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Abstract: Ice cream is a complex multi-phase structure and its perceived quality is closely related to the
small size of ice crystals in the product. Understanding the quantitative coarsening behaviour of ice
crystals will help manufacturers optimise ice cream formulations and processing. Using synchrotron
X-ray tomography, we measured the time-dependent coarsening (Ostwald ripening) of ice crystals in
ice cream during cooling at 0.05 ◦C/min. The results show ice crystal coarsening is highly temperature
dependent, being rapid from ca. −6 to −12 ◦C but significantly slower at lower temperatures.
We developed a numerical model, based on established coarsening theory, to calculate the relationship
between crystal diameter, cooling rate and the weight fraction of sucrose in solution. The ice crystal
diameters predicted by the model are found to agree well with the measured values if matrix diffusion
is assumed to be slowed by a factor of 1.2 due to the presence of stabilizers or high molecular weight
sugars in the ice cream formulation.
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1. Introduction

Ice cream is a popular diary product whose microstructure is one of the critical factors that
determines its sensorial perception. Structurally, ice cream is a complex colloid system that is composed
of ice crystals, air bubbles and partially coalesced fat droplets, all of which are surrounded by an
unfrozen matrix containing sucrose, proteins and stabilizer [1–3]. However, an assembly of fine crystals
is thermodynamically far from equilibrium and crystals coarsen over time [4–6]. The control of the
crystal size is widely recognized as a critical factor in the development of a smooth and creamy texture
desired by consumers; large ice crystals will be perceived as being grainy and coarse [1].

Therefore, it is of great interest for the food scientist to develop a predictive description of
physical mechanisms that govern the kinetics of the coarsening in order to inhibit a deterioration
in the quality of ice cream. The characteristic sizes of this multi-phase material vary considerably,
e.g., air bubbles 20–150 µm, ice crystals 10–75 µm, and fat particles 0.4–4 µm as well as fat particle
aggregates ~10 µm [1]. A glass transition is observed around −30 ◦C at which the microstructure is
relatively stable. However, experimental studies on the growth of ice crystals in ice cream have shown
that phase coarsening is very significant in the temperature range −15 to −5 ◦C [7]. The manufacture of
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ice cream commonly involves two stages: Freezing and hardening. During initial freezing, occurring
in a scraped-surface freezer (SSF) at around −5 ◦C, about half of the water in a homogenised ice
cream mixture is frozen rapidly, and air is also incorporated into the product. After exiting the SSF,
the bulk of the mixture is filled into containers and placed in an air blast freezer for hardening until the
temperature in the core of the mixture reaches ~−18 ◦C over a period of time, usually around 2 hours
with a cooling rate ~0.1 ◦C/min. The final product is stored at temperatures ranging from −23 to −18 ◦C
before distribution to the consumer. Thus, the factors affecting ice crystal size variation during these
stages need to be well understood.

The microstructural coarsening observed in many systems (including ice crystals in sucrose
solutions and in ice cream) comprising a dispersion of fine particles in a matrix phase, is an effect which
is known as Ostwald ripening [6,8–11]. This refers to the increase in the size-scale of the dispersed
phase with time to minimize the total surface energy coming from curvature effects [12]. The process
occurs by diffusion through the matrix. The diffusion is driven by the Gibbs Thomson effect i.e.,
the solute concentration in the matrix in equilibrium with larger particles is different from that with
the smaller particles such that the larger particles grow in size at the expense of the smaller ones,
which shrink.

The earliest work of Lifshitz-Slyozov and Wagner (LSW) on Ostwald ripening dates to 1961 and is
referred to as the LSW theory [12,13]. It is only strictly valid for a precipitate (particle) volume fraction
approaching zero and ignores the effect of volume fraction of the dispersed phase. In real systems e.g.,
ice crystal—sucrose solution, as is found in ice cream, a finite volume fraction (typically 20 to 30%) of ice
crystals is present. Many attempts have been developed to improve upon the LSW theory by extending
its applicability to a finite volume fraction. Marsh and Glicksman [14], for example, employed the
concept of a statistical “field cell” and “transport field” to describe the diffusional interaction among
each particle size class. Other approaches are reviewed in reference [15–22].

