
Quasi-normal free-surface impacts and capillary walking
C. A. Galeano-Rios, P. A. Milewski and J.-M. Vanden-Broeck
1Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY,

UK
1Department of Mathematics, University College London, London WCIE

6BT, UK

1



Quasi-normal free-surface impacts, capillary
rebounds and application to Faraday walkers.

C. A. Galeano-Rios1 C.A.Galeano.Rios@bath.ac.uk, P. A. Milewski1
J.-M. Vanden-Broeck2

June 12, 2019

Abstract
We present a model for capillary-scale objects that bounce on a fluid

bath as they also translate horizontally. The rebounding objects are hy-
drophobic spheres that impact the interface of a bath of incompressible
fluid whose motion is described by linearised quasi-potential flow. Un-
der a quasi-normal impact assumption, we demonstrate that the problem
can be decomposed into an axisymmetric impact onto a quiescent bath
surface, and the unforced evolution of the surface waves. We obtain a
walking model that is free of impact parametrisation and we apply this
formulation to model droplets walking on a vibrating bath. We show that
this model accurately reproduces experimental reports of bouncing modes,
impact phases, and time-dependent wave field topography for bouncing
and walking droplets. Moreover, we revisit the modelling of horizontal
drag during droplet impacts to incorporate the e�ects of the changes in
the pressed area during droplet-surface contacts. Finally, we show that
this model captures the recently discovered phenomenon of superwalkers.

capillary waves, drops, wave-structure interactions.

1 Introduction

Examples of millimetric objects bouncing on the surface of a bath as they cruise
along the surface are common in capillary scale applications; these include rain-
drop impacts (Zhbankova & Kolpakov, 1990; Ho et al., 1997) and locomotion
of insects and small vertebrates (Bush & Hu, 2006). In the case of droplets, it
was shown by Couder et al. (2005a) that coalescence with an underlying bath
of the same fluid can be inhibited through vertical oscillation of the bath. The
droplet is prevented from merging with the bath by the sustenance of a thin
air layer that separates the two at all times (Couder et al., 2005a; Terwagne
et al., 2007). These droplets can bounce for extremely long times, displaying
di�erent bouncing regimes which are controlled by the amplitude and frequency
of the shaking. Moreover, within a certain range of parameters, these bouncing
droplets can become unstable to horizontal perturbations (Couder et al., 2005b),
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breaking the axial symmetry of the surface wave field. Droplets then bounce o�
a slanted free surface, acquiring a horizontal velocity component and thus start
walking along a straight path.

Walking droplets are a�ected at each bounce by the wave field at the impact
location. Since these waves were triggered by previous bounces, the droplet is
in practice interacting with a record of its own trajectory. This droplet-wave
association at millimetric scale has come to be known as a hydrodynamic pilot-
wave (Bush, 2015). Hydrodynamic pilot-waves exhibit complex dynamics that
have been shown to have numerous analogies with quantum-scale phenomena
(Bush et al., 2018), which motivated their study by several groups over the
past 14 years. Some examples of models created to address walking droplet
dynamics include a first phenomenological model by Eddi et al. (2011), a non-
linear spring based surface-droplet interaction by Moláček & Bush (2013b), a
stroboscopic model introduced by Oza et al. (2013) and a model that introduced
wave generation by impacts by Milewski et al. (2015).

Galeano-Rios et al. (2017) developed a model for the impact of a hydrophobic
sphere onto the free surface of a bath. Their impact model modified the Wag-
ner theory of surface impacts (Wagner, 1932; Korobkin & Pukhnachov, 1988;
Howison et al., 1991) to account for the reaction of the impacting solid to forces
exerted by the flow, including capillary e�ects, and to intrinsically allow for a
mechanism for the impacting solid to detach from the surface. This resulted in
a model that can solve all stages of a rebounding impact at the capillary scale,
provided the surface deformation is not too large. They essentially imposed a
kinematic match between the motion of the free surface and that of the impact-
ing sphere, i.e. they imposed the natural geometric and kinematic constraints,
together with simple assumptions on the contact angle, to derive a solution
strategy that yields predictions for the motion of the contact line and for the
pressure field supported within the contact area. Their impact model was val-
idated against experimental results and they went on to show that it can be
used to accurately predict the vertical motion of bouncing droplets whilst also
introducing fewer assumptions on the nature of the impact and, consequently,
fewer parameters than in previous works (Moláček & Bush, 2013a; Milewski
et al., 2015).

Superposing translations of axisymmetric impacts on linear quasi-potential
free surface flows has proven to be a highly e�ective strategy to model walking
droplets (Moláček & Bush, 2013b; Oza et al., 2013; Milewski et al., 2015). This
approximation is justified on the basis of some clear separation of scales; namely,
the Faraday wave length (⁄F ¥ 0.5 cm) is long in relation to the droplet radius
(Ro ¥ 0.4 mm), the droplet radius is in turn large in relation to the typical free-
surface elevation (‘ . 10 µm at impact location just before contact), moreover
the walking speed (Cw ¥ 1 cm/s) is slow in relation to the phase velocity of the
Faraday waves (Cp ¥ 20 cm/s) and also to the typical vertical velocity of the
impacting droplet (Uz ¥ 10 cm/s). Under these assumptions, vertical forces can
be calculated assuming the impact is normal to a flat horizontal surface. The
horizontal component of the impact forces on the droplet can then be computed
assuming these impact forces are actually normal to the relatively small local
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average of the surface gradient in the region of impact.
The kinematic match method is very versatile, and is applicable to impact

problems with no assumptions on symmetry; however, its implementation in
such a general case is more complex. In this paper; we demonstrate that, under
the assumptions above, we may approximate the dynamics by a superposition
of translated axisymmetric impacts. Using the kinematic match for these ax-
isymmetric impacts results in a more detailed and realistic modelling of the
walking droplets, in relation to existing methods, whilst also providing informa-
tion about the fastest time-scales in the problem, such as those of the evolution
of forces and of the pressed area during impacts.

In this work, we also demonstrate how to combine an e�cient solution of the
large-scale non-axisymmetric free-surface waves using a spectral method devel-
oped in Milewski et al. (2015) with the superposition of axisymmetric impacts
described above, so as to obtain an accurate and e�cient model for walking
droplets that is free of any impact parametrisation. The decomposition here in-
troduced opens many new possibilities, as there are no restricting assumptions
on the geometry of the bath, or the presence of neighbouring droplets. This is
fundamental to simulate collective behaviour of bouncing and walking droplets
as keeping the details of wave generation by impact has proven to be fundamen-
tal to capture wave mediated droplet-droplet interactions (Galeano-Rios et al.,
2018).

In section 2, we pose the full problem, presenting the kinematic match
method, expanding the discussion in Galeano-Rios et al. (2017), and review-
ing the linearised quasi-potential fluid model. We close this section justifying
the superposition of translations of axisymmetric impacts to obtain a model for
walking droplets and deriving a model for friction e�ects during droplet-surface
contacts that is consistent with the theory developed here and that incorporates
changes in pressed area over droplet-surface contacts. In section 3 we summarise
the resulting mathematical problems, describe the numerical methods used to
solve each, and the recombination of their results. We also show how we use ex-
perimental data to set our single parameter for skidding friction during droplet
contacts. In section 4 we present comparisons to experimental data available in
the literature, including bouncing modes, impact and take o� phases and wave
field topography, and we show that our model is able to capture the newly dis-
covered walking-droplet phenomenon of superwalkers (Valani et al., 2019). In
the case of superwalkers we are specifically able to capture the transition from
bouncing to walking as the second frequency is introduced, and to obtain wave
fields that qualitatively resemble that of superwalkers. We highlight that we
were unable to obtain realistic results with the model introduced by Milewski
et al. (2015). Finally, in section 5 we discuss our findings and consider future
directions.
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2 Problem formulation

We consider the three-dimensional, free-surface, incompressible flow of a fluid
bath of infinite depth and uniform density fl. The fluid flow is subject to grav-
itational, viscous and interfacial forces. We introduce Cartesian coordinates
with gravity pointing in the negative z direction. We also assume that the free
surface can be described by z = ÷(x, t), where x = (x, y), whose spatial domain
is the entire plane. We define u and p as the velocity and pressure fields, re-
spectively, ‹ as the kinematic viscosity of the fluid and g = (0, 0, ≠G) as the
acceleration due to gravity. We note that G can be a function of time. Under
these assumptions, the flow is governed by

ut + u · Òu = Ò
3

≠p

fl

4
+ ‹�u + g, z Æ ÷(x, t); (1)

Ò · u = 0, z Æ ÷(x, t). (2)

The velocity field u is subject to decay conditions at infinity

u æ 0, as


x2 + y2 + z2 æ Œ, (3)

and the free surface is subject to the kinematic boundary condition

÷t + u · Ò(÷ ≠ z) = 0, z = ÷(x, t); (4)

and the dynamic boundary condition

≠pn̂ + T · n̂ = (‡ Ÿ[÷] ≠ ps(x, t)) n̂, z = ÷(x, t); (5)

where n̂ is the unitary vector normal to the free surface, pointing out of the
fluid domain; T is the deviatoric part of the stress tensor; ps is the pressure
above the free surface; ‡ is the surface tension coe�cient; and Ÿ[·] is twice the
mean curvature operator, with the convention of positive curvature for convex
functions, i.e.

