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Abstract 

When people make forecasts from series of data, how does their accuracy depend on the 

length of the series? Previous research has produced highly conflicting findings: some 

work shows accuracy increases with more data; other research shows that it decreases. 

In two experiments, we found an inverted U-shaped relation between forecast error and 

series length for various series containing different patterns and noise levels: error 

decreased as the length of the series increased from five through 20 to 40 items but also 

decreased as the series length decreased from five through two to one item. We argue 

that, with short series, people use a simple heuristic approach to forecasting (e.g., the 

naïve forecast). With longer series, they extract patterns from the series and extrapolate 

from them to produce their forecasts. Use of heuristics is poorer but extraction of 

patterns is better when there are more items in the series. For series of intermediate 

length, neither type of strategy operates well, thereby producing the inverted U-shaped 

relation that we observed. Implications for unaided judgmental forecasting and for 

forecasting based on a combination of judgmental and statistical methods are discussed. 

 

Keywords: Judgmental forecasting; Time series; Heuristics; Pattern extraction  
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1. Introduction 

Demand forecasting plays an essential role in supply chain management. Although 

development of formal methods continues apace, surveys have shown that this type of 

forecasting still frequently relies on judgment [10, 11, 36, 37, 44, 45, 49, 55]. Nowadays, 

this reliance is most often partial: judgment is combined in some way with statistical 

forecasting. However, the most recent surveys have revealed that between 16% and 

26% of respondents still use unaided judgment to make their forecasts [10, 11, 55]. 

Hence, it remains vital that we document the factors that affect the quality of unaided 

judgmental forecasting.  

One of the most important issues still to be resolved in the literature on unaided 

judgmental forecasting concerns the effects of the amount of historical data used as a 

basis for forecasts. Although hard data are not available, it is likely that the length of 

series available to forecasters varies a great deal across firms and across SKUs within 

firms. There are various possible reasons for this. Consultants may encourage 

forecasters to use only recent data because of concerns about the relevance of earlier 

records. Retaining and retrieving data for forecasting purposes may be expensive 

(though perhaps less expensive than in the past). Also, the importance of retaining 

those data may not be fully appreciated, particularly when the ownership of a firm 

changes: at such a time, historical data may be lost. Finally, when products are relatively 

new, historical data series will be short.  

In what follows, we report studies designed to address this issue. We ask how the 

accuracy of unaided judgmental forecasts depends on the length of the data series 

available as a basis for those forecasts.  
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1.1 Conflicts in existing literature 

When forecasts are produced by formal statistical means, “increasing the amount of 

data will generally increase the accuracy of forecasts”, though rate of improvement 

declines as series lengthen [35]. This is because longer series enable the patterns in 

those series to be extracted from the noise more effectively. Of course, this expectation 

would not be borne out if the formal approach were merely to extract the naïve forecast 

(i.e. to use the last data point as the forecast for the next one).  

As far as we can determine, there are just three studies that address this issue directly. 

In the first one, Wagenaar and Timmers [52] required people to make forecasts from 

three, five or seven points of an exponential growth series presented as a sequence of 

numbers (i.e. in tabular form). The points in each condition were approximately equally 

spaced over a total time period. As a result, the interval between successive points was 

greater when there were fewer of them. Wagenaar and Timmers [52] found that, while 

the length of the total time period had no effect on forecasting performance, accuracy of 

predictions was higher when there were fewer data points. This is just the opposite of 

what we expect with formal approaches to forecasting. 

In the second study, Lawrence and O’Connor [30] presented people with graphs of 

either 20 or 40 successive data points in Autoregressive Moving Average (ARMA) series. 

In both conditions, data points represented quarterly data and the last of them was one 

quarter before the first of the four quarterly points that had to be forecast. Lawrence 

and O’Connor [30] found that absolute error in the forecasts averaged over the four 

horizons was approximately twice as large when series comprised 40 data points than 

when they comprised 20 data points. Not unreasonably, they found this finding ‘both 

surprising and counter-intuitive’. Again, it is just the opposite of what would be 
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expected if people were using some cognitive analogue of a formal technique to make 

their forecasts.  

These two studies produced similar findings despite differences in series type 

(exponential versus ARMA), range of data points examined (3, 5, and 7 versus 20 and 

40), data spacing (different inter-point intervals over the same total time period versus 

the same inter-point intervals over different total time periods), and data format 

(tabular versus graphical). What could have produced such a generalizable finding?  

Lawrence and O’Connor [30] and reviewers of these results [14, 53] have suggested 

possible explanations. One is that that people suffer from cognitive overload when they 

are presented with too much data1. Research on effects of information load has indeed 

shown that an increase in information helps decision-making processes initially but 

that, after a certain point, any additional information has a detrimental effect, reducing 

the quality of decisions [2, 22, 40]. As a result, a U-shaped relationship between amount 

of available information and judgment error has been observed [4, 18, 54].  

