
Multipath Transport and Packet Spraying for
Efficient Data Delivery in Data Centres

Citation for published version:
Morteza Kheirkhah, Ian Wakeman, George Parisis, Multipath transport and packet spraying
for efficient data delivery in data centres, Computer Networks, Volume 162, 2019, 106852,
ISSN 1389-1286, https://doi.org/10.1016/j.comnet.2019.07.008.

Link:
Link to published version in Science Direct

Document Version:
Preprint submitted to Elsevier

Published In:
Computer Networks

https://www.sciencedirect.com/science/article/abs/pii/S1389128619300374

Multipath Transport and Packet Spraying for Efficient Data Delivery in Data Centres

Morteza Kheirkhaha, Ian Wakemanb, George Parisisb

aDepartment of Electronic & Electrical Engineering, University College London, UK
bSchool of Engineering and Informatics, University of Sussex, UK

Abstract

Modern data centres provide large aggregate network capacity and multiple paths among servers. Traffic in data centres is very
diverse; most of the data is produced by long, bandwidth hungry flows but the large majority of flows, which commonly come with
stringent deadlines regarding their completion time, are short. It has been shown that TCP is not efficient for any of these types
of traffic in modern data centres. MultiPath TCP (MPTCP) employs multipath data transport and is efficient for long flows but
ill-suited for short flows.

In this paper, we present Maximum MultiPath TCP (MMPTCP), a novel transport protocol which extends MPTCP and, compared
to TCP and MPTCP, reduces short flows’ completion times, while providing excellent goodput to long flows. To do so, MMPTCP
runs in two phases; initially, it randomly scatters packets in the network under a single congestion window exploiting all available
paths. This is beneficial to latency-sensitive flows. After a specific amount of data is sent, MMPTCP switches to a regular MultiPath
TCP mode. MMPTCP is incrementally deployable in existing data centres as it does not require any modifications outside the
transport layer and behaves well when competing with MPTCP flows. We also present a topology-specific extension of MMPTCP
that adjusts the numbers of subflows during the second phase of the protocol based on knowledge about the location of the receiver
in the data centre.

We present extensive evaluation that shows that MMPTCP’s design objectives are met. We have implemented MMPTCP (along
with MPTCP and packet spraying) in ns-3 and evaluated our protocol in simulated FatTree topologies. We have evaluated how
MMPTCP performs compared to TCP and MPTCP and how its performance is affected by transient hotspots in the network.
We have also experimented with different thresholds for duplicate acknowledgements and fast retransmissions and shown that
MMPTCP performs well when the size of short flows is widely ranged. Finally, we have evaluated how MMPTCP performs under
conditions that result in Incast, when different congestion control algorithms are used in its second phase and when varying the
overall network load.

Keywords: Data Center Network, Multipath Transport, Congestion Control, Flow Scheduling

1. Introduction

Modern data centre network architectures [1, 2, 3] provide
very high aggregate bandwidth and dense interconnectivity in
the network by incorporating multiple paths among servers.
They support a large number of network services which pro-
duce very diverse intra-data centre traffic matrices. The major-
ity of the data is produced by long flows, which are bandwidth-
hungry. Short flows commonly come with stringent deadlines
regarding their completion time. According to [2], “99% of
flows are smaller than 100 MB, however, more than 90% of
bytes are in flows between 100 MB and 1 GB”. If short flows
cannot deliver all their data before their deadlines, some data
may be discarded, decreasing the overall quality of the main
computation or forcing some tasks to be restarted, wasting CPU
and network resources. Deadlines are typically missed due to
encountering transient or persistent congestion in their paths.

Email addresses: m.kheirkhah@ucl.ac.uk (Morteza Kheirkhah),
Ianw@sussex.ac.uk (Ian Wakeman), g.parisis@sussex.ac.uk (George
Parisis)

Short flows result in very bursty and unpredictable traffic pat-
terns, which in turn means that data centres are susceptible to
severe transient congestion in any link in the network. Web la-
tency, part of which can be induced within the data centre, is
inversely correlated with revenue and profit; Amazon estimates
that every 100ms increase in latency cuts profits by 1% [4]. In
[5], it stated that “a 500 millisecond delay in the Bing search
engine reduced revenue per user by 1.2%, or 4.3% with a 2-
second delay”.

Equal-Cost Multi-Path (ECMP) routing [6] is nowadays de-
ployed in data centre switches so that multiple paths can be
used to efficiently route data in the network. However, even
with ECMP in place, TCP is ill-suited for both long and short
flows within the data centre. Under high load, long flows collide
with high probability and, as a result, network utilisation signif-
icantly drops and only 10% of the flows achieve their expected
throughput [7]. TCP is also inefficient for short flows, espe-
cially when competing with long flows. Queue build-ups, buffer
pressure and TCP Incast combined with the shared-memory na-
ture of data centre switches results in short TCP flows often
missing their deadlines mainly due to retransmission timeouts

Preprint submitted to Elsevier October 14, 2020

(RTOs) [8].
Several transport protocols have been recently proposed to

deal with these challenges. DCTCP [8], D2TCP,[9] and D3 [10]
all aim at reducing flow completion times (FCT) for latency-
sensitive flows. However, they require modifications in the net-
work and/or deadline-awareness at the application layer. Such
information may not be known a priori (i.e. at connection time).
Worse, these protocols are not designed to co-exist with other
transport protocols, and thus have a problematic deployment
path.

Multipath transport protocols, such as MultiPath TCP
(MPTCP) [11], transfer data using multiple subflows and rely
on ECMP to distribute the subflows to several network paths.
As shown in [7], MPTCP achieves high goodput and improves
the overall network utilisation. This is also illustrated in Figure
1(a)1, where MPTCP with eight subflows almost doubles the
application goodput when compared to TCP (i.e. MPTCP with
a single subflow in Figure 1(a)). However, MPTCP handles
short flows inefficiently. The congestion window of a subflow
may be very small over its lifetime. As a result, even a single
lost packet can force an entire connection to wait for an RTO
to be triggered because this lost packet cannot be recovered
through fast retransmission. This is clearly illustrated in Fig-
ure 1(b), where the mean short flow completion time increases
as more subflows are used (better shown in the embedded Fig-
ure). Note that the number of connections that experience one
or more RTOs significantly increases as well, hence the increase
in the standard deviation. Note that even a single RTO may re-
sult in flow deadline violation.

Central flow scheduling approaches, such as Hedera [13],
primarily deal with long flows. Hedera detects long TCP flows
at the edge switches and its central controller schedules these
to optimise bandwidth allocation. Short flows are a secondary
consideration, and their completion times suffer from the TCP
pathologies described above.

Supporting and running multiple transport protocols in a data
centre can be problematic. Fairness among different protocols
is difficult to achieve; most protocols for latency-sensitive flows
are not compatible with TCP or MPTCP [8, 9]. Running multi-
ple transport protocols is also a burden for application develop-
ers who would have to decide upon the most suitable transport
protocol. Both application requirements and data centre topolo-
gies evolve over time and so a transport protocol that performs
well over disparate topologies and traffic matrices is a necessity.

In this paper, we present MMPTCP [14, 15], a multipath
transport protocol that extends MPTCP and aims at:

1. high throughput for long flows;
2. low latency for short flows;
3. tolerance to sudden and high bursts of traffic;
4. minimal changes to the network architecture;
5. fair co-existence with legacy transport protocols.

1For these simulations we used our custom implementation of MPTCP in
ns-3 [12]. Our source code is publicly available via a GitHub repository that
can be found in https://github.com/mkheirkhah/mmptcp

MMPTCP achieves its objectives by transferring data in two
phases. Initially, it randomly scatters packets in the network un-
der a single congestion window exploiting all available paths.
This is beneficial to latency-sensitive flows, which typically
have bursty traffic patterns. After a specific amount of data is
sent, MMPTCP switches to a regular MultiPath TCP mode, ef-
ficiently handling long flows through separate congestion win-
dows for each subflow.

The remainder of this paper is as follows: in section 2, we
present the design of the proposed transport protocol and its in-
fluences from Packet Scatter [16] and MPTCP [7]. We describe
the problems associated with scattering packets in the network
and packet reordering, when multiple paths are used, and dis-
cuss our proposed solution. We also present a topology-specific
extension of MMPTCP that adjusts the numbers of subflows
during the second phase of the protocol based on knowledge
about the location of the receiver in the data centre. Section
3 presents our extensive evaluation of MMPTCP in simulated
data centre topologies. Simulations are based on our MMPTCP
implementation in ns-3.We have used synthetic traffic matrices
and realistic data centre application workloads, as described
in [17]. Section 4 explores potential future improvements of
MMPTCP with respect to the congestion control algorithm used
during the first phase of our protocol, multi-homed data centre
topologies and QoS features that are available in modern data
centres.

2. Design

In this section, we discuss the Packet Scatter (PS) and
MPTCP protocols before describing MMPTCP, which has been
designed based on these two protocols. We also discuss spu-
rious retransmissions due to packet reordering, which are a
key challenge for MMPTCP, and describe our solution which
is embedded in the proposed protocol. Finally, we describe a
topology-specific extension of MMPTCP that exploits knowl-
edge about the network topology and location of servers to set
the number of subflows that are used in its second phase.

2.1. Packet Scatter

Data transport through scattering (spraying) packets in the
data centre network has been briefly explored in [7] and dis-
cussed in more details in [16]. The key idea behind Packet Scat-
ter (PS) is that ECMP-enabled network switches choose one
of the valid output ports on a per-packet instead of a per-flow
basis, as in Valiant Load Balancing [18]. Traffic can thus be
distributed as evenly as possible among all paths between two
endpoints. The corollary of packets within a flow taking multi-
ple paths is that packet reordering becomes more likely and so
the protocol must use more robust Fast Retransmit algorithms
to deal with out-of-order packets.