Ÿ[÷] =
!
1 + ÷2

y

"
÷xx ≠ 2÷x÷y÷xy +

!
1 + ÷2

x

"
÷yy

!
1 + ÷2

x
+ ÷2

y

"3/2 . (6)

We define h(t) as the height of the lowest point, the “south pole”, of the
impacting sphere, cf as the coe�cient of friction due to air drag on the sphere,
ms as the mass of the impacting object, and we consider ps(x, t) = 0 everywhere
outside the area that is pressed by the impacting solid. In the pressed area A(t),
we disregard the thickness of the air layer separating the surface of the bath and
the sphere; i.e. A(t) œ R2 is the projection onto the xy-plane of the set S(t),
which is given by the part of the surface of the impacting object that coincides
with the free surface of the bath. Consequently, we have

htt = ≠G ≠ cf

ms

ht + 1
ms

⁄

A(t)
psdA. (7)
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We denote by zs(x) the height of the lower half of the sphere, such that zs(X) =
0, with X = (X, Y ) being the horizontal coordinates of the south pole of the
sphere. On the contact line L(t), i.e. the boundary of A(t), we define ˆn as
the derivative in the direction normal to L(t) which points outside of the plane
region A(t). We impose continuity of the free-surface gradient on L(t), as would
be expected in the presence of an intervening air layer. Solutions must therefore
satisfy

ps(x, t) = 0, x /œ A(t); (8)
÷(x, t) = h(t) + zs(x), x œ A(t); (9)
÷(x, t) < h(t) + zs(x), x /œ A(t); (10)
ˆn÷(x, t) = ˆnzs(x), x œ L(t); (11)

where we define zs(x) = Œ away from the sphere. We emphasise that equa-
tions (8), (9), (10) and (11) simply state the minimal compatibility conditions
consistent with a model that ignores the e�ects of the air flow in the lubrication
layer. We also note that equation (11) corresponds to our assumption of perfect
hydrophobicity. This assumption is based on the established fact that there
is an intervening air layer separating droplet and bath (Couder et al., 2005a),
and therefore no contact angle smaller than fi is to be expected. It is worth
mentioning that it is possible to modify this condition to allow for di�erent, or
even dynamic, contact angles.

We highlight that determining A(t), is itself a part of the problem; that is
to say that finding the pressure field and its domain is a two-dimensional free-
boundary problem within our original three-dimensional free-boundary fluid-
flow problem. Moreover, the problem of the pressure field is a free-boundary
problem with an added di�culty, given that the domain of the pressure actually
collapses to a point upon lift-o� and re-appears from a point when a new impact
takes place.

2.1 Solving the two free-boundary problems

The algorithm presented in Galeano-Rios et al. (2017) solves the problem of the
suddenly appearing pressed area and its subsequent evolution upon the impact
of a solid. Moreover, the method is able to deal with the vanishing contact area
when lift-o� takes place. We review it in what follows. We first consider, for
simplicity, the solid to be fixed as the free surface impacts on it. That is to
say, we consider the case of h(t) being constant and solving the system given by
(1)-(11), disregarding (7) initially. We then discuss how (7) is introduced.

We consider the free surface of a fluid bath which, at a time t = t0, ap-
proaches a fixed, perfectly hydrophobic solid, shown in figure 1(a). In order to
calculate the free-surface elevation at a certain time t0 + ”t, we need to solve
the free boundary problem over the time interval t œ [t0, t0 + ”t]. First, we
tentatively impose ps(x, t) = 0 and we solve the system given by (1)-(6); if the
solution satisfies (10) everywhere (i.e. predicts no contact or overlap between
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Figure 1: Schematics of onset of contact as solved by the kinematic match
method. The boundary of the fixed solid, given by zs, is shown in grey; and the
fluid interface, given by ÷, in black. The height of the solid surface zs is measured
with respect to that of its lowest point h. Panels show: regular evolution with
no pressed area (a), inconsistent estimate of free surface at t = t0 + ”t (b),
tentative solution for t = t0 + ”t with an Atest that yields a wrong contact angle
(c), and solution with an Atest that yields the right contact angle (d).
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the fluid and the solid), then it trivially solves the remaining conditions of sys-
tem (1)-(11). However, if (as in the example of figure 1) our prediction for
the location of the free surface at time t0 + ”t suggests that part of the fluid
occupies the same space as the solid, then we have not obtained a solution to
(1)-(11) and an impact must have occurred, see figure 1(b). The evolution of
the free surface should have been constrained by the presence of the solid and
there should be a region within which ps(x, t) was not identically zero over the
interval [t0, t0 + ”t].

In order to find a correct solution to system (1)-(11), and since A(t0 + ”t)
is to be determined, we proceed by testing a contact area candidate Atest. We
assume the contact area changes continuously, therefore Atest must be small at
the onset of contact. We solve the system for ÷ everywhere outside Atest, and
for the value of ps on Atest (where ÷ is known). The method exchanges the
known and unknown variables in the pressed area, yielding a closed problem for
system (1)-(9) at t0 + ”t. Naturally, the solution to (1)-(9), obtained assuming
A(t + ”t) = Atest might not satisfy (10) or (11), since this was just an initial
choice, so we need to verify these. If either condition is not satisfied we repeat
the process using a new Atest, obtained by perturbing our prior choice until the
solution satisfies (10) and (11) (see figures 1(c) and 1(d)).

At a time t = t1, when the fluid is in contact with the solid (i.e. A(t1) ”= ÿ),
we proceed with the method in a similar manner. For time t1 + ”t we iterate
on our candidate pressed areas Atest, chosen in the vicinity of A(t1), and we
solve system (1)-(9) for each Atest until we verify (10) and (11). We note that,
if A(t1) is relatively small, the empty set is considered to be in its vicinity and
therefore we include the possibility of Atest = ÿ, i.e. ps(x, t) = 0.

When the impacting object is able to move vertically, the problem involves
the response of the fluid forces onto it and we still need to iterate on the contact
area; however, we no longer know a priori the exact elevation of the free surface
÷ on Atest. Nevertheless, we know ÷ up to a vertical translation, given by
h(t). This vertical translation adds an unknown to the system, but we also add
(7), which closes the problem (1)-(9) for a given Atest at t = t0 + ”t. We can
thus iterate on Atest once again, and stop the iteration when (10) and (11) are
satisfied.

2.2 The linearised model

2.2.1 Linearised fluid equations

Following Galeano-Rios et al. (2017) we use a linearised quasi-potential approx-
imation of the fluid flow, with u defined on the domain D = {(x, z), z Æ 0},
where z = 0 is the undisturbed free-surface level. We define; Ï(x, z, t) as the
velocity potential; �H as the two-dimensional Laplacian, i.e. �H = ˆxx + ˆyy;
and N as the Dirichlet-to-Neumann operator, given by

NÏ(x, 0, t) = Ïz(x, 0, t). (12)

In formulating the Faraday wave problem, g as the gravity constant, a as
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the amplitude of the vertical shaking and Êo as its angular frequency. The fluid
viscosity ‹ is corrected to ‹ú in order to use a quasi-potential approximation
whilst still matching the driving amplitude at which the Faraday threshold is
observed. For the parameter regime at which we run simulations (see Appendix
A), ‹ú = 0.8025‹ (Milewski et al., 2015). Adopting the Faraday wavelength ⁄F

as the unit length, the reciprocal of the subharmonic Faraday wave frequency
f≠1

F
as the unit time, and fl⁄3

F
as the unit mass, where fl is the density of the

bath’s fluid. We also define

Fr = ⁄F f2
F

/g, We = fl⁄3
F

f2
F

/‡, � = aÊ2
o
/g, Re = ⁄2

F
fF /‹ú; (13)

and „(x, t) = Ï(x, 0, t).
The free surface can be shown to evolve (Galeano-Rios et al., 2017) according

to

÷t = 2
Re

�H÷ + N„, (14)

„t = ≠ (1 ≠ � cos(4fit))
Fr

÷ + 1
We

Ÿ[÷] + 2
Re

�H„ ≠ ps, (15)

subject to

÷ æ 0, when


x2 + y2 æ Œ; (16)

„ æ 0, when


x2 + z2 æ Œ. (17)

We note that these equations describe the free surface in the frame of reference
of the moving bath, which introduces a time dependent coe�cient in (15), and
that the curvature Ÿ is not yet linearised. In fact, we will retain the full curvature
in the contact area, where it is O(1) and known a priori from the geometry of
the solid, as was done in Galeano-Rios et al. (2017).

