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Abstract

We demonstrate the sensitivity of magnetic energy and helicity computations regarding the quality of the
underlying coronal magnetic field model. We apply the method of Wiegelmann & Inhester to a series of Solar
Dynamics Observatory/Helioseismic and Magnetic Imager vector magnetograms, and discuss nonlinear force-free
(NLFF) solutions based on two different sets of the free model parameters. The two time series differ from each
other concerning their force-free and solenoidal quality. Both force- and divergence-freeness are required for a
consistent NLFF solution. Full satisfaction of the solenoidal property is inherent in the definition of relative
magnetic helicity in order to ensure gauge independence. We apply two different magnetic helicity computation
methods to both NLFF time series and find that the output is highly dependent on the level to which the NLFF
magnetic fields satisfy the divergence-free condition, with the computed magnetic energy being less sensitive than
the relative helicity. Proxies for the nonpotentiality and eruptivity derived from both quantities are also shown to
depend strongly on the solenoidal property of the NLFF fields. As a reference for future applications, we provide
quantitative thresholds for the force- and divergence-freeness, for the assurance of reliable computation of
magnetic energy and helicity, and of their related eruptivity proxies.
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1. Introduction

For practical cases, Valori et al. (2012) demonstrated the
validity and physical meaningfulness to compute (and track in
time) the relative magnetic helicity in order to characterize (the
evolution of) a magnetic system. As its name implies, the
relative helicity allows it to express the helicity of a magnetic
field with respect to a reference field. This relative formulation
allows it to circumvent the problem that magnetic helicity
cannot be defined meaningfully for systems that are not
magnetically closed (such as the solar corona).

Following Berger & Field (1984) and Finn & Antonsen
(1984), the relative magnetic helicity (simply called helicity
hereafter) in a volume,  , bounded by a surface, ¶ , can be
written as

( ) · ( ) ( )ò= + - 


A A B BH d , 1p 0

where the reference field, B0, shares the normal component of
the studied field B on ¶ . Often, a potential (current-free) field
is used as reference field (see Prior & Yeates 2014 for an
alternative choice). In Equation (1), A and Ap are the vector
potentials satisfying =  ´B A and =  ´B A0 p,
respectively.

Following Berger (1999), Equation (1) may be written as
= +H H HJ PJ, with

( ) · ( ) ( )ò= - - 


A A B BH d , 2J p 0

· ( ) ( )ò= - 


A B BH d2 . 3PJ p 0

Here, HJ is the magnetic helicity in the volume associated with
the electric current, and HPJ is the helicity associated with the
component of the field that is threading ¶ . Because B and B0

are designed such that they share their normal component, Bn,
on ¶ , not only H but also both HJ and HPJ are independently
gauge invariant.
Importantly, the underlying magnetic fields, B and B0, have

to adhere to a certain level of divergence-freeness, in order to
ensure reliable helicity computation. For this purpose, Valori
et al. (2013) used the decomposition of the magnetic energy
within  in the form
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with E0 and EJ being the energies of the potential and current-
carrying magnetic field, respectively. E0 is used to compute an
upper limit for the free energy as = -E E EF 0. E0,s and EJ,s

are the energies of the potential and current-carrying solenoidal
magnetic field components. E0,ns and EJ,ns are those of the
corresponding nonsolenoidal components. Emix corresponds to
all cross terms (see Equation (8) in Valori et al. 2013 for the
detailed expressions). For a perfectly solenoidal field, one finds

=E E0,s 0, =E EJ,s J, and = = =E E E 00,ns J,ns mix .
Based on Equation (4), Valori et al. (2016) introduced the

ratio E Ediv , with ∣ ∣= + +E E E Ediv 0,ns J,ns mix , as to be
indicative of the divergence-freeness of the magnetic field,
and tested the corresponding sensitivity of Equation (1), based
on different numerical methods to compute magnetic helicity.
Based on a specifically designed numerical experiment, where
a finite divergence was added in a controlled way to a
numerically solenoidal MHD model case, it was shown that the
error in the computation of H may grow considerably
if E E 0.1div .
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Magnetic helicity computations are often performed based
on nonlinear force-free (NLFF) coronal magnetic field extra-
polations, using the optimization method of Wiegelmann &
Inhester (2010). It represents the numerical solution to the
boundary value problem of extrapolation of the measured
surface magnetic field into the solar corona:

( ) ( ) ´ ´ =B B 0, 5

· ( ) =B 0. 6

The method allows several free model parameters to be
chosen, in order to optimize the numerical solution of
Equations (5) and (6). If used as a black box, predefined
values are used, without optimization regarding underlying
specific magnetogram data. The predefined values are to be
thought of as to be initial guesses only, however, and a careful
testing and tuning of the free model parameters is inevitable.
Only a careful selection of the free model parameters is capable
of producing NLFF solutions of highest quality, both in terms
of force- and divergence-freeness. A high degree of force-
freeness is crucial for the validity of the NLFF solution with
respect to the measured photospheric field it is based on. A low
level of divergence is mandatory for a reliable computation
of H .

