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ABSTRACT 

Fault detection (FD) has become increasingly important for improving the reliability 

and safety of process systems. This work presents a model-based FD technique for 

nonlinear process systems using parameter estimation. For a system described by 

nonlinear ordinary differential equations (ODEs), estimation of model parameters 

requires solving an optimisation problem such that the residual between the 

measurements and model predicted values of state variables is minimised. However, 

solving an optimisation problem online can be computationally expensive and the 

solution may not converge in a reasonable time. Thus, a method for parameter 

estimation for FD using multiparametric programming (MPP) is proposed. In this 

technique, the nonlinear ODEs model is discretised by using explicit Euler’s method 

to obtain algebraic equations. Then, a square system of parametric nonlinear 

algebraic equations is obtained by formulating optimality condition. These equations 

are then solved symbolically to obtain model parameters as an explicit function of 

the measurements. This allows computation of parameter estimates by simple 

function evaluation. The detection of fault is carried out by monitoring the changes 

in the residual between model parameter estimates and ‘true’ value.  

 The application of the proposed technique for FD is demonstrated on 

evaporator, tank, heat exchanger, fermentation and wastewater treatment systems. In 

a single-stage evaporator, changes in heat transfer coefficient and composition of 

feed are obtained and estimated for FD. In a quadruple-tank system, tank leakage is 

investigated by estimating the cross-section of outlet holes. Fouling in heat 

exchanger is detected where the overall heat transfer coefficient is estimated and the 

fouling resistance is monitored. In demonstrating the technique in relation to the 

fermentation and the wastewater treatment systems, kinetic model parameters are 

estimated for FD. The proposed work successfully estimates the model parameters 

and detects the faults through simple function evaluations of explicit functions. This 

demonstrates the advantages of MPP for FD using parameter estimation to detect 

faults quickly and accurately. In addition, a comparison of the implicit Euler’s 

method and explicit Euler’s method for discretisation of nonlinear ODEs model for 
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parameter estimation using MPP is presented. Complexity of implicit parametric 

functions, accuracy of parameter estimates and effect of step size are discussed. 
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IMPACT STATEMENT 

Fault detection is an essential element in process monitoring which is gaining 

importance in the current worldwide discussion. If the faults are not properly 

handled, they can lead to consequences ranging from failures to meet product quality 

specifications to plant shutdowns, incurring substantial economic losses, as well as 

safety hazards to facilities, personnel and environment. A few incidents in aircraft 

flight provide evidence for the need for FD. Delta Flight 1080, American Airlines 

DC-10 and EL AL Flight 182, a Boeing 747-2007 freighter, are examples of 

incidents that could have been avoided. In nuclear power industries, the Three Mile 

incident and the tragedy at the Chernobyl nuclear power plant led to intensified 

research in diagnostics and fault-tolerant control. FD is now attracting more and 

more attention in a wider range of industrial and academic communities. This is due 

to increased safety and reliability demands beyond what a conventional system can 

offer. Thus, this work has developed model-based parameter estimation for FD using 

MPP to develop an efficient and timely response for FD. This work has improved 

accuracy and speed of parameter estimation in FD by obtaining model parameters as 

an explicit function of measurements.  

The outcome of this work intends to give future directions for academic 

research and developments in the area of FD using MPP. The proposed parameter 

estimation approach can be further researched for large-scale process systems to 

estimate the faulty process parameters. The methodology presented in this work can 

also be implemented in industrial systems. Results from parameter estimation using 

MPP can be used in planning for automated FD and tolerant control systems. 

Automated FD and tolerant control can reduce maintenance costs due to early FD 

and prevention and better schedule of maintenance services and inspections. The 

benefits brought by application of FD technique are longer equipment life, better 

service, reduced service cost and better environmental protection. The research in 

the area of FD could reduce operating costs over many years. 

  



6 

 

DISSEMINATION 

Journal Publications 

CHE MID, E. & DUA, V. 2017. Model-Based Parameter Estimation for Fault 

Detection Using Multiparametric Programming. Industrial and Engineering 

Chemistry Research, 56, 8000-8015. 

CHE MID, E. & DUA, V. 2018. Fault Detection in Wastewater Treatment Systems 

Using Multiparametric Programming. Processes, 6, 231. 

CHE MID, E. & DUA, V. 2019. Parameter estimation using multiparametric 

programming for implicit Euler’s method based discretization. Chemical 

Engineering Research and Design, 142, 62-77. 

 

Conference Proceeding 

MID, E.C. and DUA, V. 2018. Fault detection of fermentation processes, Computer 

Aided Chemical Engineering. 43, 1171-1176 

 

Oral and Poster Presentations 

CHE MID, E. & DUA, V. Model-based fault tolerant control of process systems. 

ChemEngDayUK 2015, University of Sheffield, 8 – 9 April 2015, Poster 

Presentation.  

CHE MID, E. & DUA, V. Design of a model-based fault tolerant control for 

nonlinear process systems. ChemEngDayUK 2016, University of Bath, 31 March – 

1 April 2016, Poster Presentation.  

CHE MID, E. & DUA, V. Model-based fault tolerant control for nonlinear process 

systems. PSE@ResearchDayUK 2016, Imperial College London, 12 July 2016, 

Poster Presentation.  



7 

 

CHE MID, E. & DUA, V. Model-based fault detection for nonlinear process 

systems. 2016 AIChE Annual Meeting, Hotel Nikko San Francisco, 13 – 18 

November 2016, Oral Presentation. 

CHE MID, E. & DUA, V. Fault detection using multiparametric programming for 

nonlinear process systems. PSE@ResearchDayUK 2017, Imperial College London, 

27 June 2017, Poster Presentation.  

CHE MID, E. & DUA, V. Model-Based Fault Detection for Nonlinear Process 

Systems Using Multiparametric Programming for Parameter Estimation. 2017 

AIChE Annual Meeting, Minneapolis Convention Center, 29 – 3 November 2017, 

Oral Presentation. 

  



8 

 

ACKNOWLEDGEMENTS 

I would like to express my heartfelt gratitude, first of all to my supervisor, Dr Vivek 

Dua, for his immense contribution towards my PhD programme, through his 

supervision and guidance during the work. Many of the new ideas were developed 

through the discussions and I could never have completed the PhD without his help 

and support. The contributions of the staff at the Department of Chemical 

Engineering are accordingly recognised. I would like to thank my family for their 

constant encouragement, support and attention, and for making me more confident 

in my life. My husband deserves a substantial share of the credit for everything I 

have done. Also, I thank everyone in the group and my friends for creating a 

comfortable environment for me to complete my work. Finally, I would like to 

express my deepest appreciation to my financial sponsor, Ministry of Education 

Malaysia and University Malaysia Perlis, for the scholarship, which allowed me to 

undertake the study. 

 

  



9 

 

TABLE OF CONTENTS 

 

DECLARATION ......................................................................................................... 2 

ABSTRACT ................................................................................................................ 3 

IMPACT STATEMENT ............................................................................................. 5 

DISSEMINATION ...................................................................................................... 6 

ACKNOWLEDGEMENTS ......................................................................................... 8 

TABLE OF CONTENTS ............................................................................................ 9 

LIST OF FIGURES ................................................................................................... 14 

LIST OF TABLES ..................................................................................................... 18 

LIST OF ABBREVIATIONS.................................................................................... 20 

LIST OF SYMBOLS ................................................................................................. 21 

CHAPTER 1 INTRODUCTION ........................................................................... 26 

1.1 Introduction ................................................................................................. 26 

1.2 Aim and Objectives ..................................................................................... 29 

1.3 Thesis Organisation..................................................................................... 30 

CHAPTER 2 LITERATURE REVIEW ................................................................ 32 

2.1 Fault Detection ............................................................................................ 32 

2.2 Model-Based Fault Detection Methods ...................................................... 33 

2.2.1 Observer/Filter-Based Approaches ...................................................... 35 

2.2.2 Parity Relation-Based Approaches ...................................................... 36 



10 

 

2.2.3 Parameter Estimation-Based Approaches ............................................ 37 

2.3 Summary ..................................................................................................... 40 

CHAPTER 3 FAULT DETECTION USING MULTIPARAMETRIC 

PROGRAMMING ..................................................................................................... 41 

3.1 Introduction ................................................................................................. 41 

3.2 General Formulation for Fault Detection using Parameter Estimation ....... 41 

3.2.1 Discretisation of Ordinary Differential Equation ................................ 42 

3.2.2 Fault Detection Problem ...................................................................... 42 

3.3 Parameter Estimation using Multiparametric Programming ...................... 43 

3.4 Fault Detection Analysis ............................................................................. 44 

3.5 Illustrated examples of the proposed method ............................................. 45 

3.5.1 Example 1: First-order irreversible chain reactions ............................. 46 

3.5.2 Example 2: Lotka–Volterra model ...................................................... 50 

3.6 Concluding Remarks ................................................................................... 54 

CHAPTER 4 FAULT DETECTION APPLICATION IN PROCESS SYSTEMS 55 

4.1 Introduction ................................................................................................. 55 

4.2 Single-Stage Evaporator ............................................................................. 55 

4.2.1 Mathematical Model ............................................................................ 56 

4.2.2 Fault Detection Problem ...................................................................... 58 

4.2.3 Parameter Estimate using MPP ........................................................... 59 

4.2.4 Fault-free Scenario ............................................................................... 61 

4.2.5 Faulty Scenario .................................................................................... 63 



11 

 

4.3 Quadruple-Tank System ............................................................................. 66 

4.3.1 Mathematical Model ............................................................................ 67 

4.3.2 Fault Detection Problem ...................................................................... 69 

4.3.3 Parameter Estimation using MPP ........................................................ 69 

4.3.4 Fault-free Scenario ............................................................................... 73 

4.3.5 Faulty Scenario .................................................................................... 75 

4.4 Heat Exchanger ........................................................................................... 77 

4.4.1 Mathematical model ............................................................................ 79 

4.4.2 Fouling Scenario .................................................................................. 81 

4.4.3 Fault Detection problem ...................................................................... 81 

4.4.4 Parameter Estimation using MPP ........................................................ 82 

4.4.5 Clean Heat Exchanger Scenario .......................................................... 85 

4.4.6 Fouling Heat Exchanger Scenario ....................................................... 89 

4.5 Glutamic Acid Fermentation Process ......................................................... 91 

4.5.1 Mathematical Model ............................................................................ 92 

4.5.2 Fault Detection Problem ...................................................................... 94 

4.5.3 Parameter Estimate using MPP ........................................................... 95 

4.5.4 Fault-free Scenario ............................................................................... 96 

4.5.5 Faulty Scenario .................................................................................... 99 

4.6 Wastewater treatment system.................................................................... 102 

4.6.1 Mathematical Model .......................................................................... 103 



12 

 

4.6.2 Fault Detection Problem .................................................................... 106 

4.6.3 Parameter Estimate using MPP ......................................................... 107 

4.6.4 Fault-free Scenario ............................................................................. 110 

4.6.5 Faulty Scenario .................................................................................. 115 

4.7 Concluding Remarks ................................................................................. 118 

CHAPTER 5 PARAMETER ESTIMATION FOR SYSTEM 

DISCRETISATION USING IMPLICIT EULER’S METHOD .............................. 119 

5.1 Introduction ............................................................................................... 119 

5.2 Discretisation of Ordinary Differential Equation...................................... 119 

5.3 Parameter Estimation using Multiparametric Programming .................... 120 

5.4 Illustrated examples of the proposed method ........................................... 120 

5.4.1 Example 1: First-order irreversible chain reaction ............................ 121 

5.4.2 Example 2: Lotka–Volterra model .................................................... 126 

5.4.3 Example 3: Single-stage evaporator .................................................. 132 

5.5 Concluding Remarks ................................................................................. 142 

CHAPTER 6 CONCLUDING REMARKS AND FUTURE DIRECTIONS ...... 143 

6.1 Concluding Remarks ................................................................................. 143 

6.2 Contribution to Knowledge ....................................................................... 144 

6.3 Future Directions....................................................................................... 145 

REFERENCES ........................................................................................................ 147 

APPENDIX A: ARTIFICIAL NEURAL NETWORK-BASED FORMULATION

 ................................................................................................................................. 158 



13 

 

APPENDIX B: RUNGE-KUTTA FOURTH-ORDER FORMULATION ............. 160 

 



14 

 

LIST OF FIGURES 

Figure 1.1 Parameter estimation using online optimisation approach ....................... 28 

Figure 1.2 Multiparametric programming ................................................................. 29 

Figure 1.3 Fault detection using multiparametric programming ............................... 30 

Figure 2.1 Two-stage structure of FD processes (Patton et al., 1995) ....................... 34 

Figure 3.1 State variables profile for 1z  and 2z  ........................................................ 49 

Figure 3.2 Estimated model parameter, 1 , for different step sizes, t  ................... 49 

Figure 3.3 Estimated model parameter, 2 , for different step sizes, t  ................... 49 

Figure 3.4 State variables profile for 1z  and 2z  ........................................................ 53 

Figure 3.5 Estimated model parameter, 1 , for different step sizes .......................... 53 

Figure 3.6 Estimated model parameter, 2 , for different step sizes .......................... 53 

Figure 4.1 Evaporator configuration and notation ..................................................... 57 

Figure 4.2 State variables profile, W , for fault-free scenario .................................... 61 

Figure 4.3 State variables profile, T , for fault-free scenario ..................................... 62 

Figure 4.4 Estimated model parameters, UA , for fault-free scenario ....................... 62 

Figure 4.5 Estimated model parameters, Fx , for fault-free scenario ........................ 62 

Figure 4.6 Residual of estimated model parameters, UA , for fault-free scenario ..... 63 

Figure 4.7 Residual of estimated model parameters, Fx , for fault-free scenario ...... 63 

Figure 4.8 State variables profile, W , for faulty scenario using ANN formulation .. 64 



15 

 

Figure 4.9 State variables profile, T , for faulty scenario .......................................... 65 

Figure 4.10 Estimated model parameters, UA , for faulty scenario ........................... 65 

Figure 4.11 Estimated model parameters, Fx , for faulty scenario ............................ 65 

Figure 4.12 Residual of estimated model parameters, UA , for faulty scenario ........ 66 

Figure 4.13 Residual of estimated model parameters, Fx , for faulty scenario ......... 66 

Figure 4.14 Quadruple-tank process .......................................................................... 68 

Figure 4.15 State variables profile, 
pH , for fault-free scenario ................................ 74 

Figure 4.16 Estimated model parameters, 
pa , for fault-free scenario ........................ 74 

Figure 4.17 Residual of estimated model parameters, 
pa , for fault-free scenario ..... 75 

Figure 4.18 State variables profile, pH , for faulty scenario ..................................... 76 

Figure 4.19 Estimated model parameters, 
pa , for faulty scenario ............................. 77 

Figure 4.20 Residual of estimated model parameters, 
pa , for faulty scenario .......... 77 

Figure 4.21 Decomposition of the heat exchanger in two sections ........................... 81 

Figure 4.22 Inlet measurements to the heat exchanger .............................................. 87 

Figure 4.23 Outputs measurements of the clean exchanger (a) 2hT , the hot fluid 

temperature in section 2 (b) 2cT , the cold fluid temperature in section 2 .................. 87 

Figure 4.24 State variables profile of the clean exchanger (a) 1hT , the hot fluid ....... 88 

Figure 4.25 Estimated model parameter value for the clean heat exchanger scenario

 ................................................................................................................................... 88 

Figure 4.26 Estimated fouling factor, 
fR , for the clean heat exchanger scenario .... 88 



16 

 

Figure 4.27 Outputs measurements of fouling exchanger (a) 2hT , the hot fluid 

temperature in section 2 (b) 2cT , the cold fluid temperature in section 2 .................. 90 

Figure 4.28 State variables profile of fouling exchanger (a) 1hT , the hot fluid 

temperature in section 1 (b) 1cT , the cold fluid temperature in section 1 .................. 90 

Figure 4.29 Estimated model parameter value for fouling heat exchanger scenario . 90 

Figure 4.30 Estimated fouling factor, 
fR , for fouling heat exchanger scenario ....... 91 

Figure 4.31 Batch fermentation diagram ................................................................... 92 

Figure 4.32 State variables profile of concentration in fault-free scenario ............... 97 

Figure 4.33 Estimated model parameters for fault-free scenario (a) Maximum 

growth rate of the biomass, m  (b) Yield coefficient of product, PY  ........................ 98 

Figure 4.34 Residual evaluation of estimated model parameters for fault-free 

scenario (a) Maximum growth rate of the biomass, m  (b) Yield coefficient of 

product, PY  ................................................................................................................. 98 

Figure 4.35 State variables profile of concentrations in faulty scenarios ................ 100 

Figure 4.36 Estimated model parameters for faulty scenarios (a) Maximum growth 

rate of the biomass, m  (b) Yield coefficient of product, PY ................................... 101 

Figure 4.37 Residual evaluation of estimated model parameters for faulty scenarios 

(a) Maximum growth rate of the biomass, m  (b) Yield coefficient of product, PY

 ................................................................................................................................. 101 

Figure 4.38 The sequencing batch reactor stages .................................................... 104 

Figure 4.39 State variables profile for fault-free scenario ....................................... 112 



17 

 

Figure 4.40 Estimated model parameters for fault-free scenario (a) Concentration of 

substrate in the inflow, 
incS , (b) Inhibition coefficient, iK , and (c) Specific growth 

rate, o  .................................................................................................................... 113 

Figure 4.41 Residual of estimated model parameters for fault-free scenario (a) 

Concentration of substrate in the inflow, 
incS , (b) Inhibition coefficient, iK , and (c) 

Specific growth rate, o  .......................................................................................... 114 

Figure 4.42 Estimated model parameter, 
incS , for faulty scenario 1 ....................... 116 

Figure 4.43 Residual of the estimated model parameter, 
incS , for faulty scenario 1

 ................................................................................................................................. 116 

Figure 4.44 Estimated model parameter, iK , for faulty scenario 2 ......................... 116 

Figure 4.45 Residual of the estimated model parameter, iK , for faulty scenario 2 117 

Figure 4.46 Estimated model parameter, o , for faulty scenario 3 ......................... 117 

Figure 4.47 Residual of the estimated model parameter, o , for faulty scenario 3 117 

Figure 5.1 Estimated model parameter, 1 , for different step sizes, t  ................. 124 

Figure 5.2 Estimated model parameter, 2 , for different step sizes, t  ................. 125 

Figure 5.3 Estimated model parameter, 1 , for different step sizes, t  ................. 130 

Figure 5.4 Estimated model parameter, 2 , for different step sizes, t  ................. 130 

Figure 5.5 State variables profile for holdup, W  ..................................................... 138 

Figure 5.6 State variables profile for temperature, T  .............................................. 138 

Figure 5.7 Estimated model parameter, UA , for different step sizes, t  ............... 139 

Figure 5.8 Estimated model parameter, Fx , for different step sizes, t  ................ 139 



18 

 

 

LIST OF TABLES 

Table 2.1 Parameter estimation in FD application .................................................... 38 

Table 3.1 Parameter estimation using the MPP algorithm ........................................ 45 

Table 4.1. Model parameters for the single-stage evaporator system ....................... 57 

Table 4.2. Faulty scenario for a single-stage evaporator system ............................... 64 

Table 4.3. Model parameters for the quadruple-tank system .................................... 68 

Table 4.4. Faulty scenario for the quadruple-tank system ......................................... 76 

Table 4.5. Parameters of the heat exchanger model .................................................. 86 

Table 4.6. Model parameters for glutamic acid fermentation ................................... 93 

Table 4.7 Faulty scenarios for glutamic acid fermentation ....................................... 99 

Table 4.8. Model parameters for wastewater treatment process reaction ................ 105 

Table 4.9. Faulty scenario for the wastewater treatment system ............................. 115 

Table 5.1. Parameter estimation using MPP algorithm ........................................... 120 

Table 5.2. Comparison of the estimated model parameters, 1  for step size 0.01t 

 ................................................................................................................................. 125 

Table 5.3. Comparison of the estimated model parameters, 2  for step size 0.01t 

 ................................................................................................................................. 126 

Table 5.4. Comparison of the estimated model parameters, 1  for step size 0.01t 

 ................................................................................................................................. 131 



19 

 

Table 5.5. Comparison of the estimated model parameters, 2  for step size 0.01t 

 ................................................................................................................................. 131 

Table 5.6. Comparison of the estimated model parameters, UA  for step size    

0.05t   ................................................................................................................. 140 

Table 5.7. Comparison of the estimated model parameters, Fx  for step size 

0.05t   ................................................................................................................. 141 

  

  



20 

 

LIST OF ABBREVIATIONS 

  

ANN Artificial Neural Network 

EKF Extended Kalman Filter 

FD Fault Detection  

GAMS General Algebraic Modeling System 

HVAC Heating, Ventilation and Air Conditioning 

iPDA Iterated Principal Differential Analysis 

KKT Karush-Kuhn-Tucker  

LS Least Squares 

LS-SVM Least Squares Support Vector Machines 

MPC Model Predictive Control 

MPP Multiparametric Programming 

NLP Nonlinear Programing 

NN Neural Networks  

ODE Ordinary Differential Equations  

PCA Principal Component Analysis  

PDA Principal Differential Analysis  

RK Runge-Kutta 

SVM Support Vector Machine  

WWT Wastewater Treatment  



21 

 

LIST OF SYMBOLS 

Roman Symbols 

Symbol Description  Unit 

pa  Cross-section of the outlet holes for tank p   cm
2
 

A  Area of heat transfer m
2
 

cA  Heat transfer area in cold fluid m
2
 

hA  Heat transfer area in hot fluid m
2
 

pA  Cross-section of tank p  cm
2
 

b  Endogenous respiration coefficient h
-1

 

cc  Specific heat in cold fluid J/(kg K) 

hc  Specific heat in hot fluid J/(kg K) 

pC
 

Heat capacity of the solution kJ/(kg ˚C) 

cE  Constant kg/min 

af  Actuator fault  

cf  Process fault  

sf  Sensor fault  

f  Fault  

F  Feed flow rate kg/min 

g  Acceleration of gravity cm / s
2
 

ch  Convection heat transfer coefficients for the cold fluid W/(m
2
 K) 

hh  Convection heat transfer coefficients for the hot fluid W/(m
2
 K) 

jh  Discretisation of nonlinear algebraic equations for each j   



22 

 

VH  Heat of vaporisation of the solvent kJ/kg 

pH  Height of water levels in the tank p   cm 

ˆ
pH  Measurement values of pH  cm 

i  Time point  

j
 State variable number of ODEs system   

Lak  Oxygen mass transfer coefficient h
-1

 

1k  Yield coefficient of the substrate to biomass  

2k  Yield coefficient of oxygen to biomass  

iK  Inhibition coefficient g/l 

sK  Half saturation coefficient g/l 

L  Lagrange function  

m  Maintenance coefficient of the biomass 0.105 h
-1

 

cm  Mass flow rate of the cold fluid kg s
−1

 

hm  Mass flow rate of the hot fluid kg s−1 

cM  Mass of the cold fluid kg 

hM  Mass of the hot fluid kg 

1n ; 2n  Rate constant parameter  1,2  

p
 Number of tank  

P
 

Concentration of product g/l 

P̂
 

Measurement values of P  g/l 

inq
 Inlet flow rate g/l 

LQ  Rate of heat loss to the surroundings kJ/min 

r  Residual  



23 

 

r  Vector of r   

fR  Fouling resistance m
2 

K/W 

S  Concentration of substrate g/l 

cS
 Concentrations of organic matter g/l 

incS
 

Concentration of substrate in the inflow g/l 

oS
 Concentration of dissolved oxygen g/l 

inoS  Concentration of dissolved oxygen in the inflow g/l 

soS  Dissolved oxygen mass at saturation g/l 
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CHAPTER 1 INTRODUCTION 

 

1.1 Introduction 

Safety and reliability play a vital role in process systems. Safety is defined as the 

ability of a system not to cause danger to a person, equipment or the environment, 

and reliability is the ability of a system to perform a required function under stated 

conditions within a given scope during a given period of time (Isermann and Ballé, 

1997). A conventional feedback control system has the primary design goal to 

achieve system stability and performance with all components functioning normally. 