2.2.2 Vertical dynamics of the sphere

We recall that ms is the mass of the droplet and define µair as the dynamic
viscosity of air; Ro as the droplet radius and hc as the height of the centre of
mass, which yields h = (hc ≠ Ro)/⁄F as the dimensionless height of the south
pole of the sphere. We approximate the e�ects of air on the moving droplet
using Stokes’ drag and we introduce the dimensionless quantities

Ma = ms/
!
fl⁄3

F

"
, So = 6fiµairRo/(msfF ). (18)

We thus have

htt = ≠ (1 ≠ � cos(4fit))
Fr

≠ So ht + 1
Ma

⁄

A(t)
psdA. (19)

We describe the lower half of the impacting sphere, in dimensionless vari-
ables, using

zs(x) =

Y
_]

_[

Ro
⁄F

≠
Ò

R2
o

⁄
2
F

≠ |x|2 |x| Æ Ro
⁄F

,

Œ |x| > Ro
⁄F

;
(20)
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thus, given the horizontal location of the centre of mass as X(t) = (X(t), Y (t)),
we can re-write constraints (8)-(11) as

ps = 0, x /œ A(t); (21)
÷(x, t) = h(t) + zs (x ≠ X(t)) , x œ A(t); (22)
÷(x, t) < h(t) + zs (x ≠ X(t)) , x /œ A(t); (23)
ˆn÷(x, t) = ˆnzs (x ≠ X(t)) , x œ L(t). (24)

The horizontal trajectory X(t) is naturally dependent on the surface waves,
and it needs to be coupled to system (14)-(24) to close the problem. For the
sake of clarity, we present the horizontal dynamics in detail, later in the text.

We highlight that, whilst the problem given by (14)-(24) is linear during
each droplet flight, the problem remains highly non-linear during impacts. The
implicit non-linearity takes place through the free-boundary problem for the
pressure and the pressed area.

2.3 Approximation by superposition of normal impacts

We now introduce a further approximation to the problem, namely we consider
impacts to be quasi-normal to the surface. This approximation was used by
all previous works on walking droplets; however, the arguments that follow
constitute (to the best of our knowledge) the first mathematical justification for
it.

As mentioned in section 1, the walking velocity of droplets (Cw ¥ 1 cm/s) is
typically small relative to the vertical velocity of impact (Uz ¥ 10 cm/s). This
means that impacts are nearly vertical and that the di�erence between imposing
condition (22) exactly and approximately (i.e. using the simplification that X(t)
is constant during the impact) is of the order of the distance that the droplet
moved during contact with the bath times the gradient of zs (bottom half of a
sphere). Moreover, the linear approximation to surface deflection allows for the
problem to be decomposed into a vertical (i.e. almost normal) impact on an
initially quiescent interface and the unforced evolution of the waves.

We consider the time t = t0 at which impact is imminent and we re-write
equation (22), in dimensionless units, as for t œ (t0, tl):

÷(x, t) = h(t) + zs (x ≠ X(t0)) + [zs (x ≠ X(t)) ≠ zs (x ≠ X(t0))] , x œ A(t);
(25)

where we know the term in brackets to be of O(|Òzs|Cw(tl ≠ t0)/⁄F ), where tl

is the time at which lift o� happens with tl ≠ t0 < TF /2 (typically), and Cw is
the typical speed of a walking droplet, which is small with respect to the phase
velocity of the waves Cp = ⁄F /TF . Moreover, for the case of an impacting
sphere, when the pressed radius is less than half the radius of the sphere (as
is the typical case for walking droplets) |Òzs| is at most O(1). Therefore the
term in brackets is at most O(Cw/Cp) (typically Cw/Cp ¥ 0.05) and thus, we
can conclude that, near the impact location, we can impose an axisymmetric
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kinematic condition (by ignoring the term in brackets) with an error of at most
this order.

We now rewrite the quasi-normal impact as the superposition of three dif-
ferent problems. Problem a, given by the axisymmetric impact of a sphere
onto the quiescent surface of a bath; problem b defined by the unforced wave
field evolution of the free surface without the ongoing impact, and problem r,
given by the remaining terms in the full problem. More specifically, we define
problems a and b, such that

÷ = ÷a + ÷b + ÷r, (26)
„ = „a + „b + „r, (27)

h(t) = ha(t) + ÷b(X(t), t) + hr(t); (28)

where the super-indexes a and b indicate the solution of each problem and r is
the remainder with respect to the solution of the full impact problem (14)-(24).
First, for t œ [t0, tl], we define the homogeneous problem b as

÷b

t
= 2

Re
�H÷b + N„b, (29)

„b

t
= ≠ (1 ≠ � cos(4fit))

Fr
÷b + 1

We
�H÷b + 2

Re
�H„b, (30)

subject to ÷b æ 0, when x æ Œ; and „b æ 0, when x æ Œ; with

÷b(x, t0) = ÷(x, t0), and „b(x, t0) = „(x, t0). (31)

That is to say, problem b gives the evolution of the fluid flow as if the impact
that occurs in the time interval [t0, tl] does not take place. We highlight that,
due to the finite wave speed, outside the vicinity of the impact location, problem
b is in fact the full problem.

We can then re-write equation (25) using equation (26) and subtract ÷b(X(t), t)
from both sides to obtain

÷a(x, t) +
#
÷b(x, t) ≠ ÷b (X(t), t)

$
+ ÷r(x, t) =

#
h(t) ≠ ÷b (X(t), t)

$
+ zs (x ≠ X(t0)) + O(Cw/Cp); (32)

where the term in brackets on the right hand side of equation (32) will be used
to define ha as used in equation (28). Namely, for t œ [t0, tl], we define the
axisymmetric impact problem a as

÷a

t
= 2

Re
�H÷a + N„a, (33)

„a

t
= ≠ (1 ≠ � cos(Êot))

Fr
÷a + 1

We
Ÿ[÷a] + 2

Re
�H„a ≠ pa

s
, (34)

ha

tt
= ≠ (1 ≠ � cos(4fit))

Fr
≠ So ha

t
+ 1

Ma

⁄

Aa(t)
pa

s
dAa; (35)
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subject to ÷a æ 0, when |x| æ Œ; „a æ 0, when x æ Œ; and

÷a(x, t) = ha(t) + zs(x ≠ X(t0)), x œ Aa(t); (36)
÷a(x, t) < ha(t) + zs(x ≠ X(t0)), x /œ Aa(t); (37)

pa

s
(x, t) = 0, x /œ Aa(t); (38)

ˆn÷a(x, t) = ˆnzs(x ≠ X(t0)), x œ La(t); (39)

with
÷a(x, t0) = 0, and „a(x, t0) = 0 (40)

and

ha(t0) = h(t0) ≠ ÷b (X(t0), t0) , ha

t
(t0) = ht(t0) ≠ ÷b

t
(X(t0), t0) . (41)

Hence, problem a is given by an axisymmetric impact on an undisturbed quies-
cent free surface, which preserves the relative initial height and relative incoming
velocity from the full impact problem. Moreover, we assume that the contact
area is simply connected, which (under the axial symmetry assumption) trans-
lates into the axisymmetric approximation Aa(t) (of the full-problem contact
area A(t)) being a disc.

We also know that the term in brackets on the left hand side of equation
(32) is such that

#
÷b(x, t) ≠ ÷b (X(t), t)

$
= O(‘Ro/⁄2

F
), (42)

where ‘ is the typical amplitude of the wave and equation (42) is in dimensionless
units. We note that typically ‘Ro/(⁄2

F
) ¥ 1.5 ◊ 10≠4. This shows that the

remainder, ÷r, must be at most of O(‘Ro/⁄2
F

) + O(Cw/Cp). We note that ÷r is
given by problem r

÷r

t
= 2

Re
�H÷r + N„r, (43)

„r

t
= ≠ (1 ≠ � cos(4fit))

Fr
÷r + 1

We
�H÷r + 2

Re
�H„r ≠ (ps ≠ pa

s
)

+ (Ÿ ≠ �H)
#
÷a + ÷b + ÷r

$
≠ (Ÿ ≠ �H) [÷a] , (44)

with
÷r(x, t0) = 0, and „r(x, t0) = 0. (45)

It is important to mention that problem r, can only be solved a posteri-
ori, as it needs function ps which is obtained from the full problem (14)-(24).
Nevertheless, equations (43) and (44) show that when the pressure is well ap-
proximated by that of an axisymmetric impact and when the curvature of the
unforced problem is small, the remainder problem r is the result of weakly forced
problem for which we expect to observe very small waves. In what follows, we
approximate the problem by the sum of problem a and problem b, that is to
say, we disregard the residual term in equations (26)-(28). We note that the
resulting approximation yields a continuous solution for ÷, „ and h.
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Figure 2: Schematics of the decomposition of the impact of a walking droplet
problem into two simpler calculations. Panel (a) shows the initial conditions
given by an imminent droplet impact, (b) and (c) show the initial conditions
for each of the separate problems, (d) and (e) respectively show the evolution
of (b) and (c), and (f) shows how the results (d) and (e) are combined. The
sub-index rel indicates magnitudes measured in relation to the point of the free
surface that is directly below the south pole of the sphere.
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In summary, we model the wave field of a walking droplet by superposing
translations of axisymmetric wave fields due to droplet impacts. When the
droplet is in flight we calculate the free surface evolution by solving the linear
equations (14) and (15), with Ÿ = �H , and the droplet height from equation
(19); all subject to ps(x, t) = 0. When an impact is about to happen, we separate
the problem into two (see figure 2). We define problem a as the axisymmetric
impact of a droplet onto a bath, with the initial conditions of ÷a(x, t0) = 0,
„a(x, t0) = 0, and the position and velocity of the droplet being such that the
relative height and vertical velocity with respect to the surface point exactly
below the south pole are the same as in the physical problem (figures 2(b) and
2(d)). For this problem, we preserve the full curvature Ÿ within A(t), as done
in Galeano-Rios et al. (2017). We solve the axisymmetric problem a until the
droplet is once again airborne. In parallel, we define problem b in which we
find waves ÷b, „b with initial conditions ÷b(x, t0) = ÷(x, t0), „b(x, t0) = „(x, t0),
but without the pressure induced by the droplet, which is to say we ignore the
forcing of the ongoing droplet contact as we solve the wave field (figures 2(c)
and 2(e)). The temporally dependent nature of gravity is preserved in both
problems. We then superpose the axisymmetric solution of the droplet impact
on the unforced surface waves at the predicted location of the droplet X(t).
Once the droplet is again in flight we carry on solving a single problem, namely
that resulting from the superposition.