It has been argued that if traffic load is equal among servers
and a data centre has a uniform network topology, such as Fat-
Tree [1] or VL2 [2], then PS achieves perfect load balancing
in the network core and eliminates congestion from that layer
[7]. However, although traffic that is switched on a per-packet

2

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12

M
ea

n
 G

o
o
d

p
u

t
(M

b
p

s)

subflows

(a) Goodput

 0

 100

 200

 300

 400

 500

 600

 700

1 2 3 4 5 6 7 8 9

M
il

li
se

co
n

d
s

subflows

Standard Deviation
Mean Completion Time

 80

 100

 120

 140

1 2 3 4 5 6 7 8 9

m
s

(b) Flow Completion Time (FCT)

Figure 1: Goodput for long flows (1(a)) and completion time for short flows (1(b)) in a full-bisection and 4:1 over-subscribed FatTree topology consisting of 128
and 512 servers, respectively. One third of the servers run long (background) flows. The rest run short flows (70KBs each) whose arrival follows a Poisson process).
All flows are scheduled based on a permutation traffic matrix (see Section 3.1).

basis does not create hotspots at the network core, traffic that
is distributed through ECMP on a per-flow basis (e.g. TCP
or MPTCP flows) may still end up sharing links and causing
congestion. Network hardware failures or traffic from the Inter-
net to the data centre, which typically consists of regular TCP
flows, may also cause such congestion [7]. Since PS flows share
a single congestion window, if a packet is dropped, then the
congestion window shrinks across all paths that the flow is us-
ing, drastically reducing its throughput. Further, the first con-
gestion event across the paths used by the PS flow is governed
by the probability distribution of the minimum number of pack-
ets per path before loss across the different paths, reducing the
expected time before window reduction2. Finally, if PS flows
compete with regular TCP flows in a shared bottleneck link at
the network access layer, then network fairness is preserved be-
cause both transport protocols use the TCP congestion control
algorithm.

2.2. MultiPath TCP

MultiPath TCP is an extension of TCP that transfers data
through multiple paths simultaneously. It actively senses net-
work congestion for all its subflows and shifts traffic from
more to less congested paths within a few RTTs. Unlike TCP,
MPTCP deals with network congestion gracefully by putting
fewer packets to the congested subflows. The main require-
ment to achieve such behaviour is to retain a congestion win-
dow for each subflow and link each of them together. This is
the main reason why MPTCP (with eight subflows) doubles the
mean goodput of long flows, compared to TCP, as illustrated in
Figure 1(a). Furthermore, MPTCP flows can co-exist with TCP
flows gracefully, fairly sharing the network resources with them
[7].

MPTCP is an appealing approach for data centres where traf-
fic patterns are highly diverse and volatile. However, MPTCP
is susceptible to retransmission timeouts when a MPTCP flow
contains only a few packets, because it uses multiple congestion

2If we grossly simplify the likelihood of a packet loss on a path to the geo-
metric distribution with parameter p, then the expected minimum across n paths
is 1/(1 − (1 − p)n.

windows (one for each subflow). When packets get dropped
from a subflow of a very small MPTCP flow, this subflow is
most likely unable to use the fast retransmission mechanism to
recover the lost packets. As a result, even a single packet drop
from a single subflow could hold an entire MPTCP connection
back until the lost packet has been recovered through the re-
transmission timeout mechanism, although all other subflows
have already completed their data delivery.

As the number of subflows in small MPTCP flows increases,
the likelihood of relying on retransmission timeouts for recov-
ering lost packets increases. As illustrated in Figure 1, increas-
ing the number of subflows is beneficial to the goodput of long
flows, but it is harmful to short flows’ completion time.

The question that is raised is whether it is possible to adjust
the number of MPTCP subflows based on the size of the flow. It
has been argued that some applications can provide high-level
information, such as flow size [10], to the transport layer. If
such information was available, one could decide how many
subflows it might be effective to use. For example, in the case of
short flows, it is better to have a single subflow. Unfortunately,
the majority of applications do not expose their flow sizes to
the transport layer3. If a predefined number of subflows is used
for all types of flows then MPTCP is likely to significantly hurt
short flows’ completion time. Note that even if MPTCP can
use a single subflow for short flows, it still cannot prevent tran-
sient congestion in the network, which mainly occurs due to
the bursty nature of short flows. MMPTCP is designed to pre-
vent transient congestion and to effectively mitigate persistent
congestion in data centre networks (see Section 2.3).

2.3. MMPTCP: Combining PS with MPTCP
Before delving into the mechanics of MMPTCP, we briefly

enumerate its main design principles and objectives:

1. Handle short flows through packet scatter, mitigating
MPTCP’s short flow inefficiencies.

2. Handle long flows through standard MPTCP.

3It would be possible to get information about the size of a flow when us-
ing the sendfile() system call through a short-lived transport layer connection.
However, this cannot be considered the norm.

3

3. Decrease the burstiness of data centre networks, which
mainly originates from short flows, by diffusing packets
throughout the network to reduce transient congestion.

4. Exploit topology-specific information (e.g. for topologies
like FatTree and VL2) to minimise spurious packet re-
transmissions and minimise the number of subflows in the
network without sacrificing flows’ perceived goodput.

The core idea behind MMPTCP is that, initially, data is trans-
ferred by scattering packets in the network until the amount of
transmitted data reaches a certain threshold. To do so, we em-
ploy source port randomisation at the source host and standard
ECMP at network switches. Note that MPTCP allows the usage
of different source ports for subflows when this can potentially
provide disjoint paths through ECMP [11]. A token4 is added
to each packet of the initial subflow as a connection identifier
so that sprayed packets can be forwarded to the correspond-
ing MMPTCP connections.5 The standard 5-tuple connection
identification is no longer valid during the initial phase of data
transmission because of the source port randomisation. Trans-
port is governed by a single congestion window throughout the
duration of the first phase, whose aim is to take advantage of
all available network paths and quickly complete short flows.
The usage of the token ensures that there can be no clash be-
tween packets with randomised source ports (that are part of
MMPTCP’s first phase) and packets that are exchanged during
the second phase of an MMPTCP connection, in the presence
of multiple connections between two servers in the data centre.

When the switching threshold is reached, MMPTCP
switches to standard MPTCP with multiple subflows to bene-
fit from MPTCP’s efficiency in dealing with long flows. The
initial subflow is only allowed to scatter packets in the network
during the first phase; after switching to MPTCP, no more pack-
ets are put in the initial subflow, which is deactivated when its
window gets emptied. We explicitly deactivate the first subflow
because there may still be unacknowledged segments from the
first phase, after switching to the second phase. These seg-
ments may get acknowledged after all MPTCP subflows are
opened, as part of the second phase. One could try to reset
the first subflow to be a regular MPTCP flow, if it was emptied
of data before all MPTCP subflows were opened in the sec-
ond phase - however this would not affect the performance of
MMPTCP. During the second phase, data transmission is gov-
erned by MPTCP’s congestion control mechanism.

In the initial handshake of MPTCP, SACK may also be acti-
vated if DSACK is used as a part of the packet reordering strat-
egy (see Section 2.4). MPTCP is compatible with SACK, so
there is no problem in having SACK activated over the lifetime
of an MMPTCP connection. On the other hand, DSACK would
only be used in the first phase to minimise spurious retransmis-
sions due to out-of-order packets.

4A token is a locally unique identifier assigned to a MMPTCP connection
upon establishment.

5Every packet during the initial phase of MMPTCP (i.e. the packet scat-
tering phase) carries a token (a 32-bit unique MPTCP connection identifier).
As a result, the loss of one packet would not produce any negative effect in
MMPTCP’s operation.

2.4. MMPTCP and Packet Reordering

A TCP sender may receive a duplicate acknowledgement
(duplicate ACK) when a packet gets dropped, delayed or re-
ordered. It enters the Fast Retransmit phase upon the arrival
of the third duplicate ACK for a missing packet (when the du-
plicate ACK threshold parameter is set to three). It retransmits
the perceived lost packet and halves its congestion window as
a reaction to the congestion signal. However, the Fast Retrans-
mit mechanism may still be falsely triggered and a reordered
packet can reach the receiver after the host has sent a third du-
plicate ACK. This condition may lead to spurious retransmis-
sions of reordered packets even if no loss has occurred; i.e. the
sender misinterprets the reordered packet as lost. As a result,
the sender falsely triggers the Fast Retransmit mechanism and
halves its congestion window, which, in turn, leads to perfor-
mance degradation.

Although this condition is unlikely to occur with
TCP/MPTCP flows in data centres (whose packets take
the same path throughout the flow lifetime), it is common when
scattering packets in the network, since RTTs on different
network paths may vary over time due to queuing delays.
MMPTCP must therefore handle packet reordering during its
first phase in order to be able to meet its objectives with respect
to completion times of short flows.

Setting the right dupthresh value is not trivial; if dupthresh is
too low, spurious retransmissions become the norm. If it is too
high, the sender may react to congestion through a retransmis-
sion timeout instead of the Fast Retransmit mechanism; obvi-
ously this would be a very undesirable situation as even a single
timeout may lead a flow to miss its deadline. Our experimental
evaluation in Section 3.5 confirms these observations.

There are three key aspects in making TCP more robust to
packet-reordering: preventing, detecting and mitigating spuri-
ous retransmissions due to out-of-order packets.

One well-known solution for detecting and mitigating spuri-
ous retransmissions is DSACK [19], which is an extension of
SACK TCP [20]. SACK TCP can deal with multiple packet
drops much faster than other versions of TCP (e.g. NewReno
[21]). This is particularly beneficial for latency-sensitive flows.
When a spurious retransmission is detected by DSACK, the
state of the congestion window can be simply reversed to the
state when a loss is detected.

One possible approach for preventing spurious retransmis-
sions is to dynamically adjust the dupthresh parameter based on
information that can be retrieved from DSACK, SACKs, ACKs,
RTOs and Fast Retransmits. RR-TCP [22] follows a similar ap-
proach; it attempts to adjust the dupthresh value dynamically by
inferring the maximum distance in packets by which a segment
is displaced, using the mechanisms described above.

Our approach for preventing out-of-order packets is to set the
value of dupthresh based on topology-specific information. For
example, FatTree’s IP addressing scheme can be exploited to
calculate the number of available paths between a sender and
a receiver. The sender can thus choose an appropriate value
for the dupthresh based on this information. For example, if
a source sends its traffic via the core layer, then the dupthresh

4

should be much higher, compared to when traffic crosses only
a Top-Of-the-Rack (TOR) switch.

In this paper we use FatTree’s addressing scheme as the basis
for setting dupthresh. Each source host detects the layer(s) of
the network topology that its traffic would cross when transmit-
ting data to a specific destination host, by examining the des-
tination IP addresses. For example, when a connection needs
to be established between hosts with IP addresses 10.0.1.1 and
10.0.1.2 then, based on FatTree’s addressing scheme, both hosts
are located within the same ToR switch; therefore the dupthresh
value should not be changed from the default value of three.
Traffic crossing the aggregate or core layers would require
higher dupthresh values. In such scenarios, we propose to cal-
culate the dupthresh value by adding the number of equal-cost
paths that are available to a flow to the default dupthresh value.

