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A B S T R A C T

Increasingly, the rat femoral fracture model is being used for preclinical investigations of fracture healing,
however, the effect of gap size and its influence on mechanobiology is not well understood. We aimed to
evaluate the influence of osteotomy gap on osteotomy healing between the previously published extremes of
guaranteed union (0.5 mm) and non-union (3mm) using this model.

A femoral osteotomy in 12–14 week old female Wistar rats was stabilised with a micro fixator (titanium
blocks, carbon fiber bars) with an osteotomy gap of 1.0 mm (n=5), 1.5 mm (n=7), 2.0 mm (n=6). After five
weeks, the left femur was retrieved. The osteotomy gap was scanned using X-ray microtomography and then
histologically evaluated. The radiographic union rate (complete mineralised bone bridging across the osteotomy)
was three times higher for the 1.0 mm than the 2.0mm gap. The 1.0mm gap had the largest callus (0.069μm3)
and bone volume (0.035μm3). Callus and bone volume were approximately 50% smaller within the 2.0 mm gap.

Using cadaveric rat femurs stabilised with the external fixator, day 0 mechanical assessment of construct
stiffness was calculated on materials testing machine displacement vs load output. The construct stiffness for the
1.0, 1.5 and 2.0 mm gaps was 32.6 ± 5.4, 32.5 ± 2.4, and 32.4 ± 8.3 N/mm (p=0.779). Interfragmentary
strain (IFS) was calculated using the change in osteotomy gap displacement as measured using microstrain
miniature differential reluctance transducer spanning the osteotomy gap. Increasing the gap size significantly
reduced the IFS (p=0.013). The mean ‘day 0’ IFS for the 1.0, 1.5 and 2.0 mm gaps were 11.2 ± 1.3, 8.4 ± 1.5
and 6.1 ± 1.2% respectively.

A 1.5 mm gap resulted in a delayed fracture healing by 5 weeks and may represent a useful test environment
for fracture healing therapy. Increasing gap size did not affect construct stiffness, but did reduce the ‘day 0’ IFS,
with a doubling of non-union and halving of bone volume measured between 1.0 and 2.0 mm gaps.

1. Introduction

Pre-clinical experimental studies frequently use delayed or non-
union models to evaluate a therapy (Garcia et al., 2013). These are
typically created by either mechanical instability, damaging the vas-
cular supply or introducing material to prevent bridging (Mills and
Simpson, 2012). The most common method is to establish a critical
sized defect, which is defined as the minimum amount of bone loss that
will not heal by bone formation during the animals lifetime (Schmitz
and Hollinger, 1986). Historically, studies investigating fracture

biology and mechanics have been dominated by large animal models,
typically sheep and goats, however the use rodent models has sig-
nificantly increased to nearly 50% of all fracture studies over the last
two decades (Garcia et al., 2013), and the rat is used for around one
third of all in vivo fracture studies (Mills and Simpson, 2012). The size
of a ‘critical sized defect’ in rats varies between studies, and reflects in
part the differing mechanics of their chosen stabilisation, and whether
periosteal stripping is performed. Typically, researchers have used de-
fects of up to 8mm and as low as 0.5 mm in rat fracture studies (Garcia
et al., 2013; Mills and Simpson, 2012).
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External fixators are commonly used to stabilise a defect due to their
ease of application, minimal interference with subsequent analysis and
their potential to alter the mechanical environment throughout the
experiment. However, the literature on rodent fracture biomechanics
using external fixators is limited. The most common fixators in use for
rodents are the thermoplastic polyether ether ketone (PEEK) Glatt
fixator from the AO Research Institute Davos (Glatt and Matthys, 2014),
which is commercially available and the titanium alloy ‘Harrison style’
fixator (Harrison et al., 2003; Ho et al., 2014; Lee et al., 2005; Smitham
et al., 2014). The more rigid Harrison fixator (Osagie-Clouard et al.,
2019), is a unilateral uniplanar fixator with a double carbon fiber
connecting bar, which has the novel function of permitting variable gap
size, by sliding the adjustable distal titanium block along the bar. This
approach to varying gap size maintains the pin to osteotomy gap dis-
tance irrespective of gap size, whereas other micro fixators require an
ostectomy of the desired gap distance to vary said gap. Increasing os-
teotomy size may also influence bone healing by a potential variation in
bone biology along its length (diaphyseal to metaphyseal). The Har-
rison style fixator has previously showed consistent union with a
0.5 mm gap and consistent non-union with a 3mm gap with a rat fe-
moral osteotomy after 5 weeks (Harrison et al., 2003) and in female
adult wistar rats (Lee et al., 2005; Smitham et al., 2014). The AO fixator
is considerable less stiff (Osagie-Clouard et al., 2019) and although
studies generally use controls, direct comparison of results on the
biology of fracture fixation using different fixators is probably in-
appropriate due to the difference in their mechanics and hence differ-
ences in healing.

