classification. For this purpose we consider using low-intrusive
wearable sensors that can be used to collect the data of children
activity without violate their privacy, such as IMU and EMG
sensors.
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