Most conventional control design techniques do not consider scenarios for potential 

system component faults. With recent developments in technology moving towards 

greater complexity and automation, if a malfunction occurs the conventional control 

may result in unsatisfactory performance or instability. Without proper action, even 

a minor error may lead to destructive consequences. These issues provide the 

motivation to develop an efficient and timely response to detect faults and accurately 

locate the faulty equipment so that corrective action can be taken before the faults 

turn into a catastrophic failure.  

Faults can result in fatal damages and economic losses if they the  properly. 

In general, the fault is something that changes the behaviour of a system such that 

the system no longer satisfies its purpose. It may be an internal event in the system 

which stops the power supply, breaks an information link or creates a leak in a pipe. 

It may be a wrong control action given by the human operator that brings the system 

out of the required operations point, or it may be an error in the design of the system 

which remains undetected until the system reaches a certain operation point where 

this error reduces the performance considerably. Fault in terminology for control 

systems can be defined as an unpermitted deviation of at least one characteristic of a 

variable from an acceptable behaviour (Isermann and Ballé, 1997). Meanwhile, 

failure is a permanent interruption of a system's ability to perform a required 

function under specified operating conditions, and malfunction is an intermittent 

irregularity in the fulfilment of a system's desired function (Isermann and Ballé, 
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1997). In any case, the fault is the primary cause of changes in the system’s structure 

or parameters that eventually leads to degrading system performance or even loss of 

the system function. In large systems, every component has been designed to 

accomplish a certain function and the overall system works satisfactorily only if all 

the components provide the service for which they are designed. Therefore, a fault in 

a single component may change the performance of the overall system. In order to 

avoid production deterioration or damage to machines and humans, faults have to be 

identified as quickly as possible and decisions that stop the propagation of their 

effects have to be made. Hence, process monitoring and FD are becoming 

ingredients of modern automation control systems. These considerations provide a 

strong motivation for this work to research the development of FD in order to 

improve safety and reliability (Isermann, 1997). 

This work focus solely on model-based FD method. This approach utilises a 

mathematical model of the process in order to detect a fault by utilising the concept 

of analytical redundancy. Analytical redundancy techniques are more cost-effective 

compared with hardware redundancy but more challenging due to environmental 

noise/disturbance and modelling errors. Analytical redundancy is achieved through a 

comparison between measured signals with its estimation from the mathematical 

model of the system. Hence, the basic idea in a model-based FD scheme is to 

compare the available system measurements with a priori information represented by 

the system's mathematical model through the generation of residual quantities. In the 

residual evaluation, an evaluated residual is compared with a threshold, and a fault 

existence decision is made if the residual exceeds the threshold (Frank, 1996, 

Isermann, 2005). The existing model-based FD techniques are based on an observer-

based, a parity relation, a parameter estimation approach, or a combination of the 

three (Venkatasubramanian et al., 2003c, Hwang et al., 2010, Dai and Gao, 2013, 

Gao et al., 2015). The observer-based FD is a widely used technique in FD. The 

basic idea of the observer approach is to estimate the outputs of the system from the 

measurements by using some type of observer and then construct the residual by 

using an output estimation error (Mhaskar et al., 2006, Mhaskar et al., 2008, Du and 

Mhaskar, 2014). The parity relation approach uses the parity check on the 

consistency of the parity equation to generate residuals (parity vector). The 
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inconsistency in the parity relations indicates the presence of faults (Chow and 

Willsky, 1984, Gertler, 1988, Gertler, 1997).  

On the other hand, the parameter estimation approach is based on the 

assumption that the faults are reflected in the physical system parameters and only 

the model structure needs to be known (Isermann, 1993, Huang, 2001, Garatti and 

Bittanti, 2012). The parameter estimation approach is straightforward if the model 

parameters have an explicit mapping with physical coefficients. In this method, the 

parameters of the actual process are repeatedly estimated online, and the results are 

compared with the reference model. The most common method in parameter 

estimation is the least square (LS) method, which is more practical for the linear 

system. However, for the nonlinear system, the parameter estimation method 

requires the solving of an online optimisation problem to estimate the model 

parameters by minimising an error function given by the sum of the squares of the 

difference between the observed data and the model predictions (Englezos and 

Kalogerakis, 2001), as shown in Figure 1.1. The key limitation, these methods are 

computationally expensive to implement for the online FD method due to the 

repetitive solution of optimisation problems at regular time intervals (Dua, 2011, 

Dua and Dua, 2011). The solution of an online optimisation problem is also time-

consuming; and, the solution may not converge in a reasonable amount of time. To 

overcome this problem, the parameter estimates for FD using MPP are presented.  

 

Figure 1.1 Parameter estimation using online optimisation approach 
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MPP is an optimisation method to obtain the performance criterion and 

optimisation variables as a function of a parameter which valid over a specific 

region in the parameter space (Pistikopoulos, 2009, Pistikopoulos et al., 2002). The 

main advantage of using the MPP method is that the online optimisation problem is 

solved using simple function evaluations to measure the related optimisation 

variables, as shown in Figure 1.2. Thus, multiparametric programming solved the 

computationally expensive and time-consuming issues due to the repetitively solving 

an optimisation problem. 

 

Figure 1.2 Multiparametric programming 

 

1.2 Aim and Objectives 

The main aim of the research is to develop a novel approach for FD using offline 

parameter estimation for process systems that can accurately estimate the online 

model parameters as fast as possible.  Accuracy and speed are vital to avoid false-

positive in identify faults and detect quickly enough to enable corrective actions to 

be taken promptly. Thus, the new algorithm for FD using MPP is proposed. There 

are two main reasons for using MPP method to detect the fault using the parameter 

estimation approach. First, MPP provides the optimisation variables as an explicit 

function of the parameter. Hence, in this work, model parameters are considered as 

optimisation variables and the measurements as the parameters as shown in Figure 

1.3. Second, the computational burden of the online optimisation problem is solved 

where the model parameter is evaluated as a set of explicit functions of the 

measurements. This approach provides a significant advancement in the solution of 

the optimisation problem and online implementation of FD using parameter 

estimation problems.  
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The specific objectives of this research are as follows:  

(i) to develop a parameter estimation algorithm for the model-based FD method 

using MPP 

(ii) to demonstrate the applicability of the parameter estimation algorithm using 

MPP for model-based FD applications 

(iii) to evaluate the influence of the discretisation of nonlinear ODEs in the MPP 

algorithm  

 

 

Figure 1.3 Fault detection using multiparametric programming 

 

1.3 Thesis Organisation 

The rest of the thesis is outlined as follows:  

Chapter 2 gives an overview of the research work on FD, followed by a discussion 

on model-based FD techniques in the observer, parity relation and parameter 

estimation method. 

Chapter 3 presents a detailed methodology of parameter estimation using MPP. 

This chapter will also verify the proposed method using two examples and 

demonstrate the effectiveness of the proposed approach. 
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Chapter 4 discusses the application of FD using MPP in process systems. Five cases 

are presented which are the single-stage evaporator, quadruple tank, heat exchanger, 

fermentation and wastewater treatment systems. In each case, the related parameter 

faults are discussed and obtained as a parametric function using MPP. A number of 

faulty and fault-free scenarios are considered to show the effectiveness of the 

parameter estimation using MPP. 

Chapter 5 presents an influence of the discretisation method of ODEs to be work in 

parameter estimation using MPP. In this chapter, implicit Euler's method is 

presented and the applicability of this method is demonstrated in three examples. 

The results of the complexity of implicit parametric functions, the accuracy of 

parameter estimates and the effect of step size are discussed with comparison to 

explicit Euler’s method. 

Chapter 6 summarises the main findings of this research and proposes areas of 

future work. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Fault Detection 

FD is an active area of research which began in the early 1970s, with different 

approaches having been proposed since then. Early research into FD relies on limit 

checking of a directly measured variable. FD can be achieved by monitoring and 

checking the measured variable of a process if its absolute values or trends exceed 

certain thresholds. The process is in a normal situation if the monitored variable 

stays within a certain tolerance limit; if it exceeds the thresholds, this then indicates 

a fault in the process (Patton et al., 1995, Isermann, 2006). The significant advantage 

of the classical limit checking FD method is its simplicity and reliability. However, 

the situation becomes more complicated if the measured variable of a process 

changes rapidly. In the case of closed loops, changes in the process are covered by 

control actions and cannot be detected from the output signals, as long as the 

manipulated process inputs remain in the normal range. Therefore, feedback systems 

hinder the early detection of process faults. However, they are only able to react to a 

relatively significant change of a feature after either a large, sudden fault or a long-

lasting gradually increasing fault. Unfortunately, the simple limit-checking method 

becomes invalid as the system complexity increases and in-depth fault diagnosis is 

usually not possible.  

As such, there is a requirement for advanced methods of FD, methods which 

satisfy the following criteria: (i) the detection of small faults as early as possible; (ii) 

the accurate diagnosis of the location of faults, whether in the sensor, actuator or 

process plant; and (iii) the detection of faults in closed loops. The aim of having 

early FD is so that there is ample time for counteractions such as other operations, 

reconfiguration, planned maintenance or repair. Due to this, an advanced method for 

FD has been a subject of interest in control and process systems. FD methods are 

categorised as model-based and knowledge-based approaches. The model-based 

method requires the knowledge of a dynamic process model in the form of a 

mathematical structure (qualitative model-based) either derived from first principles 
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or system identification method. In contrast to the model-based approach, the 

knowledge-based method performs the FD using a large amount of historical process 

data. The knowledge-based FD is also referred to as a data-based method where the 

mathematical model of the system is not available or cannot be derived. Usually, 

knowledge-based FD methods require significant quantities of data based on both 

healthy and faulty systems. Despite that, collecting data in the real industry is costly 

and impossible under certain conditions. An overview of the FD method is presented 

in these related papers (Venkatasubramanian et al., 2003a, Venkatasubramanian et 

al., 2003b, Venkatasubramanian et al., 2003c) and books (Chen and Patton, 1999, 

Isermann, 2006). 

 

2.2 Model-Based Fault Detection Methods 

Model-based FD methods require the knowledge of a dynamic process model 

in the form of a mathematical structure. A model-based FD algorithm can be 

implemented in software on the process control computer and no additional 

hardware is required. The significant advantage of the model-based approaches is 

that it is more cost-effective compared with the hardware redundancy in order to 

realise an FD algorithm. According to this advantage, model-based FD offers a 

powerful way of achieving the roles of detection faults by requires only additional 

storage capacity and possibly higher computer power are needed for the 

implementation.  

The conceptual structure of model-based FD method (Patton et al., 1995) 

consists of two stages; residual generation and decision making based on these 

residuals, are shown in Figure 2.1. In a residual generation, the input and the output, 

with a controlled system subjected to actuator fault,
 af , process fault, cf , and sensor 

fault, sf , are processed by an appropriate algorithm to generate output estimates, 

parameter estimates and/or state estimates. Checking these estimates with respect to 

their expected nominal values, a residual, r , is generated and classified. A residual 

is a fault indicator or an accentuating signal which reflects the faulty situation of the 

monitored system.  
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The second step of an FD procedure is to evaluate the residuals. A decision 

process may consist of a simple threshold test or more sophisticated statistical 

decision tests, e.g., generalised likelihood ratio testing or sequential probability ratio 

testing. The residual should be zero-valued when the system is normal and should 

diverge from zero when a fault occurs in the system given by: 

( ) 0r t   iff ( ) 0f t   (2.1) 

where ( )r t  is residual and ( )f t  is fault. A fault can be detected by comparing the 

residual evaluation function,  ( )J r t , with threshold function, ( )rT t , according to 

the test given by: 

 ( ) ( )rJ r t T t  for ( ) 0f t   (2.2) 

 ( ) ( )rJ r t T t  for ( ) 0f t   (2.3) 

If the threshold is exceeded by the residual evaluation function, a fault is likely to 

occur. There are many ways of defining  ( )J r t  and ( )rT t . For example,  ( )J r t  

can be chosen as the residual norm vector and ( )rT t  as a positive constant. A 

classification of the existing residual generation and residual evaluation techniques 

is given in Zhang and Jiang (2008). 

 

Figure 2.1 Two-stage structure of FD processes (Patton et al., 1995) 
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In a model-based FD method, as mentioned previously, the mathematical 

model is utilised to quantify the expected behaviours of the systems. For the 

nonlinear ODEs system, the mathematical model of the system is given by:  

 
( )

( ), ( ), ,
j

j

dx t
f t t t

dt
 x u θ , j J  (2.4) 

where ( )tx  and ( )tu  are J-dimensional vectors of state and control variables for the 

given ODE system and θ  is the vector of model parameters. In these techniques, a 

fault can be interpreted as a change in state estimation, model parameters or outputs 

which results in deviations from the normal state (Patton et al., 2000). In order to be 

useful in practical applications, the residual should be insensitive to noise, 

disturbances and model uncertainties while maximally sensitive to faults. A good 

model-based FD ideally has residuals sensitive only to system faults but not to 

disturbances or uncertainty. The model-based FD techniques can be categorised as 

observer/filter (Frank and Ding, 1997), parity relation (Chow and Willsky, 1984, 

Gertler, 1988) and parameter estimation-based approaches (Isermann, 1984). 

 

2.2.1 Observer/Filter-Based Approaches 

Observer-based approaches for FD have been well studied and quite a large 

number of papers exist in the literature. The basic idea for observer-based 

approaches is to estimate the outputs of the system from the measurements by using 

either a Luenberger observer in a deterministic setting or by using a Kalman filter in 

the stochastic setting (Patton and Chen, 1997). This observer provides an estimation 

of measurements called a residual. The residual is then examined for the likelihood 

of faults by using a fixed or adaptive threshold. Certain decision rules can then be 

applied to determine if a fault has occurred. A decision process may be based on a 

simple threshold test or more sophisticated statistical decision tests. A detailed study 

of this method can be found in Frank (1996) and Chen and Patton (1999). However, 

modelling errors and disturbances are inevitable when dealing with nonlinear, 

uncertain and complex engineering systems. Therefore, robustness issue becomes a 

crucial aspect in the FD system, which the design should be highly sensitive to faults 
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and insensitive to uncertainty and disturbances (Chen et al., 1996, Patton and Chen, 

1997, Chen and Patton, 1999, Patton and Chen, 2000). One way to overcome this 

problem is to use the unknown input observer (UIO) (Patton and Chen, 1997), which 

works by decoupling the disturbances and faults into two different input channels. 

The UIOs are designed such that they are insensitive to certain faults while being 

sensitive to other faults in the system (Zhang et al., 2010, Du and Mhaskar, 2014). 

The key limitation in the approaches above is that the proposed FD systems are 

limited to sensor and actuator faults. Several researchers have developed observers 

for FD for different classes of nonlinear systems. A review of the principal observer-

based approaches for nonlinear systems can be found in Alcorta García and Frank 

(1997). The approach of the UIO (Fonod et al., 2014) and sliding mode observers 

(Xing-Gang and Edwards, 2005) were extended to a class of nonlinear systems. An 

application of actuator and sensor fault in nonlinear process systems can also be 

found (Zarei and Shokri, 2014, Du and Mhaskar, 2013). 

 

2.2.2 Parity Relation-Based Approaches 

Another well-known model-based FD method is the parity relation approach, which 

was developed in the early 1980s (Chow and Willsky, 1984, Gertler, 1988). Chow 

and Willsky (1984) first proposed parity equations for a state-space model of the 

system. A detailed study for this method can be found in Gertler (1997) and Patton 

and Chen (1991). The parity relation approach is based on the test (‘parity check’) of 

the consistency of parity equations with properly modified system equations, by 

using the measured signals of the actual process. The parity relation approach 

generates the residual based on consistency checking of the system input and output 

data over a time window. The modification of the system equations aims at the 

decoupling of the residuals from the system states and faults to enhance their 

diagnosability. From the inconsistency (residual) of the parity equations, one can 

detect the faults but this method required; however storage space and computational 

load (Gertler, 1997).The parity relation method is similar to the observer-based 

approach. Two theorems are presented in Ding (2008) that show how to calculate the 

parity vector corresponding to the observer-based residual generator and vice versa. 



37 

 

A residual generator in parity space can be designed and it transforms the parity 

vector into diagnostic observer parameters for online implementation. The parity 

relation approach can be applied to either time-domain state-space model or 

frequency-domain input-output model, which is well explained in the related 

literature (Chen and Patton, 1999, Ding, 2008). Recently, the parity relation method 

has been extended to FD for more complex models such as Takagi–Sugeno fuzzy 

nonlinear systems and fuzzy tree models (Nguang et al., 2007), and applied to 

various industrial systems such as aircraft control surface actuators (Odendaal and 

Jones, 2014) and electromechanical brake systems (Hwang and Huh, 2014). 

 

2.2.3 Parameter Estimation-Based Approaches  

The research in the area of parameter estimation has received much attention 

in recent years due to the development of process optimisation and control 

technologies. The principle involved in parameter estimation FD is that the specific 

parameters of the model can be associated with faults. Table 2.1 list the application 

in process systems related to parameter fault FD. For example, the heat transfer 

coefficient in the heat exchanger model can be related to fouling (Delmotte et al., 

2013), cross-section of outlet holes related to the tank leakage (Johansson, 2000) and 

specific growth rate, and half-saturation coefficient and inhibition coefficient can be 

related to the growth behaviour of the biomass on wastewater treatment (Wimberger 

and Verde, 2008). With this assumption, parameters of a system are estimated online 

repeatedly using well-known parameter estimation methods. If there is a discrepancy 

between the estimated parameters and the actual parameters, it indicates faults.  

The most common method in parameter estimation is the LS method which 

involves minimisation of the sum of squared differences between the measurements 

and the model predictions (Marquardt, 1963, Huang, 2001, Escobet and Travé-

Massuyès, 2001). The main advantage of this method is computational simplicity 

and it is part of statistical software. LS method requires the availability of accurate 

dynamic models of the process because of its weakness to the robustness due to 

external disturbances that may affect the system behaviour. The accurate estimation 

is usually time-consuming and computationally very intensive for large processes. In  



38 

 

Table 2.1 Parameter estimation in FD application  

Batch reactor Hsoumi et al. (2009); Benkouider et al. (2009); 

Acosta Díaz et al. (2016) 

Aircraft flight control Cimpoesu et al. (2013) 

Electric motor Filbert et al. (1991); Karami et al. (2010); Treetrong 

et al. (2012); Progovac et al. (2014);  

Tank system Lakhmani et al. (2016); Ganesh et al. (2015) 

Heat exchanger Jonsson et al. (2007); Delrot et al. (2012); Sivathanu 

and Subramanian (2018) 

Fermentation  Zhao et al. (1999); Kabbaj et al. (2001); Çinar et al. 

(2002); Monroy et al. (2012) 

 

the LS method, the estimation process is only suitable for the linear systems; 

however, for nonlinear system parameter estimation, the performance of this method 

cannot be assured.  

Several parameter estimation techniques have been presented for nonlinear 

systems and can be categorised as decomposition and sequential/simultaneous 

approaches. These approaches were aiming to estimate the unknown parameters by 

minimising an error function within a given set of equations. In the decomposition 

method, the direct integration of the ODEs model is not required and the parameter 

estimation is solved in two steps method involves fitted the experimental data and 

solved the optimisation problem. This method was introduced by Varah (1982), 

where measurement data was fitted with spline function; then, the parameters were 

estimated by finding the solution of LS equation of the spline function and the ODE.  

Principal differential analysis (PDA) was extended to parameter estimation 

nonlinear ODEs in Ramsay (1996), where fitted measurements using splines 

function is differentiated with respect to time to obtain estimate time-derivative 

curves. This information is substituted into the ODEs; thus, converting the parameter 

estimation problem into a simple algebraic optimisation problem that can be solved 

using the LS method. This PDA method is different from the commonly used LS 

method for dynamic models wherein the parameter values are selected to minimise 

in the form of differential models and not in integrated models in the PDA method. 
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However, poor spline fits can result in misleading time-derivative information, 

which can lead to poor parameter estimates. The integrated PDA (iPDA) had been 

extended with the introduction of generalized smoothing approach to overcome the 

issues of precision (Poyton et al., 2006, Varziri et al., 2008). An artificial neural 

network (ANN) has been proposed in Dua (2011) for the decomposition method. In 

this method, an ANN model fitted the data and utilised the differential derivatives of 

ANN approximation to estimate the parameters of nonlinear ODE systems. 