Numerous studies have tested their hypotheses using osteotomy
gaps in the range of 1–2mm in rats, however the biomechanics have
only been evaluated with FE modeling (Wehner et al., 2014). Currently,
no studies have made a sequential evaluation of intermediary gap sizes
between guaranteed healing, delayed union and non-union, to identify
the point at which delayed union occurs. Inherently, the biomechanics
of the fixator, including the fracture (osteotomy) gap interfragmentary
strain (IFS) (Perren, 1979), and overall construct stiffness, will affect
the outcome. In order to understand the findings from one study to
another, evaluation of the fracture biomechanics would be highly in-
formative.

Clinical fractures that heal more slowly than expected are termed
delayed unions and some may fail to heal at all and are termed non-
unions. Many pre-clinical studies evaluate interventions in models that
go on to successful union, and therefore may not be an appropriate test
scenario. Likewise, the non-union pre-clinical model may be too chal-
lenging to demonstrate efficacy of a new treatment and therefore the
delayed union may a useful test environment in pre-clinical studies.

The hypothesis for our study was that a delayed union type healing
would be seen in a gap size midway between the published established
union at 0.5 mm and non-union at 3mm when using the Harrison style
fixator at 5 weeks (Harrison et al., 2003; Ho et al., 2014; Smitham et al.,
2014). The objectives were to assess the fracture healing with three
intervening gap sizes and to determine the potential variation in initial
mechanical environments in terms of construct stiffness and inter-
fragmentary strain.

2. Methods

2.1. Fixator design & application

The Harrison style fixator is a unilateral uniplanar (Type Ia) external
fixator with two transcutaneous intraosseus pins proximal and two pins
distal to a surgically created osteotomy. It has a double connecting bar
(2 mm diameter carbon-fiber; epoxy resin matrix bars) with two tita-
nium connecting blocks which can slide axially along the bar, and se-
cured in position using miniature grub screws, allowing alteration of
the osteotomy gap size (Fig. 1). This gives a consistent positioning of
the pins in the bone and a consistent distance from the osteotomy, but

varies the bar working length (bar length between the two fixator
blocks), as the osteotomy is increased.

Female Wistar rats, 12–14 weeks old (230–300 g) had the fixator
placed on the left craniolateral femur following a lateral surgical ap-
proach (Harrison et al., 2003). Using a precision jig-guide, four bicor-
tical 1.4 mm diameter end-threaded self-tapping stainless steel pins
were placed in predrilled 1.0 mm holes in a cranial to caudal orienta-
tion. Consistent proximodistal positioning was based on the distal ex-
tent of the greater trochanter. Pins were exited through separate skin
incisions and the custom variable spacing fixator was attached, using a
precision spacer to ensure a fixed distance between the near cortex and
connecting blocks of 9mm. A mid-diaphyseal femoral osteotomy, with
no periosteal stripping was made using a diamond tipped hand-saw,
whilst applying sterile saline coolant/lubricant. Rats were then ran-
domly assigned to have a 1.0mm, 1.5mm or 2.0 mm osteotomy gap
using an appropriately sized precision spacer placed between the ends
of the osteotomised bone, and the grub screws were tightened. The
biceps femoris was closed over the osteotomy with a single horizontal
mattress suture (1.5M PDS II, Ethicon), and the skin was closed with an
intradermal continuous suture (1.5M monocryl, Ethicon). Analgesia
was provided with subcutaneous administration of buprenorphine
0.05mg/kg prior to surgery, then three times daily for 48 h per os,
within a sweetened jelly. Activity was unrestricted post surgery for 5
weeks until euthanasia. All procedures were carried out in accordance
with the Animals Scientific Procedures Act 1986, were approved by the
University's Animal Welfare Ethical Review Board and were aligned to
the ARRIVE guidelines. Those taking part in any surgical procedure
held UK Home Office licences.