The third study was carried out by Andersson, Gärling, Hedesström and Biel [1]. They 

required people to make forecasts from either five, 10 or 15 daily ‘share prices’ in series 

with positive linear, negative linear, or no trend. With graphical but not tabular 

presentation, they found a highly significant effect of series length: mean absolute error 

(MAE) in forecasts from series with five points (MAE = 70.5) was much higher than it 

was from series with 10 points (MAE = 55.5) or 15 points (MAE = 49.7). The results of 

this study appear to contradict those of the other two. Unlike them, they are consistent 

with what we would expect if people use some cognitive analogue of a formal process to 

make their forecasts. 



6 
 

Why do the results of this third study differ from those of the other two? Andersson et 

al’s [1] study used series of independent data points with or without a linear trend. In 

Wagenaar and Timmers [52] study, series had non-linear trends and, in Lawrence and 

O’Connor’s [30] study, points were not independent: in other words, series were more 

complex than in Andersson et al’s [1] study. There is also another difference that may 

help to explain the difference in results. The range of data points examined was low in 

Wagenaar and Timmers [52] study (3, 5 and 7), high in Lawrence and O’Connor’s [30] 

study (20 and 40) but between these two extremes in Andersson et al’s [1] experiments 

(5, 10, and 15). 

1.2. Hypotheses 

These observations suggest that it would be worthwhile carrying out experiments with 

a variety of series types and with a much broader range of series lengths. It appears that 

the counter-intuitive findings occur when series contain more complex patterns and/or 

that there may be a non-linear relationship between series length and forecast error [c.f. 

4, 18, 54] because of the effects of information load. Hence, we test the hypotheses that 

the relation between forecast accuracy and series length varies with series complexity 

(H1). Furthermore, because of the effects of information load discussed above, we 

expect there to be a U-shaped relation between forecast error and series length (H2).  

2. Study 1 

In this experiment, participants were presented with graphical representations of time 

series and asked to make forecasts for the next point (one-step ahead forecast). To test 

the above hypotheses, we manipulated the length of the time series and the complexity 

of the pattern in the data series3.  
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2.1 Method 

2.1.1. Participants  

One hundred and fifty students (52 men, 98 women) from University College London 

acted as participants. Their mean age was 26 years. They were told (truthfully) that the 

five participants with the lowest Mean Absolute Error scores would each be rewarded 

with a payment of £5.00. They had not attended a course on forecasting. 

2.1.2. Stimulus materials  

Four types of series were selected to ensure that they varied in complexity. The 

simplest were series of independent data points with a linear trend imposed upon them. 

More complex were series of independent data points with a cyclical trend imposed 

upon them and untrended series of highly autocorrelated data points. More complex 

still were untrended non-linear series with a fractal structure. These also had high 

levels of autocorrelation but the autocorrelation function decayed more slowly: they 

showed a longer memory than the linear autoregressive series. All series were 

presented graphically. Examples are shown in Figure 1 with optimal forecasts. 

Linear trended series were generated from the equation: Xt = 5t + εt,. The noise term, ε, 

had a mean of zero and a variance of 19.0. The final data point of these trended series 

was approximately 10% of the screen height above its vertical mid-point. Thus, the 

trend imposed on the series was a mild one. 

Cyclical series were constructed by using the equation: Xt = 70cos(100t + 20) +170 + εt, 

where the noise term had a mean of zero and a variance of 225. The starting point of 

these series was chosen so that the last data point was a) close to the vertical mid-point 

of the screen and b) one third of the way from the mid-point of the cyclical cycle 

towards its peak. The wavelength of each cycle was 15.9 periods and this was 
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represented in the graphical display as a sequence of 12 points (Figure 1b). There were 

3.33 wavelengths in the screen. Each wavelength’s width corresponded to a 30% of the 

screen width. 

 

Figure 1. Examples of the four types of series comprising 40 data points (seen by participants) 
followed by the optimal forecast (not seen by participants) are shown for the four series types: 
a) linearly trended, b) cyclically trended, c) fractal, and d) linear autoregressive. 

The autocorrelated series were produced by inserting appropriate parameters into the 

following generating equation:  Xt = α Xt-1 + (1 – α)μ + εt , where Xt-1  was the previous 

observation, μ was the mean of the series, α was the degree of autocorrelation  (α = 0.9), 

and ε was noise produced by randomly drawing values from a Gaussian distribution 

with a mean of zero and a variance of σ2 (σ2 = 36.0). The mean value, μ, was selected to 

ensure that the final data point was close to the vertical mid-point of the screen. 

