
Spekkens’ toy model and contextuality as a resource
in quantum computation

L. Catani and D. E. Browne

University College London, Physics and Astronomy department

Gower St, London WC1E 6BT, UK

N. de Silva

University College London, Computer Science department

Gower St, London WC1E 6BT, UK

Summary. — Spekkens’ toy model (SM) is a non-contextual hidden-variable model
made to support the epistemic view of quantum theory, where quantum states are
states of partial knowledge about a deeper underlying reality. Despite being a classi-
cal model, it has reproduced many features of quantum theory (entanglement, tele-
portation, . . . ): (almost) everything but contextuality, which therefore seems to be
the inherent quantum feature. In addition to the importance in foundation of quan-
tum theory, the notion of contextuality seems to be a crucial resource for quantum
computation. In particular it has been proven that, in the case of odd prime discrete
dimensional systems, contextuality is necessary for universal quantum computation
in state-injection schemes of computation based on stabilizer quantum mechanics
(SQM). The latter is a subtheory of quantum mechanics which is very popular in
the field of quantum computation and quantum error correction. State-injection
schemes consist of a classically-simulable part (like SQM) and a resource state that
boosts the computation to a quantum improvement. In the odd-dimensional case,
SM is operationally equivalent to SQM. In the even-dimensional case, the equiva-
lence only holds in terms of structure, not in terms of statistical predictions. This
because qubit-SQM shows contextuality, while qudit(odd dimensions)-SQM does
not. We believe that SM can be a valid tool to study contextuality as a resource in
the field of quantum computation. Restricted versions of SM compatible with quan-
tum mechanics (QM) can be used as the non-contextual classically-simulable part of
state-injection schemes thus opening other scenarios where studying if contextuality
is necessary for quantum computational speed-up.
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1. – Spekkens’ toy model

In the last decades many attempts to better understand quantum theory through
hidden-variable models have been developed [1-3]. Nowadays a big question in quantum
foundations is whether to interpret the quantum state according to the ontic view, i.e.
where it completely describes reality, or to the epistemic view, where it is a state of in-
complete knowledge of a deeper reality which can be described by the hidden variables.
In 2005 R. Spekkens [4] constructed a non-contextual hidden-variable model to support
the epistemic view of quantum mechanics. The aim of the model was to replace quantum
mechanics by a hidden-variable theory with the addition of an epistemic restriction (i.e. a
restriction on what an observer can know about reality). The first version of the model [4]
refers only to two-dimensional systems (inspired by the quantum bits) and, despite its
simplicity, it has obtained many results that were thought to belong only to quantum me-
chanics (e.g. the no-cloning theorem and teleportation). A later version of the model [5],
with a more rigorous mathematical formulation, has extended the theory to all discrete
prime and continuous degrees of freedom. The latter has been shown to be operationally
equivalent, except for the two-dimensional case, to sub-theories of quantum mechanics,
so-called quadrature quantum mechanics, which in the discrete case correspond to SQM.
Almost all the features of quantum mechanics are reproduced there, approximately every-
thing but contextuality (and the related Bell non-locality), which therefore arises as the
signature of quantumness. Spekkens’ theory has influenced much research over the years
(e.g., [16-20]) and it also addresses many key issues in quantum foundations: whether
the quantum state describes reality or not, finding a derivation of quantum theory from
intuitive physical principles and classifying the inherent non-classical features.

In this section we describe Spekkens’ theory for discrete dimensional systems by defin-
ing, in a physically motivated way, what are the states, the measurement observables and
the outcomes. The updating rules for the state of a system after a measurement can be
found in [6].

We denote with Ω ≡ (Zd)2n the discrete phase space of n d-dimensional systems(1).
Let us consider a fiducial set of quadrature variables in the phase space (capital letters),
Xj and Pj (like position and momentum in the standard classical mechanics), on each
system j, where j ∈ 0, . . . , n − 1, taking values in 0, . . . , d − 1. These variables allow
us to define the ontic states (the reality) associated to the systems. Each ontic state
represents a set of values for the fiducial observables Xj and Pj , and so an ontic state is
denoted by a point in the phase space λ ∈ Ω. We call Xj and Pj observables because
they correspond to proper measurable quantities that uniquely define the ontic state.
We can refer to Ω as a vector space where the ontic states are vectors (bold characters)
whose components (small letters) are the values of the fiducial variables:

(1) λ = (x0, p0, x1, p1, . . . , xn−1, pn−1).

(1) The dimension d is any positive number, odd or even, prime or non-prime, unless differently
specified.
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Spekkens’ theory imposes a restriction on what an observer can know about the ontic
state of a system. This means that what an observer can know about the system is
described by an epistemic state which is a probability distribution p(λ) over Ω.