The knowledge of the end-host’s location is essential but not
sufficient to assign an appropriate value for the dupthresh; each
end-host also needs to know the size of the network topology.
A network topology with 4 core switches requires a different
value of dupthresh compared to a network topology with 8
core switches. Additionally, network switches may also sup-
port ECMP with a limited number of paths in each IP subnet
(e.g. up to 16 equal-cost paths), therefore knowing these infor-
mation is also important for deciding a precise value for dupli-
cate ACK threshold. For example, if a flow crosses the core
layer in a FatTree topology with 16 core switches, the value of
dupthresh is 19 since the packets of this flow can be delivered
via 16 distinct paths to its destination. In Section 3.5, our ex-
perimental evaluation confirms that this approach significantly
decreases spurious retransmissions. Our approach could be eas-
ily incorporated to other topologies, such as VL2 [2]. The VL2
agent in combination with the directory system’s resolution ser-
vice could provide all necessary information about the location
of recipients and the size of the network to senders, so that the
dupthresh value can be adjusted accordingly.

Another option could be to dynamically adjust the dupack
threshold based on the observed events and congestion signals,
as in the Linux TCP implementation. Incorporating such a dy-
namic approach in the first phase of MMPTCP would be prob-
lematic; short flows are usually completed within a few RTTs
and therefore the number of observable events to adjust the
threshold towards the optimal value would potentially be in-
sufficient. In such cases, starting from a value that is far from
the optimal one would severely hurt the performance of short
flows due to either a large number of spurious retransmissions
(when packet reordering in the network is high and the dupack
threshold is low) or slow response to losses (when a loss occurs
and the dupack threshold is high).

Note that as the over-subscription ratio decreases and the
provision of full bisection bandwidth becomes the norm (as in
modern data centres), packet losses at the network core and ag-
gregation layers become very rare (e.g. 0.0001 (intra-pod) to
0.00001 (inter-pod) [23]). In such network environments, set-
ting the dupthresh value to a large value is not a problem since
packets get rarely dropped. However, if a network exhibits
higher loss rates, then setting a large value for dupthresh may
increase the number of timeouts because the Fast Retransmit

mechanism cannot be triggered (see Section 3.10 for demon-
stration of this problem). While our approach for dealing with
out-of-order packets neither increases the dupthresh value to
a very large value nor for all network flows, to be conserva-
tive, we recommend to activate the TCP Limited Transmit (LT)
mechanism on the initial phase of MMPTCP when a network
exhibits high packet drop probability. LT is an enhancement to
TCP loss recovery which attempts to prevent RTOs, especially
when the congestion window size is very small [24, 22]. LT
allows a TCP sender to transmit new segments upon arrival of
only the first two duplicate ACKs for a specific segment, i.e.
before the fast retransmission is triggered. We employ a mod-
ified version of this algorithm so that a TCP sender can send
new segments before fast retransmission is triggered, regard-
less of the dupthresh value. For example, if dupthresh is 19
then a TCP sender can send 18 new segments before triggering
the fast retransmission. This way, a sender can prevent time-
outs when a packet gets dropped while the congestion window
is smaller than dupthresh. Section 3.6 demonstrates the perfor-
mance improvement of MMPTCP with LT. In our experimental
evaluation, we run MMPTCP without enabling the LT mecha-
nism, unless otherwise stated.

2.5. Dynamically Setting the Number of Subflows

In MMPTCP’s second phase, a sender opens multiple sub-
flows to the receiver and distributes data through all of them.
The key objective in opening multiple subflows is to compen-
sate for ECMP collisions when two flows are routed through
the same network path while other, equal-cost paths could be
used. If there are no equal-cost paths between a pair of commu-
nicating hosts, then having multiple subflows only wastes CPU
and memory resources on both sides and potentially affects fair-
ness of resources’ utilisation with respect to competing flows.
If there is a small number of equal-cost paths between a pair of
communicating hosts, then running a large number of subflows
is also inefficient because most of these will collide with each
other. Following the rationale for setting the dupthresh value,
we utilise a topology-specific approach for managing the num-
ber of sub-flows that are opened after switching from the packet
scattering phase. If the receiver is located within the same rack
as the sender, then only one sub-flow is used. Depending on
the topology and the location of the communicating hosts (i.e.
whether traffic from the sender to the receiver crosses aggre-
gation and core switches) more equal-cost paths are available,
therefore more subflows are opened. In Section 10, we evaluate
this scheme (which we call ‘Auto Subflow’) and demonstrate
that MMPTCP with ’Auto Subflow’ reduces the FCT of short
flows at the tail, compared to standard MMPTCP. In our eval-
uation, we run MMPTCP without enabling the ’Auto Subflow’
mechanism, unless otherwise stated.

3. Evaluation

Simulating large data centre networks is challenging because
of their large size. Increasing the size of the network (network
switches and servers), the number of senders and receivers,

5

the traffic workload and the available link rates results in dra-
matically increasing the time it takes to complete simulations.
We have found that with ns-3 we could realistically conduct
all required simulations for this paper if we kept link rates to
100Mbps. For the same reason we have used a 8-ary FatTree
topology. Only for the first set of experiments (Section 3.2),
where we compare how MMPTCP performs in comparison to
MPTCP, we have used link rates of 1Gbps. Based on the ex-
perience gathered by running sample (and short) simulations
using faster supported link rates, there would be no significant
differences to the results reported in this paper, if we conducted
our simulations with 1Gbps links. On the contrary, MMPTCP
performs better compared to the other studied protocols when
faster links (e.g 1Gbps) are simulated.

The MPTCP model presented in [12] follows the MPTCP
standard and does not use any extensions, such as SACK,
DSACK, except Limited Transmit in Section 3.6. As in Linux,
we use the loss recovery part of the TCP NewReno. The ac-
tual multipath congestion control algorithm is Linked Increase,
which only modifies the ‘increase’ part of the standard TCP
congestion control algorithm (i.e. TCP NewReno). A full win-
dow of data is sent through the initial subflow, before more sub-
flows are opened. We allow some time to elapse before creat-
ing each one of these subflows; this time is uniformly selected
at random between 0 and 50 microseconds. Unless otherwise
stated, experimentation has been conducted using the following
parameters: dupack threshold: 3, RTO: 200ms, initial conges-
tion window: 1 MSS, #subflows for MPTCP and MMPTCP:
8, ssthresh: 65KBs, MSS: 1400 bytes, MMPTCP’s switching
threshold: 100KBs.

We have fixed the per-link propagation delay to 20us, the
maximum queue size at each switch port to 100 packets, and
the Maximum Transfer Unit (MTU) to 1500 bytes.

The results for each presented experiment in this paper are
retrieved by averaging the results of 20 simulations with dif-
ferent seeds. Simulations typically take around 15 hours (wall
clock time) to complete for a 4:1 oversubscribed, 8-ary FatTree
topology (with 512 servers) with link rates of 100Mbps6.

3.1. Traffic Matrices and Flow Scheduling

In the experiments presented in this paper we have used three
different traffic matrices, which have been shown to be effec-
tive in revealing the complex behaviour of data centre networks
[7][13].
Stride Matrix. Whenever a connection has to be established,
a source host with id X connects to a destination host with id
Y, where Y = (X + I) mod (#servers) and I is a matrix-
specific parameter; I must be such that a server only connects
to servers outside its own pod. The construction of the Stride
traffic matrix follows three rules: (1) each server has only one
incoming and one outgoing connection, (2) all flows are routed
through the core layer, and (3) the source and destination hosts

6A brief discussion on the influence of the topology on the protocol be-
haviour can be found in [7]. Experimenting with different data centre topolo-
gies is left for future work.

for each flow are located in different pods. By following these
rules, if traffic is distributed evenly between servers and ECMP7

uniformly distributes flows between equal-cost paths, then each
server is expected to transmit data at its line rate. This model is
particularly useful to study how network resources are shared
among flows. For example, if the network flows are hypotheti-
cally distributed as evenly as possible throughout the core layer,
the total throughput of all flows should be in line with the aggre-
gate capacity of the core layer. With this traffic matrix we can
examine network protocols in full bisection bandwidth topolo-
gies, because the matrix can saturate the network core.
Permutation Matrix. A source host is connected to a ran-
domly selected destination host that does not have any incom-
ing connections. Each host can only have one incoming and
outgoing connection and there is no guarantee that a flow will
be crossing the core layer. Compared to the Stride matrix, with
the Permutation matrix the network core is less loaded.
Random Matrix. Source and destination hosts are randomly
selected. Additionally, each host can have multiple incoming
and outgoing connections.

For most simulations we have used a mixture of short and
long flows and the traffic matrices described above. A frac-
tion of servers exchange data continuously over the course of
the simulation, in order to provide enough background traffic to
congest the network core. The number of servers in this sub-
set is determined by the amount of traffic necessary to saturate
the network core. For example, in order to saturate the network
core of a 4:1 FatTree topology when the Stride traffic matrix
is used, 25% of servers need to run background flows. For the
Permutation matrix this percentage value should be higher (e.g.
33%) as not all flows traverse the core layer. The remainder
of the servers establish connections for short flows only. Each
simulation scenario is named after the transport protocols used
for short and long flows. For example, if a simulation scenario
uses MPTCP for long flows and TCP for short flows, we refer
to it as MPTCPTCP. If a simulation scenario uses a single pro-
tocol for both long and short flows, we refer to it with the name
of the protocol (e.g. MPTCP).

Short flows are scheduled by a central flow scheduler and
their arrivals follow a Poisson process with mean arrival rate of
λ flows per second. For each new flow, the central scheduler
picks a random source server from a pool of servers that are
used for short flows. The selected source server establishes a
connection to its destination host and sends 70KBs of data8.
Note that the central scheduler does not deal with how subflows
and scattered packets are allocated to paths in the network. This
is done using ECMP.

3.2. MMPTCP vs MPTCP
In Figure 1 we showed that although MPTCP performs well

with respect to long flows’ goodput, it is inefficient when it

7We have implemented ECMP in ns-3 so that paths are determined by hash-
ing the source IP, source port, destination IP, destination port, and the protocol
field in each packet; i.e. as specified in [25].

870KBs is the default flow size used in most of our experiments. In section
3.7 we simulate scenarios where flow sizes are drawn from a uniform distribu-
tion and a real production data centre workload [17].