2.2. X-ray microtomography (MicroCT) and radiography

After 5 weeks, the left femur with the fixator in place was retrieved.
In order to reduce microCT beam-hardening artifact generated from the
interaction of the X-ray beam and the metallic implant, a radiolucent
PEEK fixator block was connected externally to the fixator pins after
careful removal of the skin with surrounding soft-tissues, and then
without disturbing the fracture callus the titanium block fixator was
then removed. Samples were fixed in 10% buffered formaldehyde for
up to three days. The formalin fixed samples were wrapped in cling-film
to prevent dehydration and mounted into a sample holder for microCT
scanning. Samples were scanned using a Bruker Skyscan 1172 micro-
tomograph (Bruker, Belgium), at 60 KV, 167μA with a 0.5mm

Fig. 1. Ex-vivo femur loaded from femoral head to condyles in a materials
testing machine with a cranially applied Harrison style fixator. A Lord micro-
displacement sensor was applied to the lateral surface (1a= lateral view,
1b= caudal view).
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aluminum filter. A rotation step of 0.5°, without frame averaging, and
an image pixel size of 4.89μm was used. A single image capture image
was taken with the image intensification ‘scout’ prior to scanning, for
2D radiographic assessment of the osteotomy union. Radiographic
scouts were randomised and blinded to score healing according to the
AO-ASIF recommendations for long bone fractures; united, not united
or uncertain (Müller et al., 1979) as follows: Ununited (Fig. 2, 2.0 mm
osteotomy b)) where there was no mineralised tissue bridging between
the ends of the osteotomy; uncertain (Figs. 2 and 1.5mm osteotomy b))
where there was new bone formation, however a radiolucent line re-
mained between the proximal and distal segments, and united (Figs. 2
and 1.0 mm osteotomy b)) where no gap between bone ends was
visible.

MicroCT scans were reconstructed using NRecon (Bruker, Belgium)
with smoothing= 2, ring artifact reduction=12% and beam hard-
ening artifact= 41%. Analysis was performed with CTAn (Bruker,
Belgium). Using the measuring tool, the centre point of the osteotomy
was determined and the transverse slice at that point was selected as
the reference slice. The callus was isolated using a 2D ROI shrink wrap
stretching over holes< 40 pixels, despeckled<150 voxels and then 3D
analysis was performed. In order to make a direct comparison of
healing between the differing gap sizes, the central 60% of the os-
teotomy gap. i.e. only new bone formation within the osteotomy was
analysed for each size, which translated to 120, 180 and 240 slices at
5 μm slice thickness, giving 0.6mm, 0.9 mm and 1.2mm osteotomy gap
analysis for the 1.0, 1.5 and 2.0mm gap respectively. Where absolute
measures were made in quantitative morphometrics, such as total bone
volume (BV), these were divided by the number of slices contributing
the analysis for each gap size, to allow for a direct comparison of bone
formation despite analysing different volumes.