We note that the vertical droplet motion obtained from the impact on the
flat free surface is treated as an approximation to the motion of the actual
droplet relative to the point on the fluid surface that is directly under the south
pole of the droplet. That is to say, that the height and velocities of the droplet
as obtained from the impact of a flat interface will be added to the height and
velocity of the fluid surface at the X(t) location in order to obtain the prediction
for the height of the droplet for t œ [t0, tl]. We highlight that this superposition
does not result in a perfect match of the surfaces (see figure 2(f)); however,
it still yields an exact match between the south pole of the droplet and the
corresponding point of the free surface. The mismatch between the sphere and
the free surface of the bath is of the order of the wave gradient in problem b,
i.e. ‘/⁄F = O(10≠3), times the radius of the typical pressed area (Æ 0.5Ro).
Therefore, the typical mismatch of O(10≠3) when expressed as a fraction of the
droplet radius.

2.4 Horizontal dynamics

We derive equations for the horizontal motion of the sphere on the basis of the
approximations introduced in section 2.3. For impacts, we arrive at a model that
includes the horizontal components of the pressure forces that were previously
discussed in section 2.2.2, as well as a drag force due to a simplified model of
viscous forces in the intervening air layer similar to the one presented in Couder
et al. (2005a) and Protière et al. (2006). The main advantage of the derivation
presented in what follows is that we are able to include the e�ect of changes in
pressed area over each contact of the droplet.

14



The horizontal motion of the droplet, expressed in dimensionless variables,
is governed by

Xtt = 1
Ma

Q

ca
⁄

A(t)

≠psÒ÷
1 + |Ò÷|2

dA +
⁄

S(t)

(Tair · n̂)HdS +
⁄

S2\S(t)

(≠pairn̂ + Tair · n̂)HdS

R

db ,

(46)
where Tair is the deviatoric part of the stress tensor for the air flow, n̂ is the
outward pointing unit normal to the sphere, pair is the air pressure, the sub-
index H indicates the projection onto the xy-plane, S2 is the surface of the
whole sphere, and we recall that A(t) is the horizontal projection of S(t), the
portion of the sphere’s surface that is in contact with the free surface of the
bath. The first term in the parenthesis on the right hand side of equation (46)
corresponds to horizontal forces due to pressure between the two free surfaces;
the second corresponds to the horizontal component of the viscous e�ects of the
flow of air in the intervening layer; the third term accounts for the contribution
of horizontal forces due to the air, outside of the pressed area.

Given the scaling considerations discussed in section 2.3, the leading order
term for the pressure forces due to impact yields

≠ 1
Ma

⁄

A(t)
ps

Ò÷
1 + |Ò÷|2

dA ¥ ≠Ò÷b|(X(t),t)
1

Ma

⁄

Aa(t)
pa

s
dA, (47)

where we have also used the assumption that, since surface waves are long
when compared to the droplet diameter, the local average of the gradient is
approximately equal to Ò÷b(X(t), t).

Since we are not simulating the air flow, we approximate the e�ect of the
deviatoric stresses within the pressed area by

1
Ma

⁄

A(t)

(Tair · n̂)H


1 + |Ò÷|2dA ¥ ≠E(t)TF

ms

Xt, (48)

with E(t) being a skidding friction coe�cient whose form we discuss below. The
third term is approximated using Stokes’ drag, assuming the pressed area is a
relatively small fraction of the surface area of the sphere, hence

1
Ma

⁄

S2\S(t)

(≠pairn̂ + Tair · n̂)HdS ¥ So Xt, (49)

with So as in equation (18). We thus have

Xtt = ≠D(t)Xt ≠ Ò÷b|(X(t),t)
1

Ma

⁄

Aa(t)
pa

s
dA, (50)

where D(t) = So + E(t)/(fF m). We note that, during impacts, the term So
(due to Stokes’ drag) is negligible.
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2.4.1 Skidding friction

Realistic modelling of skidding friction due to the air flow within the lubrication
layer requires methods that can solve a free-boundary lubrication theory prob-
lem on a curved, non-symmetric geometry that deforms, and whose deformation
is coupled to droplet and wave motion. Moreover, it is the non-symmetric part
of the solution to this problem that must be responsible for drag in walking
droplets. Given the complexity of this problem, prior works have introduced
di�erent simplifications to address this e�ect; for instance Moláček & Bush
(2013b) introduced a scaling argument based on the assumption of a constant
pressed area and experimental observations of the horizontal coe�cient of resti-
tution in single droplet impacts on a flat interface.

We recall that our model yields a time-dependent pressed area approximation
as part of the solution to the axisymmetric problem a. This allows for the
construction of the first skidding friction model that accounts for the e�ects
of the changes in the pressed area during impacts. We thus revisit skidding
friction modelling and we are able to derive a working approximation which
yields slightly improved predictions (in terms of comparison to experiments) on
the existing methods and also o�ers an explanation as to why two competing
approaches used in the past by other groups can be seen as expressions of the
same e�ect when we account for changes in the pressed area over an impact.

Assuming the pressed area A(t) is small enough that the part of the sphere
in contact with the free-surface is almost flat, viscous friction forces in the thin
air layer would be approximately given, in dimensional variables, by

FD = ≠µair|A(t)| ˆzuH |(z=÷), (51)

where µair is the dynamic viscosity of air, |A(t)| is the surface area of A(t),
uH is the horizontal velocity of the air, and the bar indicates the mean in the
contact area. The expression under the bar should scale as Xt/e, where e is the
width of the air layer, which we assume does not change substantially during
the contact time. We thus make the following approximation

FD = ≠k̄µair|A(t)|Xt

e
¥ ≠kµair|Aa(t)|Xt

Ro

, (52)

where k̄ is a scaling factor for the vertical derivative of the horizontal velocity
which we absorb into k = k̄Ro/e, a drag parameter. Moreover, we approximate
the pressed area A(t) by its the circlular Aa(t). We note that for a typical
droplet radius (Ro ¥ 0.4 mm) and for the typical air layer width (e ¥ 2 µm) as
predicted in Protière et al. (2006), we obtain Ro/e ¥ 200, which suggest that
the values of the dimensionless coe�cient k should be of order O(100k̄).

In principle, k could be di�erent for each value of driving acceleration or
even impact velocity and impact phase, as well as other factors; however, in
the present work, we will treat k as constant with respect to those variables.
Consequently, in equation (48), we estimate

E(t) = k
µair
Ro

|Aa(t)|, (53)
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which in equation (50), in dimensionless variables, yields

Xtt = ≠3Da

4Ra

3
6 + k

|Aa(t)|
fiR2

o

4
Xt ≠ Ò÷b|(X,t)

1
Ma

⁄

Aa(t)
pa

s
dA, (54)

where Ra = R2
o
fF /‹air and Da = flair/fl, with ‹air and flair being the kinematic

viscosity and the density of air, respectively. We note that the only undeter-
mined parameter in this equation is k, whose value we set as described later in
the text. We anticipate however, that the term k |Aa(t)|

fiR2
o

will dominate the drag
e�ect, in accordance with the relatively minor e�ect that air drag during flight
has shown to have, for instance using the model of Milewski et al. (2015) we see
nearly unchanging waking speeds with or without Stokes’ drag.

3 Solution

For completeness, and given the complexity of the full model, we summarise it
below together with a discussion of the numerical techniques used.

When the droplet is in flight we solve

÷t = 2
Re

�H÷ + N„, (55)

„t = ≠ (1 ≠ � cos(4fit))
Fr

÷ + 1
We

�H÷ + 2
Re

�H„, (56)

htt = ≠ (1 ≠ � cos(4fit))
Fr

≠ So ht; (57)

Xtt = ≠9Da

2Ra
Xt; (58)

for ÷, „, h and X. This is done using a spectral method in space, a second
order Runge-Kutta method in time for equations (55) and (56) with a fixed
time step, following Milewski et al. (2015); and exact integration for equations
(57) and (58). Care is taken to ensure that the periodic domain used in the
spectral method is large enough to guarantee that the waves have decayed at
the boundary, mimicking the conditions ÷ æ 0, when


x2 + y2 æ Œ; and

„ æ 0, when


x2 + y2 æ Œ. More specifically, we find that a domain of
40⁄F ◊ 40⁄F is su�cient for all simulations considered here, the spatial mesh
for the unforced wave field is set to have 211 ◊ 211 points, and the regular
temporal mesh is set to have 80 time steps per Faraday period.