Although the ANN has good properties such as universal approximation, the 

solution may become the existence of many local minima solutions. A method using 

LS-support vector machines (LS-SVM) (Mehrkanoon et al., 2014) and two-stage 

method (Chang et al., 2015, Chang et al., 2016) are other proposed methods for 

parameter estimation involving fitting the data and solving the optimisation problem.  

Another approach for parameter estimation is involving the solution of the 

ODEs model in estimating parameters. This method can be performed in two ways. 

The first way is to solve the numerical solution of the ODEs model separately from 

the optimisation problem, called sequential approach (Hwang and Seinfeld, 1972, 

Kim et al., 1991, Bilardello et al., 1993). In the simultaneous approach, the 

optimisation problem of parameter estimation is solved together with the differential 

equations model, which is converted into algebraic equations (De et al., 2013, Chen 

et al., 2016b). Both approaches explicitly require integral of the ODE model to 

estimate the parameters. Dua and Dua (2011) proposed an ANN implementation for 

simultaneous parameter estimation wherein this method, the optimisation problem 

and numerical solution of ODEs are performed simultaneously using the ANN 

algorithm. This method works very well for the accuracy and computational time; 

however, the ANN method suffers in choosing the number of hidden units in the 

ANN model. A collocation approach is also studied for parameter estimation in 

Villadsen (1982), Tjoa and Biegler (1991) and Chen et al. (2016b). In this method, 

the optimisation is carried in the full space of discretised ODEs using orthogonal 

collocation on finite elements where differential equations are satisfied at the 

converged solution of the NLP only. The solution of the model and the optimisation 

is carried out simultaneously. The collocation methods are also proposed to improve 

in the convergence rate and the accuracy (Liu et al., 2019).   
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The key limitation in the approaches of optimisation parameter estimation in 

above-mentioned is that they are computationally expensive due to the repetitive 

solution of the ODEs. Sometime, the solution may not converge in a reasonable 

amount of time and the optimisation can be difficult due to the presence of 

nonconvexities (Vassiliadis, 1994, Papamichail and Adjiman, 2002, Sakizlis et al., 

2003, Papamichail and Adjiman, 2004).   

 

2.3 Summary 

In this chapter, a literature review of FD was presented. An overview of FD was 

given, followed by a discussion on model-based FD techniques. Based on the above 

review on parameter estimation-based approaches in Section 2.2.3, it is clear that 

there is still significant scope for improving the model-based FD method for 

nonlinear process systems using parameter estimation. The development of the 

parameter estimation method plays a significant in optimisation research; however, 

very little thought had been given to the application parameter estimation towards 

the FD system. Hence, we propose the parameter estimation method for model-

based FD for nonlinear ODEs using MPP where this provides the optimisation 

variables as an explicit function of the parameter (Oberdieck et al., 2016, 

Charitopoulos and Dua, 2016). The detailed formulation for model-based FD using 

MPP is discussed in the next chapter.  
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CHAPTER 3 FAULT DETECTION USING 

MULTIPARAMETRIC PROGRAMMING 

 

3.1 Introduction 

FD using parameter estimation techniques relies on the principle that possible faults 

in the monitored system can be associated with specific parameters and the 

mathematical model of the system represented by nonlinear ODEs. Parameter 

estimation method for FD can be successful if: (a) the mathematical model of the 

process system is accurate; (b) the experimental data is available; (c) and the model 

parameters are related to physical system parameters of the equipment or process 

fluids (Isermann, 2005). 

 

3.2 General Formulation for Fault Detection using Parameter Estimation 

This work focuses on developing the method for fault detection by estimating and 

evaluating the parameter faults for processes systems. In this work, the mathematical 

model of the system is represented by nonlinear ODEs. The objective of the FD 

problem is to estimate the model parameters, θ , such that the error, FD , between 

the measurements, ˆ ( )j ix t , and model predicted values of state variables, ( )j ix t , is 

minimised as follows (Dua and Dua, 2011): 

Problem 3.1 

 
2

( )
ˆmin ( ) ( )FD j i j i

t
j J i I

x t x t
 

 
θ,x

 (3.1) 

Subject to:  

 
( )

( ), ( ), ,
j

j

dx t
f t t t

dt
 x u θ , j J   (3.2) 

0( 0)j jx t x  , j J  (3.3) 
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[0, ]ft t  (3.4) 

where ( )x t  is the J-dimensional vector of state variables in the given ODEs system, 

ˆ ( )j ix t  represents the measurements of the state variables at the time points it , ( )tu  

is the vector of control variables and θ  is the vector of model parameters. The initial 

condition is given in Equation (3.3).  

 

3.2.1 Discretisation of Ordinary Differential Equation 

In this work, the nonlinear ODEs model is converted into algebraic equations using 

Euler’s method, as described next. The ODEs initial value problem in equations 

(3.2) to (3.3) is to be solved on the time interval, [0, ]ft t . The Euler method 

provides: 

 ( 1) ( ) ( ), ( ),j j jx i x i tf i i   x u θ , i I , j J  (3.5) 

where the step size is given by t . Equation (3.5)  represents the prediction of 
jx  at 

time step 1i   where ( )jx i  is a state variables values at time step i  and 

 ( ), ( ),jf i ix u θ  is a vector of functions evaluated at step i . 

 

3.2.2 Fault Detection Problem 

In this work, Equation (3.5) is substituting in Problem 3.1 and the FD problem is 

given by the following Nonlinear Programing (NLP) problem: 

Problem 3.2 

 
2

( )
ˆmin ( 1) ( 1)MPP j j

i
j J i I

x i x i
 

   
θ,x

 (3.6) 

Subject to:  

 ( 1) ( ) ( ), ( ), 0j j j jh x i x i tf i i    x u θ , i I , j J  (3.7) 
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0(0)j jx x , j J  (3.8) 

where 
jh  represents the set of nonlinear algebraic equations obtained by discretising 

the ODEs given by Equation (3.5). In this work, we consider  0,1I   represents 

the ODE is discretised for one-time interval by using Euler’s method.  

 

3.3 Parameter Estimation using Multiparametric Programming 

In the following paragraphs, we present an MPP approach for solving online 

optimisation of parameter estimation in Problem 3.2. The MPP provides the 

optimisation variables as an explicit function of the parameter which avoids the 

repetitive solution (Dua and Pistikopoulos, 1999, Pistikopoulos et al., 2007b, 

Pistikopoulos et al., 2007a). In this work, the model parameters, θ , are considered 

as optimisation variables and the measurements, ˆ ( 1)jx i , as the parameters in the 

context of MPP. 

To obtain the model parameter as explicit function of measurements, the first-order 

Karush-Kuhn-Tucker (KKT) conditions for Problem 3.2 are first obtained as 

follows. 

The Lagrangian function, L   is given by: 

j j

j J

L G h


   (3.9) 

Where  

 
2

ˆ ( 1) ( 1)j j

j J i I

G x i x i
 

     (3.10) 

 ( 1) ( ) ( ), ( ), 0j j j jh x i x i tf i i    x u θ , i I , j J  (3.11) 

and 
j  represents the Lagrange multipliers. The KKT conditions are given by the 

equality constraints as follows: 
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0j jL G h   θ θ θ
, j J  (3.12) 

0jh   (3.13) 

The gradient of the Lagrangian function with respect to θ  and the equality 

conditions are zero. The KKT conditions are solved analytically using symbolic 

manipulation software  (Dua, 2015) to obtain Lagrange multipliers, 
j , and model 

parameters, θ , as an explicit function of measurements, x̂ ; i.e.,  ˆθ x
 
that satisfy 

Equations (3.12) and (3.13). The explicit solutions are then screening for validation 

and ignored solutions with imaginary parts. Note that Equations (3.12) and (3.13) 

represent a square system of multiparametric nonlinear algebraic equations that can 

be solved analytically with respect to the optimisation variables. The key principle 

of the proposed methodology is that it successfully solved the optimisation problem 

off-line and allows computation of parameter estimates,θ , by simple function 

evaluation of  ˆθ x . The algorithm for model-based parameter estimation for FD 

using MPP is summarised in Table 3.1, and FD analysis based upon the model 

parameter estimates is described in the next section. 

 

3.4 Fault Detection Analysis 

FD is carried out by monitoring the residual of model parameters. In order to define 

the residual generator for the aforementioned analysis, the residual, r , which is a 

scalar- or a vector-valued signal containing information on the time and location of 

the occurrence of the fault, is designed. The residual for the FD method is defined 

as:  

ˆ r θ θ  (3.14) 

The estimated model parameters, θ , should be close to ‘true’ model parameters, θ̂ , 

when no fault is present. An abnormal condition can be detected by comparing the 

residual with a decision or threshold functions, r
T . Any substantial discrepancy 
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indicates changes in the process and may be interpreted as a fault. A fault is then 

declared if the residual, r , surpasses a certain threshold, r
T , as follows: 

 
r

r T  no fault has occurred (3.15) 

 
r

r T  a fault has occurred (3.16) 

 

Table 3.1 Parameter estimation using the MPP algorithm 

Step 1. Discretise nonlinear ODEs model in Equation (3.2) to algebraic 

equations as given in Equation (3.5) 

Step 2. Formulate FD optimisation problem as a NLP problem as given in 

equations (3.6) to (3.8) 

Step 3. Formulate KKT conditions for equations (3.6) to (3.8) as given in 

equations (3.9) to (3.13) 

Step 4. Solve the equality constraints in equations (3.12) and (3.13) of the 

KKT conditions parametrically to obtain Lagrange multiplies and 

model parameters,  ˆθ x , as a function of measurements, x̂   

Step 5. Screen the solutions obtained in the previous step and ignore solutions 

with imaginary parts  

Step 6. Calculate the estimated model parameters, θ , using the measurement, 

x̂ , by a simple evaluation of  ˆθ x  

 

3.5 Illustrated examples of the proposed method  

This section conducted a preliminary test to verify the effectiveness of the proposed 

method using two examples for a square system of nonlinear ODEs model where the 

number of state variables equals to the number of estimated model parameters.  



46 

 

3.5.1 Example 1: First-order irreversible chain reactions  

Consider the following first-order irreversible chain reactions (Tjoa and Biegler, 

1991, Esposito and Floudas, 2000, Dua, 2011, Dua and Dua, 2011): 

1 2n n
A B C   (3.17) 

where reactant A to reactant B and then to reactant C is described as the nonlinear 

ODEs model given by: 

1
1 1

dz
z

dt
   (3.18) 

2
1 1 2 2

dz
z z

dt
    (3.19) 

In this model, there are two state variables of concentration A and B, 1z  and 2z , and 

two estimated model parameters, 1  and 2  denote the reaction rate constants of 1n  

and 2n . The reaction rate constants are vital in the chemical reaction where it 

expresses how fast reactants turn into the product. Hence, the objective of the FD 

problem for Example 1 is to estimate 1  and 2 , such that the error, FD , between 

ˆ ( )j iz t
 
and ( )j iz t  is minimised as described in Problem 3.3. The initial values of state 

variables are given in equations (3.21) and (3.22). 

Problem 3.3 

1 2

2 2

1 1 2 2
,

ˆ ˆmin {( ( ) ( )) ( ( ) ( )) }FD i i i i

i I

z t z t z t z t
 




     (3.20) 

Subject to :  

Equations (3.18) and (3.19)  

1(0) 1.0z   (3.21) 

2 (0) 0z   (3.22) 

[0,1]t  (3.23) 
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(a) Discretisation of Ordinary Differential Equations  

The nonlinear ODEs model in equations (3.18) and (3.19) is discretised using 

Euler’s method and reformulated as the following algebraic equations:  

1 1 1 1( 1) ( ) ( )z i z i t z i    (3.24) 

2 2 1 1 2 2( 1) ( ) ( ) ( )z i z i t z i t z i       (3.25) 

 

(b) Parameter Estimation Problem  

Then, the Equations (3.24) and (3.25) are substituted in Problem 3.3 and parameter 

estimation problem is reformulated as the following NLP problem: 

Problem 3.4 

1 2

2 2
1 1 2 2

,
ˆ ˆmin {( ( 1) ( 1)) ( ( 1) ( 1)) }MPP

i I

z i z i z i z i
 




         (3.26) 

Subject to:  

1 1 1 1 1( 1) ( ) ( ) 0h z i z i t z i      (3.27) 

2 2 2 1 1 2 2( 1) ( ) ( ) ( ) 0h z i z i t z i t z i        (3.28) 

Equations (3.21) to (3.23)  

Equations (3.27) and (3.28) represent the set of nonlinear algebraic equations and 

these equations are substituted into Equation (3.26) to obtain: 

2 2

1 1 1 1 2 2 1 1 2 2
ˆ ˆ( ( 1) ( ) ( )) (( ( 1) ( ) ( ) ( ))G z i z i t z i z i z i t z i t z i            (3.29) 

The gradients of  G  with respect to 1  and 2  equals to zero are given by 
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1 1 1 1 1 1 1 1 2

1

2 2 2

ˆ2 ( )( ( ) ( ) ( 1)) 2 ( )( ( ) ( )

ˆ( ) ( 1))

0

G
 tz i z i t z i z i tz i t z i z i

t z i z i

 





           



  



 

(3.30) 

2 1 1 2 2 2 2

2

ˆ 2 ( ) ( ( ) ( ) ( ) ( 1))

0

G
 t z i  t  z i z i t  z i z i 




       





 (3.31) 

The equality constraints of KKT conditions given in Equations (3.30) and (3.31) 

denote the square system of multiparametric nonlinear algebraic equations. These 

equations solved analytically to obtain model parameters,  ˆ
jzθ

 
in Mathematica. 

The symbolic solution for reaction rate constants of 1n  and 2n  in Example 1 is given 

as follows: 

1 1
1

1

ˆ( ) ( 1)

( )

z i z i
 

 t z i


  
 


 (3.32) 

1 1 2 2
2

2

ˆ ˆ( ) ( 1) ( ) ( 1)
 

( )

z i z i z i z i

t z i


     
 


 (3.33) 

Using the MPP method, the reaction rate constants of 1n  and 2n  can be estimated 

using the explicit function of measurements in concentrations A and B, 1̂( 1)z i   and 

2
ˆ ( 1)z i 

 
at any time point, i . 

 

(c) Results for Example 1 

The simulated data for 1z  and 2z , is generated at it t  with initial values given in 

equations (3.21) and (3.22), as is shown in Figure 3.1. The estimated model 

parameters, 1  and 2 , are calculated using explicit functions as given in equations 

(3.32) and (3.33), respectively. Three different step sizes, [0.10,0.05,0.01]t  , are 

used to estimate model parameters and the comparison of the estimated model 

parameters is shown in figures 3.2 and 3.3 for 1  and 2 , respectively. From these 



49 

 

figures, for the smallest step size, 0.01t  , the estimated model parameters, 1  and 

2 , are close to the actual values of the ‘true’ model parameters, 
1
ˆ 5   and 

2
ˆ 1  .  

 
Figure 3.1 State variables profile for 1z  and 2z  

 

 
Figure 3.2 Estimated model parameter, 1 , for different step sizes, t  

 

 
Figure 3.3 Estimated model parameter, 2 , for different step sizes, t   
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3.5.2 Example 2: Lotka–Volterra model  

Example 2 presents the Lotka-Volterra model, which describes an ecological of 

predator-prey. Consider the following Lotka–Volterra model (Esposito and Floudas, 

2000, Dua, 2011, Dua and Dua, 2011), the growth rates of the two populations are 

described by nonlinear ODEs model:  

1
1 1 2(1 )

dz
z z

dt
   (3.34) 

2
2 2 1( 1)

dz
z z

dt
   (3.35) 

where 1z  and 2z  are state variables of prey and predator. The model parameters, 1  

and 2  , represents parameters describing the ecological interaction system. The 

objective of FD in Example 2 is to estimate the model parameters, 1  and 2 , such 

that the error, FD , between the measurements, ˆ ( )j iz t , and model predicted values, 

( )j iz t , is minimised as described in Problem 3.5. The initial values of state variables 

are given in equations (3.37) and (3.38). 

 

Problem 3.5 

1 2

2 2

1 1 2 2
,

ˆ ˆmin {( ( ) ( )) ( ( ) ( )) }FD i i i i

i I

z t z t z t z t
 




     (3.36) 

Subject to :  

Equations (3.34) and (3.35)  

1(0) 1.2z   (3.37) 

2 (0) 1.1z   (3.38) 

[0,10]t  (3.39) 
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(a)  Discretisation of Ordinary Differential Equations 

The nonlinear ODEs model in equations (3.34) and (3.35) is discretised using 

Euler’s method and reformulated as the following algebraic equations: 

1 1 1 1 1 1 2( 1) ( ) ( ) ( ) ( )z i z i t z i t z i z i       (3.40) 

2 2 2 2 2 1 2( 1) ( ) ( ) ( ) ( )z i z i t z i t z i z i      (3.41) 

 

(b) Parameter Estimation Problem  

Equations (3.40) and (3.41) are substituted in Problem 3.5 and parameter estimation 

problem is reformulated as the following NLP problem:  

Problem 3.6  

1 2

2 2

1 1 2 2
,

ˆ ˆmin {( ( 1) ( 1)) ( ( 1) ( 1)) }MPP

i I

z i z i z i z i
 




         (3.42) 

Subject to:  

1 1 1 1 1 1 1 2( 1) ( ) ( ) ( ) ( ) 0h z i z i t z i t z i z i        (3.43) 

2 2 2 2 2 2 1 2( 1) ( ) ( ) ( ) ( ) 0h z i z i t z i t z i z i         (3.44) 

Equations (3.37) – (3.39)  

Equations (3.43) and (3.44) represent the set of nonlinear algebraic equations and 

these equations are substituted into Equation (3.42) to obtain: 

2

1 1 1 1 1 1 2 2 2

2

2 2 2 1 2

ˆ ˆ( ( 1) ( ) ( ) ( ) ( )) ( ( 1) ( )

( ) ( ) ( ))

G z i z i t z i t z i z i z i z i

t z i t z i z i

 

 

         

 
 (3.45) 

The gradients of G  with respect to 1  and 2  equal to zero are given by: 
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1 1 2 1 1 1 1 1 1 2

1

ˆ2( ( ) ( ) ( ))( ( ) ( ) ( 1) ( ) ( ))

0

G
tz i tz i z i z i t z i z i t z i z i   




         





 
(3.46) 

2 1 2 2 2 2 2 1 2 2

2

ˆ2( ( ) ( ) ( ))( ( ) ( ) ( ) ( ) ( 1))

0

G
tz i tz i z i z i t z i t z i z i z i 




        



 
(3.47) 

The KKT conditions are given by the equality constraints in equations (3.46) and 

(3.47)  are solved analytically in Mathematica. The solution of model parameters, 1  

and 2 , is given by  

1 1
1

1 2

ˆ( ) ( 1)

( )( 1 ( ))

z i z i
 
 t z i z i


 


  

 (3.48) 

2 2
2

1 2

ˆ( ) ( 1)
 

( 1 ( )) ( )

z i z i

t  z i z i


  


  
 (3.49) 

The model parameters, 1  and 2 , given in equations (3.48) and (3.49) are obtained 

as an explicit function of measurements, 1̂( 1)z i   and 2
ˆ ( 1)z i  . 

 

(c) Results for Example 2 

The simulated data for state variables profile, 1z  and 2z , is generated at it t  with 

initial values given in equations (3.37) and (3.38), as is shown in Figure 3.4. The 

model parameters, 1  and 2 , are estimated using the explicit functions as given in 

equations (3.48) and (3.49). Three different step sizes are used to estimate model 

parameters, [0.10,0.05,0.01]t  , and the results are shown in figures 3.5 and 3.6. 

As the step size decreased, the estimated model parameters for 1  and 2  are close to 

the true values of the model parameters, 
1
ˆ 3   and 

2
ˆ 1  .  
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Figure 3.4 State variables profile for 1z  and 2z  

 

Figure 3.5 Estimated model parameter, 1 , for different step sizes
 
 

 

 

Figure 3.6 Estimated model parameter, 2 , for different step sizes 
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3.6 Concluding Remarks 

(i)  Parameter estimation using the MPP approach is developed and proposed for 

the FD. In this method, model parameters are obtained as an explicit function 

of measurements where the estimated model parameters, θ , are considered as 

optimisation variables and the measurements, ˆ
jx , as the parameters in the 

context of MPP.  The algorithm presented in this work relies on converting the 

ODEs system into a set of nonlinear algebraic equations and then converting 

the resulting NLP into another set of nonlinear algebraic equations using the 

KKT conditions. If these equations can be solved analytically / symbolically, 

the proposed MPP algorithm for FD method is applicable. 

(ii)  Preliminary verification of the proposed method is performed by testing the 

proposed method on two examples of nonlinear ODEs model. The proposed 

method is successfully obtained model parameters as an explicit function of 

measurements in the square system of ODEs. The results show that model 

parameters are accurately obtained compared to ‘true value’ by performing 

simple function evaluations. The proposed FD approach using MPP thus 

provides quick and accurate fault detection by performing simple function 

evaluations. Another significant advantage is an explicit parametric function 

able to reduce the computational burden and time-consuming issues in the 

optimisation problem.   
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CHAPTER 4 FAULT DETECTION 

APPLICATION IN PROCESS SYSTEMS  

 

4.1 Introduction 

In this chapter, five case studies of process systems are presented to demonstrate the 

applicability of MPP for the FD in evaporator, tank, heat exchanger, fermentation 

and wastewater treatment systems. The formulation of parameter estimation using 

MPP will be discussed and presented to obtain the solution of model parameters. A 

number of faulty and fault-free scenarios are considered to show the effectiveness of 

the present approach of parameter estimation using MPP. The detection of fault is 

carried out by monitoring the residual of model parameters. In this work, the 

simulations of state variables are obtained using ANN approximation method and 

validated using the fourth-order Runge–Kutta (RK) method. Both simulations are 

solved and obtained using the General Algebraic Modeling System (GAMS). Noise 

is also added to the system as random data to evaluate the effectiveness of the 

proposed method using MPP. The ANN formulation and fourth-order RK 

formulation are presented in Appendices A and B. 

 

4.2 Single-Stage Evaporator 

Various researches on the FD have been conducted on evaporator systems. An 

actuator fault of a pilot plant double effect evaporator is discussed in Phatak and 

Viswanadham (1988) using an unknown input observer. Escobar et al. (2015) 

discussed a sensor fault in a heat pump’s helical evaporator using a high-gain 

observer and regulated the steam temperature using model predictive control (MPC). 