In a recent paper, van Westen and Groot [23] demonstrated that for a model system of
polycrystalline ice within an aqueous solution of sugars the coarsening rates could be predicted
on the basis of Ostwald ripening theory with relative deviations to experimental values not exceeding
a factor of 2. However, this required that the theory accounts for a number of effects. First, that the
solution is nonideal, nondilute and of different density from the crystals, secondly, the effect of ice-phase
volume fraction on the diffusional flux between crystals is accurately described, and thirdly, all relevant
material properties are carefully estimated. In a further paper the same authors [24] simulated the
effect of thermal cycling on ice crystal coarsening in aqueous sucrose solutions and showed that their
model correctly predicted an experimentally observed increase in coarsening rate for a thermally
cycled sample compared to one that is coarsened isothermally. They identified that faster diffusivity at
elevated temperatures is an important factor for enhanced ripening as observed in temperature cycling,
which suggests that slow cooling from a high initial temperature may be important for the growth of
large ice crystals.

However, it is a major challenge to validate models of the behaviour of ice crystals in ice cream due
to the lack of methods which can visualise its three-dimensional (3D) microstructure. Pinzer et al. [25]
used a laboratory X-ray microCT in a cold room to investigate the long term microstructural evolution
of ice cream and quantified changes in air cell and ice crystal size during thermal cycles between
−16 to −5 ◦C over a period of 24 hours. However, resolution of the structure was a limitation with this
instrument. More recently Guo et al. [7,26] and Mo et al. [27] have reported time-resolved synchrotron
computed tomography (sCT) studies of the microstructural evolution of ice cream. In the work of
Mo et al. [27] in situ experimental observations clearly reveal the coarsening of ice crystals during
continuous cooling experiments on ice cream in the range −5 to −23 ◦C but only a limited quantification
of crystal dimensions was undertaken.

Therefore, the main aim of the present study on ice cream was to compare the predictions of
a model for coarsening in a sample undergoing continuous cooling with ice crystal size measurements
obtained from in situ sCT studies. In this paper we first extend our original isothermal Ostwald
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ripening model [23,24] to distinguish the effects of diffusivity and ice fraction from the effect of phase
ripening at a fixed cooling rate. Next, we simulate phase coarsening in microstructures reflecting the
same volume fraction as used experimentally. Finally, we compare predictions based on simulation
with the in situ experimental measurements of ice crystal dimensions.

2. Model Theory

Our previous papers concerning the Ostwald ripening of ice crystals in aqueous sucrose
solution [23,24] have provided a detailed analysis of Ostwald ripening and have addressed both
isothermal Ostwald ripening in aqueous solutions [23] and also the effect of temperature cycling on
the Ostwald ripening of ice crystals in an aqueous solution of sugars [24]. In this section we aim to
provide only a brief overview of the background theory which will be sufficient to understand the
modelling results reported in the present paper.

The kinetic equation describing the growth or shrinkage rate of an individual particle of radius, a,
is given by Equation (1) [20,21]:

da
dt

=
D
a

(
∆ −

2d0

a

)
(1)

where ∆ = 1−Cs/Cs,eq is the supersaturation far away from the particle surface (Cs is the concentration of
solute in the matrix phase at the interface with the particle and Cs,eq is the thermodynamic equilibrium
solute concentration at that temperature). D is the Fick diffusion coefficient and d0 is the (chemical)
capillary length of the Gibbs Thomson equation [8] and t is time. The definition of d0 is given in detail
in Supplementary Materials.

Crystals will grow when they are larger than a critical radius a* = 2d0/∆ and shrink when they
are smaller than a*. An alternative formulation can be obtained in terms of mole fractions and
Maxwell–Stefan diffusion [23].

2.1. Isothermal Coarsening

When the temperature is constant, the dispersed phase fraction quickly approaches its
quasi-equilibrium value. The particle size distribution approaches a scaling function f (a/〈a 〉, φ) which
depends on the relative crystal size z = a/〈a 〉, and on the particle volume fraction φ. Typical examples
of a stationary crystal size distribution are shown in Figure 1. The black curve marked LSW shows
the distribution from the Lifshitz-Slyozov–Wagner theory. This theory is only valid for vanishing ice
volume fraction, however. The red curve is calculated from the Marsh–Glicksman (MG) theory [14] for
an ice volume fraction φ of 0.6.
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At a fixed temperature, the mean particle radius, 〈a 〉, grows at a rate that is proportional to t1/n,
where n depends on the growth mechanism. When growth is controlled by diffusion through the
matrix, n takes the value 3,

〈a 〉n = 〈a 〉n0 + Kt (2)

where 〈a 〉0 is the mean radius at time t = 0, and K is the coarsening rate constant and Equation (2)
describes how the mean radius increases over time at constant temperature.