6

 0

 2

 4

 6

R
e
tr

a
n

s
m

it
s

 0

 5

 10

 15

 20

92K 96K 100K

T
im

e
o
u

ts

Rank of Flow

(a) MPTCP with eight subflows

 0

 2

 4

 6

R
e
tr

a
n

s
m

it
s

 0

 5

 10

 15

 20

92K 96K 100K

T
im

e
o
u

ts

Rank of Flow

(b) MMPTCP

 0

 2

 4

 6

 8

 10

92K 96K 100K

C
o
m

p
le

ti
o
n

 T
im

e
(s

ec
)

Flow Id

(c) MPTCP with eight subflows

 0

 2

 4

 6

 8

 10

92K 96K 100K

C
o
m

p
le

ti
o
n

 T
im

e
(s

ec
)

Flow Id

(d) MMPTCP

Figure 2: MPTCP with eight subflows vs MMPTCP: timeouts, fast retransmissions (2(a) and 2(b)) and short flow completion times (2(c) and 2(d)).

comes to short flows’ completion times. If the amount of data
on a subflow is very small (because of the small overall size
of the flow) then even a single packet drop may lead to a re-
transmission timeout because there are not enough packets (and
hence ACKs) to trigger fast retransmission. In other words, a
single packet drop from a subflow can hold the entire MPTCP
connection until that packet is recovered given that there is a
single window for the whole connection.

Link
Rates

(Mbps)

Transport
Protocol

Short Flow
Completion Time

(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
100 MPTCP 126/±425 ms 62.1/±19.7 Mbps 75.5 % 0.0077 %
100 MMPTCP 116/±101 ms 61.9/±20.0 Mbps 74.9 % 0.0076 %
1000 MPTCP 38.5/±288.5 ms 718.1/±172.6 Mbps 70.5 % 0.0025 %
1000 MMPTCP 16.1/±54.7 ms 719.7/±168.5 Mbps 70.5 % 0.0025 %

Table 1: MPTCP with eight subflows vs MMPTCP

We have simulated a 4:1 oversubscribed FatTree topology
consisting of 512 servers to compare MPTCP with eight sub-
flows and MMPTCP. One third of the servers run long (back-
ground) flows. The rest run short flows (70KBs each), whose
arrival is determined by a Poisson process with λ = 256 and
the Permutation traffic matrix [7, 26]. MMPTCP’s switching
threshold is 100KBs [8, 27, 28]. The results are depicted in
Table 1. The average short flow completion time for MPTCP
running in a FatTree with link rates of 100Mbps is 126ms and
the respective standard deviation is 425ms for 99103 completed
short flows. The high standard deviation indicates that there are
many cases in which MPTCP performs far worse than the aver-
age. The average flow completion time for MMPTCP is 116ms
and the respective standard deviation is 101ms for a total of
100980 completed short flows. This is a significant improve-
ment which means that MMPTCP short flows maintain their
ACK clock better than MPTCP with eight subflows when they
experience packet loss. This is because MMPTCP holds a sin-
gle congestion window at the initial packet scattering phase of
data delivery.

Using the same simulation setup but increasing the simu-
lated link rates to 1Gbps, MMPTCP achieves more than 50%
lower average FCT for short flows compared to MPTCP; this
improvement is 5 times larger than when using 100Mbps links
(approximately 10% as shown in Table 1). MMPTCP performs
better with faster links; with faster links, network queues, which
get full under bursty traffic loads resulting in transient conges-
tion, get emptied very quickly (i.e. 10 times faster when com-
paring 1Gbps vs 100Mbps). As a result, short flows may expe-

rience less queueing delay. Moreover, for the same reason the
variation of queue sizes is smaller when faster links are used,
therefore packet reordering is less frequent. Both of these re-
sult in smaller short flow completion times.

Figures 2(a) and 2(b) illustrate the flow completion times,
total number of fast retransmissions and timeouts of each indi-
vidual short flow for MPTCP and MMPTCP, respectively, when
the link rates are 100Mbps. It is clear that MPTCP suffers from
excessive timeouts. Note that a few short flows experienced
more than 20 timeouts and around ∼4000 short flows experi-
enced more than two timeouts during their lifetime. MMPTCP
clearly outperforms MPTCP; it decreases the maximum num-
ber of timeouts and fast retransmissions from 25 to 4 and 6 to
2 respectively. The majority of short flows (more than 100000)
experienced fewer than two timeouts (∼95000 flows did not ex-
perience any timeout). Figure 2(c) and 2(d) depict the short
flow completion times for MPTCP and MMPTCP, respectively.
It is expected that with MPTCP a lot more short flows experi-
ence very high completion times due to the larger number of
timeouts compared to MMPTCP.

So far, we have shown that, unlike MPTCP, MMPTCP does
not produce a heavy tail of short flow completion times, while it
achieves high overall network utilisation and exceptional good-
put for long flows. MMPTCP can therefore be deployed in ex-
isting data centres and used with all existing applications with-
out relying on application information regarding flow sizes and
potential deadlines. This is particularly important for data cen-
tre application designers who prefer not to consider underlying
networking protocols when developing their applications.

Transport
Protocol

Short Flow
Completion Time

(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
PS 36.9/±38 ms 58.6/±18.2 Mbps 75.1 % 0.0001 %
TCP 64.3/±118 ms 38.5/±19.8 Mbps 44.7 % 0.0259 %
MMPTCP 116/±101 ms 61.9/±20.0 Mbps 74.9 % 0.0076 %
MPTCP 126/±425 ms 62.1/±19.7 Mbps 75.5 % 0.0077 %

Table 2: MMPTCP vs TCP and PS (λ = 256)

3.3. MMPTCP vs TCP and PS

In this section we compare the performance of MMPTCP,
TCP and PS using the same simulation setup as the one
presented in section 3.2. For each scenario, both short and
long flows are served by the same protocol. The results are
depicted in Table 2. TCP achieves the worst overall core

7

 0

 20

 40

 60

 80

 100

0 20 40 60

M
ea

n
 G

o
o
d

p
u

t
(M

b
p

s)

Hotspot Degree (%)

PS
PSTCP

MPTCP
MMPTCP

TCP

(a) Goodput of long flows

 0

 20

 40

 60

 80

 100

0 20 40 60

M
ea

n
 C

o
re

 U
ti

li
sa

ti
o
n

 (
%

)

Hotspot Degree (%)

PS
PSTCP

MPTCP
MMPTCP

TCP

(b) Utilisation of the core layer

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60

M
ea

n
 F

C
T

 (
s)

Hotspot Degree (%)

PS
PSTCP

MPTCP
MMPTCP

TCP

(c) FCT of short flows

 0

 0.2

 0.4

 0.6

 0.8

 1

0 20 40 60

M
ea

n
 C

o
re

 L
o

ss
 R

a
te

 (
%

)

Hotspot Degree (%)

PS
PSTCP

MPTCP
MMPTCP

TCP

(d) Loss rate of the core layer

Figure 3: Performance evaluation for various hotspot degrees (0% to 60% of core switches). MMPTCP achieves the lowest loss rate, the highest mean core
utilisation and goodput of long flows for all hotspot degrees compared to all other protocols.

utilisation and highest mean core loss rate. However, its mean
flow completion time is lower than MMPTCP and MPTCP. PS
achieves the lowest average short flow completion time and
overall core loss rate with a high average goodput for long
flows.

The key to understand these rather unintuitive results is the
fact the both short and long flows are transported by the same
protocol, and no competition between different protocols exists.
TCP performs badly with respect to network resources’ utilisa-
tion because it transports data through a single path, therefore it
is unable to shift traffic to least congested paths (because it is a
single-path transport protocol). TCP gets trapped in a congested
path and damages itself and other competing flows at bottleneck
links along the path. This is the very reason why TCP achieves
lower short flow completion times (which initially seems unin-
tuitive) compared to MPTCP or MMPTCP; unused capacity in
the network is used by short flows to complete their data de-
livery quickly. In other words, the inability of long TCP flows
to utilise all available network resources provides headroom for
short TCP flows to be completed faster. PS performs well in
this experiment because it prevents the creation of any conges-
tion in the core and aggregation layers by scattering packets of
all flows in the network.

After this analysis, one might question the benefits of run-
ning MPTCP and/or TCP in today’s data centres, if PS can per-
form that well (as shown above). An important question here
is why PS did not achieve the highest average goodput for long
flows, even though we observed very low loss rate in the net-
work core. As discussed in Section 2.1, PS supports a single
congestion window and, as a result, when a loss is detected,
the rate of data transmission is halved. Unlike MPTCP, PS has
no way to shift traffic to the least congested paths [7]. If PS
coexisted with other transport protocols, such as TCP and/or
MPTCP, its performance would be significantly degraded. To
examine this argument, we rerun the simulations above with λ
= 2560 instead of 256 [7]. This simulation is used to study how
the congestion control of each transport protocol behaves un-
der highly dynamic traffic patterns (and heavier load) but also
explains how the congestion is dealt with by each transport pro-
tocol in the network. Furthermore, we designed a simulation,
referred to as PSTCP, where short flows are transported by TCP
and long flows by PS. With this scenario we evaluate the per-
formance of PS when it competes with non-PS flows, such as

TCP. The results are presented in Table 3.
For the PSTCP scenario, we observe the lowest mean flow

completion time (where short flows are handled by TCP). The
average goodput for long flows (PS) is around 13Mbps lower
than the maximum observed average (when both short and long
flows are transported by MMPTCP). The average core utilisa-
tion is also 15% less compared to MMPTCP. This is because
long flows in the PSTCP scenario are more susceptible to packet
loss, and hence they reduce their rates more frequently. When
a buffer gets filled up, their packets most likely are in the tail
of the queue since long flows randomly spread their packets via
all possible paths. This lower network utilisation helps short
flows (TCP in this case) to complete their data delivery with-
out experiencing any collision and with less queuing delays. It
is evident that PS is very sensitive to network congestion and
when it is used for handling long flows it hurts their perceived
goodput, and consequently the overall network utilisation. PS
would not be able to compete with TCP or MPTCP because of
the single congestion window maintained by each flow. TCP
(for both short and long flows) achieves the least average good-
put and the highest loss rates in the network core compared to
all other protocols. MMPTCP achieves a lower mean flow com-
pletion time and standard deviation compared to MPTCP with
eight subflows. It also achieves the same overall network utili-
sation as MPTCP.