The high-gain observer is easy to tune and implement, which provides an adequate 

estimation of the process output. The evaporator fault in heating, ventilation and air 

conditioning (HVAC) systems is discussed in Kim and Kim (2005) by observing the 

variation of cooling capacity. An extended Kalman filter (EKF) is presented in a 

single-stage evaporator system (Dalle Molle and Himmelblau, 1987) to estimate 
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fault model parameters, i.e., the heat transfer coefficient and the feed composition. 

The results show that the EKF can estimate the faulty parameters but it required 

longer computational time. Thus, FD using MPP is proposed in this case study to 

overcome the limitation in computational time and give more accurate estimated 

model parameters in Dalle Molle and Himmelblau (1987). Here, the estimated 

model parameters of UA  and Fx will be obtained as an explicit function of 

measurements, then evaluate the model parameter using symbolic solutions of UA  

and Fx
 
for fault-free and fault scenarios.  

 

4.2.1 Mathematical Model 

In this work, a simplified model of the single-effect evaporator used by Dalle Molle 

and Himmelblau (1987) is considered. A mathematical model of a single-stage 

evaporator system is described as:  

 c p

dW
F W E V

dt
     (4.1) 

( )( )F p BFx V F T TdT

dt W

   
  (4.2) 

where  

( ) ( )S p F L

p

V

UA T T FC T T Q
V

H

    
  

 
 (4.3) 

Here, W  and T  are the state variables representing the holdup and temperature, 

respectively, and the estimated model parameters for this process system are UA  and 

Fx . Also, pV  is the vapour flow rate from the evaporator, F  is the feed flow rate, ST  

is the steam temperature, BT  is the temperature for standard boiling point of the 

solvent, FT  is the temperature of the feed system, 
pC  is the heat capacity of the 

solution, LQ  is the rate of heat loss to the surroundings, and VH  is the heat of 

vaporisation of the solvent. Figure 4.1 provides a diagram of the evaporator system. 
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The parameter values used for the simulation of the reactor are shown in Table 4.1 

(Dalle Molle and Himmelblau, 1987). In this system, the evaporator operation is 

assumed to be at 1 atm (101.3 kPa) of pressure.  

 

Figure 4.1 Evaporator configuration and notation 

 

Table 4.1. Model parameters for the single-stage evaporator system 

Parameter Value Description 

U  43.6 kJ/(min m ˚C) overall heat transfer coefficient 

A  0.93 m
2
 area of heat transfer 

Fx  0.032 mass fraction composition of the feed 

ST  136 ˚C steam temperature in the steam chest 

BT  100 ˚C normal boiling point of the solvent 

pC  4.18 kJ/(kg ˚C) heat capacity of the solution 

FT  88 ˚C temperature of the feed system 

LQ  400.0 kJ/min rate of heat loss to the surroundings 

VH  2240 kJ/kg heat of vapourisation of the solvent 

  8.33 ˚C boiling point elevation per mass fraction of 

solute 
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Parameter Value Description 

  0.06 (kg/min)/kg holdup constant 

cE  0.0454 kg/min constant 

F  2.27 kg/min feed flow rate 

 

4.2.2 Fault Detection Problem  

In parameter estimation approach for FD, faults are related to specific parameters 

and parameters can be related to the physical features of the process. In the 

evaporator system, as the heat transfer surface becomes fouled or scaled, the heat 

transfer rate is decreased and the efficiency of the process is reduced. The input feed 

composition could be useful in determining if the previous unit was operating 

properly (Pouliezos and Stavrakakis, 1994). Thus, the two parameters of interest for 

faulty operation are UA  and Fx
 

will be obtained as an explicit function of 

measurements. The objective of the FD problem for evaporator system is to estimate 

the model parameters, UA  and Fx , such that the error, FD , between the 

measurement of state variables, ˆ ( )iW t  and ˆ( )iT t , and ecological interaction value of 

state variables, ( )iW t  and ( )iT t , is minimised as the following problem: 

Problem 4.2.1 

2 2ˆ ˆmin {( ( ) ( )) ( ( ) ( )) }
f

FD i i i i
UA x

i I

W t W t T t T t


   
,

 (4.4) 

Subject to :  

Equations (4.1) to (4.3)  

(0) 13.8W  kg (4.5) 

(0) 107T  ˚C (4.6) 

[0,500]t  (4.7) 
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where the estimated model parameters, UA  and Fx , are estimated through an 

optimisation problem of FD. The initial values of state variables are given in 

equations (4.5) and (4.6). 

 

4.2.3 Parameter Estimate using MPP 

The formulation and solution of the parameter estimation problem using MPP are 

summarised as follows:  

(i) The nonlinear ODEs model in equations (4.1) to (4.3) is discretised using 

Euler’s method and reformulated as the following algebraic equations: 

 ( 1) ( ) ( ( ) )cW i W i t F W i E V       (4.8) 

( )( ( ) )
( 1) ( )

( )

F BFx V F T i T
T i T i t

W i

   
    

 
 (4.9) 

where  

( ( )) ( ( ) )S p F L

V

UA T T i FC T i T Q
V

H

    
  

 
 (4.10) 

(ii) Then, the Equations (4.8) to (4.10) are substituted in Problem 4.2.1 and 

parameter estimation problem is reformulated as the following NLP problem:  

Problem 4.2.2 

2 2ˆ ˆmin {( ( 1) ( 1)) ( ( 1) ( 1)) }
f

MPP
UA x

i I

W i W i T i T i


       
,

 (4.11) 

Subject to:  

 1 ( 1) ( ) ( ( ) ) 0ch W i W i t F W i E V         (4.12) 

2

( )( ( ) )
( 1) ( ) 0

( )

F BFx V F T i T
h T i T i t

W i

   
     

 
 (4.13) 
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Equations (4.5) to (4.7)  

(iii) Equations (4.12) and (4.13) represent the set of nonlinear algebraic equations  

and these equations are substituted into Equation (4.11) to obtain: 

 
2

2

ˆ( ( 1) ( ( ) ( ( ) (( ( ( )) ( ( )

ˆ) ) / )))) ( ( 1) ( ( ) (( ((( ( ( ))

( ( ) ) ) / ) )( ( ) )) / ( ))))

c S p

F L V F S

p F L V B

G W i W i t F W i E UA T T i FC T i

T Q H T i T i t Fx UA T T i

FC T i T Q H F T i T W i





          

         

    

 (4.14) 

The gradients of G with respect to UA  and Fx  are given by: 

(1/ )2( ( ) )( (1/ (

( ) ( ) ( )

ˆ( )) ( 1)) (1/ ( ))2 ( ( ) )( ( ) )

ˆ( ( 1) (( ( ) / )(( ( ) )( (( ( ( ))

V S V V C V L

P p F S V

V V B S

B S

G
H tT i T H H tE H tF tQ

UA

C tFT i C tFT tT i UA tT UA H W i

H tW i W i H W i t T i T T i T

T i t T i t T i T F UA T T i




           



         

         

      

( ( ) ) ) / ) )) / ( ))

0

p F L V FFC T i T Q H Fx W i



   



 

(4.15) 

ˆ(2 ( ( 1) ( ( ) / (( ( ) ) ( (( ( ( ))

( ( ) ) ) / ) ) / ( )))) / ( )

0

B S

F

p F L V F

G
tF T i t T i t T i T  F UA T T i

x

FC T i T Q H Fx W i W i






          



    



 

(4.16) 

(iv) The equality constraints in equations (4.15) and (4.16) are solved analytically 

in Mathematica to obtain model parameters, ˆ( )θ x  and the solutions of the model 

parameters are given by 

(1/ ( ( ( ) )))( ( )

ˆ( ) ( ) ( 1))

S V c V L P

P F V V V

UA t T i T H tE H tF tQ C tFT i

C tFT H W i H tW i H W i

             

       
 

(4.17) 

(1/ ))( ( ) 2 ( ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( 1) ( ) ( ) ( 1) ( 1))

F c c B

B B B

x (β tF tE T i tE T T i W i tT i W i

T W i tT W i T i W i T i W i T  W i





         

       
 

(4.18) 
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(v)  The estimated model parameters, UA  and Fx , given in equations (4.17) and 

(4.18) are successfully obtained as an explicit function of measurements, Ŵ  and T̂ . 

Simple function evaluation is carried out to estimate the model parameter and detect 

faults without the need to solve the online optimisation problem. The residual of 

model parameters is monitored for FD. 

 

4.2.4 Fault-free Scenario 

The simulated measured value and model predicted value of state variables for W  

and T  are shown in Figures 4.2 and 4.3, respectively, using simulated data in Table 

4.1. These simulated values are then used to estimated model parameters, UA  and 

Fx , using equations (4.17) and (4.18) with step size, 1t   min. The model 

parameters are only estimated after state variables have reached the steady-state 

value at 50 min. The evaluation of UA  and Fx  are shown in figures 4.4 and 4.5. It 

can be seen from these figures that the estimated model parameters are close to true 

model parameters. The detection of fault is carried out by monitoring the value of 

the residual of model parameters. The residuals of model parameters are shown in 

Figures 4.6 and 4.7. No fault was detected since the residual is less than the 

threshold. The threshold is chosen as 5% from the nominal system parameter values. 

 

 
Figure 4.2 State variables profile, W , for fault-free scenario 
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Figure 4.3 State variables profile, T , for fault-free scenario 

 

 

 
Figure 4.4 Estimated model parameters, UA , for fault-free scenario 

 

 

 
Figure 4.5 Estimated model parameters, Fx , for fault-free scenario 
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Figure 4.6 Residual of estimated model parameters, UA , for fault-free scenario 

 

 

 
Figure 4.7 Residual of estimated model parameters, Fx , for fault-free scenario 

 

4.2.5 Faulty Scenario 

An investigation for a faulty scenario was implemented for this case study. To 

demonstrate the application of parameter estimation for the evaporator, the estimated 

model parameters, UA  and Fx , are changed as shown in Table 4.2. The faulty state 

variable for the holdup, W , and temperature, T , are simulated based on faulty 

conditions as described in Table 4.2 using ANN formulation. Figures 4.8 and 4.9 

show the measured value and model predicted value of state variables for a faulty 

scenario for holdup and temperature. The model parameters are only estimated after 

state variables have reached the steady-state value at 50 min with step size, 1t   

min. Figures 4.10 and 4.11 show the evaluation of estimated model parameters, UA  

and Fx , respectively. From these figures, we can see that the estimated parameter, 
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UA , decreases from 40.548 kJ m/min ˚C at 75 min to 36.50 kJ m/min ˚C (at 375 

min). The estimated model parameter for Fx  also changes, from 0.032 mass fraction 

(at 165 min) to 0.025 mass fraction (at 285 min). The detection of fault is carried out 

by monitoring the value of the residuals of model parameters, and the result is 

shown in figures 4.12 and 4.13. Figure 4.12 shows that from 75 to 375 min the 

percentage of residual for UA  increases slowly up to 10%, and the fault is declared 

from 225 to 375 min since the residual for UA  is more than or equal to 5% of the 

threshold value. As shown in Figure 4.13, the fault for Fx  is declared at 165 to 285 

min as the percentage of residual for Fx  is 20 %. The MPP based parameter 

estimation is thus able to accurately and quickly identify the faults in the evaporator 

system. 

 

Table 4.2. Faulty scenario for a single-stage evaporator system 

Fault parameter UA  Fx  

% change in value -10.0 -20.0 

Type of change ramp step 

Starting time of change (min) 75 165 

Stop time of change (min) 375 285 

 

 
Figure 4.8 State variables profile, W , for faulty scenario using ANN formulation  
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Figure 4.9 State variables profile, T , for faulty scenario 

 

Figure 4.10 Estimated model parameters, UA , for faulty scenario 

 

 

Figure 4.11 Estimated model parameters, Fx , for faulty scenario 
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Figure 4.12 Residual of estimated model parameters, UA , for faulty scenario 

 

 

Figure 4.13 Residual of estimated model parameters, Fx , for faulty scenario 

 

4.3 Quadruple-Tank System 

The implementation of FD using MPP is further discussed using a quadruple-tank 

system. Buciakowski et al. (2014) present an actuator fault in the quadruple-tank 

process using the concept of the fault compensation mechanism. The faults for 

pumps are estimated and the fault tolerance is implemented with a robust controller. 

Kamel et al. (2009) discussed the actuator fault using unknown input observer and 

Lipschitz constraint. In Xuan et al. (2015), the FD of sensor fault using principal 

component analysis (PCA) is presented. The authors discussed a method for 

selecting the number of principal components to detect and identified sensor faults in 

the quadruple-tank system. Leak detection in the tank is presented in Ganesh et al. 
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(2015) and Lakhmani et al. (2016). A leak occurring at the bottom of a tank is 

modelled as a change in an appropriate model parameter. A moving-window 

parameter estimator is presented in Lakhmani et al. (2016) and an extended 

Kitanidis-Kalman filter in Ganesh et al. (2015) to detect the fault. In this work, a 

method to detect a leak in the tank using parameter estimation is presented. This leak 

is assumed to be produced by holes at the bottom of the tanks, such that the outflow 

is lost. Using the MPP method, the cross-section of the outlet holes is obtained as an 

explicit function of measurements. The FD is then carried out by monitoring the 

changes of model parameters.  

 

4.3.1 Mathematical Model  

The quadruple-tank system is based on the system presented by Johansson (2000). 

The system consists of four interacting tanks, two pumps and two valves, as shown 

in Figure 4.14. The system aims at controlling the liquid levels in the lower tanks. 

By adjusting the system’s bypass valves, the proportion of the liquid pumped into 

different tanks can be changed to adjust the degree of interaction between the pump 

throughputs and the water levels. The mathematical model of the quadruple-tank 

system (Johansson, 2000) is described as: 

31 1 1 1
1 3 1

1 1 1

2 2
adH a

gH gH v
dt A A A

 
     (4.19) 

2 2 4 2 2
2 4 2

2 2 2

2 2
dH a a

gH gH v
dt A A A

 
     (4.20) 

3 3 2 2
3 2

3 3

(1 )
2

dH a
gH v

dt A A

 
    (4.21) 

4 4 1 1
4 1

4 4

(1 )
2

dH a
gH v

dt A A

 
    (4.22) 

For a tank p , 
pA  is the cross-section of the tank, 

pa  
is the cross-section of 

the outlet holes and 
pH  is the height of water levels in the tank. The input voltage to 
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the pump p  is 
pv , and the corresponding flow is 

p pv . The parameter values of the 

quadruple-tank system are given in Table 4.3 (Johansson, 2000). 

 

 

Figure 4.14 Quadruple-tank process 

 

Table 4.3. Model parameters for the quadruple-tank system 

Parameters Values Units Description 

1A ; 2A ; 3A ; 4A  28; 32; 28; 32 cm
2
 cross-section of tank p   

1a ; 2a ; 3a ; 4a  0.071; 0.057; 0.071; 0.057 cm
2
 cross-section of the 

outlet hole 

1v ; 2v  3.00; 3.00 V input voltage 

1 ; 2  3.33; 3.35 cm
3
 / Vs  

1 ; 2  0.7; 0.6 -  

g  981.0 cm / s
2
  acceleration of gravity 

 



69 

 

4.3.2 Fault Detection Problem  

In this work, a tank leakage fault is considered for testing the proposed FD method. 

This leak is assumed to be produced by holes at the bottom of the tanks, such that 

the outflow is lost. Hence, the objective of FD in the quadruple-tank system is to 

estimate the cross-section of the outlet holes, 
pa , such that the error, FD  , between 

the measurement of state variables, ˆ ( )p iH t , and model predicted value of state 

variables, ( )p iH t , is minimised as described in Problem 4.3.1. The initial values of 

state variables are given in equations (4.24) to (4.27). 

 

 Problem 4.3.1 

1 2 3 4

2 2 2

1 1 2 2 3 3
, , ,

2

4 4

ˆ ˆ ˆmin {( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

ˆ( ( ) ( )) }

FD i i i i i i
a a a a

i I

i i

H t H t H t H t H t H t

H t H t




     

 


 

(4.23) 

Subject to :  

Equations (4.19) to (4.22)  

1(0) 12.4H  cm  (4.24) 

2 (0) 12.7H  cm  (4.25) 

3(0) 1.4H  cm (4.26) 

4 (0) 1.8H  cm (4.27) 

[0,600]t  (4.28) 

 

4.3.3 Parameter Estimation using MPP 

The formulation and solution of the parameter estimation problem using MPP are 

summarised as follows:  
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i)  The nonlinear ODEs model in equations (4.19) to (4.22) is discretised using 

Euler’s method and reformulated as the following algebraic equations: 

31 1 1
1 1 1 3 1

1 1 1

( 1) ( ) 2 ( ) 2 ( )
aa

H i H i t gH i gH i v
A A A

  
       

 
 (4.29) 

2 4 2 2
2 2 2 4 2

2 2 2

( 1) ( ) 2 ( ) 2 ( )
a a

H i H i t gH i gH i v
A A A

  
       

 
 (4.30) 

3 2 2
3 3 3 2

3 3

(1 )
( 1) ( ) 2 ( )

a
H i H i t gH i v

A A

  
      

 
 (4.31) 

4 1 1
4 4 4 1

4 4

(1 )
( 1) ( ) 2 ( )

a
H i H i t gH i v

A A

  
      

 
 (4.32) 

(ii)  Equations (4.29) to (4.32) are substituted in Problem 4.3.1 and the FD 

problem is formulated as the following NLP problem: 

Problem 4.3.2 

1 2 3 4

2 2

1 1 2 2
, , ,

2 2

3 3 4 4

ˆ ˆmin {( ( 1) ( 1)) ( ( 1) ( 1))

ˆ ˆ( ( 1) ( 1)) ( ( 1) ( 1)) }

MPP
a a a a

i I

H i H i H i H i

H i H i H i H i




        

      


 (4.33) 

Subject to:  

31 1 1
1 1 1 1 3 1

1 1 1

( 1) ( ) 2 ( ) 2 ( ) 0
aa

h H i H i t gH i gH i v
A A A

  
        

 
 (4.34) 

2 4 2 2
2 2 2 2 4 2

2 2 2

( 1) ( ) 2 ( ) 2 ( ) 0
a a

h H i H i t gH i gH i v
A A A

  
        

 
 (4.35) 

3 2 2
3 3 3 3 2

3 3

(1 )
( 1) ( ) 2 ( ) 0

a
h H i H i t gH i v

A A

  
       

 
 (4.36) 

4 1 1
4 4 4 4 1

4 4

(1 )
( 1) ( ) 2 ( ) 0

a
h H i H i t gH i v

A A

  
       

 
 (4.37) 

Equations (4.24) to (4.28)  
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(iii)  Equations (4.34) to (4.37) represent the set of nonlinear algebraic equations  

and these equations are substituted into Equation (4.33) to obtain: 

1 1 1 1 1 3 1 3

2

1 1 1 1 2 2 2 2 2

2

4 2 4 2 2 2 2 3 3

2

3 3 3 2 2 2 3 4

ˆ( ( 1) ( ( ) ( ( / ) 2 ( ) ( / ) 2 ( )

ˆ( ) / ))) ( ( 1) ( ( ) ( ( / ) 2 ( )

ˆ( / ) 2 ( ) ( ) / ))) ( ( 1) ( ( )

ˆ( ( / ) 2 ( ) ((1 ) ) / ))) ( ( 1

G H i H i t a A gH i a A gH i

v A H i H i t a A gH i

a A gH i v A H i H i

t a A gH i v A H i

 

 

 

       

      

    

      4

2

4 4 4 1 1 1 4

) ( ( )

( ( / ) 2 ( ) ((1 ) ) / )))

H i

t a A gH i v A 

 

   

 

(4.38) 

The gradients of G with respect to the cross-section of the outlet hole, 
pa , are given 

by: 

0 5

1 1 1

1

0 5 0 5

1 1 1 3 3 1

1 1 1 1 1

ˆ(2 82843 ( ( )) ( ( 1) ((1 ( )) /

(1 41421( ( )) ) / (1 41421( ( )) ) /

(1 ) / ))) /

0

.

. .

G
. t gH i H i t .H i t

a

. gH i a A . gH i a A

. v A A 


     



 



 

(4.39) 

0 5

2 2 2

2

0 5 0 5

2 2 2 4 4 2

2 2 2 2 2

ˆ(2 82843 ( ( )) ( ( 1) ((1 ( )) /

(1 41421( ( )) ) / (1 41421( ( )) ) /

(1 ) / ))) /

0

.

. .

G
. t gH i H i t .H i t

a

. gH i a A . gH i a A

. v A A 


     



 



 

(4.40) 

0.5

3 1 1

3

0.5 0.5

1 1 1 3 3 1

0.5

1 1 1 1 3 3 3

3

ˆ((2.82843 (  ( )) ( ( 1) ((1. ( )) /

(1.41421(  ( )) ) / (1.41421(  ( )) ) /

ˆ(1. 1 ) / ))) / ) 2 (0. (1.41421( ( )) ) / )( ( 1)

((1. ( )) / (1.4142

G
t g H i H i t H i t

a

g H i a A g H k a A

v A A t gH i A H i

t H i t

 


      



 

    

   0.5

3 3 3 2 2 2

3

1( ( )) ) / (1. (1. 1. )) /

))

0

gH i a A v

A

  



 

(4.41) 
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0.5

4 4 4 4

4

0.5

4 4 4 1 1 1 4

0.5

4 2 2

0.5

2 2 2

ˆ2 (0. (1.41421(  ( )) ) / )( ( 1) ((1. ( )) /

(1.41421(  ( )) ) /  (1. (1. 1. )) / ))

ˆ(2.82843 ( ( )) ( ( 1) ((1. ( )) /

(1.41421( ( )) ) / (1.41421

G
t g H i A H i t H i t

a

g H i a A v A

t gH i H i t H i t

gH i a A

 


       



  

    

 0.5

4 4 2 2 2 2

2 2

( ( )) ) / (1. )

/ ))) /

0

gH i a A v

A A

 



 

(4.42) 

(iv) The equality constraints in equations (4.39) to (4.42) are solved analytically 

in Mathematica to obtain the symbolic solution of 
pa
 
and the solutions are given as 

follows: 

2 1. 2 2 0.5

1 3 1 3

0.5 0.5

3 3 3 1 1 1

0.5 2 0.5

1 1 1 1 1 1 1

2

1

(1.( 1.((4. (  ( )) ) / (2.82843 (  ( )) (0.