The earliest work of Lifshitz-Slyozov and Wagner (LSW) on Ostwald ripening in which Equation (2)
was derived is strictly valid in the limit of zero dispersed phase volume fraction. Many extensions of
the LSW approach have been developed but all predict the temporal law given by Equation (2) but
with a rate constant K that increases with volume fraction [15].

This coarsening rate constant K has two main contributions and can be written as [23]

K =
8
9
ξ(T)g(φ) (3)

The factor 8/9 is the classical LSW result for vanishing volume fraction. The factor ξ(T)
depends on surface energy and diffusivity, the driving forces responsible for coarsening and g(φ)
is a non-dimensional geometric factor that accounts for the diffusion distance. It depends on the
mathematical form of the crystal size distribution and on the ice volume fraction, φ.

The dimensional factor ξ(T) is given by a complicated expression containing the molar volumes
of ice and water, the melting curve of the phase diagram (liquidus line), the surface energy between ice
and water (temperature dependent), and the Maxwell–Stefan diffusion coefficient.

For the sucrose-water system a polynomial fit to the temperature-dependent contribution is given
in Ref. [23], but this may not allow extrapolation to temperatures far below −14 ◦C. Based on the
raw data, a new Padé fit is made which is more reliable for extrapolations. This is represented by
Equation (4):

ln ξ(T) =
b0 + b1T + b2T2

1 + b3T + b4T2 (4)

with b0 = 7.874452 µm3/min, b1 = −2.84417 µm3/min/K, b2 = −0.38216 µm3/min/K2,
b3 = −0.78445 µm3/min/K and b4 = 0.020165 µm3/min/K2, where ξ(T) is expressed in µm3/min,
and temperature in ◦C. This fit was based on the data between −14 ◦C < T < −1.5 ◦C, where the raw
data were most reliable, i.e., the equilibrium ice fraction was not based on extrapolation. Both fits are
shown in Figure 2.
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The geometric factor g(φ) has been the subject of several theories and simulation methods.
Following the earlier work by Van Westen and Groot, a convenient fit to simulation data is given by
their Equation (37) [23] which is Equation (5) below:

g(φ) = 1 + 2.04
φ3/7

1−φ
(5)

2.2. Coarsening during Cooling

When a system is cooled the supersaturation in Equation (1) increases hence more crystals start to
grow. This changes the size distribution and the rate of Ostwald ripening.

During continuous cooling the total variation of the mean cubed particle radius involves the sum
of two terms as follows:

d〈a3
〉 =

∂
〈
a3

〉
∂ f


t

d f +

∂
〈
a3

〉
∂t


f

dt

=

〈
a3

〉
f

d f +

(
∂
〈
a3

〉
/∂t

)
f(

d〈a 〉3/∂t
)

f

Kdt

=
〈a3
〉

f
d f + h(φ)Kdt

(6)

where f is the ice crystal mass fraction.
This is an approximation, because we assume quasi-equilibrium conditions at each point in time.

This is justified in the Supplementary Materials.
The first term describes the change of mean crystal volume under an infinitely fast ice

fraction variation, for which the number of ice crystals is fixed. In that case we have
〈
a3

〉
∝ f,

hence
(
∂
〈
a3

〉
/∂ f

)
t
=

〈
a3

〉
/ f . The second term describes the change of mean crystal volume due to

isothermal Ostwald ripening. It contains a factor h(φ) =
(
∂〈a3
〉/∂t

)
f
/(∂〈a 〉3/∂t) f = 〈a3

〉/〈a 〉3 to

correct the growth law (Equation (2)) to calculate d
〈
a3

〉
rather than d〈a 〉3. For an equilibrium distribution

in isothermal conditions the ratio 〈a3
〉/〈a 〉3 is constant over time, because the distribution has scaling

behaviour. Therefore, the ratio of the above partial time derivatives is equal to the ratio 〈a3
〉/〈a 〉3 itself.