2.3. Histology

Following CT imaging, bones were decalcified in a 12.5% solution
of ethylenediaminetetraacetic acid then sequentially dehydrated for
24 h, followed by de-fatting with chloroform for 48 h and embedded
into wax, with the fixator pins orthogonal to the facing surface of the
block. Fixator blocks and pins were removed once the wax had set and a
microtome (ThermoFisher Scientific, UK) was used to make 5 μm thick
slices. The alignment of the blocks within the microtome was altered as
necessary to ensure a central sagittal slice through the femur. The po-
sition of a mid-sagittal section through the fracture gap was assessed
using the fixator pin tract holes. Wax slices were mounted onto posi-
tively charged glass slides (X-tra, Leica biosytems, UK), de-waxed and
then hydrated. Samples were then stained with Hematoxylin (Sigma-
Aldrich, UK) nuclear stain for 5min. Excess stain was removed by
gentle washing with water for 5min. Slides were counterstained in 1%
Eosin (Sigma-Aldrich, UK) for 4min and then washed and dehydrated
in increasing concentrations of alcohol. Slides were cleaned in xylene
and mounted under 40mm coverslips using Pertex Mounting Medium
(CellPath plc, UK).

2.4. Histomorphometric analysis

Slides were observed under a light microscope (KS-300 Zeiss, UK).
Histomorphometric analysis at 2.5x magnification was performed on
the most central slice, using a line-intercept method with a grid scaled
to the graticule and drawn using PowerPoint (Microsoft, USA). The grid
covered the entire visual field from top to bottom (lateral to medial
cortex) and was centred over the osteotomy; its width was equivalent to
the original 1.0, 1.5 or 2.0 mm osteotomy. Grid squares were 160 μm in
both directions and intersections, giving 75, 120 and 165 intersections
evaluated for the 1mm, 1.5mm and 2.0 mm gaps respectively.
Intersections were then scored as bone, cartilage, fibrous tissue, vas-
cular (red blood cells seen not within tissue matrix) or void based upon
Hematoxylin and Eosin uptake and cell morphology to provide a per-
centage tissue formation.

2.5. Assessment of fixator biomechanics and immediate IFS at day 0

The fixator was placed as per the surgical description on the femora
of cadaveric 18–20 week old Wistar rats (n= 4). Femora with the
fixator still attached were then disarticulated at the hip and stifle and
stripped of soft-tissue attachments. An orthogonal (lateral to medial
orientated) 0.8mm bicortical hole was drilled between the two prox-
imal and two distal fixator pins. A microminiature differential variable
reluctance transducer (DVRT - accuracy 0.001mm) (Lord MicroStrain,
model 6101-0200, Williston, USA) was then inserted and fixed in po-
sition using cyanoacrylate glue, to quantify fracture movement (Fig. 1).
Femurs were biomechanically tested using a materials testing machine
(Zwick Roell 5T, UK). They were mounted in an axial loading jig with
the femoral condyles centred over the lower mount and the upper
mount was centred over the femoral head to simulate a physiological
loading axis of the femur along its mechanical axis. This set-up effec-
tively tested the entire construct of fixator and bone as a single unit.
Three gap sizes were evaluated per specimen; 1.0 mm, 1.5 mm and
2.0 mm. The distal fixator connecting block was loosened to allow in-
sertion of the precision titanium spacer and then tightened again. The
space was then checked a second time prior to loading and again be-
tween each repeat by ‘offering-up’ the spacer to the gap. Care was taken
to ensure the gap was even across the width of the osteotomy.

The peak vertical force for each hind limb in rats is 60% bodyweight
at the walk (Clarke, 1995). A maximum weight of 300 g for an in-
dividual rat was seen in the in vivo study and therefore peak-walking
load was assumed to be 1.8N. A single cycle non-destructive test was
performed, with a preconditioning load of 0.5N, followed with loading
to a maximum of 10N in compression at 5mm/min, sampling rate of