(1.41421(  ( )) ) / )) / )( ((2.82843  ( )( ( )) ) / )

ˆ(2.82843 ( ( )) ( 1)) / (2.82843 ( ( )) ) /

) 1/

a t g H i A t g H i

g H i A A t H i gH i A

t gH i H i A t gH i v

A

 

      

 

    

 2 2 0.5 0.5 0.5

1 1 3 1 3

0.5

1 1 3 1 3

0.5 0.5

3 3 3 3 3

2 0.

3

4. (  ( )) (  ( ))  ((2.82843 ( )(  ( )) ) /

ˆ(2.82843 ( 1)( ( )) ) / 2. ( )(0.

ˆ(1.41421( ( )) ) / ) 2. (0. (1.41421( ( )) ) / ) ( 1)

(2.82843 ( ( ))

A t g H i g H i tH i g H i

A tH i gH i A tH i

gH i A t gH i A H i

t gH i

 

     

   

  5 2 2 0.5

1 1 1 1 3

4 1. 1. 2 2

3 2 2 2 3 1 3 1 3

) / (2. (0. (1.41421( ( )) ) /

) (1. 1. )) /  ))) / (0. (16. ( ( )) ( ( )) ) / ( ))

v A t gH i

A v A t gH i gH i A A

 

 

  

  

 

(4.43) 

3 1. 1. 3 1.

2 2 2 2 4 2 2

1. 2 1. 1.

2 4 2 2 4 4

2 1. 1. 2 1. 1.

2 2 4 4 2 2 4 1 1

2

2 2

(0.707107(0. 1. ( )( ( )) ( ( )) 1. ( ( ))

ˆ ( 1)(  ( )) 1. 4( ( )) ( )( ( ))

ˆ1. 4( ( )) ( ( )) ( 1) 1. ( ( )) ( ( ))

1. (

a A H i gH i gH i A gH i

H i g H i A A gH i H i gH i

A A gH i gH i H i A t gH i gH i v

A t gH



   

  

  

  1. 1. 2 1. 1.

4 1 1 1 2 2 4

2 1.5. 1.

2 2 2 2 2 4

( )) ( ( )) 1. ( ( )) ( ( ))

)) / ( ( ( )) ( ( )) )

i gH i v A t gH i gH i

v A t gH i gH i

 

 

 



 

(4.44) 

16 3 1. 1.

3 1 1 1 3

16 3 1. 1. 2 1.

1 1 1 3 1 3 1

1. 2 1. 1.

3 3 1 3 1 3 3

2 1.

1 1 3

(0.707107(0. 2.22045 10 ( )( ( )) ( ( ))

ˆ2.22045 10 ( ( )) ( 1)(  ( )) 1. ( ( ))

ˆ( )(  ( )) 1. ( ( )) ( ( )) ( 1)

1. ( ( )) ( (

a  A H i gH i gH i

A gH i H i g H i A A gH i

H i g H i A A gH i gH i H i

A t gH i gH





   

  

  

 1. 16 2 1.

2 2 1 1

1. 2 1. 1.

3 1 1 1 1 1 3 2 2 2

2 1. 1.5

1 1 3

)) 2.22045 10 (  ( ))

(  ( )) 1. (  ( )) (  ( )) )) /

( ( ( )) ( ( )) )

i v A t g H i

g H i v A t g H i g H i v

A t gH i gH i



   

  

 



 

(4.45) 
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2 2 0.5 0.5 0.5

4 2 2 4 2 2

0.5 2 0.5

2 2 2 2 2

2 2 2 1. 0.5

2 2 2 2 4
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2 4 2 4
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2 0.5

4 4 1 1 1 4

2 0.5

4 2 2 2
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 2 4 1.

2 2

1. 2 2

4 2 4

))) / (0. (16. ( ( ))

( ( )) ) / ( ))

A t gH i

gH i A A

 

 

(4.46) 

(v)  The parameter faults of 
pa
 
are successfully obtained as explicit functions of 

the measurements, ˆ
pH , as given in equations (4.43) to (4.46). Simple function 

evaluation is carried out to estimate 
pa  and the residual is monitored for leakage 

detection.  

 

4.3.4 Fault-free Scenario 

In the fault-free scenario, the simulated measured values and model predicted values 

for 
pH  are simulated using parameters in Table 4.3 and shown in Figure 4.15. These 

simulated values are then used to estimated 
pa  using equations (4.43) to (4.46) with 

step size, 5t   s. The evaluation of the estimation model parameters is shown in 

Figure 4.16. As shown in Figure 4.16, the estimated model parameters, 
pa , are close 

to true model parameters. The tank leakage is estimated by monitoring the value of 

the residual of 
pa . The result is shown in Figure 4.17 and no leakage was detected in 

each tank since the residual is less than the threshold value. The threshold value is 

chosen as 5% from the nominal system. 
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Figure 4.15 State variables profile, 
pH , for fault-free scenario 

 

 

 
Figure 4.16 Estimated model parameters, 

pa , for fault-free scenario 
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Figure 4.17 Residual of estimated model parameters, 

pa , for fault-free scenario 

 

4.3.5 Faulty Scenario 

An investigation for the faulty scenario was implemented for this case study. It is 

assumed that the fault takes place due to leaks in Tank 1 and Tank 2, resulting in 

changes in the cross-section of outlet holes, 1a  and 2a , in both these tanks. The 

faults considered are modelled as changes in model parameters, as shown in Table 

4.4. Figure 4.18 shows the noisy measured value and model predicted value for 
pH  

would be used to evaluate the model parameters, 
pa  . Figure 4.19 shows the 

evaluation of the estimated cross-section of the outlet hole in Tank 1. We can see 

that the estimated parameter for 1a  has increased from 0.071 to 0.08165 cm
2
 at 50 to 

150 s and from 0.071 to 0.0781 cm
2
 from 350 to 450 s. While estimating the cross-

section of the outlet hole in Tank 2, the result shows that from 200 to 300 sec there 

is an increase in model parameter, 2a , from 0.057 to 0.06556 cm
2
 and an increase 

from 0.057 to 0.0627 cm
2
 from 350 to 450 s. There are no changes in cross-sections 

of the outlet holes in Tank 3 and Tank 4 as the estimated model parameters for 3a  

and 4a  show no difference. The residual of model parameters is monitored for FD, 

and the result is shown in Figure 4.20. This figure shows that the fault is declared for 
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Tank 1 as the residual for achieving a threshold value at 50 to 150 s and 350 to 450 

s, while the fault in Tank 2 is declared at 200 to 300 s and 350 to 450 s. These results 

indicate that there are leakages in Tank 1 and Tank 2 at specified times, as discussed 

above. The figure also shows that no leakages are detected in Tank 3 and Tank 4.  

 

Table 4.4. Faulty scenario for the quadruple-tank system 

Time Fault parameter 1a  2a  

50 – 150 s % change in value + 15.0 0 

200 – 300 s % change in value 0 + 15.0 

350 – 450 s % change in value + 10.0 + 10.0 

 

 

 
Figure 4.18 State variables profile, pH , for faulty scenario 
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Figure 4.19 Estimated model parameters, 

pa , for faulty scenario 

 

 
Figure 4.20 Residual of estimated model parameters, 

pa , for faulty scenario 

 

4.4 Heat Exchanger 

The third case study in the process systems for FD using MPP is heat exchanger. 

Heat exchanger is widely used in industrial applications including in the oil and gas 
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industry, power stations, chemical plants and more, to transport heat from one fluid 

to another by conduction through solid walls. Unfortunately, an accumulation of 

unwanted deposits on the heat exchanger surface – called a fouling film – provides 

additional resistance to heat transfer and causes deterioration in the effectiveness of 

heat transfer. When fouling film thickness increases, the heat transfer between fluid 

decreases, which results in production loss and increased operational costs due to the 

replacement of equipment and cleaning of the fouling film. Due to the cost and the 

environmental issues, it is therefore important to minimise or at least to monitor the 

performance degradation due to fouling in a heat exchanger at its early stages using 

any fouling detection methods without the need to stop the process. This information 

helps plan the cleaning or maintenance schedules with minimum impact on 

production and cost. 

Several approaches have been developed to solve the problem of fouling 

detection in heat exchangers. The classical fouling detection method relies on 

physical examination of the heat exchanger. However, the examination of the 

coefficient of heat transfer or simultaneous examinations of pressure drops and mass 

flow rate requires the system to be in a steady state regime during the fouling 

detection. Ultrasonic or electric measuring tools can also be used to detect fouling 

but are only local methods (Withers, 1996).  

FD has been presented by online estimation of system parameters (Jonsson 

and Palsson, 1991, Delmotte et al., 2013) in detecting fouling. This system 

parameter is represented by a fouling factor which is the measured relative thermal 

resistance introduced by the fouling film (Gudmundsson et al., 2008) and increases 

with time with increased thickness of the fouling film. The overall heat transfer 

coefficient (Astorga-Zaragoza et al., 2007, Astorga-Zaragoza et al., 2008) was 

estimated by an adaptive observer for heat exchanger maintenance. For a counter-

flow heat exchanger, a Takagi-Sugeno observer with parameter estimation was 

designed by Delrot et al. (2012) to detect fouling. The EKF was utilised to detect 

fouling in heat transfers (Jonsson and Palsson, 1994, Jonsson et al., 2007, Lalot et 

al., 2007). Fuzzy observers have been employed to detect fouling of heat transfers to 

improve the accuracy and robustness of fouling detection (Delrot et al., 2012, 

Delmotte et al., 2013). PCA and a support vector machine (SVM) were used to 
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extract the feature for detecting fouling in heat exchangers (Lalot and Lecoeuche, 

2003). In Chen et al. (2004), a measurement of electric resistance is used to detect 

fouling build up in the heat exchanger. Batur et al. (2002) combined the LS 

parameter identification technique and the SVM learning algorithm for FD for heat 

exchangers. In Liang et al. (2017), the continuous-time Markov chain was used to 

detect fault propagation in the application of a heat exchanger system. Heat 

exchangers are modelled with neural networks (NN) in Lalot and Lecoeuche (2003), 

Lecoeuche et al. (2005), Lalot et al. (2007) and Mohanraj et al. (2015) and were 

used to detect online fouling but the results were restricted to known operating 

conditions (Tan et al., 2009). Hence, in this work, the overall heat transfer 

coefficient is obtained as an explicit function of the measurements. The fouling 

resistance is introduced to monitor heat exchanger performance. The detection of 

fouling is carried out by monitoring the changes in the fouling resistance value 

leading to informed decision making regarding when a heat exchanger needs 

preventive or corrective maintenance. 

 

4.4.1 Mathematical model 

The heat exchanger is used to transport heat from one fluid to another by conduction 

through solid walls. Consider the case of a counter-flow tubular heat exchanger 

model where the hot fluid flows in the inner tube while the cold fluid circulates in 

the annulus and we assume no heat loss to the surroundings. Also, the temperatures 

for hot and cold streams in each section are uniform and the specific heat capacities 

are constant. Hence, the heat exchanger model is obtained by dividing the heat 

exchanger into sections of the same length. Each section is numbered according to 

the corresponding direction of the fluid flow. The nonlinear ODEs for heat 

exchanger are given by Delmotte et al. (2013):  

 1
h

h h h h h hi h heat

dT
M c m c T T A U T

dt


     (4.47) 

 1
c

c c c c c c c heat

dT
M c m c T T A U T

dt


      (4.48) 
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2 2

hin h cin cT T T T
T      

     
   

 (4.49) 

where   denotes the section number in the heat exchanger, h  denotes the hot fluid, 

and c  denotes the cold fluid, 0h hinT T  and 0c cinT T . In these equations, hA  and cA  

are the heat transfer areas, hc  and cc  are the specific heats, hM  and cM  are the 

masses of the fluids, hT   and cT   are the heat exchanger’s temperatures in each 

section, hinT  is the inlet temperature in the hot fluid, cinT  is the inlet temperature in 

the cold fluid, hm  and cm  are mass flow rates of the hot and cold fluids, and heatU  is 

the overall heat transfer coefficient. 

In this work, the heat exchanger is divided into two sections (Delrot et al., 

2012) and the energy flow indicates by the arrows, as shown in Figure 4.21. 

Equations (4.47) to (4.49) become as follows:  

   1
1 2 1 1

2

h h h heat
hin h c c h hin

h h h

dT m A U
T T T T T T

dt M M c
       (4.50) 

   2
1 2 2 1 1

2

h h h heat
h h h c h hin

h h h

dT m A U
T T T T T T

dt M M c
        (4.51) 

   1
1 2 1 1

2

c c c heat
cin c h c h cin

c c c

dT m AU
T T T T T T

dt M M c
       (4.52) 

   2
1 2 2 1 1

2

c c c heat
c c c c h hin

c c c

dT m AU
T T T T T T

dt M M c
        (4.53) 

From equations (4.50) to (4.53), 1hT  and 1cT  are the state variables of the heat 

exchanger model, 2hT  and 2cT  are output measurements and hinT  and cinT  are the 

input measurements.  
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Figure 4.21 Decomposition of the heat exchanger in two sections 

 

4.4.2 Fouling Scenario 

In heat transfer, the fouling scenario can be computed by fouling resistance, 
fR  

(Gudmundsson et al., 2008). Here, the overall heat transfer coefficient, heatU , is 

expanded to introduce 
fR . It is defined as follows (Delmotte et al., 2013): 

1 1 1 f

heat h h h c c h

R

U A h A h A A
    (4.54) 

where hh  and ch  denote the convection heat transfer coefficients for the hot and cold 

fluids. Thus, the fouling resistance can be defined as:  

c c h c c heat h h heat
f

c c h heat

A h h A h U A h U
R

A h h U

 
  (4.55) 

For a new heat exchanger, the fouling resistance, 
fR , is zero and it increases with 

time with increased fouling. 

 

4.4.3 Fault Detection problem 

In this work, the overall heat transfer coefficient is obtained as an explicit function 

of measurements and estimated for FD. The objective of the FD problem is to 

minimise the difference between the measurements, 
2

ˆ ( )h iT t  and 
2

ˆ ( )c iT t , and the 
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model predicted value, 2 ( )h iT t and 2 ( )c iT t , to obtain heatU , as described in Problem 

4.4.1. The initial values of output measurements and state variables are given in 

equations (4.57) to (4.60). 

 

Problem 4.4.1 

2 2

2 2 2 2
ˆ ˆmin {( ( ) ( )) ( ( ) ( )) }FD h i h i c i c i

U
i I

T t T t T t T t


     (4.56) 

Subject to:  

Equations (4.50) to (4.53)  

1(0) 80hT  ˚C (4.57) 

2 (0) 50hT  ˚C (4.58) 

1(0) 60cT  ˚C (4.59) 

2 (0) 55cT  ˚C (4.60) 

[0,10]t  (4.61) 

 

4.4.4 Parameter Estimation using MPP 

The formulation and solution of the parameter estimation problem using MPP are 

summarised as follows:  

(i)  The nonlinear ODEs model in equations (4.50) to (4.53) is discretised using 

Euler’s method and reformulated as the following algebraic equations: 

1 1 1 2 1

1

( 1) ( ) (( / )( ( )) ( / 2 )( ( ) ( )

( ) ))

h h h h hin h h heat h h c c

h hin

T i T i t m M T T i A U M c T i T i

T i T

     

 
 

(4.62) 

2 2 1 2 2

1 1

( 1) ( ) (( / )( ( ) ( )) ( / 2 )( ( )

( ) ( ) ))

h h h h h h h heat h h h

c h hin

T i T i t m M T i T i A U M c T i

T i T i T

      

 
 

(4.63) 
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1 1 1 2 1

1

( 1) ( ) (( / )( ( )) ( / 2 )( ( ) ( )

( ) ))

c c c c cin c c heat c c h c

h cin

T i T i t m M T T i AU M c T i T i

T i T

      


 

(4.64) 

2 2 1 2 2

1 1

( 1) ( ) (( / )( ( ) ( )) ( / 2 )( ( )

( ) ( ) ))

c c c c c c c heat c c c

c h hin

T i T i t m M T i T i AU M c T i

T i T i T

      

 
 

(4.65) 

(ii)  Equations (4.62) to (4.65) are substituted in Problem 4.4.1 and the discrete-

time FD problem is reformulated as the following NLP problem: 

 

Problem 4.4.2  

2 2

2 2 2 2
ˆ ˆmin {( ( 1) ( 1)) ( ( 1) ( 1)) }MPP h h c c

U
i I

T i T i T i T i


         (4.66) 

Subject to:  

1 1 1 1 2

1 1

( 1) ( ) (( / )( ( )) ( / 2 )( ( )

( ) ( ) ))

0

h h h h hin h h heat h h c

c h hin

h T i T i t m M T T i A U M c T i

T i T i T

     

  


 

(4.67) 

2 2 2 1 2

2 1 1

( 1) ( ) (( / )( ( ) ( )) ( / 2 )

( ( ) ( ) ( ) ))

0

h h h h h h h heat h h

h c h hin

h T i T i t m M T i T i A U M c

T i T i T i T

     

   



 

(4.68) 

3 1 1 1 2

1 1

( 1) ( ) (( / )( ( )) ( / 2 )( ( )

( ) ( ) ))

0

c c c c cin c c heat c c h

c h cin

h T i T i t m M T T i AU M c T i

T i T i T

     

  


 

(4.69) 

4 2 2 1 2

2 1 1

( 1) ( ) (( / )( ( ) ( )) ( / 2 )

( ( ) ( ) ( ) ))

0

c c c c c c c heat c c

c c h hin

h T i T i t m M T i T i AU M c

T i T i T i T

     

   



 

(4.70) 

Equations (4.57) to (4.61)  
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(iii)  Equations (4.67) and (4.69) are represented the set of nonlinear algebraic 

equations and these equations are substituted into Equation (4.66) to obtain: 

2 2 1 2

2

2 1 1 2 2

2

1 2 2 1 1

ˆ( ( 1) ( ( ) (( / )( ( ) ( )) ( / 2 )

ˆ( ( ) ( ) ( ) )))) ( ( 1) ( ( ) (( / )

( ( ) ( )) ( / 2 )( ( ) ( ) ( ) ))))

h h h h h h h heat h h

h c h hin c c c c

c c c heat c c c c h hin

G T i T i t m M T i T i A U M c

T i T i T i T T i T i t m M

T i T i AU M c T i T i T i T

     

       

     

 

(4.71) 

The gradient of G with respect to overall heat transfer coefficient function, heatU  is 

given by:  

1 1 2

2 1 2 2

1 1

2 1

(1/ ( ))( ( ) ( ) ( ))

ˆ( ( 1) (2 ( ) 2 ( ) 2 ( )

( ) ( )

( ) ) / (2 )) ((

h h h c h cin h h h h

heat

h h h h h h h h h h

h c heat h cin heat h h heat

h h heat h h c c

G
 c M A tT i A tT A tT i A tT i

U

T i c tm T i c tm T i c M T i

A tT i U A tT U A tT i U

A tT i U c M A tT


        



      

     

    2

1 2 1 2

2 1 2 1

( ) ( )

ˆ( ) )( ( 1) (2 ( ) 2 ( )

2 ( ) ( ) ( ) ( )

) / (2 ))) /

0

c c

c h c hin c c c c c c c

c c c c c heat c c heat c h heat

c hin heat c c c c

i A tT i

A tT i A tT T i c tm T i c tm T i

c M T i A tT i U A tT i U A tT i U

A tT U c M c M

  

        

      





 

(4.72) 

(iv) The equality constraint in Equation (4.72) is solved analytically in 

Mathematica and the solution of  heatU  is given by:  
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2 2 2 2 2 2 2 2

2 1( ) 2 ( ) ))h c hin c h h h hin c h h hinT i T A c M T i T A c M T 

 

(4.73) 

Note that in this expression 2hT  and 2cT  are the output measurements, hinT  and cinT  

are the input measurements, and 1hT  and 1cT  are available from state estimation.  

(v)  The overall heat transfer coefficient, heatU , is calculated using the 

measurements. The estimates of the model parameter are thus obtained without the 

need to solve an online optimisation problem. The fouling resistance, 
fR , in 

Equation (4.55) is then computed for FD to monitor the fouling performance and to 

decide when the heat exchanger needs preventive or corrective maintenance.  

 

4.4.5 Clean Heat Exchanger Scenario 

This section focuses on fouling detection of a water-to-water counter-flow heat 

exchanger. The length of the heat exchanger is 11 m and the inner and outer 
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diameters are 14 mm and 18mm, respectively, for separating the fluids. The outer 

diameter of the annulus is given as 26 mm. The value of the given parameters is 

provided in Table 4.5 (Delrot et al., 2012). Two scenarios are considered, which are 

clean and fouling heat exchangers. For a clean heat exchanger scenario, the inlet hot 

and cold temperatures, hinT  and cinT , are shown in Figure 4.22. The simulated output 

measurements, 2hT  and 2cT , are shown in Figure 4.23 and the simulated state 

variables profile, 1hT  and 1cT , for the clean exchanger scenario are shown in Figure 

4.24.  

The estimate of heatU , is evaluated using the explicit function of 

measurements, given by Equation (4.73) with the step size, 1t    s. The estimated 

heatU  is shown in Figure 4.25 and this figure demonstrates that the estimated model 

parameter value is consistent with the normal values in the clean exchanger. The 

detection of fault is carried out by monitoring the fouling resistance, 
fR , as shown 

in Figure 4.26. We can see that the fouling resistance for this scenario is less than 

0.0001 m
2
 K/W. Hence, the heat exchanger is in a clean scenario.  