The geometric function h(φ) = 〈a3
〉/〈a 〉3 which appears in Equation (6) is needed to transform

radius-averaged Ostwald ripening into volume-averaged ripening. Marsh and Glicksman gave
tabulated data for the first three moments of the size distribution as function of the crystal volume
fraction [14]. From these data we calculate a fit that is given by:

h(φ) = 1 +
(3

5

)4
+ 0.1167

φ0.32

1− 0.38 φ2.5 (7)

To find the mean cubed particle diameter, 2
〈
a3

〉
1/3, (also known as D3,0) as a function of time

we employ a numerical integration scheme to solve Equation (6). We decrease the temperature by
a small step δT (< 0) and calculate the corresponding time step from a chosen cooling rate B = −dT/dt.
The calculation uses critically assessed thermophysical and phase diagram data that have been
described previously [23,24].

3. Experimental Procedures and Data Analysis

To validate the model for Ostwald ripening of ice cream, a bespoke cold stage capable of precise
thermal cycling combined with the in situ synchrotron tomographic imaging technique described in
detail previously was employed to determine the structural changes undergone [7,26,27].
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3.1. Sample Preparation and Thermal Cycling

Fresh ice cream (40% ice and 5% fat), prepared by Unilever R&D (Colworth, UK) was scooped
out and left at room temperature to melt. Kapton tubes (specification: inner diameter 3 mm and wall
thickness 67 µm, American Durafilm Co. Inc, Holliston, MA, USA) were filled with this liquid mixture
with a syringe, followed by mounting them onto a cold stage specially designed for operation in the
synchrotron beamline which is described in our previous papers [7,26,27].

The in situ experiments were performed in the following manner. The Kapton tube with the ice
cream specimen was mounted onto the cold stage at −3 ◦C (just below the melting point). Then its
temperature was rapidly reduced down to −23 ◦C with a fast ramp rate of −5 ◦C/min and held at this
temperature for 10 min. The specimen was subsequently heated to −6 ◦C, at the same ramp rate as the
cooling ramp rate, and maintained there for 10 min. A long–term slow cooling was then applied to
study global parameters for phase coarsening, such as the particle size distribution. The system was
subsequently cooled down from −6 ◦C until a temperature of −23 ◦C was reached with a slow cooling
ramp rate of −0.05 ◦C/min. The overall thermal history for coarsening experiments is shown in Figure 3.
Eight tomographic scans were performed at the temperatures indicated by the diamond symbols on
Figure 3 to study the phase coarsening changes during cooling. Care was taken to ensure that the
sub-volumes used for the measurements were free from bubbles. Therefore, the model assumption of
a continuous unfrozen matrix phase was valid for the measured volumes.
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Figure 3. The thermal history of the ice cream mixture specimen during the in situ coarsening
experiments. The temperature points where the tomographic scans were reconstructed are indicated as
pink diamond markers.

3.2. Characterization by Synchrotron X–ray Computed Tomography (sCT)

A detailed description of the sCT approach has been reported previously [7,26,27] and is briefly
summarised here. Combined coarsening experiments with in situ acquisition of tomographic scans
were carried out at the high brilliance I13-2 beamline at Diamond Light Source (DLS, Harwell, UK)
using a pink beam. The tomographic scans were recorded by a 2560 × 2160 pixel PCO Edge 5.5
CMOS camera combined with a single crystal CdWO4 scintillator. The specimen-to-camera distance
was optimized to ~35 mm with a final pixel-resolution of 0.81 µm. During the in situ experiments,
each tomographic run includes collecting 720 projections evenly spaced over a 180◦ rotation with
the exposure time of 0.1 s. In this study, a total of eight tomographic scans were recorded at the
following temperatures: −6.0, −7.0, −8.2, −9.6, −12.2, −15.5, −18.0 and −23 ◦C; these are indicated by
the diamond symbols on Figure 3. These scans were then pre-processed and the tomographic slices for
the respective temperatures were reconstructed.
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3.3. Volume Data Reconstruction and Pre-Processing

The collected 2D projections, i.e. radiographs, were virtually stacked to form sinograms.
Any apparent continuous lines from sinogram images were removed by interpolation in order to reduce
ring artefacts which is a result from imperfections from the detector/camera. The sinograms were
then used to mathematically reconstruct the volume slices using a filtered back projection (FBP) based
algorithm. Because the ice cream samples were relatively low attenuating to the incident X-ray beam,
the reconstructed volumes exhibited a relatively high level of background noise. In order to reduce
noise, the 3D volumes were first median (3 × 3 × 3) filtered and then followed by a morphological
operation-based method as descried previously [27]. The data were then binarised using global
thresholding. All the volumes were carefully checked visually, and any obvious segmentation
imperfections were corrected manually using Avizo 9.4 (FEI Visualization Sciences Group, Mérignac,
33700, France).