To construct the untrended non-linear long memory (fractal) series we used the 

multiple time-scale fluctuation approach [27]. The autocorrelation and variance 

(a) (b) 

(c) (d) 
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restrictions were calculated from the corresponding equations after the Hurst exponent 

value was selected to be equal to 0.9. Fractal time series with high Hurst values (H = 

0.9) exhibit a long-range memory autocorrelation function: it decays as a power 

function rather than as an exponential function typical of non-fractal autocorrelated 

series [12]. 

The task was not performed within a particular scenario, such as one associated with 

sales forecasting. This was to avoid introduction of frame-specific biases, such as 

elevation effects arising from optimism or perceived control [3, 29]. Hence, the vertical 

axes of the graphs used to present the series were unlabelled. However, a numerical 

scale for the vertical axis was provided as shown in Figure 1. 

2.1.3. Design  

Participants were randomly assigned to one of five groups, each of which corresponded 

to one length condition. The experiment used a mixed design in which participants 

made forecasts from four time series of different types, each of which contained 40, 20, 

five, two, or one data point(s) depending on the condition to which they assigned. Thus 

each participant was tested in a specific length condition but experienced all four types 

of series. In other words, each participant made exactly four forecasts. Time series were 

generated uniquely for each participant and the order in which the four different series 

occurred was randomly ordered for each of them. 

2.1.4. Procedure  

Participants performed the task one at a time on a computer. No other participants 

were present in the room but the experimenter (ZT) was available to answer questions. 

They read a short introduction to the study that provided them with instructions for 

their task. They were told that they would see points on graphs that depicted values of a 
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variable over time but given no further information about the time series that they 

would see. They were asked to forecast the next point in each series as accurately as 

possible. They were told that the accuracy of each of their forecasts would be measured 

by its absolute error and that the five participants with the lowest mean absolute error 

scores across all four of their forecasts would receive £5.00. After receiving their 

instructions, they entered their demographic details (age, sex).  

The experiment then began. Series were presented as line graphs. After the end of each 

series, a vertical line was presented in the next time period to indicate where forecast 

had to be made. A forecast was made on this line by moving the mouse. The chosen 

vertical position for the forecast was signified by a blue dot that appeared in the 

position of the cursor when the mouse was clicked. This dot was linked with a blue line 

with the last data point of the graph. Once a forecast had been made in this way, the 

next data series appeared. Participants were not given immediate feedback regarding 

the quality of their forecasts. The experiment took approximately 10 minutes to 

complete. 

When projected data points were fewer than 40 (i.e. L = 20, L = 5, L = 2 and L = 1), a 

label was presented on the screen informing participants that earlier data were not 

available. An example of the task screen with a cyclical series of 20 data points is shown 

in Figure 2. In this figure, we have also depicted the vertical bar on which participants 

made their forecasts.  
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Figure 2. Example of the task with 20 data points of a cyclically trended series and showing the 
vertical bar on which participants made their forecast for the immediate (one step ahead) 
forecast horizon. 

2.2. Results   

For six participants, all four of their forecasts were at least 3 inter-quartile ranges from 

the median of each group. It was clear that they had not understood the task at all or 

were not taking it seriously. Hence, they were removed and replaced by new 

participants drawn from the same pool. This resulted in a total of 150 participants, 

thirty in each length condition.  

To assess H1 and H2, absolute errors were calculated and compared across the five 

length conditions. The base line against which these errors were measured was the 

optimal forecast produced by the equation that generated the series but without the 

random noise component.  

Graphs of MAE against series length (Figure 3) show an inverted U-shape function for 

all series’ types. To examine the significance of these effects, we carried out separate 

one-way analyses of variance (ANOVA) with polynomial contrasts on the MAE data for 

each series type. Here and later, Welch tests were performed to examine whether the 
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homogeneity of variance assumption had been violated: if it had been, the F-test was 

adjusted accordingly. Independent t-tests were used to follow up results of these 

analyses of variance. When variance across groups in these tests was heterogeneous, 

Games–Howell post hoc tests were used. For the rest of the cases, Bonferroni 

corrections were applied.  

 

Figure 3. Graphs of mean absolute error (together with standard error bars) against series 
length for the four different types of series: a) linearly trended, b) cyclically trended, c) fractal, 
and d) linear autoregressive. 

For the linearly trended series, there was a main effect of length across groups (F (4, 

70.75) = 4.78; p < 0.05). Absolute error again described an inverted U-shape function. 