 

Table 4.5. Parameters of the heat exchanger model 

Parameter Value Description 

hm  0.6 kg s
−1

 mass flow rate of hot fluid 

cm    0.55 kg s
−1

 mass flow rate cold fluid 

hM  0.8382 kg mass of the hot fluid 

cM  1.5055 kg mass of the cold fluid 

hA  0.4838 m
2
 heat transfer area in hot fluid 

cA  0.2764 m
2
 heat transfer area in cold fluid 

hc  4193 J/(kg K) specific heat in hot fluid 

cc  4193 J/(kg K) specific heat in cold fluid 
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Parameter Value Description 

hh  1200 W/(m
2 
K) convection heat transfer coefficients for the hot 

fluid  

ch  1000 W/(m
2 
K) convection heat transfer coefficients for the cold 

fluid 

 

 
Figure 4.22 Inlet measurements to the heat exchanger 

 

 

 
Figure 4.23 Outputs measurements of the clean exchanger (a) 2hT , the hot fluid 

temperature in section 2 (b) 2cT , the cold fluid temperature in section 2 
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Figure 4.24 State variables profile of the clean exchanger (a) 1hT , the hot fluid 

 temperature in section 1 (b) 1cT , the cold fluid temperature in section 1 

 

 
Figure 4.25 Estimated model parameter value for the clean heat exchanger scenario 

 

 
Figure 4.26 Estimated fouling factor, 

fR , for the clean heat exchanger scenario 
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4.4.6 Fouling Heat Exchanger Scenario 

An investigation for the faulty scenario was implemented for this case study. In this 

faulty scenario, the inlet hot and cold temperatures, hinT  and cinT , are shown in 

Figure 4.22. The output measurements, 2hT  and 2cT , and the state variables profile, 

1hT  and 1cT , for the fouling exchanger are shown in Figure 4.27 and Figure 4.28, 

respectively. In this scenario, the evaluation of faulty model parameter, heatU , is 

calculated with the step size 1t   s and shown in Figure 4.29. From this figure, we 

can see that the overall heat transfer coefficient has decreased with time.  

The fouling resistance, 
fR , is then calculated and monitored for FD to 

monitor the fouling performance and to decide when the heat exchanger needs 

preventive or corrective maintenance. For water, the value of the fouling factor is in 

the range of 0.0001 m
2 

K/W, 0.0007 m
2 

K/W (Cengel, 2003). Figure 4.30 shows the 

fouling resistance value of the faulty scenario. In the beginning, the heat exchanger 

is in the normal condition (clean exchanger), as shown in the figure that the fouling 

resistance, 
fR , is less than 0.0001 m

2 
K/W until 6.63 h. After that, the fouling 

resistance is increased to 0.0007 m
2 

K/W until 9.49 hr. At this time, fouling 

resistance is increased. The condition of the heat exchanger changes and degradation 

is occurring. Moreover, it indicates that fouling has started to occur in the heat 

exchanger where maintenance work should be considered to either clean the 

exchanger or shut down the plant. Over 9.5 hr, the fouling resistance increases 

drastically and the heat exchanger is in a severe faulty condition and we need faster 

action for corrective maintenance. Note that the drastically increased in fouling is 

only to show the applicability of the proposed method in a dynamic state.  
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Figure 4.27 Outputs measurements of fouling exchanger (a) 2hT , the hot fluid 

temperature in section 2 (b) 2cT , the cold fluid temperature in section 2  

 

 
Figure 4.28 State variables profile of fouling exchanger (a) 1hT , the hot fluid 

temperature in section 1 (b) 1cT , the cold fluid temperature in section 1  

 

 
Figure 4.29 Estimated model parameter value for fouling heat exchanger scenario 



91 

 

 

 

Figure 4.30 Estimated fouling factor, 
fR , for fouling heat exchanger scenario 

 

4.5 Glutamic Acid Fermentation Process 

Fermentation is a process in which biomass gets converted into products such as 

alcohol or acid. The fermentation process is highly sensitive to small changes in 

operating limits that may affect the final product quality if changes happen during 

crucial stages of the operation. Therefore, the fermentation operation must be 

maintained within specific limits. The process of detecting and diagnosing a fault in 

industrial processes thus needs to be implemented early on in operation to maintain 

the product quality and reduce production cost. Several studies have demonstrated 

the fault detection in fermentation processes (Çinar et al., 2002, Monroy et al., 

2012). For glutamic acid fermentation, the detection has been reported using wavelet 

analysis (Zhao et al., 1999, Ma et al., 2003), EKF,  NN (Liu, 1999) and using SVM 

(Ma et al., 2007). However, the mentioned approaches are computationally 

demanding (Liu, 1999) and the diagnosis of fault becomes difficult when more than 

one fault occurs simultaneously. 

In this work, a method to detect faults in batch glutamic acid fermentation 

processes is proposed. In batch fermentation as shown in Figure 4.31, all ingredients 

are mixed in a reactor at the beginning of the process and no additional substrate is 

added during the process. Once the fermentation has finished, the product is 

removed and the reactor is cleaned, and the fermentation process starts again. In the 
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glutamic acid fermentation process (Ma et al., 2003), the state variables are 

represented by the concentration of biomass, substrate and product. These state 

variables cannot be measured online and therefore this methodology cannot be 

directly applied. Therefore, in this work, a methodology for the cases where the state 

variables cannot be measured but can be estimated from other measurable quantities 

such as pH, dissolved oxygen and temperature is presented. By monitoring the 

estimated kinetic model parameters, process faults can be detected and diagnosed. 

The estimated kinetic model parameters should be close to observed parameters 

when no fault is present, and any substantial discrepancy between the estimated and 

observed parameters indicates changes in the process and can be interpreted as a 

fault. 

 
Figure 4.31 Batch fermentation diagram 

 

4.5.1 Mathematical Model 

The dynamic model of the glutamic acid fermentation process is as follows (Ma et 

al., 2003): 

dX
X

dt
  (4.74) 

s

dP S
bX

dt K S

 
  

 
 (4.75) 
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1 1

G P

dS dX dP
mX

dt Y dt Y dt
     (4.76) 

(1 / )m mX x  
 

(4.77) 

 

where X , P  and S  are the concentrations of biomass, product and substrate, 

respectively. These state variables cannot be measured online but can be estimated 

from other measurable quantities such as pH, dissolved oxygen and temperature.   

is the growth rate of the biomass and is given in Equation (4.77). b  is the maximum 

production rate, sK  is the saturation constant of the substrate, GY  is the yield 

coefficient of the biomass, PY  is the yield coefficient of the product, m  is the 

maintenance coefficient of the biomass, m  is the maximum growth rate of the 

biomass and mx  is the maximum biomass concentration. 

 Any improper formulation or contamination in the fermentation will change 

the kinetic model parameters, such as m  and PY , and lead to a process fault. To 

ensure that the maximum possible product yield is obtained from the system, it is 

necessary to make sure that conditions within the fermenter remain closely fixed 

around a pre-specified ideal trajectory (Lennox et al., 2001). Hence, the kinetic 

model parameters, m  and PY , are estimated for FD. The parameter values used for 

the simulation of the reactor are shown in Table 4.6 (Ma et al., 2003). 

 

Table 4.6. Model parameters for glutamic acid fermentation 

Parameter Value Description 

b  0.358 h
-1 maximum production rate 

sK  12.04 g/l saturation constant of the substrate 

GY  0.436 yield coefficient of biomass 

PY  0.645 yield coefficient of the product 
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Parameter Value Description 

m  0.105 h
-1 maintenance coefficient of the biomass 

m  0.767 h
-1 maximum growth rate of the biomass 

mx  6.43 g/l maximum biomass concentration 

 

4.5.2 Fault Detection Problem  

In fermentation processes, the objective of this FD problem is to estimate the model 

parameters, m  and PY , such that the error, FD , between the measurement of ˆ ( )iX t , 

ˆ( )iP t  and ˆ( )iS t , and model predicted value of ( )iX t , ( )iP t  and ( )iS t , is minimised 

as in Problem 4.5.1. The initial values of state variables are given in equations (4.79) 

to (4.81). 

Problem 4.5.1 

2 2 2ˆˆ ˆmin {( ( ) ( )) ( ( ) ( )) ( ( ) ( )) }
m P

FD i i i i i i
Y

i I

X t X t P t P t S t S t





     
,

 (4.78) 

Subject to:  

Equations (4.74) to (4.77)   

(0) 0.03X  g/l (4.79) 

(0) 0P  g/l (4.80) 

(0) 101.2S   g/l (4.81) 

[0,15]t  (4.82) 
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4.5.3 Parameter Estimate using MPP 

In this section, the kinetic model parameters, m  and PY , are obtained as explicit 

functions of measurements. The formulation and solution of the parameter 

estimation are summarised as follows:  

(i) The nonlinear ODEs model in equations (4.74) to (4.77) is discretised using 

Euler’s method and reformulated as the following algebraic equations: 

( )
( 1) ( ) 1 ( )m

m

X i
X i X i t X i

x


 
     

   

(4.83) 

( )
( 1) ( ) ( )

( )s

S i
P i P i tbX i

K S i

 
     

 
 (4.84) 

1 ( ) 1 ( )
( 1) ( ) ( (1 ) ( ) ( )( ) ( ))

( )
m

G m P s

X i S i
S i S i t X i bX i mX i

Y x Y K S i
      


 (4.85) 

(ii) The FD problem is reformulated as the following NLP problem: 

Problem 4.5.2 

2 2

,

2

ˆˆ ˆmin {( ( 1) ( 1)) ( ( 1) ( 1)) ( ( 1)

( 1)) }

m P
MPP

Y
i I

X i X i P i P i S i

S i






          




 (4.86) 

Subject to:  

1

( )
( 1) ( ) 1 ( ) 0m

m

X i
h X i X i t X i

x


 
      

 
 (4.87) 

2

( )
( 1) ( ) ( ) 0

( )s

S i
h P i P i tbX i

K S i

 
     

 
 (4.88) 

3

1 ( ) 1 ( )
( 1) ( ) ( (1 ) ( ) ( )( )

( )

( ))

0

m

G m P s

X i S i
h S i S i t X i bX i

Y x Y K S i

mX i

      




  

(4.89) 

Equations (4.79) to (4.82)  

(iii) Equations (4.87) to (4.89) are substituted into Equation (4.86) to obtain: 
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(4.90) 

The gradients of G with respect to m  and PY  are given by: 

ˆ((2 ( )( ( ) )( ( 1) ( ( )( ( ) )) /

ˆ)) / ) ((2 ( )(1 ( ) )( ( 1) ( ( ) ( )

( ( )(1 ( ) )) ( ( ) ( )) (( ( )) )))) )

0

m m m m m

m

m m m

m m G s P G

G
X i tX i tx X i X i t X i x t x

x x tX i X i / x S i t S i / t mX i

X i X i / x / Y bS i X i / K S i  Y / Y

 





       

       

  



 

(4.91) 

2
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/Y bS i X i / K S i Y /  K S  Y




        

  


 

(4.92) 

 (iv) The equality constraints in equations (4.91) and (4.92) are solved analytically 

in Mathematica, and the solution is given by: 

ˆ( ( ) ( 1))

( )( ( ) )

m
m

m

X i X i x

tX i X i x


 

 

 (4.93) 

( ) ( )

ˆˆ( ( ))( ( ) ( 1) ( ) ( 1) ( )

G
P

s G G G

b tS i X i Y
Y

K S i X i X i S i Y S i Y tmX i Y




      
 (4.94) 

(v)  The kinetic model parameters, m  and PY , are obtained as an explicit 

function of measurements given in equations (4.93) and (4.94). The residuals of 

model parameters are monitored for FD. 

 

4.5.4 Fault-free Scenario 

In this work, the whole fermentation period is of about 15 hours. The state variables 

of X , P  and S  are estimated from other measurable quantities such as pH, 
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dissolved oxygen and temperature using simulated data in Table 4.6. In the fault-free 

scenario, the simulated measurement value of X̂ , P̂  and Ŝ , and simulated model 

predicted value of X , P  and S , for each concentration are shown in Figure 4.32. 

The kinetic model parameter values are estimated by equations (4.93) and (4.94) 

with step size, 1t   min. The results for the estimated kinetic model parameters, 

m  and PY , are shown in Figure 4.33. The figure shows that estimated kinetic model 

parameters are close to the true value. The FD for this system is continued by 

monitoring the residual of each estimated model parameter. The results are shown in 

Figure 4.34. Here, we can see that the residual is less than 5% threshold value for 

both estimate model parameters, m  and PY . Hence, no fault was detected. 

 
Figure 4.32 State variables profile of concentration in fault-free scenario 

(a) Measured value (b) Model predicted value 
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Figure 4.33 Estimated model parameters for fault-free scenario (a) Maximum growth rate of the biomass, m  (b) Yield coefficient of product, PY  

 
Figure 4.34 Residual evaluation of estimated model parameters for fault-free scenario (a) Maximum growth rate of the biomass, m  (b) Yield 

coefficient of product, PY   



99 

 

4.5.5 Faulty Scenario 

An investigation for a faulty scenario was implemented for this case study. To 

demonstrate the application of parameter estimation for faulty processes, the kinetic 

model parameters are changed as shown in Table 4.7 and the model is simulated to 

obtain data for parameter estimation. Figure 4.35 shows the measured value and 

model predicted value of biomass, product and substrate concentrations for a faulty 

scenario. The estimated maximum growth rate of the biomass, m , and yield 

coefficient of the product, 
pY , are shown in Figure 4.36 with step size, 1t   min. 

From these figures, we can see that, after 5 h, the estimated values of m  and 
pY  

change for each faulty scenario. The detection of fault is carried out by monitoring 

the value of the residuals of model parameters, and the result is shown in Figure 

4.37. These figures show that, at 5 hr of the fermentation processes, the percentage 

of residual of m  and 
pY  are increased to 8% and 16%, respectively. It indicates that 

process faults have started occurring in the fermentation process since the residuals 

for m  and 
pY  are more than 5% of the threshold value. The fault is declared in the 

system after 5h. The MPP  based parameter estimation is thus able to accurately and 

quickly identify the faults in the glutamic acid fermentation system. 

 

Table 4.7 Faulty scenarios for glutamic acid fermentation 

Fault kinetic parameter Fault 1 Fault 2 Fault 3 Fault 4 

maximum growth rate of the 

biomass, m  
-10 % 10 % - 15 % 15 % 

yield coefficient of product, 
pY  - 10 % 10 % - 15 % 15 % 

Starting time for change 5 h 5 h 5 h 5 h 
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Figure 4.35 State variables profile of concentrations in faulty scenarios 

(a) Measured value (b) Model predicted value 
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Figure 4.36 Estimated model parameters for faulty scenarios (a) Maximum growth rate of the biomass, m  (b) Yield coefficient of product, PY  

 
Figure 4.37 Residual evaluation of estimated model parameters for faulty scenarios (a) Maximum growth rate of the biomass, m  (b) Yield 

coefficient of product, PY  
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4.6 Wastewater treatment system 

Wastewater treatment (WWT) is a process of converting wastewater into bilge water 

that can be returned to the environment and used for domestic and industrial 

applications. The wastewater treatment includes mechanical, biological, sludge and 

water chemical treatments. To maintain the operation and the quality of the effluent, 

proper operation and monitoring of wastewater treatment plants are required. FD has 

become an important step in process monitoring and involving a process of detecting 

faults and diagnosing their causes and location. This is achieved by continuously 

monitoring the systems to detect any abnormal conditions, and then evaluating and 

diagnosing the conditions with faults.  

FD methods for sensor faults in a WWT system normally use data-based 

methods, such as NN and PCA. The NN model is presented in Maier and Dandy 

(2000) to model a wastewater treatment system. In Caccavale et al. (2010), faults in 

nitrogen sensors are detected by estimating the concentration of NO and NH by 

using a NN. Honggui et al. (2014) showed how sensor faults are diagnosed using a 

fuzzy NN to estimate dissolved oxygen concentration, pH, chemical oxygen demand 

and total nutrients. In Lee et al. (2004), the kernel PCA is used to extract nonlinear 

relations in process variables and it shows better performance than linear PCA in 

process monitoring. Adaptive PCA is used in Baggiani and Marsili-Libelli (2009) to 

compare the current plant operation with an exact performance based on a reference 

data set and the sensor outputs. In Sanchez-Fernández et al. (2015), a distributed 

PCA is applied to detect faults by minimising the communication cost between the 

blocks in WWTP. The classical PCA is presented using the Benchmark Simulation 

Model No.1 in Garcia-Alvarez et al. (2009), Chen et al. (2016a) and Carlsson and 

Zambrano (2016). The combined use of PCA in data pre-processing and ANN has 

been presented in Gontarski et al. (2000) to improve network performance. Besides, 

FD in WWT has been discussed using an observer-based method in Fragkoulis et al. 

(2011), where multiple actuators and sensors fault are detected. 

In an aerobic WWT system, respiration rate is used as an indicator of 

biological activity for monitoring and control (Brouwer et al., 1994, Wimberger and 

https://en.wikipedia.org/wiki/Wastewater
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Verde, 2008). The respiration rate is affected by the initial condition of the biomass, 

substrate concentration in the inflow and extrinsic growth behaviour of the biomass 

on inhibitory substrates. In Wimberger and Verde (2008), FD is performed by 

evaluating the detectability and isolability for analytical- and signal-based 

methodologies using information from the application of sensitivity theory. 

However, respiration rate depends on intermittent aeration patterns and the 

calculation can only be evaluated during air-off periods (Carlsson, 1993, Carlsson et 

al., 1994, Lindberg and Carlsson, 1996). In this work, we propose FD in a WWT 

system by detecting and monitoring the kinetic parameters of extrinsic growth 

behaviour by using MPP. The kinetic parameters of concentration of substrate in the 

inflow, inhibition coefficient and specific growth rate will be obtained as an explicit 

function of measurements using MPP and monitored for FD. The kinetic parameters 

are estimated online repeatedly and, if there is a discrepancy between the estimated 

parameters and the ‘true’ parameters, it gives an indication of faults.  

 

4.6.1 Mathematical Model 

In this work, an aerobic sequencing batch reactor for a fed-batch reactor is 

presented. These bioprocesses use activated sludge and provide treatment for 

wastewater in five stages: Fill, React, Settle, Decant and Idle, as shown in Figure 

4.38. During the fill stage, the wastewater is directed into the tank and mixed with 

the sludge from previous cycles. At the reacting stage, the air is provided as a 

function of the aeration process that consumes the waste as nutrition and produces 

carbon dioxide, nitrates and nitrites. After a sufficient amount of reaction time, the 

aeration process is stopped and the sludge is allowed to settle. At the decanting 

stage, the treated wastewater is removed from the reactor and the sludge that remains 

is reused for the next cycle. The reactor then enters the idle stage, which is used to 

prepare the SBR for the next cycle.  
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Figure 4.38 The sequencing batch reactor stages 

 

The aerobic sequencing batch reactor system involves aerobic growth and 

endogenous respiration reactions given by:  

Growth:   c oS S X    (4.95) 

Endogenous respiration:   cS X X   (4.96) 

where cS  represents the concentrations of organic matter, oS  is the concentration of 

dissolved oxygen and X  represents the concentrations of biomass. The mathematical 

model of the process is given by the following equations (Fibrianto et al., 2008): 

    inqdX
X X

dt V
   (4.97) 

 1      
in

c in
c c

dS q
k X S S

dt V
     (4.98) 

   2      +     
in s

o in
o o La o o

dS q
k X bX S S k S S

dt V
       (4.99) 

  in

dV
q

dt
  (4.100) 
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(4.101) 

where   is growth rate, inq  is inlet flow rate, V  is volume, 1k   is yield coefficients 

of the substrate to biomass, 2k  is yield coefficients of oxygen to biomass, b  is 

endogenous respiration coefficient, 
incS  is concentration of substrate in the inflow, 

inoS  is concentration of dissolved oxygen in the inflow,
 soS  

is dissolved oxygen mass 

at saturation and
 Lak  is oxygen mass transfer coefficient. The growth rate is 

represented by the Haldane model and is given by Equation (4.101). In this model, 

the fed-batch process operation constantly maintains the growth rate around its 

maximum because the growth rate of microorganisms is inhibited by the substrate. 

The parameter values for the wastewater treatment process reaction are shown in 

Table 4.8 (Fibrianto et al., 2008). 

 

Table 4.8. Model parameters for wastewater treatment process reaction 

Parameter Value Description 

incS  168 mg/l concentration of substrate in the inflow 

inoS  0 mg/l concentration of dissolved oxygen in the inflow 

inq  14.8mg/l inflow rate 

soS  6 mg/l dissolved oxygen mass at saturation 

1k  3.7 conversion coefficient of the substrate to biomass 

2k  1.0363 conversion coefficient of oxygen to biomass 

b  0.0059 h
-1

 endogenous respiration coefficient 

Lak  16.8 h
-1

 oxygen mass transfer coefficient 

iK  3.753 mg/l inhibition coefficient 

sK  60 mg/l half-saturation coefficient 

o  0.1916 h
-1

 specific growth rate 
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4.6.2 Fault Detection Problem  

In this work, a method to estimate and detect faults in wastewater treatment is 

presented. The related kinetic parameters for the faulty process to be investigated are 

the concentration of substrate in the inflow,
 incS , inhibition coefficient, iK ,

 
and 

specific growth rate,
 o , which affect the respiration rate. Thus, these kinetic 

parameters will be obtained as an explicit function of measurements using MPP and 

monitored for FD. The objective of this FD problem is to estimate the model 

parameters such that the error, FD  , between the measurement  ˆ ( )iX t , ˆ ( )c iS t
 
and 

ˆ ( )o iS t and model predicted value of ( )iX t , ( )c iS t
 
and ( )o iS t

 
is minimised as shown 

in Problem 4.6.1. The initial values of state variables are given in equations (4.103) 

to (4.106). 

 

Problem 4.6.1 

2 2 2

, ,

2

ˆ ˆˆmin {( ( )  ( ))  ( ( )  ( ))  ( ( )  ( ))

ˆ  ( ( )  ( )) }

in i o
FD i i c i c i o i o i

Sc K
i I

i i

X t X t S t S t S t S t

V t V t






     

 


 

(4.102) 

Subject to:  

Equations (4.97) to (4.101)  

(0) 4734X 
 
mg/l (4.103) 

(0) 0cS   mg/l (4.104) 

(0) 6oS  mg/l (4.105) 

(0) 3V   l  (4.106) 

[0,6]t  (4.107) 
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4.6.3 Parameter Estimate using MPP 

The formulation and solution of the parameter estimation problem using MPP are 

summarised as follows:  

i)  The nonlinear ODEs model equations (4.97) to (4.101) is discretised using 

Euler’s method and reformulated as the following algebraic equations: 

2

( ) ( )( )
(   1)  (     )

( ) ( )
  ( )  

c o in

c
s c

i

S i X i qX i
X i t

S it V i
K S i

K


    


 

 
(4.108) 
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(4.110) 

(   1)    ( )inV i tq V i     (4.111) 

(ii)  The FD problem is reformulated as the following NLP problem: 

Problem 4.6.2 

2 2

, ,

2 2

ˆˆ  min {( ( 1)  ( 1))   ( ( 1)  ( 1))  

ˆ ˆ ( ( 1)  ( 1))   ( ( 1)  ( 1)) }
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(4.112) 

Subject to:  
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(4.115) 

4   (   1)    ( )  0inh V i tq V i       (4.116) 

Equations (4.103) to (4.107)  

(iii)  Equations (4.113) to (4.116) are substituted into Equation (4.112) to obtain: 
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The gradients of G  with respect to estimate model parameters, 
incS , iK  and o , are 

given by: 
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(4.120) 

(iv) The equality constraints in equations (4.118) to (4.120) are solved 

analytically in Mathematica, and the solution is given by: 
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(4.123) 

(v)  In this case study, only single fault was assumed to occur at any time to solve 

the problem for the non-square system of ODEs model. Hence, as an example in 

Equation (4.121), the symbolic solution 
incS  was obtained in terms of model 

parameters, iK  and o , and state variables, X , cS , and V . In Equation (4.122), the 

symbolic solution iK  was obtained in terms of model parameters, 
incS and o , and 

state variables, X , cS , oS , and V . The solution o  was obtained in terms of model 

parameters, 
incS  and iK , and state variables, X , cS , oS , and V , as shown in 

Equation (4.123). 