3.4. 3D Based Quantification of Ice Crystal Dimensions

Owing to the interconnected–network structure of ice crystals, it is not appropriate to segment
them into individual components as they appear as interconnected clusters. Thus, a 3D image-based
quantification method was developed and employed to analyze the size of ice crystals in the ice
cream samples. This method is similar to the techniques for 3D porous structure characterisation
and quantification for biomedical and geological materials as described in detail previously [27–29].
Briefly, we employed a series of sampling spheres with varying diameter, and the size distribution
in the ice crystal phase was obtained by measuring the cumulative volume of ice crystal that can be
reached by different sampling spheres [27]. Using this methodology, a modal value of the crystal
diameter was obtained for each of the four sub-volumes examined at each of the temperatures for
which sCT scans were performed.

4. Results and Discussion

4.1. Model Calculations

4.1.1. Relative Importance of Diffusivity and Ice Fraction

To gain insight into the relative importance of the factors driving Ostwald ripening during cooling,
the rate constant h·K was calculated for a range of sucrose solution concentrations and the results are
shown in Figure 4. The term h·K is proportional to g(φ)·h(φ)·ξ(T) where h is given by Equation (7), K is
given by Equation (3) and the temperature dependent ice volume fraction, φ, is calculated as set out in
Supplementary Materials.
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Figure 4. Coarsening rate constant for sucrose weight fractions of 26%, 28%, 30% and 32%. The curves
end at the respective melting points.

The rate constant depends on temperature and on ice volume fraction, but it does not depend
on the crystal size. At the melting point, the crystals are far apart because the ice volume fraction
tends to zero. As temperature drops, the rate passes through a maximum and then drops again
because diffusivity decreases towards lower temperatures. The position of the maximum shifts to lower
temperatures and lower coarsening rates when sucrose concentration is increased. In fact, the amount
of coarsening is quite sensitive to the sucrose fraction; if the weight fraction of sucrose (denoted as fs) is
increased from 26% to 32%, the maximum coarsening rate reduces by a factor 2.

The variation of the two factors namely the geometrical factor g(φ)·h(φ), and the dimensional
temperature dependent factor ξ(T) were also examined independently. It is found that the geometric
factor varies only slightly over a wide sucrose composition range whereas the dimensional temperature
dependent factor increases significantly at lower sucrose fractions, shown in Figure 5.
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Figure 5. Contributions to the volumetric Ostwald ripening rate (at the temperature where hK(T) has
its maximum) plotted against sucrose mass fraction, fs. Values are normalised relative to their value at
fs = 0.3.

Since the variation in ξ(T) is dominated by the variation of diffusivity, we conclude that fast
diffusivity at high temperatures is the most important factor responsible for strong crystal coarsening
at slow cooling rates; geometric structure effects are secondary.
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4.1.2. Coarsening at a Fixed Cooling Rate in Sucrose Solutions

Consider now a sample containing ice crystals that starts at temperature TH and then drops to
a final temperature TF at a fixed rate B = −dT/dt. In that case, the crystal size is calculated by numerically
integrating the following equation:

d〈a3
〉 =


〈
a3

〉
f

d f
dT
−

hK
B

dT (8)

This follows directly from Equation (6) where the first term represents the increase in mean crystal
volume due to cooling alone and the second term represents the contribution of Ostwald ripening
during continuous cooling. See Supplementary Materials for details of the numerical procedure.

Whether the first or the second term in Equation (8) dominates the crystal size depends on the
initial crystal size and on the cooling rate. Selected model calculations are shown in Figure 6 in which
the volumetric mean diameter, D3,0, is plotted versus temperature, T. The volumetric mean diameter
is defined as D3,0 = 2〈a3

〉
1/3. The calculation was performed for ice crystals in a 30 wt% sucrose

solution (melting point −2.7 ◦C), cooled at a rate of 0.01 ◦C/min (full curves) and at 0.1 ◦C/min (dashed
curves), starting at 5 µm (black) and 10 µm (green) initial radius. The initial temperature, TH, is chosen
as −3.0 ◦C. The calculations show that fast or slow cooling may change the crystal diameter by a factor
~2 for the same composition, hence the number of crystals may change by an order of magnitude.
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10 (green) µm radius.