Polynomial contrasts showed the quadratic component to be significant (p < 0.05). The 

error was lower for long lengths (L = 40) and increased as length decreased (L = 20) 

until it reached its maximum value for L = 5. Then, it decreased again for shorter lengths 

(L = 2 and L = 1). Independent two-sample t-tests, with Games-Howell corrections, were 

used to compare participants’ predictions among the ten different pairs of lengths. Two-

a) (b) 

(c) (d) 
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tailed tests (p < 0.05) showed that a very short length (L = 1) produced higher accuracy 

than the medium length (L = 5) but no other differences between specific length 

conditions were significant. 

For the cyclical series, there was a main effect of length across groups (F (4, 66.57) = 

15.88; p < 0.001). Absolute error described an inverted U-shape function. Polynomial 

contrasts analysis showed the linear and quadratic component to be significant (p < 

0.001). The error was lower for long lengths (L = 40) and increased as length decreased 

(L = 20) until it reached its maximum value for L = 2. Then, it decreased again for length 

L = 1. Independent two-sample t-tests, with Games-Howell corrections, were used to 

compare participants’ predictions among the ten different pairs of lengths. Two-tailed 

tests showed significant differences in MAE between the predictions for 40-5, 40-2, 40-

1, 20-5, 20-2, 20-1 (p < 0.05); in all other cases, differences were not significant.  

For the autoregressive series, there was a main effect of length across groups (F (4, 

71.67) = 5.05; p < 0.001). Absolute error again described an inverted U-shape function. 

Polynomial contrasts showed the quadratic component to be significant (p < 0.001). The 

error was lower for long lengths (L = 40) and increased as length decreased (L = 20) 

until it reached its maximum value for L = 5. Then, it decreased again for shorter lengths 

(L = 2 and L = 1). Independent two-sample t-tests, with Games-Howell corrections, were 

used to compare participants’ predictions among the ten different pairs of lengths. Two-

tailed t-tests (p < .05) showed significant differences in MAE between the predictions 

for 40-5 and 5-1 but no other differences between specific length conditions attained 

significance.  

For the fractal series, the ANOVA revealed a main effect of length across groups (F (4, 

71.39) = 4.14; p < 0.025). Polynomial contrasts analysis showed the linear and 
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quadratic components to be significant (p < 0.05). The error was lower for long lengths 

(L = 40) and increased as length decreased (L = 20) until it reached its maximum value 

for L = 5. Then, it decreased again for shorter lengths (L = 2 and L = 1). Independent 

two-sample t-tests showed significant two-tailed differences for errors between the 

predictions for L = 5 and L = 1 (p < 0.025); in all other cases, no significant differences 

occurred.  

For all series types, these analyses are consistent with our second hypothesis (H2) that 

the relation between forecast accuracy and series length is non-linear: for each of the 

four types of time series, the contrasts analysis showed the quadratic component to be 

significant. The analyses also show that the very short series length (L = 1) produced 

higher forecast accuracy than the medium length (L = 5).  As the same inverted U-

shaped relation between forecast accuracy and series length was obtained for all series 

types, there was no evidence for H1. 

2.3. Discussion 

For all series types, forecast error was related to series length via an inverted U-shaped 

function rather than via the U-shaped function predicted by the effects of information 

load. Thus MAE was low for long series (L = 40), increased as series length decreased (L 

= 20), took a maximum value for L = 5 (L = 2 for cyclically trended series), and then 

decreased again for L = 1 and L = 2 (L = 1 for cyclically trended series). This finding 

appears robust in that it holds for series containing a variety of different patterns  

These results are consistent with those of Andersson et al [1]. They found that MAE was 

higher when series had five points than when they had 10 or 15 points. They are also 

consistent with results reported by Wagenaar and Timmers [52]: they found that, with 

very short series (three, five, or seven points), forecasts were more accurate with 



15 
 

shorter series. Thus, apparently conflicting findings showing that accuracy decreases 

with longer series [52] and that it increases with longer series [1] can be reconciled 

taking the values over which series length was varied into account and recognizing that 

there is an inverted U-shaped function relating forecast error to series length.  

We can make some tentative inferences about the cognitive processes underlying 

forecasting performance. We base our interpretation of our results on dual processing 

models of cognition [5, 6, 24, 47]. In Kahneman’s [24] realisation of this approach, 

System 1 carries out intuitive processing that employs heuristics and that produces 

adequate results with little cognitive effort whereas System 2 carries out deliberative 

processing that produces much better results with much more cognitive effort.  

Judgmental forecasts may be produced by heuristics that are independent of the long-

term pattern in the data series. The naïve forecast is one such heuristic: it can be used 

when data series comprise a single data point or when they contain many data points. 