Transport
Protocol

Short Flow
Completion Time

(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
PS 40.5/±44.3 ms 52.9/±16.7 Mbps 76.8 % 0.0001 %
PSTCP 29.7/±31.1 ms 42.5/±11.3 Mbps 61.9 % 0.0014 %
TCP 66.5/±150 ms 34.2/±18.1 Mbps 48.8 % 0.0576 %
MMPTCP 111/±127 ms 55.9/±18.7 Mbps 76.7 % 0.0105 %
MPTCP 148/±502 ms 55.0/±18.2 Mbps 75.9 % 0.0100 %

Table 3: MMPTCP vs TCP and PS (λ = 2560)

3.4. Effects of Hotspots

In this section we evaluate how each transport protocol reacts
when hotspots appear in the network. These hotspots may occur
for several reasons in modern data centres, including (1) con-
tention between traffic flowing from the Internet to data centres,
(2) hardware failures or cable faults, and (3) uneven load distri-
bution in some servers. In order to model hotspots at the core
layer, we modify the drop tail queue size of hotspot links from

8

Dupthresh Value 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
FCT (mean - ms) 158 138 127 120 116 113 112 113 113 114 115 116 116 116 116 117 117 117 116 116 116
FCT (StdDev) 103 99 93 100 92 96 97 98 93 102 104 102 106 104 106 107 106 109 104 96 100

Table 4: FCT of short flows for different dupthresh values.

 0

 4

 8

 12

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

20K 40K 60K 80K 100K

T
im

e
o
u

ts

Rank of Flow

(a) dupthresh = 3

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

80K 84K 88K 92K 96K 100K

T
im

e
o
u

ts

Rank of Flow

(b) dupthresh = 9

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

80K 84K 88K 92K 96K 100K

T
im

e
o
u

ts

Rank of Flow

(c) dupthresh = 23

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

80K 84K 88K 92K 96K 100K

T
im

e
o
u

ts

Rank of Flow

(d) Auto dupthresh

Figure 4: Timeouts and fast retransmissions for each individual short flow for various dupthresh values and our approach (auto dupthresh).

100 to 10 packets9. To select links under the hotspot, we select
all the links of some randomly selected core switches. In this
way, we can monitor the hotspot areas by simply monitoring
each core switch under the hotspot. For this set of experiments,
we range the number of switches where hotspots occur from
0% to 60% of the total number of core switches (we refer to the
percentage of core switches where a hotspot occurs as ‘hotspot
degree’). We have used a 4:1 oversubscribed FatTree topology
and the permutation traffic matrix (λ is 2560 for the arrival of
short flows).

It is expected that by increasing the hotspot degree, the over-
all network utilisation will decrease and the overall short flow
completion time and mean loss rate will increase for all trans-
port protocols. Figure 3(a) shows the average goodput achieved
by long flows for each different scenario and transport proto-
col combination for short and long flows (error bars denote
the standard deviation). It is noticeable that TCP and PS (in
the PSTCP) achieve the worst overall goodput for long flows.
MMPTCP performs the best. This observation also highlights
the weakness of PS and the strength of MMPTCP in handling
network congestion. The results in Figure 3(b) are in-line with
the ones presented in Figure 3(a); the overall network utilisa-
tion in this experiment is directly related to the overall goodput
of long flows because the majority of flows in the Permutation
matrix cross the network core. Most of the data is generated by
these long flows. Overall, as the number of hotspots increases,
MMPTCP behaves well and consistently achieves a high mean
core utilisation. Figure 3(c) illustrates the FCT of short flows.
MPTCP with eight subflows performs the worst, being unsta-
ble for short flows, as denoted by the measured standard de-
viation. When the hotspot degree is 60%, the average FCT for
TCP’s short flows is 80.5ms with a standard deviation of 214ms.
We observed that the second highest standard deviation is for
TCP. This implies that hotspots heavily influence short flows
when these are handled by TCP. In the previous subsection we
showed the inability of TCP to use network resources efficiently

9To select a size for the drop tail queue, we examined various queue sizes,
ranging from 10 to 50 packets, and it turned out that 10 packets can best repre-
sent the behaviour of the studied transport protocols.

for long flows, even without any hotspots, due to ECMP hash
collisions.

Figure 3(d) illustrates the mean core loss rate achieved
by each transport protocol. MMPTCP achieves the lowest
mean loss rate for all hotspot degrees. By increasing the
hotspot degree, the mean loss rate for PSTCP and TCP in-
creases significantly as, in both simulation scenarios, TCP han-
dles short flows. The completely opposite result is observed
for MMPTCP and PS because in both simulation scenarios PS
is used for handling short flows. The intuition following this
experiment is that the burstiness of data centre traffic, which
arises from short TCP flows, is smoothed out with MMPTCP.
In other words, TCP (for handling short flows) cannot handle
congestion effectively. On the other hand, MMPTCP not only
prevents congestion by scattering packets in the network, but
also handles it effectively by shifting traffic away from con-
gested areas, after switching to MPTCP (Phase 2). This is the
main reason that MMPTCP achieves the lowest loss rate for all
hotspot degrees, compared to other simulation scenarios. PS is
not capable of dealing with hotspots effectively since it cannot
detect them, as there is no notion of a flow (or subflow) that
uses a specific network path where a hotspot appeared. Instead,
packets are scattered in the network through all available paths
(similar to VLB [18]).

3.5. MMPTCP and Duplicate ACK Threshold
In this section, we examine how the dupthresh value affects

MMPTCP’s performance during its first phase. We then eval-
uate the proposed approach for preventing spurious retransmis-
sions due to packet reordering (see Section 2.4).

To explore the effect of packet reordering, we conducted a se-
ries of simulations with the dupthresh value ranging from 3 to
2310. We have simulated a FatTree topology with 128 servers
running short and long MMPTCP flows. 33% of servers ex-
change data through long background flows and the remaining

10Note that the dupack threshold value for MMPTCP’s second phase is 3,
the default value for TCP and MPTCP. Packet reordering in a single path (for
TCP or a single MPTCP subflow) is very unlikely in data centre networks (and
non-existent in the simulated model)

9

67% of servers establish short flows (λ = 256). The results are
shown in Table 4. It is clear that the default dupthresh value of
three results in the worst average FCT (158ms). The observed
average FCT decreases significantly as the dupthresh increases
(e.g. when the dupthresh is nine). For values larger than nine,
average FCTs remain unchanged while the standard deviation
slightly increases.

To get a better grasp of the problem, we look at the num-
ber of fast retransmissions and timeouts experienced by each
short flow. Figure 4 shows the results for dupthresh values of 3,
23, 9 and auto (our approach). At the one extreme (dupthresh
= 3), we observe the highest number of fast retransmissions
(many of which are spurious) and the lowest number of time-
outs (4(a)). At the other extreme (dupthresh = 23), there are no
fast retransmissions, and the number of timeouts is the largest
(4(c)). The best performance is observed when the threshold
is set to nine (4(b)). For that threshold, the majority of flows
were completed without fast retransmissions (∼81000) or with
only one (∼19000); a few flows experienced two fast retrans-
missions.

The results of this experiment do not lead to any concrete
value for the dupthresh since they are only valid for this particu-
lar network setup. By altering the network topology and/or traf-
fic workload, the ideal dupthresh value would potentially be dif-
ferent. Figure 4(d) shows the results for the proposed approach
of dynamically setting the threshold based on the location of the
communicating hosts. Our approach significantly decreases the
number of spurious retransmissions due to packet reordering
by adjusting the value of dupthresh based on topology-specific
information, as observed in Figures 4(b) and 4(d). Our ap-
proach only slightly increases the number of timeouts compared
to dupthresh of 911. Increasing or adjusting the dupthresh value
is a challenging task as the TCP New Reno sender could lose its
ACK clock, especially when the value of the dupthresh is larger
than the congestion window (this condition is common under
high loss rates). If any packet gets dropped in such scenarios,
TCP needs to wait for a retransmission timeout to be triggered.
For example, in the above simulations, 85% of network flows
traverse the network core due to the used Permutation traffic
matrix. This implies that with the dynamic approach a majority
of short flows set their dupthresh values to 19. If any segment
gets dropped at the first five RTTs, either at the beginning of
data transmission or after any timeout event, the correspond-
ing subflow needs to wait until a retransmission timeout is trig-
gered. Therefore, the large dupthresh value is the main reason
that auto dupthresh results in a slightly larger number of time-
outs, compared to a dupthresh value of 9. In order to improve
the performance of auto dupthresh and hence MMPTCP in such
cases, we integrate the TCP Limited Transmit [24] mechanism
in MMPTCP’s first phase, as described in Section 2.4.

3.6. MMPTCP and Limited Transmit
We evaluate the performance of LT-enabled MMPTCP

through a simulation scenario where both long and short flows

11We used this solution for all simulations conducted with MMPTCP and PS
in this paper.

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

94K 96K 98K 100K

T
im

e
o
u

ts

Rank of Flow

(a) MMPTCP

 0

 1

 2

 3

R
e
tr

a
n

s
m

it
s

 0

 1

 2

 3

 4

94K 96K 98K 100K

T
im

e
o
u

ts

Rank of Flow

(b) MMPTCPLT

Figure 5: MMPTCP vs MMPTCPLT: Timeouts and fast retransmissions

are transported by the LT-enabled version of MMPTCP (re-
ferred to as MMPTCPLT). We compare its performance with
the non-LT version of MMPTCP in a 2:1 oversubscribed Fat-
Tree topology with 256 servers using the Permutation traffic
matrix (λ = 256). 53% (135) of servers send background flows
and the remaining 47% (121) of servers send short flows. The
results are shown in Table 5. MMPTCPLT greatly improves the
mean FCT (and decreases the standard deviation) of short flows
without reducing the overall network utilisation nor the goodput
of long flows.

Transport
Protocol

Short Flow
Completion Time

(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
MMPTCP 98.9/±74.8 ms 72.9/±17.3 Mbps 72 % 0.0053 %
MMPTCPLT 89.1/±67.2 ms 72.9/±18.0 Mbps 72 % 0.0051 %

Table 5: MMPTCP vs MMPTCPLT

We also look at the total number of fast retransmissions and
timeouts for each individual short flow in Figure 5. MMPTCPLT
results in slightly more fast retransmissions and fewer time-
outs compared to MMPTCP. In fact, MMPTCPLT protects short
flows from losing their ACK clocks when a high dupthresh
value is used (e.g. 19). Therefore, the completion time of the
majority of short flows is decreased when the LT-enabled ver-
sion of MMPTCP is used.

3.7. MMPTCP and Switching Threshold
In this section we study how the switching threshold affects

MMPTCP’s performance, with respect to (1) the completion
time of short flows when their size is lower or higher than the
switching threshold; and (2) the goodput of long flows.