4.1.3. Influence of Additives in Ice Cream Formulations

In full ice cream formulations, polymers are added that give enhanced storage stability. We suggest
that the reason for this enhanced storage stability is that the time scale of Ostwald ripening is governed
by the slowest mass transport process, which in the case of a polymer network in a sucrose solution will
be the collective motion of the polymer. The sucrose solution is then acting as a viscous background
medium through which the polymer moves. The rate by which the polymer network diffuses
depends on elasticity modulus of the network, and the viscous flow through the network pores [30,31].
The collective diffusion coefficient of a polymer network is then inversely proportional to its friction
factor, which in turn depends on the pore size of the network, and hence on the polymer concentration.
Following the theory of Barrière and Leibler [32], it could be suggested that the rate of Ostwald ripening
might be related to fp–3/2, where fp is the polymer mass fraction in the formulation. For example,
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λ-carrageenan (which is a common additive to ice cream) behaves as a loosely entangled polymer
network [33], and could possibly reduce the ripening rate.

4.2. Experimental Observations and Comparison with Numerical Model

4.2.1. Morphological Evolution of Ice Crystals and Quantification of Dimensions

Figure 7 shows the 3D rendering of ice crystals from representative regions of the same size and
the colour rendering represents the local thickness of each particle. The 3D evolution during the slow
cooling cycle imposed in the sCT experiment with a cooling rate of 0.05 ◦C/min is clearly observable.
The ice crystals are very fine initially. During the initial stages of cooling from −6 to −8.2 ◦C there is
significant microstructural evolution with clear coarsening, Figure 7a–c, as well as an increase in ice
volume fraction due to the decreasing temperature.Crystals 2019, 9, x FOR PEER REVIEW 10 of 14 
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Figure 7. 3D visualisation of ice crystal morphological evolution during the slow cooling experiment:
(a) −6 ◦C, (b) −7.0 ◦C, (c) −8.2 ◦C, (d) −9.6 ◦C, (e) −12.2 ◦C, (f) 15 ◦C, (g) −18.0 ◦C and (h) −23.0 ◦C. Ice
crystals are colour–rendered using local thickness. Scale bar is 50 µm.

Averaged modal values of ice phase dimensions were calculated by the 3D accessible volume
method described in Section 3.4. The averaged modal values were computed from four sub-volumes
which were randomly extracted from the global reconstructed volume. As expected from the 3D
visualisations, at the beginning of the slow cooling regime, the ice crystals were very fine with a modal
size of 7.8 µm. During the slow cooling regime with a ramp rate of 0.05 ◦C/min, the modal size first
increased significantly from 7.8 µm at −6.0 ◦C and to 21.8 µm at −15.0 ◦C. Thereafter, the trend of
increasing crystal size continued but at a much lower coarsening rate. This is presumably due to the
slower diffusivity at lower temperature (as predicted by the model), resulting in a reduced rate of ice
crystal coarsening.