Fig. 2. Representative images from the analysis of healing for each fracture gap
size. a) Shows the central transverse 5 μm thick slice from the centre of the
osteotomy from microCT analysis. b) Shows a lateral-medial radiograph centred
over the two innermost fixator pins and the osteotomy. c) Shows a 1x magni-
fication image of the central sagittal slice, Hematoxylin and Eosin stained. d)
Shows a 2.5x magnification image of the central region of the femur with the
histomorphometric grid applied for quantitative morphometry.
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50 Hz. The first cycle was disregarded and then four repeats were
performed per gap size, per sample. The sensor (DVRT) output (i.e.
millivoltage changes) was recorded and the difference pre and at peak
load was determined. This was then converted into a displacement
according to manufacturers calibration equation. The pre load and peak
load lengths were then used to calculate IFS based on change in length
divided by the original length. Fixator–bone construct stiffness was
determined from the load-displacement graphs obtained from TestXpert
software (Zwick, Roell, UK). A linear regression line (r2) was calculated
for the linear portion and r2 > 0.99 was considered appropriate for the
linear elastic region. The gradient (m) was determined based on a
y = mx + c equation and gave the stiffness.

2.6. Statistical analysis

Fishers Exact was used to compare the fracture healing outcome.
Normality was determined using a Shapiro Wilk test and non-para-
metric tests were performed to compare groups using Kruskal-Wallis
(KW), and Mann-Whitney U (MWU) performed with Bonferroni cor-
rection applied (alpha= 0.05/number of comparisons). Results were
expressed as means ± standard deviations. Tests were analysed with
SPSS version 24 (IBM, Chicago, USA).

3. Results

3.1. Radiographic and microCT assessment of healing

As the gap size increased there was an increase in the AO classifi-
cation of ununited and uncertain fracture classifications and a con-
comitant decrease in united rates, with the ununited rate more than
doubling (Table 1, Fig. 2b), however this was not significantly different
with Fishers Exact comparison. On MicroCT quantitative morphometric
analysis, the 1.0 mm gap size had a larger callus volume
(0.069 ± 0.04μm3) and bone volume per slice (0.035 ± 0.02μm3);
than for the 2.0mm gap size (0.029 ± 0.03 and 0.026 ± 0.02μm3

respectively - Figs. 2a and 3). Tissue surface area per slice, giving an
index of callus size, was higher in the smallest 1.0mm gap
(0.41 ± 0.22μm2) than the largest 2.0mm (0.14 ± 0.12μm2). The
measured trabecular thickness was higher in the smaller 1.0 gap than
the larger 1.5mm gap (0.055 ± 0.01μm and 0.044 ± 0.01μm), how-
ever it increased again when the gap size increased to 2.0 mm
(0.057 ± 0.02μm). Full microCT results are summarised in Table 2.

3.2. Histomorphometric analysis

As gap size increased, the area occupied by bone within the callus
decreased, and fibrous tissue increased (Fig. 2c and d). Cartilage tissue
was highest in the mid-sized gap, however, the amount of fibrous tissue
was still lower than the biggest gaps. None of these trends were sta-
tistically significant (Table 3 and Fig. 4), however clear trends were
identified.

3.3. Mechanical analysis

The mean ± SD stiffness of the four osteotomised femurs with the
fixator in situ for the 1.0, 1.5 and 2.0 mm gaps were 32.6 ± 5.4,

32.5 ± 2.4, and 32.4 ± 8.3 N/mm (Fig. 5); the gap size over the
ranges tested had no impact on the construct stiffness (p=0.779),
however gap size did significantly reduce the IFS in the gap
(p= 0.013), (Fig. 6). The mean ± SD % IFS for the 1.0, 1.5 and
2.0 mm gaps were 11.2 ± 1.3, 8.4 ± 1.5 and 6.1 ± 1.2% respec-
tively.