For the first experiment, we conducted two sets of simula-
tions ranging the switching threshold from 100KB to 1024KB.
In the first set, we select the size of short flow uniformly at ran-
dom from the range of 1KB to 1024KB. In the second set, we
select the size of all network flows from a real production data
centre workload [17], in which 50% of all flows only contained
1 packet and 90% of all flows contained less than 267 packets.
Figures 6 and 7 show the results for the first and the second set
of simulations respectively. When the switching threshold is
well below the maximum possible size of short flows, the FCT
of some short flows (at the end of the tail) increases. This can
be seen in Figure 6(c). However, as the switching threshold gets
closer to 1024KB, the FCT of short flows at the tail of the distri-
bution is decreased. One can also make similar observation in

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

FCT (s)

1024KB
524KB
100KB

(a) FCT of short flows

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4

C
D

F

FCT (s)

1024KB
524KB
100KB

(b) FCT of short flows > 90%

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 2 4 6 8

C
D

F

FCT (s)

1024KB
524KB
100KB

(c) FCT of short flows > 99%

Figure 6: The effect of the switching threshold on short flows’ completion time. The size of short flows is selected from the range of 1KB to 1MB.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F

FCT (s)

1024KB
524KB
100KB

(a) FCT of all flows

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4

C
D

F

FCT (s)

1024KB
524KB
100KB

(b) FCT of all flows > 90%

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 1 2 3 4

C
D

F

FCT (s)

1024KB
524KB
100KB

(c) FCT of all flows > 99%

Figure 7: The effect of the switching threshold on flow completion time. The size of flows is retrieved from a production data centre workload [17]

Figure 7(c) where the longest flow has a size less than 3MB. If
a flow’s size is much greater than MMPTCP’s switching thresh-
old, MMPTCP may exhibit the similar problem as the standard
MPTCP running multiple subflows. The switching threshold
should therefore be set above the maximum expected size of a
short flow.

Simulation
Duration

Transport
Protocol

Long Flow
Goodput

(mean / stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)
MPTCP 67.2/±14 Mbps 73.8 % 0.002 %

1 Second MMPTCP 66.9/±14 Mbps 73.5 % 0.002 %
MPTCP 75.5/±9.8 Mbps 82.0 % 0.003 %

2 Seconds MMPTCP 75.2/±9.8 Mbps 81.6 % 0.003 %
MPTCP 81.7/±7.5 Mbps 88.1 % 0.003 %

5 Seconds MMPTCP 81.7/±7.4 Mbps 88.0 % 0.003 %
MPTCP 86.1/±5.0 Mbps 92.6 % 0.003 %

20 Seconds MMPTCP 86.1/±4.9 Mbps 92.6 % 0.003 %

Table 6: MMPTCP vs MPTCP

In order to describe the second experiment, let us assume
that only long flows exist in the network. MMPTCP then
switches to its second phase when the switching threshold is
reached. At the time of switching, though, MMPTCP might
have a very large window of data in flight. Unlike TCP, the
congestion window here does not relate to the congestion state
of a specific path, given that packets are scattered in the net-
work during MMPTCP’s first phase. After the threshold is
reached, each newly established subflow ought to probe the net-
work in order to prevent congestion collapse. In other words,
newly established MPTCP subflows are not allowed to burst
traffic into the network after switching because they assume
that MMPTCP was sending aggressively before switching. But

how does MMPTCP’s switching threshold affect the goodput of
long flows? To answer this question, we experiment with two
simulation setups that only consist of long flows in a FatTree
topology with 128 servers and the Stride matrix. For these two
setups we use MMPTCP and MPTCP (with eight subflows) to
transport all data for long flows, respectively. Examining the
performance of these schemes in short time scales is impor-
tant because the longer the simulations take to finish (and the
long flows exist), the less difference in performance between
the two protocols can be observed. For example, letting long
flows to run for 20 seconds completely smooths out any perfor-
mance glitches with respect to the switching threshold (which is
100KB in this case), as shown in Table 6. MMPTCP achieves
almost identical results to MPTCP for all different long flow
durations. We conclude that MMPTCP’s switching mechanism
effect on the goodput of long flows is negligible since newly es-
tablished subflows (in phase 2) can fully utilise the access link
capacity in a few RTTs.

3.8. MMPTCP and Incast

TCP Incast [29] occurs when a large number of synchro-
nized short flows hit the same switch queue in the data cen-
tre. In partition/aggregate workloads Incast occurs at the queue
of the switch port connected to the aggregator. According to
[8], “Incast-like problems do happen in production environ-
ments and they matter - degrading both performance and, more
importantly, user experience”. Responses that are transported
by flows that experience Incast will almost certainly miss the
aggregator deadline and be left out of the final results [8]. In
this section we study how MMPTCP behaves in simulated sce-

11

narios that trigger Incast, also in contrast to TCP, MPTCP and
PS. To model Incast, we simulate a 1:1 oversubscribed FatTree
topology with 128 servers and initiate a number of parallel short
flows (ranging from 20 to 100). The recipient of the data for all
these flows is a single, randomly selected end-host in the sim-
ulated topology. Simultaneous and synchronised12 short flows
are scheduled every 500ms over the course of the simulation,
hence Incast occurs periodically several times during each sim-
ulation run. There are no long flows in this experiment.

Table 7 shows the results. MPTCP with eight subflows per-
forms the worst; compared to all other transport protocols,
MPTCP completed the least number of short flows; a large
number of connections could not be immediately established
because SYN packets were being repeatedly dropped. Those
connections that were established suffered from excessive time-
outs; increasing the number of parallel flows made the problem
worse. MMPTCPLT performs similarly to TCP. However, un-
like MMPTCPLT, MMPTCP performs slightly worse than TCP
because it cannot prevent timeouts when packets get dropped
and the cwnd value is smaller than the dupthresh value. In
this experiment, MMPTCP behaves identically to PS13 since
all flows were short (with a size smaller than the MMPTCP
switching threshold which was the default value of 70KB).

Short Flow Completion Time
No. of
Parallel
Flows

Transport
Protocol

No. of
Completed
Short Flows

Mean/Stdev Median
Upper

Quartile

MMPTCP 16000 261.3/±81.0 ms 277.2 ms 288.5 ms
MMPTCPLT 16000 180.0/±38.9 ms 99.5 ms 108.7 ms
TCP 16000 118.4/±59.6 ms 99.9 ms 109.4 ms

20

MPTCP 7884 6.5/±5.5 s 6.22 s 6.26 s
MMPTCP 32000 416.9/±285 ms 452.7 ms 486.8 ms
MMPTCPLT 32000 186.0/±68.3 ms 165.2 ms 249.9 ms
TCP 32000 203.4/±76.4 ms 169.4 ms 273.4 ms

40

MPTCP 1975 7.6/±6.8 s 6.2 s 10.5 s
MMPTCP 47486 1.5/±3.4 s 767.4 ms 935.3 ms
MMPTCPLT 64825 2.2/±4.3 s 746.6 ms 1.6 s
TCP 61110 2.1/±4.5 s 726.0 ms 1.0 s

100

MPTCP 263 6.9/±7.8 s 4.5 s 10.5 s

Table 7: Incast Evaluation

Simulation
Name

Short Flow
Completion Time

(mean/stdev)

Long Flow
Goodput

(mean/stdev)

Core Layer
Utilisation

(mean)

Core Layer
Loss Rate

(mean)

Access Layer
Loss Rate

(mean)
MMPTCPFC 114/±127 ms 58.9/±18 Mbps 70.8% 0.014% 0.007%
MMPTCPUC 179/±270 ms 50/±18.5 Mbps 63.8% 0.104% 0.041%
MMPTCPLI 116/±101 ms 61.9/±20 Mbps 74.9% 0.007% 0.007%

Table 8: MMPTCPFC, MMPTCPUC and MMPTCPLI

3.9. MMPTCP and Multi-Path Congestion Control

In this section we evaluate MMPTCP’s behaviour for differ-
ent congestion control algorithms (Fully Coupled (FC) [30],
Uncoupled-TCP (UC) [31, 32] and Linked Increases (LI) [33])

12This is the only set of experiments where flows are synchronised so that
we can observe Incast. In all other experiments flows’ arrival follows a Poisson
process.

13For this reason PS does not appear in Table 7 given that its performance is
identical to the performance of MMPTCP.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

C
D

F

Flow Completion Time (s)

MMPTCPLI
MMPTCPFC
MMPTCPUC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2

(a) CDF [0 - 1]

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 1 2 3 4 5

C
D

F

Flow Completion Time (s)

MMPTCPLI
MMPTCPFC

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.2 0.4 0.6 0.8 1

(b) CDF [0.9 - 1]

Figure 8: Short Flow Completion Time (CDF) for MMPTCPFC, MMPTCPUC
and MMPTCPLI

during its second phase. We have used simulation scenar-
ios similar to the ones presented in Section 3.4 and varied
the congestion control algorithm used by MMPTCP’s second
phase. The results are presented in Table 8. When UC is used,
MMPTCP performs the worst with respect to short flow com-
pletion time (the observed standard deviation is also high). Ad-
ditionally, with UC we observed the lowest overall goodput and
network utilisation compared to the other algorithms. This is
because the loss rates at the access and core layers are signif-
icantly increased compared to MMPTCPLI and MMPTCPFC.
The high loss rate is because eight subflows of MPTCP com-
pete for the sender’s access link capacity independently and ag-
gressively, so the majority of packet loss occurs at that layer
(the last column of Table 8 shows the mean loss rate at the ac-
cess layer). As a result, the loss rate and network utilisation is
lower at the core and aggregation layers.

The mean core loss rate for MMPTCPFC is double the rate
of MMPTCPLI. Network utilisation is also lower compared to
MMPTCPLI. The reason is that, with FC, traffic is shifted to the
least congested paths, but those paths may become congested
quickly since all short flows also use those paths, therefore traf-
fic oscillates between available paths. This oscillation causes
delays in some short flows. This reasoning can be confirmed
by Figure 8 that illustrates the cumulative distribution function
of short flow completion times. Flow completion times for
MMPTCP with UC are heavy-tailed compared to MMPTCP
with LI and FC. FC performs slightly worse compared to LI
with respect to short flow completion time, especially at the tail
(see Figure 8(b)).