4.2.2. Comparison between Measured and Calculated Ice Crystal Dimensions

In Figure 8, which are the plots of ice crystal diameter versus temperature, our measured modal
dimensions from the sCT in situ experiment are compared to the mean crystal diameters calculated by
the numerical model for a cooling rate of 0.05 ◦C/min from −6 ◦C to −23 ◦C. The detailed data used for
this calculation are given in the Supplementary Materials. There is evidently a difference between the
calculated and measured crystal dimensions during continuous cooling. In order to achieve a fit of the
model to the experimental data shown in Figure 8 (R2 = 0.97) the diffusivity used in the calculations
had to be decreased by an overall factor of 1.2 compared to that for a pure sucrose solution containing
the same wt% of sucrose (solid yellow line). This offset can be explained by a reduction in ripening
rate due to the addition of hydrocolloid viscosifiers in the ice cream mix studied, in line with the
behaviour proposed by Barrière and Leibler [32]. This observed reduction in rate lies well within
the reduction in rates of crystal ripening for additions of λ-carrageenan to sucrose solutions which
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have been observed in a separate study which will be the subject of a future paper. This observed
reduction in rate lies well within the reduction in rates of crystal ripening for additions of l-carrageenan
to sucrose solutions which have been observed in a separate study which will be the subject of a future
paper. The diffusivity reduction factor is expected to be larger at higher ice fractions because the
polymer network gets more concentrated in the matrix phase as the temperature falls. This effect
has been neglected here. Note further, that the model calculates D3,0 whereas in the experimental
work the 3D accessible volume method was used to calculate modal values of crystal dimensions.
Given the differences in measured and calculated dimensional features, the most notable finding
is that the model correctly predicts the trend in ice crystal coarsening as the temperature decreases
during continuous cooling. In conclusion, the presence of stabilisers or high molecular weight sugars,
which are empirically added to ice cream, possibly improve product quality through their effect on
reducing the coarsening of ice crystals especially at higher temperatures.Crystals 2019, 9, x FOR PEER REVIEW 11 of 14 
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5. Conclusions

The microstructural evolution of ice crystals in a commercial ice cream during continuous slow
cooling was visualised and quantified with synchrotron X-ray tomography. Ice crystals present at
a relatively high temperature of −6 ◦C coarsen by the well-known Ostwald ripening mechanism:
Small crystals, or areas of high curvature, dissolve and large crystals grow. This process is strongly
temperature-dependent, and to a lesser extent dependent on the geometry of the ice suspension
structure. To model this process during continuous cooling, equilibrium theory of Ostwald ripening of
dense suspensions of spherical crystals is applied. Our results reveal the following:

(1) As expected, the 4D measurements (3D plus time) from synchrotron X-ray tomography show
that coarsening of ice crystals occurs during cooling at 0.05 ◦C/min. The coarsening rate is rapid
at high temperature (−6 to −15 ◦C) but slows down significantly as the temperature falls further.
Qualitatively, the number density of crystals also decreases during the cooling.

(2) The numerical model to calculate Ostwald ripening of ice crystals in a sucrose solution (with a finite
volume fraction) cooled at a steady rate to −18 ◦C predicts that fast (0.1 ◦C/min) or slow cooling
(0.01 ◦C/min) will lead to significantly different crystal sizes. The volumetric mean diameter, D3,0

differs by a factor of ~2 for the same sucrose mass fraction and starting crystal size.



Crystals 2019, 9, 321 12 of 14

(3) The diameters of ice crystals in an ice cream formulation, measured by in situ sCT experiments,
show good agreement with the model calculations if the diffusivity used in the calculations is
reduced by a factor of 1.2 compared to that for a pure sucrose solution. Since the Ostwald ripening
theory compares well with the experimental data for sucrose solutions [30,31] we conjecture that
stabilisers and high molecular weight sugars in ice cream retard diffusion and hence slow down
Ostwald ripening. More experiments are needed to confirm this conjecture.

In summary, the results demonstrate the powerful insights into material behaviour that can be
achieved by combining 4D synchrotron X-ray tomography with physically based numerical modelling.
They clearly reveal the critical temperature range for controlling the coarsening behaviour of ice
particles in ice cream that is crucial to maintaining product quality and good sensory perception.
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List of Symbols

a Particle radius
a* Critical particle radius
〈a 〉 Mean particle radius
〈a 〉0 Mean particle radius at time t = 0〈
a3

〉
Mean value of the cube of the particle radius

bi Fitting constant in the equation for ξ(T)
B Cooling rate
Cs Concentration of solute in the matrix phase at the interface
Cs,eq Thermodynamic equilibrium concentration of solute in the matrix phase
D Fick diffusion coefficient
D3,0 Mean cubed particle diameter = 2

〈
a3

〉
1/3

d0 Capillary length of the Gibbs Thomson equation
f Ice phase mass fraction
fp Polymer mass fraction
fs Sucrose mass fraction
g(φ) Non-dimensional geometric factor accounting for diffusion distance
h(φ) Non-dimensional geometric factor relating radius and volume coarsening
K Rate constant for isothermal coarsening
T Temperature, ◦C
TH Initial temperature, ◦C
TF Final temperature, ◦C
t Time
∆ Supersaturation far away from the particle surface
φ Particle or ice phase volume fraction
ξ(T) Dimensional factor
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