A generic observable, denoted by O, is defined by any linear combination of fiducial
variables:

(2) O =
∑

m

(amXm + bmPm),

where am, bm ∈ Zd and m ∈ 0, . . . , n − 1. The observables live in the dual space Ω∗,
which is isomorphic to Ω itself. Therefore we can define them as vectors, in analogy with
ontic states, O = (a0, b0, a1, b1, . . . , an−1, bn−1). The formalism provides a simple way of
evaluating the outcome σ of any observable measurement O given the ontic state λ, i.e.
by computing their inner product :

(3) σ = OT λ =
∑

j

(ajxj + bjpj),

where all the arithmetic is over Zd.
The epistemic restriction of ST is called classical complementarity principle and it

states that two observables can be simultaneously measured when their Poisson bracket
is zero, and in this case we will say that they commute. This can be simply rephrased in
terms of the symplectic inner product :

(4) ⟨O1,O2⟩ ≡ O1
T JO2 = 0,

where J =
⊕n

j=1[
0 1
−1 0 ]j is the symplectic matrix.

A subspace of commuting observables, thus satisfying the classical complementarity
principle, is called isotropic. This means that the subspace of the variables jointly known
by the observer is an isotropic subspace. We denote the subspace of known variables
as V = span{O1, . . . , On} ⊆ Ω, where Oi denotes one of the generators (commuting
observables) of V . Taking into account this definition we can define an epistemic state
by the set of known variables V , and also the values σ1, . . . ,σn that these variables take.
This means that OT

j · w = σj , where w ∈ V is the ontic state that evaluates the known
observables and it is called the shift vector. The set of ontic states consistent with the
epistemic state described by (V,w) is V ⊥ + w, where the perpendicular complement of
V is, by definition, V ⊥ = {a ∈ Ω | aT b = 0 ∀ b ∈ V }. The proof of this result can
be found in [6]. By assumption the probability distribution associated to the epistemic
state (V,w) is uniform (indeed we expect all possible ontic states to be equiprobable),
so the probability distribution of one of the possible ontic states in the epistemic state
(V,w) is

(5) P(V,w)(λ) =
1
dn

δV ⊥+w(λ),
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where the delta is equal to one only if λ ∈ V ⊥ + w (note this means that the theory is
a possibilistic theory).

The aim of Spekkens is to show that epistemic states in his theory are the analogue
of quantum states in quantum theory (fig. 1). The analogue of unitary evolutions in
quantum theory here corresponds to a subset of all the possible permutations (symplectic
affine transformations). The elements of a sharp measurement are here represented as
an epistemic state, by virtue of the duality between states and measurements. In the
odd-dimensional case the operational equivalence between SM and SQM is proven by
using Gross’ Wigner functions [6, 15] Figures 1(a) and 1(b) picture the notions defined
so far in the two-dimensional case. The notion of entanglement is depicted in fig. 1(c).

2. – Contextuality

In 1967 Kochen-Specker showed that no non-contextual hidden-variable models can
ever reproduce all the results of quantum mechanics [3]. The theorem, that can be
seen as a complement to Bell’s theorem [2], highlights the new concept of contextuality.
Probably the most intuitive and popular way to express this concept is through the
so-called Mermin square [9]:

The square is composed by nine Pauli observables on a two-qubit system. Each row
and each column is composed by commuting (simultaneously measurable) observables.
With the assumption that the functional relation between observables is preserved in
terms of their outcomes (e.g. if an observable C is the product of two observables A, B,
also its outcome c is the product of the outcomes a, b of A, B), and that the outcome of
each observable does not depend on which other commuting observables are performed
with it (non contextuality), the square shows that it is impossible to predict the outcome
of each observable among all the rows and columns without falling into contradiction.
For example, if we start by assigning values, say ±1, to the observables starting from
the first (top left) row on, the contradiction can be easily seen when we arrive at the
last column and last row (red circles), that bring different results to the same observable
Y ⊗ Y , as witnessed by the following simple calculation, (X ⊗ Z) · (Z ⊗ X) = Y ⊗ Y ,
and (X ⊗ X) · (Z ⊗ X) = −(Y ⊗ Y ). Measurement contextuality refers to the fact that
the outcome of a measurement does depend on the other compatible measurements that
we perform with it (i.e. on the contexts). More recent versions of contextuality do not
only consider sharp measurements, but also preparations and transformations [7]. Non-
contextual inequalities have been developed to quantify contextuality [11-13] and in 2014
Howard et al. [14] used Cabello-Severini-Winter inequality to prove that contextuality is
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Fig. 1. – Spekkens’ toy states of one and two bits. Panels (a) and (b) show the elementary
system of Spekkens’ theory in two dimension: the bit. One possible ontic state of one bit is
shown in (a), where the observer both knows X = 0 and P = 0, so λ = (0, 0). The epistemic
restriction — classical complementarity principle — in this case corresponds to saying that
at maximum the observer has “half” of the knowledge about the ontic state. For example a
possible epistemic state is shown in (b), where the observer only knows the variable X = 0,
so V = span{(1, 0)} and w = (0, 0). In this case the epistemic state X = 0 of one bit can
be seen as the analogue of the quantum state |0⟩ of one qubit. Panel (c) shows two kinds of
two-bits epistemic states of maximal knowledge. The state on the left is a non-correlated state
(X1 = 0 = X2), indeed we have the knowledge of the states of the individual subsystems, while
the state on the right (X1 = X2 and P1 = P2) is perfectly correlated (i.e. entangled), indeed
it would be impossible to know the states of the individual subsysytems, but we know exactly
the correlation between them (in the case above we know that they have the same ontic states).
This trade-off in choosing if knowing the correlation or the states of the individual subsystems
is something which is not present in any classical theory.