3.10. Influence of Network Load

In this section we study the behaviour of MMPTCP (also
compared to TCP, PS and MPTCP as the network load in-
creases. We simulate a 2:1 oversubscribed FatTree topology.
To model the varying load, we range the percentage of servers
running long flows from 10% to 70% of the total number of
servers; i.e. the total network load increases with the num-
ber of long flows. Varying the percentage of servers running
long flows does not affect the total number of generated short
flows. For example, if 10% of servers run long flows then the
remainder (90%) are only involved in sending short flows. For
a specific inter-arrival rate this means that each server will serve
fewer short flows over the course of the simulation.

12

 0

 50

 100

 150

 200

 250

10 30 50 70

M
ea

n
 F

C
T

 (
s)

Long Flows (%)

PS
PSTCP

MMPTCP
MPTCPTCP

TCP

(a) Mean FCT of short flows

 0

 20

 40

 60

 80

 100

10 30 50 70

M
ea

n
 G

o
o
d

p
u

t
(M

b
p

s)

Long Flows (%)

PS
PSTCP

MMPTCP
MPTCPTCP

TCP

(b) Mean goodput of long flows

 0

 0.01

 0.02

 0.03

10 30 50 70

M
ea

n
 C

o
re

 L
o

ss
 R

a
te

 (
%

)

Long Flows (%)

PS
PSTCP

MMPTCP
MPTCPTCP

TCP

(c) Mean core loss rate

 0

 20

 40

 60

 80

 100

10 30 50 70

M
ea

n
 C

o
re

 U
ti

li
sa

ti
o
n

 (
%

)

Long Flows (%)

PS
PSTCP

MMPTCP
MPTCPTCP

TCP

(d) Mean core utilisation

Figure 9: Influence of Network Load

Figures 9(a), 9(b), 9(c) and 9(d) depict the results for the
short flow completion time, long flows’ goodput, loss rate and
utilisation at the network core, respectively. When both long
and short flows are served by PS (depicted as PS in the fig-
ure), we observe the most stable results for the average flow
completion time for all studied network loads (Figure 9(a)); the
mean and standard deviation increase slowly and consistently
along with the network load. As mentioned before, this is an
ideal scenario and performance diminishes dramatically when
PS competes with TCP or MPTCP. When TCP is used for both
long and short flows (depicted as TCP in the figure), the re-
sults are sensitive to the increasing load; the standard devia-
tion increases significantly. As the network load increases, flow
completion times for the MMPTCP scenario becomes slightly
higher than the MPTCPTCP scenario. This is not surprising be-
cause in MPTCPTCP, short flows are handled by TCP, and thus
their packets are delivered from sender to receiver in-order. In
fact, this explains why MMPTCP achieves slightly lower FCT
compared to MPTCPTCP at 10% load.14 Note that, as discussed
earlier, modern data centres present extremely low packet drop
probability, so the network load of 10% in this experiment is
the most realistic one. According to [34, 17], long flows con-
stitute only 10% of the total number of flows in data centres,
although they carry the majority (90%) of the data. As a result,
MMPTCP’s loss in performance for heavier loads, which is due
to packet reordering, is not a crucial flaw given its excellent per-
formance for realistic workloads.

Figure 9(b) shows the overall goodput of long flows. It is
expected that by increasing the number of long flows, the aver-
age goodput will decrease gradually for all protocol combina-
tions, given that the network capacity is finite. We observe the
worst goodput for long flows when both short and long flows
are transported by TCP. When the load is low, all protocols (ex-
cept TCP) perform equally well with respect to the goodput of
long flows. At high loads, the observed mean goodput of long
flows is the best for the MMPTCP and MPTCPTCP scenarios,
where long flows are handled by MPTCP.

Figure 9(c) shows the mean loss rate at the network core for
various network loads. When PS is used for handling long flows
(in PS and PSTCP scenarios), the mean loss rate is significantly
lower, compared to all the other protocols. MMPTCP behaves

14We refer the interested reader to [15] (Chapter 5, from p.122), which ex-
amines the performance of MPTCPTCP against MMPTCP in a wide network
scenarios.

better than the rest of the protocols.
Figure 9(d) illustrates the mean utilisation at the network

core. All protocols, except TCP, perform equally well in utilis-
ing network resources at the core layer. Note that with Permu-
tation traffic matrix the majority of source hosts are connected
to destination hosts that are located in different pods, so their
flows cross the network core (see Section 3.1). This is the rea-
son why the overall utilisation at the network core increases
with the network load. ECMP collisions result in very poor
performance for TCP.

3.11. Dynamic Selection of Subflow Number
In this section we examine the performance of MMPTCP

when the number of active subflows during its second phase is
calculated based on topology-specific information, as described
in Section 2.5 (denoted as ‘Auto Subflow’ (AS) in the figures
below). To evaluate this scheme, we use a 8-ary, 4:1 over-
subscribed FatTree topology (consisting of 512 servers). Short
flows are scheduled based on the Random traffic matrix, so that
traffic crosses the access, aggregation and core network layers,
which is important for evaluation the ‘Auto Subflow’ scheme.
Based on the number of equal-cost paths in our network topol-
ogy, if a flow crosses the core, aggregation and access layers,
the sender MMPTCP host should open 8, 4, and 1 subflow(s)
at the second phase of data transmission, respectively. Figure
10 shows the results. MMPTCP with the AS scheme enabled
(MMPTCPAS) results in lower FCT for short flows at the tail
(Figure 10(a) and 10(b)) compared to standard MMPTCP. This
improvement comes without any penalty regarding the good-
put of long flows, which, as shown in Figure 10(c), is almost
identical for both schemes.

We conclude that the ‘Auto Subflow’ scheme is beneficial to
MMPTCP as well as to standard MPTCP because it effectively
prevents needless consumption of valuable resources in the net-
work and end-hosts, eliminating unnecessary subflows. As a
result, AS improves the FCT of competing short flows; if a mul-
tipath flow competes with single path flows at a highly loaded
bottleneck link at the access layer (e.g. the last mile link), then
it may take eight times more bandwidth than the single path
flows because it can send at least 16 packets on every RTT (two
packets per each subflow) whereas a single path flow can send
at least two packets on every RTT (because by default the mini-
mum window size is set to two in Linux) [35]. This condition is
particularly problematic in data centres because the bandwidth-
delay product is typically small (e.g. 30 packets), so an MPTCP

13

 0.9

 0.93

 0.96

 0.99

 700 1000 1300 1600 1900

C
D

F

FCT (ms)

MMPTCP
MMPTCPAS

(a) FCT of short flows - 90th percentile

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 1500 2000 2500 3000 3500 4000

C
D

F

FCT (ms)

MMPTCP
MMPTCPAS

(b) FCT of short flows - 99th percentile

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Goodput (Mbps)

MMPTCP
MMPTCPAS

(c) Goodput of long flows

Figure 10: MMPTCP with Auto Subflow mechanism reduces the FCT for short flows, especially at the tail, compared to standard MMPTCP

flow alone can take at least half of the available bandwidth of
an access link. This problem becomes worse as the number of
MPTCP flows sharing an access link increases.

4. Discussion and Future Work

During MMPTCP’s first phase, the congestion window op-
erates over multiple paths. When loss in one of the links in
the network core occurs, a congestion signal is received and, in
turn, the sender halves its congestion window. However, many
other scattered packets may be crossing uncongested paths and
therefore halving the congestion window is an overkill. On the
other hand, if loss occurs at a bottleneck link at the access layer,
then the reaction of TCP congestion control is correct. The re-
search question here is how can we distinguish these two signals
and react appropriately. Our hypothesis is that reacting to con-
gestion proportionally to the extent of congestion will allow de-
tection of these two signals. We thus expect that employing the
DCTCP-like congestion control could be a viable solution for
distinguishing these two signals. If a congestion signal comes
from random links at the network core then the proportion of
congestion signals, during one RTT, is very low so the sender
should not reduce its sending rate. However, if it is from a bot-
tleneck link at the access layer, DCTCP reacts similarly to TCP.
Further investigating the potential benefits of a DCTCP-like ap-
proach for handling congestion during MMPTCP’s first phase
is part of our future work.

A brief discussion on the influence of the topology on the
protocol behaviour can be found in [7]. Like MPTCP, the per-
formance of MMPTCP is impacted by the network topology.
The key factors are: (1) path diversity, (2) path length, and (3)
link rate diversity.

Path diversity. If a network topology provides higher path
diversity, MMPTCP can scatter packets across more paths,
further reducing burstiness in traffic. However, exploiting a
multipath transport protocol is generally less beneficial when
a network (or parts of a network) does not provide multi-
path. This has been demonstrated in section 3.8 where both
MMPTCP and MPTCP performed poorly under the incast-like
conditions, mainly due to the lack of path diversity at the ac-
cess layer of the network. Possible approaches to improve the
MMPTCP performance under such conditions are to utilize a
multi-homed network topology such as Dual-Homed FatTree

(DHFT) [7], and/or equip MMPTCP with an ECN-capable mul-
tipath congestion control algorithm such as Adaptive MultiPath
(AMP) [36] that performs as good as DCTCP under the incast-
like conditions.

Path length. In this paper, we studied the performance of
MMPTCP under a FatTree topology that provides equal-cost
paths between all pairs of servers. This is not the case with
a BCube [3] topology that follows the hypercube structure in
which the length of paths between a pair of servers could be
different. As the path length is directly influenced on the end-
to-end latency, MMPTCP may face more episodes of packet
reordering with a BCube-like topology compared to a FatTree
topology. One possible approach to minimize the impact of
packet reordering is to adjust the dupthresh value dynamically.
We currently proposed to adjust the dupthresh value by exploit-
ing the topology-specific information (see §2.4). A similar ap-
proach can be exploited for other topologies such as VL2.

Link rate diversity. A key difference between VL2 and Fat-
Tree topologies is that VL2 has 10 times faster links between
its switches than its hosts and switches. Due to this difference
we expect to see a better performance from MMPTCP in VL2
compared to FatTree. Our intuitions are twofold. Firstly, creat-
ing persistent congestion on a link at the core/aggregation layer
of VL2 [2] requires at least 11 competing long flows originat-
ing from different hosts. With FatTree [1] this number is two
due to the homogeneity of links. Secondly, transient conges-
tion frequently occurs in VL2 due to traffic burstiness of short
flows, and MMPTCP is designed to handle well such traffic
patterns. In addition, the scattered packets at the initial phase
of MMPTCP may experience queuing delays less frequently in
VL2 compared to FatTree because the persistent congestion less
frequently occurs in VL2.”