When the method described above yields h(t) Æ ÷ (X(t), t), i.e. the sphere
and the bath are overlapping, we discard this solution and we define the previous
time step as t = t0. We then define

÷a(x, t0) = 0, ÷b(x, t0) = ÷(x, t0), (59)
„a(x, t0) = 0, „b(x, t0) = „(x, t0), (60)

ha(t0) = h(t0) ≠ ÷(X(t0), t0), hb(t0) = ÷b(X(t0), t0), (61)
ha

t
(t0) = ht(t0) ≠ ÷t(X(t0), t0), hb

t
(t0) = ÷b

t
(X(t0), t0), (62)
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and we solve independent problems for initial conditions a and b.
The axisymmetric, forced problem for the impact is given by

÷a

t
= 2

Re
�H÷a + N„a, z = 0; (63)

„a

t
= ≠ (1 ≠ � cos(4fit))

Fr
÷a + 1

We
Ÿ[÷a] + 2

Re
�H„a ≠ pa

s
, z = 0; (64)

ha

tt
= ≠ (1 ≠ � cos(4fit))

Fr
≠ So ha

t
+ 1

Ma

⁄

Aa(t)
pa

s
dA; (65)

subject to ÷a æ 0, when


x2 + y2 æ Œ; „a æ 0, when


x2 + y2 + z2 æ Œ;
and

÷a(x, t) = ha(t) + zs(x), x œ Aa(t); (66)
÷a(x, t) < ha(t) + zs(x), x /œ Aa(t); (67)

pa

s
(x, t) = 0, x /œ Aa(t); (68)

ˆn÷a(x, t) = ˆnzs(x), x œ La(t); (69)

whilst also assuming that Ÿ[÷a(x, t)] ¥ �H÷a(x, t), when x /œ Aa(t). This
problem is solved using finite di�erences and a numerical approximation to the
singular integral operator N (following Galeano-Rios et al. (2017)), in space; and
implicit Euler in time, with an adaptive time step. The axisymmetric domain
size is set to 2⁄F , the spatial mesh size is set for each droplet size to Ro/40, and
the adaptive time step is always chosen as a refinement of the temporal mesh
of the unforced problem. The solution to this problem is calculated until t = tl,
by which the droplet is once again in flight.

In parallel, we solve the homogeneous non-axisymmetric problem

÷b

t
= 2

Re
�H÷b + N„b, (70)

„b

t
= ≠ (1 ≠ � cos(4fit))

Fr
÷b + 1

We
�H÷b + 2

Re
�H„b, (71)

subject to ÷b æ 0, when


x2 + y2 æ Œ; and „b æ 0, when


x2 + y2 æ Œ,
from t = t0 to t = tl; and we define

hb(t) = ÷b(X(t), t), hb

t
(t) = ÷b

t
(X(t), t), (72)

for t œ [t0, tl].
The horizontal motion of the particle for t œ [t0, tl] is computed by solving

Xtt = ≠3Da

4Ra

3
6 + k

|Aa(t)|
fiR2

o

4
Xt ≠ Ò÷b|(X(t),t)

1
Ma

⁄

Aa(t)
pa

s
dA; (73)

with a semi-implicit Euler method.
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The solutions ÷, „, h, ht for t œ [t0, tl] are thus given by

÷(x, t) = ÷a (x ≠ X(t), t) + ÷b(x, t), (74)
„(x, t) = „a (x ≠ X(t), t) + „b(x, t), (75)

h(t) = ha(t) + hb(t), (76)
ht(t) = ha

t
(t) + hb

t
(t); (77)

at which point the droplet is once again in flight and we can repeat the proce-
dure.

In summary, when an impact is about to take place, we first solve an axisym-
metric impact until a time which we define as tl, when the droplet has lifted o�.
From this problem, we find the vertical forces on the droplet and the surface
deflection due to the impact. In parallel, we evolve the unforced surface waves
until t = tl. We take the information of the surface elevation gradient of the
unforced waves, at the location given by the droplet position, and we compute
the horizontal motion of the droplet. Finally, we superpose the axisymmetric
wave from problem a to the solution of problem b, at the corresponding location
X(t).

There are several advantages to the approach taken here. For instance, the
impact problem can be solved in a smaller domain, as this domain only needs
to be large enough to guarantee that the waves have not reached its boundary
over the duration of an impact. This allows for a much finer mesh, with respect
to that reported in Galeano-Rios et al. (2017), to be used to solve the impact
problem whilst still allowing much faster computations. Conversely, the wave
propagation without the impact can be solved using a much coarser mesh than
was used in Galeano-Rios et al. (2017), since the typical wavelength is large
in comparison to the droplet. More importantly, we are able to use a Fourier
method for the unforced waves, which diagonalises the Laplacian operators.
Similarly, we can use a much finer time step for the impacts, which allows for
an improved resolution of the vertical forces on the droplet with respect to what
was obtained in Galeano-Rios et al. (2017), whilst we use a coarser time mesh for
the unforced wave-propagation problem, allowing for faster computations. In
section 4, we show that the approximation method described above also provides
increased accuracy.

3.1 Simulations

Simulations are initiated by imparting the droplet with a horizontal velocity of
0.1 Cp and with a downward vertical velocity that is in the typical range for
walking droplets; all while the droplet is slightly above the surface. Droplets
will then settle onto a steady walking speed or come to a halt, if the system
parameters do not allow steady walking. We are able to identify the known
bouncing modes which we describe with the ordered pairs (m, n), following
Gilet & Bush (2009) and Moláček & Bush (2013a), in which m stands for the
number of forcing periods contained in a complete period of vertical motion,
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Figure 3: Simulation results for droplets walking at di�erent driving accelera-
tions (�). Solid black lines show the trajectory of the south pole of the droplet
and dashed lines correspond to the point of the free surface just under the south
pole. Grey lines show the horizontal speed of the droplets. Cp is the phase veloc-
ity of the Faraday waves (Cp = 19.88 cm/s), and Tf is the forcing period. Both
panels correspond to a droplet of radius Ro = 0.38 mm, i.e. vibration number
� = 0.8 (� = Êo


flR3

o
/‡) and drag parameter k = 3100. Panels (a), (b), (c)

and (d) correspond to modes (1, 1), (2, 2), (2, 1)1 and (2, 1)2, respectively.
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and n corresponds to the number of contacts that take place during m forcing
periods. These di�erent modes can be identified in figure 3, in which droplet
contacts correspond to the time intervals over which the south pole coincides
with the free surface. We are also able to distinguish variants within the same
(m, n) mode, such as the (2, 1)1 and (2, 1)2 (see figures 3c and 3d). We discuss
the distinction of these modes in greater detail later in the text.

Figure 4 shows the simulation of the wave fields of a bouncer and a walker,
which display the typical features reported in Eddi et al. (2011). We highlight
that the vertical scale in panels c-f is largely exaggerated in order to provide
a quantitative comparison of the scales of the unforced waves and the impact
dimple. This might create the illusion of a non-smooth interface. The inset plot
in panels c and d (for which we use the same scale in x and z) show that the
free surface is in fact very smooth. Animations of the simulations presented in
figure 4 are provided as supplementary material, these also clearly portray the
surface smoothness.

We run simulations of walking droplets in the parameter regimes investi-
gated experimentally by previous works (Wind-Willassen et al., 2013; Moláček &
Bush, 2013b; Pucci et al., 2016) with the experimental set up of 20 cSt and 80 Hz
(see Appendix A) for di�erent values of the vibration number � = Êo


flR3

o
/‡

(as defined in Dorbolo et al. (2008)), we then compare their experimental reports
to our simulation results for di�erent values of the skidding friction parameter k.
We use the comparison to define an adequate value of k for each � and complete
our skidding friction model. We note, that since all other parameters involved
in the definition of � are fixed for this study, � can be simply considered as a
proxy for the droplet radius.

3.1.1 Optimal values of k

Protière et al. (2006) proposed a skidding friction model in which viscous e�ects
yield a force that is proportional to droplet speed, where the proportionality
constants were estimated on the basis of typical sizes for the contact area and
air layer width. Moláček & Bush (2013b) presented a di�erent skidding friction
model in which the horizontal drag force due to the motion of the droplet as
it slides on the surface is considered to be proportional to the vertical force
exerted on the droplet, and to the droplet speed. They arrived at this form for
the drag by means of experimental measurements of the horizontal coe�cient
of restitution of droplets impacting a bath at di�erent angles. They go on to
fit the resulting data of tangential coe�cient of restitution as a function of the
Weber number and interpret their findings as implying that the dominant e�ect
for horizontal drag is momentum transference to the fluid bath. Moreover, they
assume throughout their work that the pressed area is roughly constant.