necessary for universal quantum computation in a state-injection scheme of computation
based on stabilizer quantum mechanics. The latter is a subtheory of quantum mechanics
where only common eigenstates of tensors of Pauli operators are considered and only
unitaries belonging to the Clifford group and Pauli measurements are allowed. The pre-
vious state-injection scheme consists of two parts (fig. 2): the “classical” part of the
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Fig. 2. – State-injection scheme of computation. Quantum computation by state injection
consists of a non-contextual and efficiently classically simulable part (like a stabilizer circuit)
and a “magic” resource state (given by a non-Clifford gate) that boosts it to universal quantum
computation. Howard et al. [14] have found that if the resource state can be distilled into a
magic one then it must show contextuality. We want to study a similar state-injection scheme
for qubits based on other sub-theories of SM compatible with QM instead of SQM.

computation which is composed by stabilizer circuits, which are known to be efficiently
classically simulable [8], and the resource state. The classical part of the computation
is boosted to quantum universality by injecting a particular resource state, called magic
state. The result states that if the resource state can be distilled into a magic one then
it shows a violation of CSW-inequality, i.e. contextuality. The result holds only for
qudits (odd dimensions). Note that the contextuality considered in the above scenario
is state-dependent (indeed it is injected by the magic state), while the one presented
in the Mermin square scenario is state-independent. We conclude this section on con-
textuality by highlighting which are the philosophical assumption behind the notion of
contextuality: counterfactual realism and counterfactual compatibility. The former says
that results of unperformed tests have the same degree of reality of the results of per-
formed tests. In this sense contextuality consists of a logical contradiction between an
actual outcome that happens and a potential outcome that does not. Counterfactual
compatibility roughly says that the common observable (e.g. Y ⊗ Y ) considered in the
two incompatible contexts (e.g. last row and last column of the Mermin square) is exactly
the same in the two scenarios. In other words the result of an unperformed test does not
depend on the choice of compatible observables that can be performed with it [10].

3. – Restricting SM as a subtheory of QM

Spekkens’ model is a hidden-variable model that is not operationally equivalent to
quantum theory, indeed it does not show contextuality. Nevertheless we could consider
sub-theories of SM that are compatible (thus showing the same statistics of measure-
ments) with QM. A simple example of a sub-theory of SM which is compatible with QM
is the following. Let us consider one qubit system where the allowed measurements(2)
are the Pauli X, Z and the allowed gates are H, X, Y , Z, where H is the Hadamard gate

(2) Note that setting the allowed measurements also sets the allowed states. If the allowed
measurements are the Pauli X, Z, the allowed states are the eigenstates of ±X, Z.
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and X, Y , Z are the Pauli unitary transformations. All the measurements/states have
a faithful representation in SM and the unitaries are symplectic affine transformations.
However if we add the Pauli Y measurement and the S gate, where S = [ 1 0

0 i ] in the
computational basis, we obtain a theory which is not faithfully represented in SM. The
gate S is not symplectic and it would imply a different action in SM and QM. Our aim
is to understand the mathematical prerequisites for sub-theories of SM to coincide with
QM (even in the case of many qubits with entangling gates) and develop frameworks
for that. An interesting idea is to treat these restricted versions of SM compatible with
QM as the non-contextual classically simulable part of state-injection schemes. Inspired
by Howard’s result [14], we can then analyse the role of contextuality in qubit quantum
computation by injecting resources that boost valid Spekkens’ sub-theories of QM to
universal quantum computation. We think that the above construction [21] is just one
possible application of Spekkens’ toy model in quantum computation. Its correspon-
dence with SQM could suggest other possible applications, like the ones related to SQM
in non-prime dimensions [6].
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