 

4.6.4 Fault-free Scenario 

In the fault-free scenario, the simulated measured values and model predicted values 

for concentrations are shown in Figure 4.39 using simulated data from Table 4.8. 

The estimated model parameters, 
incS , iK  and o , are calculated using equations 

(4.121) to (4.123) with step size, 0.001t   h. The estimated model parameters are 

shown in Figure 4.40. The result shows that the estimated model parameter is close 

to true model parameters. The detection of fault is carried out by monitoring the 
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value of the residual of model parameters and shown in Figure 4.41. We can see that 

no fault was detected in any of the parameters since the residual is less than the 

threshold. The threshold is chosen as 10% from the nominal system.  
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Figure 4.39 State variables profile for fault-free scenario  
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Figure 4.40 Estimated model parameters for fault-free scenario (a) Concentration of 

substrate in the inflow, 
incS , (b) Inhibition coefficient, iK , and (c) Specific growth 

rate, o  
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Figure 4.41 Residual of estimated model parameters for fault-free scenario (a) 

Concentration of substrate in the inflow, 
incS , (b) Inhibition coefficient, iK , and (c) 

Specific growth rate, o  
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4.6.5 Faulty Scenario 

Investigation for the faulty scenarios was implemented where the percentages of 

changes in kinetic parameters are given in Table 4.9. In this case study, a single fault 

is assumed to occur at any time. The step size is given as 0.001t   h. For faulty 

scenario 1, only fault in 
incS is affected in the system for a 30% decrease. We can see 

that the estimated parameter, 
incS , in Figure 4.42 has decreased from 168 mg/l to 118 

mg/l after 3 h. The residual of 
incS  is shown in Figure 4.43 and monitored for FD. 

This result indicates that the fault occurs at 3 h as the residual of 
incS  is more than a 

threshold value of 10%.  In faulty scenario 2, the fault in iK  increases 20% at 3h, 

but no fault was introduced in 
incS and o . Using the symbolic solution of iK , the 

estimated parameters of iK  is calculated and the result is shown in Figure 4.44. We 

can see that the estimated parameter, iK , has increased from 3.753 mg/l to 4.878 

mg/l after 3 h and the residual of iK  is monitored for FD. Figure 4.45 shows that, 

after 3 h, the residual of iK  is more than 10% of the threshold and therefore the fault 

is declared in the system related to inhibition coefficient. In fault scenario 3, only 

parameter fault of  o  
is assumed to occur in the system. Hence, the estimated 

parameter using the symbolic solution of o  is evaluated and calculated as shown in 

Figure 4.46. This result shows that the estimated model parameter is decreased from 

0.1916 h
-1

 to 0.1341 h
-1

 at 3 h. The residual of o  
is monitored for FD and the result 

is shown in Figure 4.47. The system has been declared as faulty scenario at 3 h 

where the fault is occurred in o .  

Table 4.9. Faulty scenario for the wastewater treatment system 

Fault kinetic model parameter Scenario 1 Scenario 2 Scenario 3 

Concentration of substrate in the 

inflow, 
incS  - 30% - - 

Inhibition coefficient, iK  - + 30 % - 

Specific growth rate, o   - - - 30% 
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Figure 4.42 Estimated model parameter, 

incS , for faulty scenario 1 

 

 
Figure 4.43 Residual of the estimated model parameter, 

incS , for faulty scenario 1 

 

 

Figure 4.44 Estimated model parameter, iK , for faulty scenario 2 

 



 

117 

 

 

Figure 4.45 Residual of the estimated model parameter, iK , for faulty scenario 2 

 

 

Figure 4.46 Estimated model parameter, o , for faulty scenario 3 

 

 

Figure 4.47 Residual of the estimated model parameter, o , for faulty scenario 3 
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4.7 Concluding Remarks 

(i)  The objective of this chapter is to demonstrate the applicability of the 

proposed method of parameter estimation using MPP towards application for 

model-based FD. The applicability of FD is presented in five case studies of 

process systems which are evaporator, tank, heat exchanger, fermentation 

and wastewater treatment systems.  

(ii)  The mathematical model and related parameter faults have been explained in 

this chapter. The formulation for fault detection problem and KKT condition 

for each case is derived systematically. The KKT condition is solved using 

Mathematica to obtain the parametric function. Two scenarios in FD 

application, fault and fault-free scenarios, are examined to evaluate the 

performance of the parametric function.  

(iii)  The findings suggest that a methodology for FD based on MPP is 

successfully able to obtain the model parameters as an explicit function of the 

measurements for the square system of ODEs model. However, for a case 

where a non-square system of ODEs model is involved, the proposed method 

can only estimate for a single fault at one time as presented in the heat 

exchanger and wastewater treatment systems.  

 (iv)  The proposed work has successfully demonstrated the advantages of MPP for 

FD using parameter estimation. Simple function evaluations replace the 

online computational burden in the optimisation problem of FD. The 

proposed method is also able to estimate the model parameters accurately 

using symbolic solution at a dynamic state. Hence, the faults in the system 

are quickly identified by monitoring the residual of model parameters as each 

parameters faults are related to the physical fault interpretation in the system. 
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CHAPTER 5 PARAMETER ESTIMATION FOR 

SYSTEM DISCRETISATION USING IMPLICIT 

EULER’S METHOD 

 

5.1 Introduction 

An implicit Euler’s method is proposed for another discretisation method for 

nonlinear ODEs. The advantages of the implicit method which are provide more 

numerically stable for solving stiff differential equations and more accurate 

approximate solutions (Koch et al., 2000, Acary and Brogliato, 2009, Benko et al., 

2009, Acary and Brogliato, 2010, Hasan et al., 2014, Sun et al., 2014). In this 

chapter, the objective of this study is to study the influence of the discretisation of 

nonlinear ODEs in the MPP algorithm. Hence, the complexity of implicit parametric 

functions, the accuracy of parameter estimates and the effect of step size will be 

discussed with comparison to explicit Euler’s method. 

 

5.2 Discretisation of Ordinary Differential Equation 

The discretisation of an ODE model in equations (3.2) to (3.3) using an implicit 

Euler’s method is given by: 

 ( 1) ( ) ( 1), ( ),j j jx i x i tf i i   x u θ , i I , j J  (5.1) 

where the step size is given by t . Equation (5.1) represents the prediction of 
jx  at 

time step 1i   where ( )jx i  is a state variables values at time step i  and 

 ( 1), ( ),jf i ix u θ  is a vector of functions evaluated at step 1i  . 
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5.3 Parameter Estimation using Multiparametric Programming 

The algorithm to obtain the model parameters as an explicit function of 

measurements using MPP, as discussed in Chapter 3 is summarised in Table 5.1 

with the discretisation of ODE using implicit Euler’s method.  

 

Table 5.1. Parameter estimation using MPP algorithm 

Step 1. Discretise nonlinear ODE model in Equation (3.2) to algebraic 

equations as given in Equation (5.1) using implicit Euler’s method 

Step 2. Formulate FD optimisation problem as an NLP problem as given in 

equations (3.6) to (3.8) 

Step 3. Formulate KKT conditions for equations (3.6) to (3.8) as given in 

equations (3.9) to (3.13) 

Step 4. Solve the equality constraints in equations (3.12) and (3.13) of the 

KKT conditions parametrically to obtain Lagrange multipliers and 

model parameters,  ˆθ x , as a function of measurements, x̂   

Step 5. Screen the solutions obtained in the previous step and ignore solutions 

with imaginary parts  

Step 6. Calculate the estimated model parameters, θ , using the measurement, 

x̂ , by a simple evaluation of  ˆθ x  

 

5.4 Illustrated examples of the proposed method  

In this section, three examples are presented using the implicit Euler’s method for 

discretising the nonlinear ODEs for parameter estimation using MPP. The 

comparison results between discretisation using implicit Euler’s and explicit Euler’s 

method in Section 3.2.1 are discussed.  
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5.4.1 Example 1: First-order irreversible chain reaction  

In example 1, the first-order irreversible chain reactions model has been discussed in 

Section 3.5.1 where the nonlinear ODE model is given in equations (3.18) and (3.19) 

as below: 

1
1 1

dz
z

dt
  (3.18) 

2
1 1 2 2

dz
z z

dt
    (3.19) 

where 1z  and 2z  are the state variables of concentrations of A and B respectively 

and 1  and 2  are the reaction rate constants of 1n  and 2n . 

 

(a) Discretisation of Ordinary Differential Equations  

The nonlinear ODE model in equations (3.18) and (3.19) is discretised using the 

implicit Euler’s method and reformulated as the following algebraic equations:  

1
1

1

( )
( 1)

1

z i
z i

t
 


 (5.2) 

1 1 2
2

2

( 1) ( )
( 1)

1

t z i z i
z i

t





  
 


 (5.3) 

 

(b) Parameter Estimation Problem  

The parameter estimation problem is reformulated as the following NLP problem for 

the discretisation method to estimate the model parameters, 1  and 2 , such that the 

error, MPP , between the measurement of state variables, ˆ ( 1)iz i  , and model 

predicted value of state variables, ( 1)iz i  , is minimised as follows: 
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Problem 5.1 

 
1 2

2 2

1 1 2 2
,

ˆ ˆmin ( ( 1) ( 1)) ( ( 1) ( 1))MPP

i I

z i z i z i z i
 




         (5.4) 

Subject to: 
 

1
1 1

1

( )
( 1) 0

1

z i
h z i

t
   


 (5.5) 

1 1 2
2 2

2

( 1) ( )
( 1) 0

1

t z i z i
h z i

t





  
   


 (5.6) 

Equations (3.21) to (3.23) 
 

Equations (5.5) and (5.6) are substituted into Equation (5.4) to obtain: 

2 2

1 1 1 2
1 2

1 2

( ) ( 1) ( )
ˆ ˆ( 1) ( 1)

1 1

z i t z i z i
g z i z i

t t



 

     
        

      
 (5.7) 

The gradients of g with respect to 1  and 2  equal to zero are given by: 

2 2

1 1 1 1 1 1 1

1

2

1 1 1 1 1 1 2

2 2 2

ˆ(2 ( )( ( ( ) (1 )) ( 1))) / (1 ) (2( (( ( )) /

(1 ) ) ( ( )) / (1 ))( ((( ( )) / (1 ) ( )) /

ˆ(1 )) ( 1))) / (1 )

0

g
t z i z i / t z i t t  z i

θ

t t z i t t  z i t z i

t z i t

  

   

 


         

       

   



 

(5.8) 

1 1 1 2 1 1 1 2

2

2

2 2 1

(2 (( ( )) / (1 ) ( ))( ((( ( )) / (1 ) ( )) /

ˆ(1 )) ( 1))) / (1 )

0

g
t t z i t z i t z i t z i

θ

t z i t

   

 


        

   



 

(5.9) 

The equality constraints of KKT conditions in equations (5.8) and (5.9) are solved 

analytically in Mathematica, and the solution for Example 1 with discretisation using 

implicit Euler’s method is given by:  
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(i) Solution 1 

2
1

1 2

( )
 

( ( ) ( ))

z i

t z i z i
  

 
 (5.10) 

1 1 2 2
2

1 1 2

ˆ ˆ( ) ( 1) ( ) ( 1)

ˆ( ( ) ( 1) ( ))

z i z i z i z i

t z i z i z i


     


   
 (5.11) 

(ii) Solution 2 

1 1
1

1

ˆ ( ) ( 1)

ˆ t ( 1)

z i z i

z i


 


 
 (5.12) 

1 1 2 2
2

2

ˆ ˆ ( ) ( 1) ( ) ( 1)

ˆ t ( 1)

x i x i x i x i

x i


    


 
 (5.13) 

The discretisation of nonlinear ODEs using implicit Euler’s method for 

parameter estimation using MPP provides the parameter estimates as given in 

solutions 1 and 2. Considering the positive values of reaction rate parameters in this 

example, 1 0 
 

and 2 0  ; solution 1 is ignored because it implies that the 

concentration of B, 2 ( )z i  is negative, which is not true. Hence, model parameters are 

estimated using solution 2.  

In Section 3.5.1, the solution model parameters for Example 1 with the 

discretisation of ODEs model using explicit Euler’s method is given by equations 

(3.32) and (3.33) as follows: 

1 1
1

1

ˆ( ) ( 1)

( )

z i z i
 

 t z i


  
 

  
(3.32) 

1 1 2 2
2

2

ˆ ˆ( ) ( 1) ( ) ( 1)
 

( )

z i z i z i z i

t z i


     
 

  
(3.33) 

Next, a comparison between solution in equations (5.12), (5.13), (3.32) and (3.33) is 

carried out for analysing the accuracy of parameter estimates and effect of step size.  
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(c) Result for Example 1 

The simulated data for state variables profile, 1z  and 2z , generated at it t  with 

initial values given by 1(0) 1z   and 2 (0) 0z   is shown in Figure 3.1 (Chapter 3, 

Section 3.5.1). In Example 1, three different step sizes are used to estimate model 

parameters. The model parameters, 1  and 2 , obtained in equations (5.12), (5.13), 

(3.32) and (3.33) are calculated and compared for effectiveness and accuracy 

between the two discretisation methods of ODEs. The comparison of model 

parameters for different step sizes, [0.10,0.05,0.01]t  , is shown in figures 5.1 and 

5.2 for 1  and 2 , respectively. From these figures, we can see that, for the smallest 

step size, 0.01t  , the estimated model parameters, 1  and 2 , are close to the 

actual true values of the model parameters (
1
ˆ 5   and 

2
ˆ 1  ). Tables 5.2 and 5.3 

show that percentage error (%) of the implicit Euler’s method is smaller than that 

obtained by explicit Euler’s method for 0.01t  . This figure indicates that the 

present method provides better results than those obtained by the explicit Euler 

method. (Note: the time ( it ) in tables 5.2 and 5.3 only shows the selected time for 

the purpose of presenting the percentage error results.) 

 
Figure 5.1 Estimated model parameter, 1 , for different step sizes, t  
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Figure 5.2 Estimated model parameter, 2 , for different step sizes, t  

 

Table 5.2. Comparison of the estimated model parameters, 1  for step size 0.01t   

Time ( it ) 
Implicit Euler Explicit Euler Implicit Euler Explicit Euler 

1  1  % Error % Error 

0.10 5.03682 4.79529 0.7364 4.0942 

0.20 5.03682 4.79529 0.7364 4.0942 

0.30 5.03682 4.79529 0.7364 4.0942 

0.40 5.03682 4.79529 0.7364 4.0942 

0.50 5.03682 4.79529 0.7364 4.0942 

0.60 5.03682 4.79529 0.7364 4.0942 

0.70 5.03681 4.79528 0.7362 4.0944 

0.80 5.03679 4.79526 0.7358 4.0948 

0.90 5.03682 4.79529 0.7364 4.0942 
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Table 5.3. Comparison of the estimated model parameters, 2  for step size 0.01t   

Time ( it ) 
Implicit Euler Explicit Euler Implicit Euler Explicit Euler 

2  2  % Error % Error 

0.10 0.99098 1.05976 0.9020 5.9760 

0.20 0.99714 1.01915 0.2860 1.9150 

0.30 0.99921 1.00628 0.0790 0.6280 

0.40 1.00019 1.0003 0.0190 0.0300 

0.50 1.00073 0.99706 0.0730 0.2940 

0.60 1.00105 0.99514 0.1050 0.4860 

0.70 1.00125 0.99394 0.1250 0.6060 

0.80 1.00138 0.99318 0.1380 0.6820 

0.90 1.00146 0.99269 0.1460 0.7310 

 

5.4.2 Example 2: Lotka–Volterra model  

The Lotka–Volterra model (Esposito and Floudas, 2000, Dua, 2011, Dua and Dua, 

2011) has been discussed in Section 3.5.2 where the nonlinear ODE model is given 

as below: 

1
1 1 2(1 )

dz
z z

dt
   (3.34) 

2
2 2 1( 1)

dz
z z

dt
   (3.35) 

where 1z  and 2z  are state variables of prey and predator. The model parameters, 1  

and 2 , represents parameters describing the ecological interaction system to be 

estimated using MPP.  
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(a)  Discretisation of Ordinary Differential Equations 

The nonlinear ODE model in equations (3.34) and (3.35) is discretised using implicit 

Euler’s method and reformulated as the following algebraic equations: 

1
1

1 1 2

( )
( 1)

1 ( 1)

z i
z i

t t z i 
 

  
 (5.14) 

2
2

2 2 1

( )
( 1)

1 ( 1)

z i
z i

t t z i 
 

   
 (5.15) 

 

(b) Parameter Estimation Problem  

The parameter estimation problem is reformulated as the following NLP problem for 

the discretisation method to estimate the model parameters, 1  and 2 , such that the 

error, MPP , between the measurement of state variables, ˆ ( 1)iz i  , and model 

predicted value of state variables, ( 1)iz i  , is minimised as follows: 

Problem 5.2  

 
1 2

2 2

1 1 2 2
,

ˆ ˆmin ( ( 1) ( 1)) ( ( 1) ( 1))MPP

i I

z i z i z i z i
 




         (5.16) 

Subject to:  

1
1 1

1 1 2

( )
( 1) 0

1 ( 1)

z i
h z i

t t z i 
   

  
 (5.17) 

2
2 2

2 2 1

( )
( 1) 0

1 ( 1)

z i
h z i

t t z i 
   

   
 (5.18) 

Equations (3.37) – (3.39)  

Equations (5.17) and (5.18) are substituted into Equation (5.16) to obtain: 

2

1 1 1 1 2 2 2

2

2 2 1 1 1 2

ˆ ˆ( ( 1) ( ) / (1 ( 1))) (( ( 1) ( ) /

( 1 ( ( ) / (1 ( 1)))))

g z i z i t t z i z i z i

t t z i t t z i

 

   

         

       
 (5.19) 

The gradients of g with respect to 1  and 2  equal to zero are given by: 
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1 2 1 1 1 1 2

1

2

1 1 2 2 1 2 2 2

2 2 2 1 1 1 2 1

1 2

ˆ(2 ( )( ( 1))( ( 1) ( ) / (1 + ( 1)))) /

ˆ(1 ( 1)) (2 ( ) ( )( ( 1))( ( 1)

( ) / ( 1 ( ( )) / (1 ( 1))))) / ((1

( 1)

g
z i t tz i z i z i t t z i

θ

t t z i t z i z i t tz i z i

z i t t z i t t z i t

t z i

 

  

    




         

          

        

  2 2

2 2 1 1 1 2) ( 1 ( ( )) / (1 ( 1))) )

0

t t z i t t z i         



 

(5.20) 

2 1 1 1 2 2 2

2

2 2 1 1 1 2 2

2

2 1 1 1 2

ˆ((2 ( )( (  ( )) / (1 ( 1)))( ( 1) ( ) /

( 1 ( ( )) / (1 ( 1))))) / ( 1

( ( )) / (1 ( 1))) )

0

g
z i t t z i t t z i z i z i

θ

t t z i t t z i t

t z i t t z i

 

    

  


         

         

   



 

(5.21) 

The equality constraints of KKT conditions in equations (5.20) and (5.21) are solved 

analytically in Mathematica, and the solution for Example 2 with discretisation using 

implicit Euler’s method is given by:  

(i)  Solution 1 

1
1

2

1 ( )
 

( 1 ( 1))

z i

t z i


 


   
 (5.22) 

1
2

2 2 2

ˆ1 ( 1)

ˆ( ) ( ( ) ( 1))

z i

tz i  z i z i


  

  

 (5.23) 

(ii) Solution 2 

1 1
1

1 2

ˆ ( ) ( 1)

ˆ t ( 1)( 1 ( 1))

z i z i

z i z i


 

    

 (5.24) 

2 2
2

1 2

ˆ ( ) ( 1)

ˆ ˆ ( 1 ( 1)) ( 1)

z i z i

t z i z i


  

    

 (5.25) 

The solution for Example 2 using implicit Euler’s method gives two sets of 

model parameters as an explicit function of measurements, as given in solution 1 and 

solution 2. Considering the positive values of model parameters in this example, 

1 0  and 2 0  , solution 1 is ignored because it implies that the state variable of 

prey, 1( )z i  is a negative value which is not true. Hence, model parameters are 

evaluated using solution 2.  
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In Section 3.5.2, the solution model parameters for Example 2 with the 

discretisation of ODEs model using explicit Euler’s method is given by equations 

(3.48) and (3.49) as below: 

1 1
1

1 2

ˆ( ) ( 1)

( )( 1 ( ))

z i z i
 
 t z i z i


 


  

 (3.48) 

2 2
2

1 2

ˆ( ) ( 1)
 

( 1 ( )) ( )

z i z i

t  z i z i


  


    
(3.49) 

The comparison between solutions from equations (5.24), (5.25), (3.48) and (3.49) is 

carried out for investigating the accuracy of parameter estimates and effect of step 

size.  

 

(c) Result for Example 2 

The simulated data for state variables profile, 1z  and 2z , was generated at it t  with 

initial values given by 1(0) 1.2z   and 2 (0) 1.1z   as shown in Figure 3.4 (Chapter 

3, Section 3.5.2). In this example, the model parameters are estimated using the 

explicit function as given in equations (5.24), (5.25), (3.48) and (3.49). Three 

different step sizes are used to estimate model parameters, [0.10,0.05,0.01]t  . 