Alternatively, forecasts may be produced by extrapolating from patterns extracted from 

the series.  This is likely to involve deeper deliberative processing. 

When no pattern information can be extracted from series because they are too short, 

forecasters have no alternative but to use heuristic approaches. We know that heuristic 

processing can be impaired by provision of more information: this is known as the less-

is-more effect and has been well-documented [e.g.,]. Thus, if heuristic methods are used 

to forecast from very short series (L = 1), we would expect them to perform less well as 

series lengthen somewhat (L = 2).  As series lengthen further, there is increasing 

likelihood that pattern information can be used for forecasting. For fairly short series 

(e.g., L = 5), it is unlikely that any deliberative pattern extraction performs much better 

than heuristic approaches. However, further lengthening of the series (L = 20; L = 40) 
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allows pattern extraction to become increasingly effective. As a result of the switch from 

heuristic to deliberative processing as series length increases, the observed inverted U-

shaped curve relating forecast error to series length is obtained. 

Moritz, Siemsen and Kremer [38] have also argued that dual process theories are 

applicable to judgmental forecasting from time series. Participants were presented with 

series comprising 30 periods (Studies 1 and 3) or 76 periods (Study 2). These series 

lengths are within the range that we would expect to be processed deliberatively by 

pattern extraction. Moritz et al showed that forecasters who scored highly on a 

cognitive reflection test that measures components of deliberative processing produced 

forecasts with lower MAE scores. Thus their results support our contention that 

forecasts made from longer series (> 20 periods) are made by deliberative processing.  

Overall, these results indicate that the conflict between Wagenaar and Timmers [49] 

findings and Andersson et al’s [1] findings arose because they examined series covering 

different ranges of lengths (H2) rather than because they examined series of different 

levels of complexity (H1).  

Our results are not consistent with those of Lawrence and O’Connor [30]. However, 

their experiment differed from that of Wagenaar and Timmers [52] and from our own in 

a number of ways. For example, they calculated the accuracy of forecasts by averaging 

over four horizons whereas we examined MAE only for the forecast for the most 

immediate horizon. It is possible that MAE of the forecast for the immediate horizon and 

MAE of forecasts for more distant horizons are differentially affected by the length of 

the data series. We examine this possibility in the next study.     
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3. Study 2 

The first study was able to reconcile the apparently conflicting results of Andersson et al 

[1] and Wagenaar and Timmers [52]: the former compared longer series drawn from 

that part of the inverted U-shaped curve where error decreased with increasing length 

whereas the latter compared shorter series drawn from that part of the curve where 

error decreased with decreasing length. However, Lawrence and O’Connor’s [30] results 

remain anomalous: they used longer series but found that error decreased with 

decreasing length.  

We mentioned above that, in contrast to the other studies, Lawrence and O’Connor [30] 

averaged error scores across four horizons. It is possible that, had they reported data 

only for the most immediate (first) horizon, their results would have been similar to 

those of Andersson et al [1]. However, for this to happen, results from later horizons 

would have had to have shown the reverse pattern in order to produce the reported 

findings for error scores integrated across all four horizons. This leads us to ask 

whether the inverted U-shaped curve relating error to series length that we found for 

the immediate forecast horizon is maintained or changed (e.g., reversed) for later 

forecast horizons. For example, one possibility is that the minimum accuracy in the U-

shaped curve is shifted to the left for more distant horizons: a minimum accuracy at 

series lengths of 30-40 rather than 5-10 would allow us to reconcile the results 

obtained by Lawrence and O’Connor [30] with all the other findings.  

Thus, our second experiment is similar to the first one, except that participants made 

forecasts for the third rather than for the first forecast horizon. Consequently, for each 

series, there was a larger gap between the last data point and the point for which a 

forecast was required.  
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3.1. Method 

3.1.1. Participants  

One hundred and fifty participants (81 men, 69 women) were recruited from Amazon’s 

Mechanical Turk online pool. Their mean age was 33 years. They were paid 0.5 $ for 

their participation. 

3.1.2. Design and stimulus materials  

Design and stimulus materials were the same as before. However, in this experiment, 

the vertical line indicating where the forecast had to be made was placed in the third 

time period after the last data point. As before, a blue dot appeared in the position of the 

cursor when the mouse was clicked to indicate the position of the chosen forecast.  

3.1.3. Procedure   

This experiment was web-based. The only procedural difference from the previous one 

was that participants were asked to provide a forecast for a more distant horizon (three 

steps-ahead rather than one step-ahead). Figure 4 shows an example of the task screen 

in this experiment. 