4. Discussion

Using the rigid Harrison style micro external fixator, this study
demonstrated a predominant delayed union scenario with an osteotomy
gap of 1.5mm after 5 weeks, when compared with previously published
studies using the same fixator and a 0.5 mm gap (Harrison et al., 2003;
Smitham et al., 2014). This study also showed a 1mm gap leading to a
predominance of union and the 2mm resulting in a delayed union with
an atrophic appearance, indicating non-union, but our study duration
was not of sufficient length for an unequivocal definition. Within each
group there was greater variation in healing pattern than shown in the
published 0.5mm and 3mm gaps. Most of 2mm fracture gaps had an
atrophic style non-union with medullary capping and a fibrous tissue
connection, however it must be considered that a longer duration study
would be required to fulfill current time definitions of delayed union
(Garcia et al., 2013). This study had an end point of 5 weeks to allow
comparison to previous studies that used the same fixator and showed a
non-union with a 3mm and union with a 0.5 mm osteotomy and the
same fixator (Harrison et al., 2003; Ho et al., 2014; Smitham et al.,
2014). Under normal circumstances, rat femoral fracture healing should
be achieved by 5 weeks, therefore lack of union indicates delayed or
non-union at this stage. Uncertain and un-united radiographic cate-
gories are determined by the radiographic appearance of the fracture
are technically both delayed union, as our study is not of sufficient
duration to use the term non-union, and hence it was avoided. A longer
study with sequential culling may have given more information on the
rate of healing. This would have allowed us to understand whether
fracture healing is reduced by increasing the gap or totally arrested,
however in terms of being informative for rodent fracture healing stu-
dies with typically end points of 5–6 weeks, this was considered un-
necessary, and would have used more animals, contrary to the princi-
ples of the 3Rs.

The fixator used in this study has been shown to be significantly
stiffer at 4.7 times the axial stiffness of the commercially available AO
fixator (Osagie-Clouard et al., 2019), and hence will have provided a
relatively more rigid fixation. Interestingly, increasing the fracture gap,
which increases the working length of the carbon fiber bars did not
have any statistically significant effect on construct stiffness, indicative
of the relatively rigid fixator design compared with the physiological
forces it withstands. Very minor influence on stiffness is possible,
however the group sizes required to determine if extremely small
changes were statistically significant would be prohibitively large. This
is useful as it provides an ability to investigate the influence of gap size
in terms of its biological impact and the variation in IFS, without in-
fluencing construct stiffness.

The impact of gap size on the healing in this particular model
system may be driven by the biological impact of the gap size on tissue
healing, rather than its mechanical effects. Large animal models have
shown that increased fracture gaps with the same IFS had reduced
vascularisation and hence diminished biological ability to heal (Claes
et al., 2003). However, other studies quantifying blood vessel formation
have shown no difference between atrophic non-unions, hypertrophic
non-unions and healing fractures (Reed et al., 2002), although vessels
appear at a later stage and therefore early vascularisation may be key
(Reed et al., 2003). The histology in this study also showed a consistent
level of vascularisation between different gap sizes and their sub-
sequent healing fates. However, the histologic analysis was performed
at five weeks and therefore it is conceivable with an increasing gap size
that the time required for vascular development could be longer and

Table 1
Global radiographic scoring of fracture healing at 5 weeks based on the A0-ASIF
system.

Gap Size (mm) Ununited Uncertain United

1.0 1/5 (20%) 1/5 (20%) 3/5 (60%)
1.5 3/7 (43%) 2/7 (29%) 2/7 (29%)
2.0 3/6 (50%) 2/6 (33%) 1/6 (17%)
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perhaps critical blood vessel density it not reached at a sufficiently early
time frame.

Despite the commonplace role of rodents in fracture healing re-
search, most studies have evaluated the influence of IFS on fracture
healing with large animal models in vivo (Claes et al., 2003, 1997;
Claes and Heigele, 1999) or using FE model (Comiskey et al., 2010;
Steiner et al., 2014; Wehner et al., 2014). With the increasing use of
rodents in bone healing studies, an understanding of the mechanical
environment is needed in rodents. This is the first time such measures
have been directly and accurately measured in an ex vivo study in rats,
with a micro-miniature differential variable reluctance transducer