Our present approach is similar to that of Protière et al. (2006); however, we
are able to consider the change in contact area during each impact. We obtain,
as shown in equation (52), a friction model that is proportional to the instan-
taneous value of the contact area and to the droplet’s velocity. Nevertheless, in
Galeano-Rios et al. (2017) it was shown that the pressed area and the vertical
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Figure 4: Wave field simulations for vibration number � = 0.8, and drag pa-
rameter k = 3100. (a) Bouncer at �/�F = 0.74, with (c) its cross-section at
y = 0. (b) Walker moving to the right at �/�F = 0.98 and (d) its section
along the direction of walking. The wave field in a, b, c and d is sampled at the
time of maximum absolute surface deflection and with X(t) = (0, 0). The inset
plots in panels c and d show a close up to the wave field at the impact location
using the same vertical and horizontal scale (units of ⁄F ). The cross-sections
in panels e and f are analogue to those in panels c and d, respectively; though
in e and f the section is obtained just before a droplet impact. Animations
of the wave field and droplet motion for these two simulations are included as
supplementary material. We note that the figures do not show the totality of
computational domain.
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Figure 5: Walker speed as a function of � for di�erent values of the drag parame-
ter k, normalised by Faraday wave phase velocity (Cp = 19 cm/s in experiments,
and Cp = 19.88 cm/s in simulations). (a) � = 0.7, (b) � = 0.8, (c) � = 0.83, (d)
� = 0.86. Dashed lines correspond to the skidding friction model presented in
Moláček & Bush (2013b), solid lines correspond to the skidding friction model
developed in the present work. Experimental data for (a), (b) and (d), obtained
from Moláček & Bush (2013b), data for (c) from Pucci et al. (2016)

force are roughly proportional, therefore, a model that accounts for pressed area
variations will produce a skidding friction term that is approximately propor-
tional to forces and droplet speeds. Thus, when we account for the e�ects of the
varying pressed area, we can re-interpret the findings of Moláček & Bush (2013b)
as not being incompatible with those of Protière et al. (2006). In particular, we
can justify the form of the friction term given in Moláček & Bush (2013b) whilst
still considering viscous e�ects as the main drivers of the resistance to motion
during contact.

To find the optimal value K of the proportionality constant k for each droplet
size (i.e. �) for which the walking speed was reported at di�erent driving
accelerations in the experimental works, we test a sequence of values of k. For
each tested k we find the di�erences ›i between the experimental report for
horizontal speed ue

i
and the average horizontal speed as calculated from the

simulations us

i
, where the i-th experimental point corresponds to a given value
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of �i/�F (see figure 5). We thus define the total squared error for each attempted
value of the drag parameter k as:

›2 (k, �) =
nÿ

i=1
›2

i
(k, �, �i/�F ) =

nÿ

i=1
(ue

i
≠ us

i
)2 (k, �, �i/�F ), (78)

and we define
K(�) = argmin ›2(·, �). (79)

The values of K(�) are identified up to two significant figures and are re-
ported in figure 5. Figure 6(a) shows the distribution of K(�). We perform
an entirely analogous calculation, using the friction model presented in Moláček
& Bush (2013b), in which FD = ≠c


flRo/‡F (t)Xt, and we obtain a similar

distribution of values for the corresponding optimal proportionality constant
C(�). The respective walking speed predictions are reported in dashed lines in
figure 5 and the distribution of C(�) is presented in figure 6(b). In practice, the
value of C used in di�erent models ranges from 0.1 to 0.35, as can be seen in
the literature (Moláček & Bush, 2013b; Oza et al., 2013; Milewski et al., 2015;
Durey & Milewski, 2017).

The agreement between theory and experiment shown in figure 5 is overall
good, especially when considering the simplifications introduced; however, there
clearly is room for improvement. The choice to stop at two significant figures
in determining K is based on the fact that the two neighbouring values at
that precision provide an obvious bound to how much the predictions can be
improved by a more precise value of K, which indicate that no qualitative
agreement is likely to be gained. A more complete understanding of the air
flow in the intervening air layer would enable the production of better reduced
models; as it would allow for a realistic treatment of the dependence of the k̄
scaling factor on time or pressure distribution, and also of the time varying air
layer width e. As part of our ongoing work, we have posed the problem including
a coupled lubrication theory equation which we will attempt to address once we
have successfully incorporated droplet deformations.

The skidding friction parameter k is O(103) and |Aa(t)|/(fiR2
0) (i.e. the

fraction of the droplet’s “shadow” that is pressed) is O(10≠1). Therefore the
k|Aa(t)|/(fiR2

0) is O(102), which is significantly larger than 6 (the factor that
corresponds to Stokes’ drag). This verifies the intuition suggested at the end of
section 2.4.1. Moreover, the value of 1/Ma (the reciprocal of the dimensionless
mass of the droplet) ranges from 425 (biggest walking droplets) to 1334 (small-
est walking droplets). This is consistent with walking droplet motion being
dominated by the forces exerted by the waves onto the droplets, and also with
bigger droplets, such as the superwalker considered in section 4.1 (for which
1/Ma = 93), being less prone to walking under single frequency forcing.

The similarity between figures 6(a) and 6(b) is consistent with the finding
of the approximate proportionality between vertical force and pressed area re-
ported in Galeano-Rios et al. (2017). We notice that our proposed skidding
friction model produces less total errors (›2(K(�), �)) for most values of �
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Figure 6: Skidding friction coe�cients for the two models here considered. Panel
(a) shows K(�) for the proposed model, panel (b) shows C(�) for the model in
Moláček & Bush (2013b). Numbers along the markers indicate the number of
data points available in the literature for a given droplet size.

and that the relative deviation with respect to the mean value is smaller for K
(‡d(Ki)/K̄ = 0.16, ‡d(Ci)/C̄ = 0.24 ). In what follows, we use K(�) for each
droplet radius.

4 Comparisons to experiments of walking and

bouncing droplets

Our model is completed with the specification of the skidding friction parameter.
We thus proceed to simulating various experiments reported in the literature,
across a range of physical parameters (�, �). In particular, we will compare the
many walking and bouncing states observed and the details of the wave field
and impact phases.

We vary � over the range of values typically used in experiments and with
the driving amplitude � ranging from bouncing threshold to Faraday threshold.
We compare the resulting steady state bouncers and walkers to the experimental
results reported in Wind-Willassen et al. (2013). The results are summarised in
figure 7, where squares (bouncers) and circles (walkers) indicate experimental
reports and the background corresponds to our simulation results. The colour
coding is shared between squares, circles and background. The red curve en-
closes the region in which the droplets walk in simulations and the vertical
yellow dashed line indicates � = 1, to the right of which the driving acceler-
ation reverses the sign of the gravity (in the frame of reference of the bath),
during part of the cycle. The hashed region describes (2, 2)2 bouncers, which
could easily be mistaken for (2, 1) bouncers, as was reported in Galeano-Rios
et al. (2017) and observed experimentally by Couchman et al. (2018).

We note that, in figure 7, the comparison to experimental results is excel-
lent, with the exception of cases for which even the experimental distinction of
bouncing modes is challenging. In particular, the agreement with experimen-
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Figure 7: Phase diagram for bouncing and walking droplets. Bullets indicate
experimental reports of the modes of bouncing (Wind-Willassen et al., 2013),
background colouring corresponds to the bouncing mode found in our simula-
tions. The bouncing mode colour-coding is the same for bullets and background.
The leftmost region (red) indicates the range of � for which our droplets are
always in contact with the bath and the vertical yellow dashed line indicates
� = 1. The red curve encloses the region in which the droplets walk in simu-
lations. Grey regions correspond to (4, 2) modes, light grey to (4, 2)1 and dark
grey to (4, 2)2; chaotic bouncing is shown in black. The six F markers indicate
the bouncing and walking modes shown in figure 8. The hashed region corre-
sponds to (2, 2)2 modes, which in Wind-Willassen et al. (2013) were classified as
(2, 1), but were later revealed by Damiano (2015b) to be less obvious instances
of a (2, 2) mode (see figure 8a and 8b for details).
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Figure 8: Variants of the same (m, n) mode. Solid black lines depict the height
of the south pole of the droplet, dashed black lines indicate the point on the
free surface that is directly below the south pole; all with respect to an inertial
observer in the laboratory. Grey lines correspond to the vertical force on the
droplet Fø. (a) (2, 2)1 mode, in which the droplet reverses the direction of its
vertical motion during both impacts. (b) (2, 2)2 mode, in which the droplet
reverses its vertical direction of motion every other impact. (c) (2, 1)1 mode, in
which the vertical force has two clearly marked maxima. (d) (2, 1)2 mode, in
which the vertical force shows a single peak. (e) (4, 2)1 mode, which arises as
a period doubling bifurcation from the (2, 1)1 mode with all bounces producing
vertical forces with two clear peaks but consecutive bounces have di�erent force
profiles. (f) (4, 2)2 mode, which results from a period doubling bifurcation of
the (2, 1)2 mode.
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tal results is substantially improved with respect to the most detailed walking
droplet model that was previously available (see figure 4 in Milewski et al.
(2015)). These improved walker prediction are obtained whilst also doing away
with three parameters and solving realistic and detailed impact dynamics. Fur-
thermore, this model is also able to capture all bouncing droplet phenomena
reported in figure 10 of Galeano-Rios et al. (2017), with improved accuracy.

Figure 8 shows the three observed instances in which we distinguish two
kinds of bouncing modes that are characterised by the same (m, n) notation.
Panels (a) and (b) show two qualitatively di�erent (2, 2) modes. We refer to the
mode in panel (a) as the (2, 2)1 mode, in which the vertical motion of the droplet
actually reverses direction four times over a period of motion, and as the (2, 2)2

mode to the one in panel (b), in which reversals only take place twice over a
motion period. Panels (c) and (d) reveal the qualitative di�erences between the
(2, 1)1 and (2, 1)2 modes; the clearest distinction between the two being given
by the fact that the in the (2, 1)1 mode (panel c), there are two maxima in
the vertical force over a relatively long (¥ Tf ) contact, whereas in the (2, 1)2

mode (panel d) a single maximum in vertical force is attained. Finally, we are
also able to distinguish a (4, 2)1 mode (panel e) and a (4, 2)2 mode (panel f),
which result from period doubling bifurcations of the (2, 1)1 and (2, 1)2 modes,
respectively. Moreover, the comparison between panels (b) and (c) illustrates
the reason why (2, 2)2 bouncers can easily be mistaken for (2, 1)1 bouncers. In
fact, the hashed region in figure 7 mostly coincides with experimental reports
of (2, 1)1 modes. However, a more detailed report in Damiano (2015b) shows
that for � = 0.8, the bouncers in the hashed regions actually correspond to the
gradual shrinking of the interval between the two bounces; as described below.