 

Figure 4. Example of the task with 20 data points of a cyclically trended series and showing the 
vertical bar on which participants made their forecast for the more distant (three steps ahead) 
forecast horizon.  
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3.2. Results  

Participants whose forecasts were at least 3 inter-quartile ranges from the median of 

each group were removed and replaced. This resulted in a total of 150 participants, 

thirty in each length condition.  

3.2.1. Effects of series length on accuracy  

Graphs of MAE against series length are shown in Figure 5 for each of the four series 

types.  

 

Figure 5. Graphs of mean absolute error (together with standard error bars) against series 
length for the four different types of series: a) linearly trended, b) cyclically trended, c) fractal, 
and d) linear autoregressive. 

For the linearly trended series, there was a main effect of length across groups (F (4, 

71.46) = 14.55; p < 0.001). Polynomial contrasts showed that both the linear and 

quadratic components were significant (p < 0.001). The relation between forecast error 

and series length again described an inverted U-shaped curve with a minimum value at 

L = 5. Independent two-sample t-tests (two-tailed), with Games-Howell corrections, 

(a) (b) 

(c) (d) 
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showed significant differences in MAE between the pairs of lengths 40-5, 40-2, 40-1, 20-

5, and 20-2. 

For the cyclical series, there was a main effect of length across groups (F (4, 68.48) = 

4.80; p < 0 .01). Polynomial contrasts showed the linear component to be significant (p 

< 0.001). Shorter series led to worse forecasts. Independent two-sample t-tests (two-

tailed), with Games-Howell corrections, showed significant differences in MAE only 

between the pairs of lengths 1-4 and 1-5 (p < 0.05). 

For the autoregressive series, there was a main effect of length across groups (F (4, 

70.44) = 5.21; p < .001). Polynomial contrasts showed both linear and quadratic 

components to be significant (p < 0.05). As before, peak MAE was obtained when L = 5. 

Independent two-sample t-tests (two-tailed), with Games-Howell corrections, showed 

significant differences in MAE between for 20-1 and 5-1 (p < 0.05).  

For the fractal series, the ANOVA revealed no main effects of length across groups. 

Polynomial contrasts analysis showed none of the components to be significant.  

3.3. Discussion  

To reconcile Lawrence and O’Connor’s [30] results with our earlier findings and with 

those reported by Andersson et al [1] and Wagenaar and Timmers [52], the relation 

between forecast accuracy and series length would have had to have been radically 

different from how it appeared in Experiment 1. Accuracy would have had to have been 

higher for L = 20 than for L = 40.  

This is not what we found. As Figure 5 shows, results were very similar to those in 

Experiment 1 (Figure 3). MAE scores were numerically highest for L = 5 for the same 

three series types as before (linearly trended, autocorrelated, fractal) but, in this 

experiment, the quadratic component was significant for only the linearly trended and 
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autocorrelated series. For the cyclically trended series, MAE scores failed to drop as 

series length was reduced from L = 2 to L = 1 in the way that they did in Experiment 1: 

instead they maintained the same high value. Otherwise, results were as before. 

In summary, though error levels tended to be considerably higher here than they were 

in Experiment 1 (particularly for linearly and cyclically trended series), the way that 

MAE depended on series length was very similar in the two experiments. There are 

some minor variations but it is clear that the peak MAE did not shift to the left with the 

longer forecast horizon examined here. Such a shift would have allowed us to reconcile 

our results from Experiment 1, Andersson et al [1] results and Wagenaar and Timmers 

[52] results with the findings reported by Lawrence and O’Connor [30]. 

4. General discussion 

Wagenaar and Timmers [52] and Lawrence and O’Connor [30] found that, in contrast 

with forecasts produced by formal methods, judgmental forecasts were more accurate 

when made from shorter series.  Effects of information overload could account for this 

effect [30, 53]. Such effects have been observed in other tasks [2, 22, 40]. 

However, Andersson et al’s [1] finding that judgmental forecasts improved as length of 

data series increased from five to 10 or 15 items is not consistent with the effects of 

information load. Neither are our results. We found forecast error to be related to series 

length via an inverted U-shaped function rather than via the U-shaped function 

predicted by the effects of information load: accuracy dropped as series length 

increased to five items and then increased again as series length rose further. Thus, 

although the relation that we obtained was non-linear (H2), it was the opposite to that 

predicted by the effects of information load.  
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The inverted U-shaped function between forecast error and number of items that we 

found can be explained in terms of a shift from heuristic to systematic processing as the 

number of items in the data series increases. This account is also consistent with the 

findings of Andersson et al [1] and Wagenaar and Timmers [52]. 