(accuracy 0.001mm). The use of a highly sensitive displacement
transducer should give a more accurate measure than those based on
the materials testing machine actuator displacement. However, we ac-
knowledge that the transducer is measuring displacement in the axis of
the transducer and this could vary across the bone gap itself. Ad-
ditionally, the exact femoral alignment would also differ in vivo, but
approximations are required to test in a material testing machine. The
in vitro tests to measure IFS were carried out with the load axially
aligned. Due to the orientation of the femur in the live animal, bending
and torsional moments would induce strain. Alignment of the trans-
ducer along a different plane on the femur again may have produced
differing results, however our tests showed that a reduction in IFS was
related to an increase in delayed union indicating that the IFS may be
an oversimplification. Critically, the set-up considerations noted are
consistent across the gaps tested, and hence their comparison is still
informative. Future studies could make consideration of multiple gauge
assessment to build a composite assessment of interfragmentary mo-
tion. It would also be useful to make an ex and in vivo comparison this
fixator to AO/Glutt fixator for healing over different gap sizes.

It should also be noted that the cadaveric femurs were in the 18–20
week range whereas the in vivo study rats were 12–14 weeks old. This
was in part due to a consideration of 3Rs, and although the physes
remain open throughout these ages (Roach et al., 2003), growth is
substantially decelerating, and overall limb length was not expected to
change much. Furthermore, the IFS was calculated using a displace-
ment gauge and fixator which was placed at a standard distance from
the osteotomy irrespective of the overall femoral length, hence creating
a consistent biomechanical environment.

In a system where the fixator stiffness is unaffected by increasing
gap size, and hence the change in gap length for a given load is con-
sistent, IFS will arithmetically reduce as the denominator gap size in-
creases. However, assessment of the initial IFS did not indicate the
subsequent pattern of healing as predicted by Perren's IFS theory of
fracture healing (Perren, 1979). IFS theory predicts for a given inter-
fragmentary movement, the bigger the gap, the lower the IFS, if all
other factors remain unchanged. However, large gaps and critical sized
defects, even when fixed very rigidly do not heal, and consistent with

Fig. 3. Boxplot showing (the average per 5 μm slice) microCT bone volume (BV um^3), with the BV reducing sequentially as the gap size increases.

Table 2
MicroCT quantitative morphometry indices of bone formation within the 60%
of the osteotomy gap where TV (um^3)= tissue volume, BV (um^3)= bone
volume, TV/BV (%)= percentage bone volume, TS (um^2)= tissue surface, BS
(um^2)= bone surface, Tb.Th (um)= trabecular thickness, Tb.Sp (um)= tra-
becular separation, Tb.N (1/μm)= trabecular number.

1.0mm Gap 1.5mm Gap 2.0 mm Gap

TV per slice (um^3) 0.07 ± 0.04 0.05 ± 0.03 0.03 ± 0.03
BV per slice (um^3) 0.04 ± 0.02 0.02 ± 0.02 0.02 ± 0.02
BV/TV (%) 54.25 ± 9.38 53.79 ± 20.82 66.39 ± 15.37
TS per slice (um^2) 0.41 ± 0.23 0.35 ± 0.25 0.14 ± 0.12
BS per slice (um^2) 2.09 ± 1.62 1.81 ± 1.22 0.90 ± 0.94
Tb.Th (um) 0.06 ± 0.01 0.04 ± 0.01 0.06 ± 0.02
Tb.Sp (um) 0.12 ± 0.05 0.07 ± 0.03 0.07 ± 0.05

Table 3
Quantification of tissue formed within the gap as percentage total tissue from
line intercept analysis of Hematoxylin and Eosin stained mid sagittal sections.