Figure 9 shows the dependence of impact and lift-o� times for driving ac-
celerations ranging from the bouncing threshold to Faraday threshold. Along
every vertical traverse, we can see the transitions undergone over a bouncing
period, at a given �/�F . The left end of the graph shows how a weak driving
acceleration leads to longer contacts; which for low enough �, end up merging
and causing the droplet to stay attached to the surface. In reality coalescence
would occur in the vicinity of the left end of the graph; however, since we do
not model the thin air layer dynamics in this work, we are not able to predict
it accurately. As we move to the right in the graph, we can see first the (1, 1)
mode (between �/�F ¥ 0.23 and �/�F ¥ 0.42 in the experiments, and between
�/�F ¥ 0.17 and �/�F ¥ 0.49 in the simulations), for which both contacts are
identical except for a shift in time of one forcing period. The period doubling
mechanism from the (1, 1) mode into the (2, 2) mode is evidenced in the mid-
dle section of the figure, where we see that consecutive contacts start to di�er
from each other. As � is increased further, the two contacts grow closer, finally
merging into one long contact with two peaks in force (see figure 8c) that are
inherited from each one of the two distinct bounces in the (2, 2) mode. Further
to the right of the graph, the contact time shortens and the force peaks fuse into
a shorter pulse (see figure 8d) that takes place roughly during the same interval
of time for which contact took place in the (1, 1) mode, but in a period dou-
bled state. For insight on how driving acceleration influences walking velocity
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Figure 9: Evolution of the touch down and take o� times as a function of the
driving acceleration amplitude (� = 0.8). The shaded regions indicate the ex-
perimental report in Damiano (2015b), of the start (dark) and end (light) of
droplet contacts. The vertical width of each region corresponds to the experi-
mental uncertainty in the measurements (Damiano, 2015a). The corresponding
simulation results for impact and take o� times are shown in black and grey
lines, respectively. The vertical lines indicate the transition to a di�erent (m, n)
mode in experiment (solid) and simulations (dashed).

through changes in the vertical dynamics, figure (9) should be read alongside
figure (5b).

A comparison between surface topography measurements (Damiano et al.,
2016) and our current wave field predicitons is shown in figure 10. In this
figure we observe a similar agreement to that reported in figure 12 in Galeano-
Rios et al. (2017), where the impact was computed directly onto the perturbed
surface and not decomposed into an impact onto a flat surface and the unforced
wave field evolution. This suggests that the separation of the problem into
two has not a�ected our wave field predictions significantly. The disagreement
observed is mostly in the magnitude of the wave elevation in the near field of
the droplet. We believe the disparity here is mainly due to the shortcomings of
the quasi-potential fluid formulation. It is important to highlight that, with the
current fluid model, the wave length in experiments (¥ 4.75 mm, as reported by
Pucci et al. (2016)) is slightly di�erent from that predicted by our fluid model
(= 4.97 mm).

4.1 Superwalkers: two frequency shaking

Valani et al. (2019) recently reported a new kind of walking droplets. These
are relatively large droplets (up to 1.4 mm radius) that always bounce in place
when the underlying bath is subject to simple harmonic motion, but walk par-
ticularly fast (up to about three times the maximum velocity for regular walkers,
i.e. Cw/Cp ¥ 0.15) when the bath is subject to vertical oscillations obtained
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Figure 10: Comparison of wave field predictions to experimental measurements
reported in Damiano et al. (2016). The wave field corresponds to a bouncer in
the (2, 1)1 mode, � = 0.8 and �/�F = 0.75.
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using the superposition of two sinusoidal signals of di�erent frequencies. More
specifically, this was observed to happen when the second frequency added is
resonant with the subharmonic Faraday waves. The most relevant predecessor
of this work is Sampara & Gilet (2016), who considered a combination of 80 Hz
and 64 Hz forcing in a bath of 20 cSt silicone oil, and were thus able to find a
series of novel trajectories for the walking droplet system.

Valani and collaborators drive the oil bath with a vertical acceleration of the
form

ztt = ≠g
1

� cos (Êot) + �1 cos
1Êo

2 t + ◊1
22

, (80)

and therefore have two extra physical parameters with respect to the regular
walking droplet experiment; namely the subharmonic forcing amplitude, con-
trolled by �1, and the phase shift between the two frequencies, given by ◊1.
Regarding the bath motion, the two main di�erences between Sampara & Gilet
(2016) and Valani et al. (2019) are the choice of the second frequency as reso-
nant with the sub-harmonic Faraday waves and the introduction of the phase
shift parameter, which was kept constant and equal to zero in Sampara & Gilet
(2016). Moreover, the droplet size considered in Sampara & Gilet (2016) is in
the regular walker size range. These di�erences explain why the superwalkers
where not observed in their work.

The changes to the problem formulation, needed to model superwalkers,
amount to replacing each instance of the expression

(1 ≠ � cos(4fit))
Fr

(81)

in equations (56), (57), (64), (65) and (71) by

(1 ≠ � cos(4fit) ≠ �1 cos(2fit + ◊1))
Fr

, (82)

and selecting an appropriate value for the skidding friction constant k. Another
minor modification to simulate superwalkers is the use of a larger axisymmetric
impact domain, i.e. a domain of radius 4⁄F (twice the diameter of the one used
for regular walkers). This choice was made to guarantee that waves triggered
by large droplets, which sometimes produce contacts that are twice as long as
those of walkers, do not reach the boundary of the axisymmetric domain before
the impact is over.

We highlight that superwalking droplets undergo a non-negligible amount of
deformation. In particular, one can see that the droplet’s Bond (Bod = flgR2/‡)
and Weber (Wed = flRV 2

rel/‡) numbers are larger that those for regular walkers,
which indicates that deformations induced by gravity and inertia will be more
prevalent. Typical physical parameters for walking droplet yield Bod = 0.0671
and Wed = 0.195, whereas for the superwalkers considered here Bod = 0.91 and
Wed = 0.261. Moreover, the ratio of walking speed Cw to the relative vertical
speed before impact Uz is Cw/Uz ¥ 0.6. We therefore consider that the main
motivation for the present section is to demonstrate the surprising extent to
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Figure 11: Superwalkers at � = 1.91 (Ro = 0.68 mm), �/�F = 0.71, ◊1 = 8fi/9.
(a) Average velocity of superwalkers for di�erent values of the drag parameter k,
normalised by the phase velocity of the Faraday wave of frequency 40 Hz(Cp =
19 cm/s in experiments, and Cp = 19.88 cm/s in the simulations). Vertical
trajectories of the south pole (solid black lines) and of the free surface point
just underneath (dashed lines), together with vertical forces Fø on droplets for
di�erent driving accelerations �1. Panels b to f show: a droplet bouncing at
single frequency forcing in the (2, 1)1 mode (b), walking in the (2, 1)1 mode (c),
walking in the (4, 2)1 mode (d), walking in the (2, 1)2 mode (e), and walking in
the (4, 2)2 mode (f). Experimental data in panel a was obtained from Valani
et al. (2018).
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which a model based on a non-deforming droplet can capture (super)walking
droplet phenomena.

In figure 3(a) of Valani et al. (2019), it is shown that superwalkers only
appear in a window of the ◊1 parameter that is centred roughly about ◊1 =
7fi/9. Moreover, in figure 2(c) of Valani et al. (2018), the walking speed of a
superwalker of Ro = 0.68 mm for fixed �/�F = 0.71 and ◊1 = 8fi/9, is reported
as a function of �1/�1

F
, with �1

F
given by the Faraday threshold for the fluid bath

when driven at an angular frequency of Êo/2. The superwalker phenomenon
is reproduced for any value of the drag parameter k in the order of the values
chosen for K(�) (figure 6). That is to say, droplets bounce when in the presence
of a single frequency and walk faster than typical walkers (up to more than twice
as fast as the fastest walkers) when the second frequency is added to the driving.
To find the optimal K(�) for �(Ro = 0.68), we test di�erent values of k and
find the one that minimises the squared error with respect to the experimental
results reported in figure 2(c) of Valani et al. (2018).

Figure 11(a) shows the comparison between experimental report of super-
walker velocity (Valani et al., 2019) and our simulation results for values of k in
the vicinity of its optimal value K(� = 1.91). Figure 11(b-f) show the modes
of bouncing displayed and the forces on the droplet due to collisions with the
bath. When in the presence of a single frequency forcing (figure 11b), �1 = 0;
the droplet bounces in place displaying a (2, 1)1 mode with a particularly long
contact. We note that our model shows in fact that the superwalkers are barely
lifting o� the surface when a single frequency is present. As the second fre-
quency is introduced (panels c-f), the droplet walks even for �1/�1

F
as low as

0.18 (figure 11a and 11b). Like in the case of the walkers, the mode of bouncing
observed changes with the driving acceleration (�1, in this case). In figure 11,
we see superwalkers bifurcation sequence: (2, 1)1 æ (4, 2)1 æ (2, 1)2 æ (4, 2)2.
It is worth noting that, even though the skidding friction coe�cient is of the
same order as the one used for regular walkers, the walking speeds we obtain
are in line with the superwalker experiments (up to three times the speed of
single-frequency walkers).