With very short series, forecasters cannot extract patterns from the data with any 

degree of confidence. To produce a forecast, they have no choice but to fall back upon a 

heuristic that does not depend on ability to extract patterns from the data. One such 

heuristic is the naïve forecast. Studies in many domains have shown that the naïve 

forecast is not out-performed by forecasts produced by much more complex formal 

methods [15, 46]. It is the only approach that can be used with only a single data point. 

However, when there are two data points available, forecasters can extrapolate from 

the ‘local trend’ [17]: for example, if the last point was 16 and the one before it was 10, 

they could forecast that the next point would be 22.  

With long series, forecasters have sufficient data available to use deliberative 

processing to extract patterns from the data with some degree of confidence. We 

assume that they then use these patterns, in conjunction with their real-world 

knowledge [16, 43] to produce their forecasts. Moritz et al’s [38] findings that ability to 

forecast from these long series is correlated with scores on a test that measures aspects 

of deliberative processing supports this view. 

As with the account of the U-shaped relation between judgment error and amount of 

information, we assume that the quality of systematic processing decreases with less 

information but that the quality of heuristic processing increases with less 

information[25, 48] . Thus, as the length of the series decreases, a point is reached 

where the quality of forecasts produced by pattern extraction is worse than that 
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produced by heuristic processing. Near this point, forecasters shift to heuristic 

processing. Once they have done so, their accuracy increases as the length of the series 

decreases further. The point at which the shift occurs may vary somewhat for different 

types of series. It may not even be a sudden switch in mode of processing. For series 

lengths at which both types of processing perform poorly (because they are too long for 

good heuristic processing and too short for good systematic processing), forecasts 

obtained by both approaches may be extracted and then integrated. 

Finally, we should mention that dual process theories have been criticized [26, 28]. This 

is primarily because the two systems are characterized not just by a dichotomy between 

intuitive and deliberative processing but also by a number of other dichotomies, such as 

emotional/logical, automatic/controlled, exemplar-based/rule-based, and so on. Dual 

system theory requires that these dichotomies are aligned: for example System 1 

processing is not only intuitive but also emotional, automatic, and exemplar-based. Such 

alignment seems to stretch credibility: for example, it is unlikely that all intuitive 

processing is emotional. Dual process theorists have responded to these critiques [7]. 

From our perspective, this debate is not of crucial importance. We have made a 

distinction between intuitive and deliberative processing and, for explanatory purposes, 

we have embedded this distinction within Kahneman’s [24] dual system model. 

However, our distinction does not depend on our accepting that model. It can be treated 

in a stand-alone fashion. Seen in this way, it is not susceptible to the above criticisms of 

dual system theory. 

4.1 Results in the context of other areas of statistical judgment 

We have focussed on the use of judgment to make forecasts from time series. However, 

this type of task is part of a larger research domain: statistical judgment. This is broadly 
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concerned with the quality of people’s judgment when they make estimates of means, 

variances, autocorrelations, correlations, frequencies, and other statistical features of 

data. When provided with more data, formal procedures produce estimates that are less 

variable and less biased. Hence, if people operate as intuitive statisticians [41] or as 

‘naïve intuitive statisticians’ [9, 23], they should also make better statistical judgments 

when provided with more data.  

Studies in which people have been presented with data and required to make 

judgments about their means, variances or distributional properties have shown the 

expected effects of sample size in some cases [19, 20] but not in others [21, 32, 33, 34, 

50]. As a result, Pollard [42, p 15] concluded that: “On the basis of these often conflicting 

results, there is insufficient support for the Peterson and Beach idea that descriptive 

tasks can be viewed as tasks on which subjects make inferences that are properly 

influenced by sample size”. 

Our results also indicate that the effect of sample size on judgment approximates what 

would be expected from a ‘naïve intuitive statistician’ in some cases (with relatively 

large samples) but not in others (with relatively small samples). Our suggestion that 

this occurs because people use different modes of processing in the two cases may help 

to reconcile some of the contradictions in the literature on other types of statistical 

judgment. Recently, Tong and Feiler [51] extended the notion of a naïve intuitive 

statistician developed by Fiedler [9] to enable it to account for a number of phenomena 

that are observed in judgmental forecasting from time series. However, their model is 

based on people using a single processing system and it is not clear how it would 

provide a basis for explaining the inverted U-shaped relation between forecast error 

and series length that we obtained. 
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4.2. Limitations 

First, we failed in our attempt to reconcile Lawrence and O’Connor’s [30] findings with 

our own and with those reported by Andersson et al [1]. Like us, they presented their 

participants with graphical data and they compared performance for series with 20 and 

40 points. Yet they found that the latter was worse than the former whereas we 

obtained the opposite result. There are some procedural differences that may help to 

explain these divergent findings. In Study 2, we excluded one of these procedural 

differences as the source of the conflicting results. However, others remain.  For 

example, we used a variety of series types, including those with high levels of 

autocorrelation, whereas they employed autoregressive moving average series.  