Advanced QoS features have become increasingly available
in data centre switches [37, 38]. Our hypothesis is that if pack-
ets of the initial phase of MMPTCP are marked as high priority
and forwarded through different queues, then MMPTCP will be
even more effective in helping latency-sensitive shortb flows to
meet their deadlines. Evaluating such an approach is also part
of our future work.

14

5. Conclusion

In this paper, we first showed through simulations that
MPTCP is not efficient for short flows. We concluded that
MPTCP is ill-suited to handle short flows because a fraction of
them experience excessive timeouts. We proposed MMPTCP as
a means to address this problem by combining packet scatter-
ing and multipath transport so that short flows can be efficiently
dealt with during the packet scattering phase. Our extensive ex-
perimental evaluation in simulated FatTree topologies showed
that MMPTCP is practical and decreases flow completion time
for short flows while retaining excellent goodput for large flows
compared to MPTCP with a fixed number of subflows (eight in
our simulations). We also observed that MMPTCP not only re-
acted to congestion gracefully but also prevented it to a great
extent, therefore significantly decreasing the overall loss rate
of all links in the network and increasing network resources’
utilisation.

One of MMPTCP’s challenges is to prevent, detect and re-
act to spurious retransmission due to packet ordering during its
first phase of data transport. We proposed a novel approach
for preventing out-of-order packets which is to set the value of
dupthresh based on topology-specific information. Our solu-
tion is based on the FatTree IP addressing scheme as it allows
us to locate end-hosts according to their IP address. That is, the
dupthresh is adjusted according to the destination IP address of
a flow at connection establishment. Our evaluation showed that
adjusting dupthresh in this way significantly prevents spurious
retransmission. Our approach is also applicable for other data
centre topologies, such as VL2.

MMPTCP switches to standard MPTCP after a specific vol-
ume of data has been transmitted to the receiver through packet
scattering. We have showed that short flows’ completion times
are not significantly increased when the threshold is less than
the size of the flow. However, our evaluation indicated that the
threshold should be set to a value that is greater than the ex-
pected size of short flows (e.g. 1 to 10MB). We also showed
that the switching mechanism does not affect the goodput of
long flows because multipath transport can wrap up access link
capacity in a few RTTs.

We conclude that MMPTCP is rapidly deployable in existing
data centres as it can coexist with MPTCP and only requires
existing data centre technologies such as ECMP. It can han-
dle all network flows without high-level information from the
application layer (e.g. flow sizes and deadlines). It decreases
the bursty nature of data centres by exploiting equal-cost paths
for delivering short flows. Finally, we showed that a topology-
specific extension where the number of subflows opened during
the second phase is dynamically set based on the location of the
communicating hosts in the data centre can improve completion
times of short flows without hurting the goodput of long flows.

[1] M. Al-Fares, A. Loukissas, A. Vahdat, A Scalable, Commodity Data Cen-
ter Network Architecture, in: Proceedings of ACM SIGCOMM, 2008, pp.
63–74.

[2] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, S. Sengupta, VL2: A Scalable and Flexible Data
Center Network, Commun. ACM 54 (3) (2011) 95–104.

[3] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu,
BCube: A High Performance, Server-centric Network Architecture for
Modular Data Centers, in: Proceedings of ACM SIGCOMM, 2009, pp.
63–74.

[4] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng,
A. Jain, S. Hao, E. Katz-Bassett, R. Govindan, Reducing Web Latency:
The Virtue of Gentle Aggression, in: Proceedings of ACM SIGCOMM,
2013, pp. 159–170.

[5] A. Vulimiri, O. Michel, P. Godfrey, S. Shenker, More is less: reducing
latency via redundancy, in: Proceedings of ACM HotNets, 2012.

[6] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, RFC 3782
(2004).

[7] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, M. Handley,
Improving Datacenter Performance and Robustness with Multipath TCP,
in: Proceedings of ACM SIGCOMM, 2011.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, M. Sridharan, Data Center TCP (DCTCP), in: Pro-
ceedings of ACM SIGCOMM, 2010, pp. 63–74.

[9] B. Vamanan, J. Hasan, T. Vijaykumar, Deadline-aware Datacenter TCP
(D2TCP), in: Proceedings of ACM SIGCOMM, 2012, pp. 115–126.

[10] C. Wilson, H. Ballani, T. Karagiannis, A. Rowtron, Better Never Than
Late: Meeting Deadlines in Datacenter Networks, in: Proceedings of
ACM SIGCOMM, 2011, pp. 50–61.

[11] A. Ford, C. Raiciu, M. Handley, S. Barré, J. Iyengar, TCP Extension for
Multipath Operation with Multiple Addresses, RFC 6824 (2013).

[12] M. Kheirkhah, I. Wakeman, G. Parisis, Multipath-TCP in ns-3, CoRR.
URL http://arxiv.org/abs/1510.07721

[13] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hed-
era: Dynamic Flow Scheduling for Data Center Networks, in: Proceed-
ings of USENIX NSDI, 2010.

[14] M. Kheirkhah, I. Wakeman, G. Parisis, MMPTCP: A multipath transport
protocol for data centers, in: Proceedings of IEEE INFOCOM, 2016.

[15] M. Kheirkhah Sabetghadam, MMPTCP: A Novel Transport Protocol for
Data Centre Networks, Ph.D. thesis, University of Sussex (2016).

[16] A. Dixit, P. Prakash, Y. C. Hu, R. R. Kompella, On the impact of packet
spraying in data center networks, in: Proceedings of IEEE INFOCOM,
IEEE, 2013, pp. 2130–2138.

[17] T. Benson, A. Akella, D. A. Maltz, Network Traffic Characteristics of
Data Centers in the Wild, in: Proceedings of ACM SIGCOMM, 2010, pp.
267–280.

[18] L. Valiant, A Scheme for Fast Parallel Communication, SIAM journal on
computing 11 (2) (1982) 350–361.

[19] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, An Extension to the Se-
lective Acknowledgement (SACK) Option for TCP, RFC 2883 (2000).

[20] J. Mahdavi, M. Mathis, S. Floyd, A. Romanow, TCP selective acknowl-
edgment options, RFC 2018 (1996).

[21] S. Floyd, T. Henderson, The NewReno Modification to TCP’s Fast Re-
covery Algorithm, RFC 6582 (2002).

[22] M. Zhang, B. Karp, S. Floyd, L. Peterson, RR-TCP: A Reordering-Robust
TCP with DSACK, in: Proceedings of IEEE ICNP, 2003.

[23] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang,
B. Pang, H. Chen, Z.-W. Lin, V. Kurien, Pingmesh: A Large-Scale Sys-
tem for Data Center Network Latency Measurement and Analysis, in:
Proceedings of ACM SIGCOMM, 2015, pp. 139–152.

[24] M. Allman, H. Balakrishnan, S. Floyd, Enhancing TCP’s Loss Recovery
Using Limited Transmit, RFC 3042 (2001).

[25] C. Hopps, Analysis of an Equal-Cost Multi-Path Algorithm, Tech. Rep.
2992 (November 2000).

[26] P. Costa, H. Ballani, K. Razavi, I. Kash, R2C2: A Network Stack for
Rack-scale Computers, in: Proceedings of ACM SIGCOMM, 2015, pp.
551–564.

[27] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, G. Varghese, Conga:
Distributed congestion-aware load balancing for datacenters, in: Proceed-
ings of ACM SIGCOMM, 2014.

[28] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, M. Schapira, PCC: Re-
architecting congestion control for consistent high performance, in: 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15), 2015.

[29] Y. Chen, R. Griffith, J. Liu, R. H. Katz, A. D. Joseph, Understanding TCP
Incast Throughput Collapse in Datacenter Networks, in: Proceedings of

15

http://arxiv.org/abs/1510.07721
http://arxiv.org/abs/1510.07721

ACM WREN, WREN ’09, 2009, pp. 73–82.
[30] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, D. Towsley, Multi-path

TCP: A Joint Congestion Control and Routing Scheme to Exploit Path
Diversity in the Internet, IEEE/ACM Trans. Netw. 14 (6) (2006) 1260–
1271.

[31] K. Rojviboonchai, H. Aida, An evaluation of multi-path transmission
control protocol (M/TCP) with robust acknowledgement schemes, IEICE
transactions on communications 87 (9) (2004) 2699–2707.

[32] H.-Y. Hsieh, R. Sivakumar, A Transport Layer Approach for Achieving
Aggregate Bandwidths on Multi-homed Mobile Hosts, in: Proceedings of
MobiCom, 2002, pp. 83–94.

[33] C. Raiciu, M. Handley, D. Wischik, Coupled Congestion Control for Mul-
tipath Transport Protocols, RFC 6356 (2011).

[34] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The Nature
of Data Center Traffic: Measurements & Analysis, in: Proceedings of
ACM IMC, 2009, pp. 202–208.

[35] M. Kheirkhah, M. Lee, AMP: A Better Multipath TCP for Data Center
Networks, CoRR abs/1707.00322. arXiv:1707.00322.
URL http://arxiv.org/abs/1707.00322

[36] M. Kheirkhah, M. Lee, AMP: An Adaptive Multipath TCP for Data Cen-
ter Networks, in: Proceedings of IFIP/IEEE Networking, 2019.

[37] D. Zats, T. Das, P. Mohan, D. Borthakur, R. Katz, Detail: Reducing the
flow completion time tail in datacenter networks, in: Proceedings of ACM
SIGCOMM, 2012, pp. 139–150.

[38] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar,
S. Shenker, pFabric: Minimal Near-optimal Datacenter Transport, in:
Proceedings of ACM SIGCOMM 2013, 2013, pp. 435–446.

16

http://arxiv.org/abs/1707.00322
http://arxiv.org/abs/1707.00322
http://arxiv.org/abs/1707.00322
http://arxiv.org/abs/1707.00322

	Introduction
	Design
	Packet Scatter
	MultiPath TCP
	MMPTCP: Combining PS with MPTCP
	MMPTCP and Packet Reordering
	Dynamically Setting the Number of Subflows

	Evaluation
	Traffic Matrices and Flow Scheduling
	MMPTCP vs MPTCP
	MMPTCP vs TCP and PS
	Effects of Hotspots
	MMPTCP and Duplicate ACK Threshold
	MMPTCP and Limited Transmit
	MMPTCP and Switching Threshold
	MMPTCP and Incast
	MMPTCP and Multi-Path Congestion Control
	Influence of Network Load
	Dynamic Selection of Subflow Number

	Discussion and Future Work
	Conclusion