We note that our model predicts that the superwalkers have a wave field
that is qualitatively di�erent to that of single-frequency walkers. As can be
seen in figure 12(b), the wave field behind the superwalker does not exhibit, for
these parameters, the typical interference pattern reported by Eddi et al. (2011),
also observable in figure 4(b). Experimental reports from Valani et al. (2019)
show that the wave field of the superwalkers indeed looks like our predictions.
This distinctive wave field is likely due to the fact that we are exciting Faraday
waves under two-frequency forcing, which will respond to a Mathieu equation
that is di�erent from the one for single frequency forcing found by Benjamin &
Ursell (1954), see Zhang & Vinals (1997). In particular, the Fourier transform
of the wave field contains a higher contribution of wavelengths in the range of
the Faraday wavelength for 40 Hz forcing (k ¥ 7.16 cm≠1). Moreover, the wave
field associated to such a large droplet deforms the free surface substantially in
the vicinity of the droplet, as can also be seen in figures 11(b-f), even in the
absence of a second forcing frequency (figures 11b and 12a). We highlight that
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Figure 12: Wave field predictions for � = 1.91, �/�F = 0.71, ◊1 = 8fi/9. (a)
Bouncer at �1/�1

F
= 0, and (b) superwalker moving to the right at �1/�1

F
=

0.87. Panels c and d show cross-sections of the wave field represented in a and
b, respectively. The wave fields in a, b, c and d are sampled at the time at which
the maximum surface deflection (in absolute value) occurs while the droplet is
located at X(t) = (0, 0). Inset plots in panels c and d show the impact location
using the same scale for the vertical and horizontal axes (units of ⁄F ). Panels e
and f show the respective analogue cross-section, to c and d; though taken just
before a droplet impact. Animations of the wave field and droplet motion for
these two simulations are included as supplementary material.
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the inset plots in panels c and d show that the surface remains smooth at the
impact location. This can also be appreciated in the corresponding animation
of the simulations results from the cases in figure 12, which are provided as
supplementary material.

To the best of our knowledge, no other model has captured superwalker
phenomena. In particular, we attempted to use the model presented in Milewski
et al. (2015) and obtained a significant mismatch in the vertical dynamics.

The superwalker phenomenon is one more piece of evidence of the extremely
rich dynamics associated with the bouncing droplet system. A more complete
treatment of superwalkers requires the consideration of droplet deformation and
will be the subject of future work.

5 Discussion

We have described a general methodology to study impacts and rebounds at
capillary scale. The method relies on the assumption that the impacting object
does not become immersed and that we have a theory for the evolution of the
capillary contact angle. When we apply the methodology to Faraday walkers,
after a series of approximations, we arrive at a walker model that combines a
quasi-potential fluid model with the superposition of translated axisymmetric
impacts. We obtain a highly realistic walking droplet model that solves repeated
bounces with minimal assumptions on the nature of the impact. The use of few
assumptions enables the generation of a great amount of detailed predictions for
the physical system. We carefully compare these predictions to experimental
reports available in the literature obtaining an overall remarkable agreement.

We highlight the fact that our system is able to capture extremely well the
majority of phenomena here tested. This is a strong indication that droplet
deformation plays a relatively minor role in the overall dynamics of the walking
droplet system; except possibly for superwalkers, for which our walking speed
predictions deviate slightly more from the experimental reports. These devia-
tions from our predictions are not unexpected, as droplet deformation is known
to be non-negligible in this case. An adaptation of the kinematic match method
which couples the deformation of the impacting droplet to the fluid equations
is underway, its implementation should result in a substantial improvement for
our superwalker predictions and it should provide the tools to assess precisely
the extent to which the results change when the impacting object is compliant.
To account for inertial e�ects in droplet deformation during impact, we need to
approximate the fluid flow inside the droplet. Moreover, the decomposition of
the impact into vertical and horizontal motion, though in principle still possible,
requires the observation of some additional e�ects (Purvis & Smith, 2005).

Single bounce dynamics, similar to those observed in bouncing droplets, have
been obtained for solid spheres (see for instance Lee & Kim (2008) and Bauman
et al. (2019)); however, sustained periodic bouncing and walking regimes have
not been reproduced with solids. Surface roughness of solids at the scale of the
air layer width, which can puncture the lubrication layer, could be the cause.
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It is also possible that deformation plays a role in preserving the integrity of
the air layer; nevertheless, our present work strongly suggests that the role of
these deformations is otherwise relatively minor in terms of the overall dynamic
behaviour for the parameter regime here considered (see for instance figure
9). Moreover, droplet deformations have been shown to play an important
role when the fluid of the bath is significantly less compliant than that of the
droplet (see Terwagne et al. (2013)). Such a system can also be studied using a
kinematic match method for deformable impactors. Deformation in bouncing,
walking and superwalking droplets will be the subject of a separate study, which
will also consider more general two-frequency forcing bouncing droplet systems,
including the system reported by Sampara & Gilet (2016). This future work
will allow us to quantify dynamic droplet deformation and can be compared
to experimental measurements of droplet deformation reported by Couchman
et al. (2018), indicating at most a 5% radial deformation for single frequency
walkers. Similarly, in a private communication with the lead author of Valani
et al. (2019) it was reported that superwalkers of the size here considered show
a radial deformation of at most 9%.

Our work re-enforces the well established notion that translating axisymmet-
ric impacts provides a su�ciently good approximation when modelling walkers.
This is also in agreement with the more general notion that the horizontal com-
ponent of impact velocity has a negligible role in solid-impact problems unless
it is significantly large (see for instance Moore et al. (2012)), which is one of
Trefethen’s paradoxes (Trefethen & Panton, 1990). Moreover, we make use of
the linear nature of the waves in this problem to decompose its solution into two
parts, which introduces the possibility of using di�erent methods to solve the
impact and the wave evolution. One can then use the optimal method for each
part and arrive more e�ciently at a more accurate solution to the full problem,
once they are combined. Consequently, in this work, we solve bouncers and
walkers in less than half the computation time as required for the bouncer only
simulations in Galeano-Rios et al. (2017) and at four time increased spatial ac-
curacy. Another important consequence of successfully separating the problem
into two is that this allows for the possibility of solving the unforced waves
with other, perhaps more elaborate, fluid models which might be solved very
e�ciently when unforced by surface pressures but with which it would prove
challenging to solve numerous impacts.

Many walking droplet experiments involve complex interactions between the
impact phase and the droplet trajectory. This is expected to be the case in
confined chaotic motion in a potential (Perrard et al., 2014; Durey et al., 2018)
or in a corral (Harris et al., 2013). For long time realistic computations of
such problems, where the impacts may vary chaotically, we could accelerate
simulations by pre-computing a library of droplet impacts with the surface, i.e.
a database of axisymmetric solutions parameterised by relative impact velocity
and impact phase, from which the resultant wave field and droplet forces can be
recalled, the droplet trajectory calculated, and the new wave field superposed
onto the preexisting wave field. This approach is currently being developed
to realistically introduce the e�ect of impact phase variations in 2D models of
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tunnelling and two particle correlations, such as those in Nachbin et al. (2017)
and Nachbin (2018).

Detailed wave field predictions have proven to be fundamental to capture
droplet-droplet interactions, as the role of moving wave fronts and subtle changes
in impact phases define the direction of the horizontal forces on the droplets
bouncing in close range (Galeano-Rios et al., 2018). The next order approxi-
mation for the fluid motion in the bath is given by the linearised Navier-Stokes
equations for incompressible flow (Galeano-Rios, 2016; Durey, 2018; Tadrist
et al., 2018), which are non-local in time (Prosperetti, 1976; Beyer & Friedrich,
1995). In view of our present results, it seems clear that a combination of
the solution of the linearised Navier-Stokes equations with a library of impacts
is likely the most adequate approach to study multi-droplet systems in great
detail.

Multi-droplet systems are the subject of particular interest, as they are a
realisation of an active matter system in which the “agents” take energy from
the waves and also interact through them. Moreover, other collections of sur-
face bounded objects would provide similar examples of wave-mediated active
matter systems which can be modelled with relatively simple modifications of
the methods here presented.

C.A.G.-R. and P.A.M. gratefully acknowledge the support of EPSRC project
EP/N018176/1. J.-M.V.-B. gratefully acknowledges the support of EPSRC
project EP/NO18559/1. We also thank Adam Damiano and Rahil Valani for
sharing details of their experimental measurements.

A Physical constants

Air:
µair = 1.8 ◊ 10≠4 gr cm≠1 s≠1. (83)

Silicone Oil:
‡ = 20.6 dyne cm≠1, (84)

fl = 0.949 gr cm≠3, (85)

‹ = µ/fl = 0.2 St = 0.2 cm2 s≠1. (86)

Gravity in the frame of reference of the bath:

g = 980 cm s≠2, (87)

�F = 4.22 g = 4135 cm s≠2, (88)

�1
F

= 1.19 g = 1166 cm s≠2, (89)

Êo = 2fi 80 rad s≠1, (90)
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