Second, it would be useful to examine a wider range of series lengths. For most series, 

we obtained a peak error with a series length of five periods. However, it is possible that 

error would have been even higher with a series length of 10 or 15 periods. While this 

would still produce a U-shaped function between accuracy and series length and remain 

consistent with our account of that relation, it could have implications for practice 

(discussed below). 

Third, our participants were not practitioner forecasters. However, previous work 

indicates that level of expertise does not increase accuracy in tasks involving 

judgmental forecasting from time series alone [31]. In fact, inverse expertise effects 

have been reported [39, 57]. In any case, we would expect the U-shaped relation to be 

maintained even when overall level of accuracy varies: the quality of System 1 and 

System 2 processing may vary with expertise but the factors affecting both types of 

processing should remain constant.    
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4.3. Implications for practice 

There are occasions when practitioners do need to make forecasts from very short 

series. As we mentioned above, products might be relatively new or data may be 

missing. In fact, Goodwin and Fildes [13] carried out a survey of company forecasting 

behaviour and found that, even when formal methods were used, statistical models 

were often fitted to very short data series (e.g., six points). As a result, they performed 

very poorly and the managers were therefore highly inclined to use their judgment to 

produce final forecasts. 

If around 20 items are available from which to make forecasts, it is worth making an 

effort to increase series length to improve accuracy. (Of course, the cost of the effort 

must be weighed against the benefits accruing from the gain in accuracy.) Increasing 

series length in this range allows better use of System 2 processing. 

If around five items are available and logistics or costs prevent series length from being 

increased to 20 or more, then shortening the series to, say, one item is likely to improve 

accuracy of judgmental forecasts for most series types and not impair it for others. 

Decreasing the series length in this range should facilitate System 1 processing and 

improve forecast accuracy but this is an approach that appears counter-intuitive and 

unlikely to be implemented in practice.  One alternative might be to provide rolling 

averages of the most recent periods to reduce the series length without discarding data. 

Our results also have implications for those forecasters who take the average of 

forecasts produced by judgmental and statistical methods. As we have seen, in the most 

recent survey [13], this approach was adopted by almost one in five respondents. 

Results from the current study imply that the degree to which judgment is weighted in 

that average should depend on the length of series on which forecasts are based. 
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Whereas accuracy of statistical methods increases as length of series increases, 

accuracy of judgmental forecasting initially decreases and later increases as length of 

series increase. This suggests that, for series of intermediate length, the contribution of 

judgmental forecasts to the overall average should be de-emphasized (or, possibly, 

ignored altogether). This is clearly an area for further research.  

5. Conclusion 

Accuracy of judgmental forecasts first decreases and then increases as the length of 

time series increases. We attribute this effect to a switch in processing mode. Patterns 

cannot be reliably extracted from very short series and so forecasters use simple 

heuristic processing to make their forecasts. For longer series, they are able to use more 

systematic pattern extraction processes to produce forecasts. Heuristic processing is 

impaired by more data [25, 48], whereas systematic processing is improved by it.  For 

series of intermediate lengths, neither approach performs well. Hence we observe the 

U-shaped relation between forecast accuracy and series length.   This relation has 

implications for practice: series of intermediate length should be lengthened or 

shortened to increase accuracy of judgmental forecasts; when the average of a 

judgmental forecast and a formal statistical forecast is used as the final forecast, the 

weight given to the former should be reduced when series are of intermediate length.  
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Footnotes 

1. An alternative explanation is that people are more likely to think that the patterns in 

series will change when those series extend over a longer time period. As a result, they 

are more likely to forecast away from points produced by simple extrapolation of the 

existing patterns in the series when the series has already extended over a longer 

period of time. Lawrence and O’Connor [30] liken this to the ‘gamblers’ fallacy’, where 

runs or trends are expected to reverse [56].  However, without elaboration, this 

explanation cannot account for Wagenaar and Timmers’ [52] findings. This is because 

they found the effect for series with different numbers of data points that extended over 

the same total period of time and because they found that varying the total period of 

time had no effect on accuracy. 

2. The reason that performance deteriorates with more information (rather than merely 

failing to improve) is that System 1 processing is automatic: once activated, it cannot be 

inhibited. Hence people cannot ignore the additional information supplied to them even 

though this information impairs their performance.  

3. While complexity can be a subjective construct, more complex series are harder for 

people to process [54] and their description requires more information [8]. On these 

grounds, the linearly trended series can be characterised as the simplest and the non-

linear fractal series as the most complex. The other two types of series fall between 

these extremes. 
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