% TISSUE 1.0mm Gap 1.5 mm Gap 2.0mm Gap

Bone 45.6 ± 33.0 39.1 ± 23.9 23.2 ± 26.6
Cartilage 36.7 ± 22.1 43.1 ± 24.6 37.2 ± 17.9
Fibrous 14.7 ± 30.6 15.3 ± 37.4 36.1 ± 40.8
Vascular 3.0 ± 1.9 2.4 ± 2.0 3.5 ± 3.4
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these findings, there was a doubling of ununited fractures and halving
of bone volume, with an associated increase in cartilage in the 1.5 mm
gap and fibrous tissue within the 2.0 mm osteotomy as the gap in-
creased from 1mm. This corresponded to a ‘day 0 equivalent’ measure
of IFS from 12% to 6% respectively. Overall, the groups with the small
gaps and an initial IFS>10% had improved healing than those with
big gaps and an IFS<10%, suggesting gap size biological factors may
overwhelm mechanical factors. Some large animal studies with known
gap sizes and interfragmentary movements have also shown good bone
healing with IFS>2–10% (Claes et al., 1995; Kenwright and Goodship,
1989). Claes et al. showed that a high initial IFS, above the Perren 10%
threshold resulted in increased callus formation, however, a larger gap
had less bone formation for the same initial strain (Claes et al., 1997).
However, although initial IFS is important in the extreme, when a
fracture occurs, an established sequence of events follows (Elliott et al.,

2016), with an initial deposition of strain tolerate tissue, such as
granulation tissue, followed by sequential deposition of more strain
intolerant tissues. The wide tissue cuff or ‘callus’, seen in indirect
fracture healing, stiffens the gap, and further increasing fracture sta-
bility and reducing IFS (Perren, 2015). When looking at the bone sur-
face measures (BS) and tissue surface (TS) measures on microCT, there
was a trend for a smaller callus as the strain reduced, potentially con-
sistent with a bigger callus cuff being required when there is a higher
IFS. Various models have expanded upon the work of Perren. Carter and
Blenman, suggested that it is not only the amount of strain, but the way
the strain is applied, be it in compression, tension, shear, and further
that the degree of vascularisation plays influence (Carter et al., 1988).
Their finite element model also accounted for eccentric callus formation
with an asymmetric cartilage deposition, which was noted in some of
the samples in this study. They suggested this was due to varying

Fig. 4. Quantitative morphometric data from the
central region of the osteotomy, from the 2.5x mag-
nification Hematoxylin and Eosin stained slides,
showing the mean ± SEM reduction in % bone for-
mation as the gap size increases, with the 1.5 mm
gap showing a concomitant increase in cartilage
tissue, but the 2.0mm showing a concomitant in-
crease in fibrous tissue.

Fig. 5. Line graph showing the mean ± SD construct stiffness (N/mm) measured, with no significant change as the gap size increased.
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hydrostatic forces with a more ‘compressive microenvironment’ pro-
ducing more cartilage and a ‘tensile’ environment would have less
callus with a more fibrous character. This is consistent with the types of
loading patterns that will be developed within an osteotomy of the rat
femur with its eccentric mechanical axis and the use of a unilateral
external fixator. Prendergast suggested a further iterative model with
two biophysical stimuli; fluid velocity and shear strain components,
playing a role in the solid and liquid phases (Prendergast et al., 1997).
However, these are all models and typically approximate in vivo find-
ings in their extremes.

Other complicating factors such as increasing animal age (Strube
et al., 2008) or sex appear to influence fracture healing in some studies,
although in a study by Mehta et al. (2010) the large difference in
bodyweight between female and male rats was not controlled (Mehta
et al., 2010). This study however, had a tightly controlled age range and
hence weight, and all were female Wistar rats.

In conclusion, the fixator design evaluated here provides stable
construct/fracture stiffness over a range of fracture gap sizes. Increasing
gap size did not affect construct stiffness, but did reduce the ‘day 0’ IFS
from 12 to 6%, with a doubling of the incidence of non-union and
halving of bone volume measured. This is in contrast to the expected
outcome based on IFS theory, but may be due to the biological impact
of the gap size over and above the mechanics in this model system. This
is the first study to evaluate and directly compare a range of gap sizes
between guaranteed union and non-union in a rodent femoral fracture
model using the Harrison style fixator, and the 1.5mm osteotomy gap
provided a delayed-union at 5 weeks. This study provides informative
that will be informative to researches using Harrison style fixators for
fracture healing studies in rats, and may allow for more precise selec-
tion of gap size for their investigations than the two extremes pre-
viously published (Harrison et al., 2003; Ho et al., 2014; Smitham et al.,
2014).
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