The estimated model parameters, 1  and 2 , for different step sizes, t , are shown 

in Figures 5.3 and 5.4. As the step size decreased, the estimated model parameter 

values, 1  and 2  , became closer to the true values of the model parameters (
1
ˆ 3   

and 
2

ˆ 1  ). Tables 5.4 and 5.5 show that percentage error of the implicit Euler’s 

method is smaller than that obtained by explicit Euler method for 0.01t  . Thus, 

the discretisation using implicit Euler’s method gave more accurate model 

parameters compared to explicit Euler’s method, where the estimated model 

parameters are close to the true values. (Note: the time ( it ) in tables 5.4 and 5.5 only 

shows the selected time to present the percentage error results.) 
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Figure 5.3 Estimated model parameter, 1 , for different step sizes, t  

 

 
Figure 5.4 Estimated model parameter, 2 , for different step sizes, t  
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Table 5.4. Comparison of the estimated model parameters, 1  for step size 0.01t   

Time ( it ) 
Implicit Euler Explicit Euler Implicit Euler Explicit Euler 

1  1  % Error % Error 

0.00 2.99132 3.04693 0.289 1.564 

0.01 2.99174 3.04472 0.275 1.491 

0.02 2.99216 3.04259 0.261 1.420 

0.03 2.99255 3.04055 0.248 1.352 

0.04 2.99294 3.03857 0.235 1.286 

0.05 2.99331 3.03667 0.223 1.222 

0.06 2.99367 3.03482 0.211 1.161 

0.07 2.99402 3.03304 0.199 1.101 

0.08 2.99435 3.03130 0.188 1.043 

0.09 2.99468 3.02963 0.177 0.988 

0.10 2.99500 3.02800 0.167 0.933 

 

Table 5.5. Comparison of the estimated model parameters, 2  for step size 0.01t   

 Implicit Euler Explicit Euler Implicit Euler Explicit Euler 

Time ( it ) 2  2  % Error % Error 

0.00 1.00291 0.98652 0.291 1.348 

0.01 1.00303 0.98593 0.303 1.407 

0.02 1.00316 0.98531 0.316 1.469 

0.03 1.00329 0.98468 0.329 1.532 

0.04 1.00342 0.98403 0.342 1.597 

0.05 1.00356 0.98335 0.356 1.665 

0.06 1.0037 0.98265 0.370 1.735 

0.07 1.00385 0.98192 0.385 1.808 

0.08 1.00401 0.98116 0.401 1.884 

0.09 1.00417 0.98037 0.417 1.963 

0.10 1.00434 0.97955 0.434 2.045 
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5.4.3 Example 3: Single-stage evaporator  

A mathematical model of a single-stage evaporator system (Dalle Molle and 

Himmelblau, 1987) as described in Section 4.2.1 is given as: 

 c

dW
F W E V

dt
     (4.1) 

( )( )F BFx V F T TdT

dt W

   
  (4.2) 

Where  

( ) ( )S p F L

V

UA T T FC T T Q
V

H

    
  

 
 (4.3) 

 

(a)  Discretisation of Ordinary Differential Equations 

The nonlinear ODE model in equations (4.1) to (4.3) is discretised using implicit 

Euler’s method and reformulated as the following algebraic equations: 

( 1) ( ( (( ( ( 1) ( ( 1) ) ) /

) ( )) / ( 1)

c S p F L

V

W i F E UA T T i FC T i T Q

H t W i t

          

     
 

(5.26) 

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2

2

1 1
( 1) (

2 ( )

( 1) ( 2

4 2

2 2 2

2 2

p B p F V B

p

S L V p B p B F

p F p V F p B V

p F V p B p B F

p B S p

T i C FT t C FT t F H t T UA t
t C F UA

T UA t Q t H W i C F T t C F T T t

C F T t C F H t x C F T H t

C F T H t C FT UA t C FT T UA t

C FT T UA t C F



          
 

         

       

      

  2 2

2 2

2 2 2

2 2 2 2 2 2 2

2 2 2 2 2

4

2 2 4 ( ) ( 1)

2 ( 1) 2 ( 1)

2 2 2

2 2 ( 1) 2

F S V F

p L B p L F p V

p B V p F V V

B V S V B B S

S L V V

T T UA t FUA H t x

C FQ T t C FQ T t C FT i W i H t

C FT W i H t C FT W i H t F H t

FT UA H t FT UA H t T UA t T T UA t

T UA t FQ H t FW i H t Q

    

       

          

         

         2

2

2 2

2 2 1/2

2 4 ( ) ( 1) 2 ( 1)

2 ( 1) 2 ( 1)

( 1) ) )

L B

L S V B V

S V L L V

V

T UA t

Q T UA t T i UAW i H t T UAW i H t

T UAW i H t Q t Q W i H t

W i H

 

         

         

 
 

(5.27) 
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(b) Parameter Estimation Problem  

The parameter estimation problem is reformulated as the following NLP problem for 

the discretisation method to estimate the model parameters, UA  and Fx , such that 

the error, MPP , between the measurement of state variables, ˆ ( 1)W i and ˆ( 1)T i  , 

and model predicted value of state variables, ( 1)W i  and ( 1)T i  , is minimised as 

follows: 

Problem 5.3  

2 2ˆ ˆmin {( ( 1) ( 1)) ( ( 1) ( 1)) }
f

MPP
UA x

i I

W i W i T i T i


       
,

 (5.28) 

Subject to:  

1 ( 1) ( ( (( ( ( 1) ( ( 1) )

) / ) ( )) / ( 1)

0

c S p F

L V

h W i F E UA T T i FC T i T

Q H t W i t

           

     



 

(5.29) 

2

2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2

1 1
( 1) ( (

2 ( )

( 1) (

2 4

2 2 2

2 2

p B p F V

p

B S L V p B

p B F p F p V F

p B V p F V p B

p B F p B S

h T i C FT t C FT t F H t
t C F UA

T UA t T UA t Q t H W i C F T t

C F T T t C F T t C F H t x

C F T H t C F T H t C FT UA t

C FT T UA t C FT T UA t



         
 

         

      

       

    2

2 2 2

2 2 2 2

2 2 2 2 2 2 2 2 2

2 2

2

4 2 2

4 ( ) ( 1) 2 ( 1)

2 ( 1) 2

2 2

2 2 ( 1)

p F S

V F p L B p L F

p V p B V

p F V V B V

S V B B S S

L V V

C FT T UA t

FUA H t x C FQ T t C FQ T t

C FT i W i H t C FT W i H t

C FT W i H t F H t FT UA H t

FT UA H t T UA t T T UA t T UA t

FQ H t FW i H



 

      

       

         

        

      2

2

2 2

2 2 1/2

2

2 4 ( ) ( 1) 2 ( 1)

2 ( 1) 2 ( 1)

( 1) ) ))

0

L B

L S V B V

S V L L V

V

t Q T UA t

Q T UA t T i UAW i H t T UAW i H t

T UAW i H t Q t Q W i H t

W i H

  

         

         

 



 

(5.30) 

Equations (4.5) to (4.7) 
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Equations (5.29) and (5.30) are substituted into Equation (5.28) to obtain: 

2

2 2 2 2 2 2 2 2 2 2 2 2

ˆ( ( 1) (( ( (( ( ( 1) ( ( 1) ) ) /

1 1ˆ) ( )) / ( 1))) ( ( 1) ( (
2 ( )

( 1)

( 2 4

c S p F L

V p B

p

p F V B S L V

p B p B F p F p

g W i F E UA T T i FC T i T Q

H t W i t T i C FT t
t C F UA

C FT t F H t T UA t T UA t Q t H W i

C F T t C F T T t C F T t C F





           

         
 

             

      2

2 2 2 2 2 2 2

2 2 2

2 2

2 2 2

2 2 2 2

2 2 4

2 2 4 ( ) ( 1)

2 ( 1) 2 ( 1)

2

V F

p B V p F V p B p B F

p B S p F S V F

p L B p L F p V

p B V p F V V

B

H t x

C F T H t C F T H t C FT UA t C FT T UA t

C FT T UA t C FT T UA t FUA H t x

C FQ T t C FQ T t C FT i W i H t

C FT W i H t C FT W i H t F H t

FT



  

        

       

       

          

2 2 2 2 2 2 2

2 2 2 2 2 2

2

2 2

2 2 1/2 2

2 2

2 2 ( 1) 2

2 4 ( ) ( 1) 2 ( 1)

2 ( 1) 2 ( 1)

( 1) ) )))
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The gradients of g with respect to UA  and Fx  are given by: 
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(5.33) 

The equality constraints in equations (5.32) and (5.33) are solved analytically in 

Mathematica, and the solution for Example 3 with discretisation using implicit 

Euler’s method is given by:  

ˆ( ( 1) ( 1)

ˆ( ) ( 1) ) / ( ( ( 1) ))
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(5.35) 

In Section 4.2, the solution model parameters for a single-stage evaporator 

system with the discretisation of the ODEs model using explicit Euler’s method are 

given by equations (4.17) and (4.18) as below: 
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(4.18) 

The comparison between solutions from equations (5.34), (5.35), (4.17) and (4.18) is 

carried out for investigating the accuracy of parameter estimates and the effect of 

step size.  

 

(c) Result for Example 3 

The simulated data for state variables profile, W  and T , was generated at it t  with 

initial values given by (0) 13.8W   kg and (0) 107T  ˚C as shown in Figures 5.5 
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and 5.6. Two step sizes, [0.10,0.05]t  , are used to estimate model parameters 

and the estimated model parameters, UA  and Fx , are shown in figures 5.7 and 5.8. 

As the step size decreased to 0.05, the estimated model parameter values for UA  and 

Fx  became closer to the true values of the model parameters ( ˆ 40.548UA  and 

F
ˆ 0.032x  ). Tables 5.6 and 5.7 show that percentage error of the implicit Euler’s 

method is smaller than that obtained by explicit Euler’s method for 0.05t  . Thus, 

the discretisation using implicit Euler’s method gave more accurate model 

parameters compared to explicit Euler’s method, where the estimated model 

parameters are close to the true values. (Note: the time, it , in tables 5.6 and 5.7 only 

shows the selected time to present the percentage error results.) 

 
Figure 5.5 State variables profile for holdup, W  

 

 
Figure 5.6 State variables profile for temperature, T  
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Figure 5.7 Estimated model parameter, UA , for different step sizes, t  

 

 
Figure 5.8 Estimated model parameter, Fx , for different step sizes, t  
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Table 5.6. Comparison of the estimated model parameters, UA  for step size    

0.05t   

Time ( it ) 
Implicit Euler Explicit Euler Implicit Euler Explicit Euler 

UA  UA  % Error % Error 

0.00 40.4915 40.8357 0.138 0.704 

0.50 40.4954 40.8155 0.129 0.655 

1.00 40.4988 40.7979 0.120 0.612 

1.50 40.5019 40.7825 0.113 0.575 

2.00 40.5045 40.7687 0.107 0.541 

2.50 40.507 40.7563 0.101 0.511 

3.00 40.5091 40.7451 0.095 0.484 

3.50 40.5111 40.7349 0.090 0.459 

4.00 40.513 40.7256 0.086 0.436 

4.50 40.5146 40.717 0.082 0.415 

5.00 40.5162 40.709 0.078 0.395 

5.50 40.5176 40.7017 0.074 0.377 

6.00 40.519 40.6948 0.071 0.360 

6.50 40.5203 40.6884 0.068 0.345 

7.00 40.5214 40.6823 0.065 0.330 

7.50 40.5226 40.6767 0.062 0.316 

8.00 40.5236 40.6713 0.060 0.303 

8.50 40.5246 40.6663 0.057 0.291 

9.00 40.5255 40.6616 0.055 0.279 

9.50 40.5264 40.6571 0.053 0.268 

10.00 40.5273 40.6528 0.051 0.257 
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Table 5.7. Comparison of the estimated model parameters, Fx  for step size 

0.05t   

Time ( it ) 
Implicit Euler Explicit Euler Implicit Euler Explicit Euler 

Fx  Fx  % Error % Error 

0.00 0.03089 0.03761 3.416 17.296 

0.50 0.03103 0.0369 2.983 15.095 

1.00 0.03115 0.0363 2.623 13.276 

1.50 0.03125 0.03581 2.323 11.754 

2.00 0.03133 0.03539 2.069 10.471 

2.50 0.0314 0.03503 1.853 9.378 

3.00 0.03146 0.03473 1.668 8.441 

3.50 0.03151 0.03447 1.509 7.632 

4.00 0.03156 0.03424 1.370 6.929 

4.50 0.0316 0.03404 1.249 6.315 

5.00 0.03163 0.03386 1.142 5.776 

5.50 0.03166 0.03371 1.048 5.299 

6.00 0.03169 0.03357 0.964 4.878 

6.50 0.03171 0.03345 0.890 4.501 

7.00 0.03173 0.03334 0.824 4.164 

7.50 0.03175 0.03325 0.764 3.863 

8.00 0.03177 0.03316 0.711 3.590 

8.50 0.03179 0.03308 0.662 3.344 

9.00 0.0318 0.03301 0.617 3.122 

9.50 0.03181 0.03294 0.578 2.919 

10.00 0.03183 0.03288 0.541 2.734 
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5.5 Concluding Remarks 

In this chapter, the influence of discretisation the nonlinear ODEs in parameter 

estimation using MPP is discussed. The implicit Euler’s method is proposed in the 

discretisation method and demonstrated through three examples. The results show 

that the implementation of MPP using implicit Euler’s method successfully obtained 

model parameters as an explicit function of measurements. However,  the parametric 

expressions obtained for the implicit Euler’s method were more complex than has 

been obtained using the explicit Euler’s method. Compared with the explicit 

discretisation, the implicit Euler’s gave more accurate parameter estimates. A small 

step size also influences the estimated values of model parameters.  
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CHAPTER 6 CONCLUDING REMARKS AND 

FUTURE DIRECTIONS 

 

6.1 Concluding Remarks 

An improvement and comprehensive method considering the effect of accuracy and 

complexity for parameter estimation FD has been derived and develop using MPP; 

which is useful for solving the optimisation problem. The proposed MPP approach 

can be applied to the parameter estimation problem to obtained explicit parametric 

function. The formulation of parameter estimation for FD utilising MPP is 

presented.  The nonlinear ODEs are discretised to algebraic equations using Euler’s 

method. Then, the FD problem is formulated as a NLP problem. The KKT 

conditions for this FD problem are then written down. This results in a square 

system of parametric nonlinear algebraic equations. These equations are then solved 

symbolically to obtain model parameters as an explicit function of measurements is 

obtained. The detection of fault is carried out by monitoring the changes in the 

model parameters. 

To demonstrate the evaluation and availability of the proposed method in FD 

application, five case studies involving nonlinear ODEs model have been 

investigated. In the evaporator system, the two parameters of interest for faulty 

operation are examined, the heat transfer coefficient and the composition of feed. 

These two parameter faults are useful in determining the condition of the evaporator 

and examine the efficiency of the process. In the quadruple-tank system, leakage is 

assumed to be produced by a hole at the bottom of the tanks which is related to 

cross-section of the outlet holes. Fouling in heat exchanger is evaluated from fouling 

resistance where examined from overall heat transfer coefficient. For the 

fermentation process and wastewater treatment system, any improper formulation or 

contamination in the fermentation will change the kinetic model parameters. A small 

change in operating conditions or a mis-operation during critical stages may impact 

the final product quality and even lead to a chemical disaster.  
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The FD problem for all case studies is derived, and the MPP algorithm solves 

the optimisation problem to obtain an explicit parametric function. In these five 

cases, faulty and fault-free scenarios have been analysed. The analytical results of 

estimated model parameters showed excellent performance for the accuracy of the 

parameter estimation for both scenarios.  

In the proposed method of parameter estimation using MPP, the discretisation 

of nonlinear ODEs to algebraic equations is required. In this work, the influence of 

the discretisation method has been investigated. The implicit Euler’s method is 

proposed to evaluate the complexity and accuracy of the parametric function. The 

results indicate that the parametric expressions obtained for the implicit Euler’s 

method were more complex than that obtained for the explicit Euler’s method. 

Moreover, the implicit Euler’s gave more accurate parameter estimates for the same 

step size. 

In conclusion, the set of objectives are fulfilled satisfactorily in developing 

and demonstrating a new parameter estimation algorithm for FD using an MPP 

approach. However, a limitation of the proposed approach is observed, where the 

symbolic solution of the parametric nonlinear algebraic equations may not always be 

possible or maybe too complex. 

     

6.2 Contribution to Knowledge  

The main contributions of this work are as follows: 

(i) The development of the parameter estimation algorithm using MPP method 

is successfully proposed for FD.  In this development, the model parameter is 

obtained as an explicit function of measurement. This explicit parametric 

function represents the significant development in parameter estimation 

where online computation burden is replaced by simple function evaluation.  

(ii) The demonstration of parameter estimation using MPP for model-based fault 

detection applications is successfully implemented into process systems. The 

parameter estimation algorithm using MPP is demonstrated into evaporator, 
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tank, heat exchanger, fermentation and wastewater treatment systems. In 

each case, the related parameter fault to the physical interpretation is 

determined. Faults are detected through a simple function evaluation 

obtained using MPP. The symbolic solution of parameter estimate gives 

advantages of MPP for FD application using parameter estimation to detect 

faults quickly and accurately.  

(iii) The influence of discretisation of nonlinear ordinary differential equations 

using implicit Euler’s method for parameter estimation is investigated. The 

parametric expression obtained using implicit Euler’s method gave more 

accurate parameter estimates compare to explicit Euler’s method. However,  

the explicit parametric function becomes complicated and not available for 

some cases. Hence, the discretisation of nonlinear ODEs method gives an 

impact into the development of MPP for complexity and accuracy of 

parameter estimation. 

 

6.3 Future Directions  

The research presented in this work has raised several research questions, thus 

opening up a variety of potential research directions which could be pursued in the 

future. 

(i) Investigation of parameter estimation algorithm for robustness issues in 

fault detection 

Another issue in the FD problem is modelling the errors and noise 

(robustness). When the model of a process system is subject to model 

uncertainty or noise, to achieve effective FD, the effect of the noise has to be 

de-coupled from the residual signal to avoid ‘false alarms’ in detection. 

Hence, the next consideration is to develop robust FD algorithms. However, 

it should be noted that future work will not only include improvement of 

robustness in FD, but will also need to demonstrate how to improve system 

performance, not only when all components are functioning normally, but 
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also in cases when there are malfunctions in sensors, actuators or other 

system components.  

 

(ii) Demonstrate the parameter estimation approach for application with 

large-scale process systems  

The capability of the proposed method for use with large-scale process 

systems can be considered and investigated. Large-scale process systems 

present a more challenging and difficult task in parameter estimation using 

model-based FD due to the large size of the mathematical model required.  

 

(iii) Real-time implementation of fault detection using the MPP approach 

FD using the MPP approach can also be extended for real-time 

implementation using a microcontroller. A microcontroller is a system on a 

chip that contains processor cores (CPU) with memory and programmable 

input/output peripherals and which is designed for embedded application. 

The function of model parameters is programmed and uploaded into the 

microcontroller. Thus, the estimation of model parameters can be performed 

online and in real-time systems.  

 

(iv) Implementation of a fault-tolerant control system using the model 

predictive control approach 

Once the faults have been identified using an FD method, an implementation 

of a fault tolerant control system is required through a reconfiguration of the 

control system to cancel the effects of the faults or to attenuate them. In this 

method, MPC as control reconfiguration can be considered. The MPC uses 

the explicit model to predict the future behaviour of the plant and solves a 

constrained optimisation problem online to obtain optimal control.  
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APPENDIX A: ARTIFICIAL NEURAL 

NETWORK-BASED FORMULATION 

The nonlinear ODE model is converted into algebraic equations using the ANN as 

described next. A basic structure of ANN is shown in Figure A.1. Nodes are 

represented by small circles and each layer consists of one or more nodes. The lines 

between the nodes indicate the flow of information from one node to the next. In this 

feedforward of the NN, the information flows from the input to the output.  

 

Figure A.1 ANN framework 

For given values of u  and θ , the solution of the ODE model (Equation (3.2) to 

Equation (3.4)) can be obtained. The output from the ANN is given by Dua and Dua 

(2011): 
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where subscripts p , q  and m  represent the input of ANN, output of ANN and 

hidden layer nodes, respectively. Here, only one hidden layer is used. The output 
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from the ANN, 
qN , is dependent on 

mqv , which is representing the weights from the 

hidden nodes to the outputs, and the sigmoidal transformation, m . The activation 

function of the node, ma , is dependent on the input signal, t , which is adjusted by 

weight from the input nodes to the hidden nodes, mw , and summed up with the bias 

on the hidden nodes, mb . 

A trial solution of the ODE model is postulated as: 

0ANN

j j qx x tN    (A.4) 

where an output of ANN model, 
qN , is considered for each trial solution ANN

jx . A 

trial solution of the ODEs (Equation (A.4)) is constructed such that it satisfies the 

system’s initial condition given by Equation (3.3). The ANN time-dependent 

solution is represented in Equation (A.5) and the change in the ANN outputs with 

time is given by Equation (A.6). 
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Therefore, the solution of the ODE model (Equation (3.2)) for given values of u  and 

θ  can be formulated as the following NLP problem as follows: 

Problem A.1: 
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Subject to:                  

Equations (A.1) to (A.6)  
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APPENDIX B: RUNGE-KUTTA FOURTH-ORDER 

FORMULATION 

The RK method achieves the accuracy of a Taylor series approach without requiring 

the calculation of higher derivatives. The most popular RK method is fourth order as 

given as follows (Chapra and Canale, 2009): 

1 1 2 3 4

1
( ) ( ) ( 2 2 )

6
j i j ix t x t k k k k h       (B.1) 

where  

 1 ( ),j j i ik f x t t  (B.2) 

2 1

1 1
( ) ,

2 2
j j i ik f x t k h t h
 

   
 

 (B.3) 

3 2

1 1
( ) ,

2 2
j j i ik f x t k h t h
 

   
 

 (B.4) 

 4 3( ) ,j j i ik f x t k h t h    (B.5) 

where k  is the slope approximation and h  is the time step of the approximation. 

Therefore, the numerical solution of nonlinear ODEs in Equation (3.2) is given in 

Equation (B.1).  

 

 