The presented work represents an extension of the work by
Valori et al. (2016), by considering the dependency of energy
and helicity computations on the field’s solenoidal property in
observed solar cases, rather than an idealized model. Our work
shall serve as a reference, concerning the quality an NLFF
model has to suffice, in order to be used as an input for reliable
helicity modeling.

2. Method

We use photospheric vector magnetic field data (Hoeksema
et al. 2014), derived from Solar Dynamics Observatory (SDO;
Pesnell et al. 2012) Helioseismic and Magnetic Imager (HMI;
Schou et al. 2012) polarization measurements. We use the HMI.
SHARP_CEA_720S data series that provides a Lambert Cylind-
rical Equal-Area projected magnetic field vector within
automatically identified active region patches (Bobra et al.
2014), with the azimuthal component of the vector magnetic
field being disambiguated (Metcalf 1994; Leka et al. 2009).

For computational feasibility, we bin the photospheric data
by a factor of 4 to a plate scale of 0°.12. We set our analysis
time range such that it covers the time period 2011
February12–16, i.e., the disk passage of active region (AR)
NOAA11158. Around intense flares (equal or larger GOES
class M5.0), we use HMI’s native time cadence of 12 minutes,
and a 1 hr cadence otherwise.

Based on the binned vector magnetic field data, we compute
NLFF equilibria for each time step, which involves two
computational steps. First, we “preprocess” the data, to obtain a
more force-free consistent state (Wiegelmann et al. 2006). The
preprocessing method allows different free parameters to
be set:

1. m1 and m2 control the level of force and torque of
the data;

2. m3 allows deviations from the input data; and
3. m4 controls the degree of applied smoothing.

In the original notation the predefined standard setting is (m1,
m2, m3, m4)=(1 ,1, 10−3, 10−2).

Second, we apply the method of Wiegelmann & Inhester
(2010) to the preprocessed maps. The optimization approach is
designed such that the functional

∣( ) ∣ ∣ · ∣

( ) · · ( ) ( )

ò
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=
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+ 

+ - -

B B
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is minimized such that the volume-integrated Lorentz force and
divergence becomes small.
The surface term in Equation (7) allows deviations between

the NLFF solution, B, and the magnetic field information at the
lower boundary, Bobs, in order to find a more force-free
solution. The deviation from Bobs is controlled by the diagonal
error matrix, W , which allows it to incorporate uncertainties on
each component of the magnetic field, and in each pixel,
separately. Ideally, Bobs would be a magnetogram measured at
a chromospheric height, i.e., in a force-free regime of the solar
atmosphere. In practice, the preprocessed photospheric vector
field, Bpp, is supplied so that =B Bobs pp.
The model parameters that can be freely assigned in

Equation (7) are:

1. Separate weightings of the volume-integrated force (wf )
and divergence (wd). In the original notation these are set
as = =w w 1f d .

2. The components wlos and whor of the diagonal error
matrix, W , can be defined in different ways. The choice

= =w w 1los hor assures accuracy of both the longitudinal
and horizontal magnetic field equally at all pixel
locations. Alternatively, ∣ ∣ (∣ ∣)=w B Bmaxhor hor hor may
be applied, i.e., assuming stronger horizontal fields to be
measured with higher accuracy.

3. The impact of the surface term, i.e., the influence of Bobs
onto the final NLFF solution, is controlled by ν.
Wiegelmann & Inhester (2010) suggest ν in the range
10−4

–10−1.

Successful NLFF modeling involves finding a combination
of free model parameters that delivers optimized results, in
terms of force- and divergence-freeness. In order to quantify
the consistency of the obtained NLFF solutions, we use the
current-weighted average of the angle between the modeled
magnetic field and electric current density, qJ (Schrijver et al.
2006). We use the volume-averaged fractional flux, ∣ ∣á ñfi
(Wheatland et al. 2000), and the energy ratio, E Ediv (Valori
et al. 2013), to quantify the level of divergence of the NLFF
solution.
We use two finite-volume (FV) methods to compute the

magnetic helicity based on Equations (1)–(3). The method of
Thalmann et al. (2011) solves systems of partial differential
equations to obtain the vector potentials A and Ap, using the
Coulomb gauge, · · =  =A A 0p (“FVCoulomb” hereafter).
The method of Valori et al. (2012) is based on integral
formulations, using the DeVore gauge, = =A A 0z zp,
(“FVDeVore” hereafter). Both methods define the reference field
as f= B0 , with f being the scalar potential, subject to the
constraint f = Bn n on ¶ . The methods have been tested in
the framework of an extended proof-of-concept study on FV
helicity computation methods (Valori et al. 2016), where it has
been shown that for various test setups the methods deliver
helicity values in line with each other, differing by a few
percent only.
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In total we employed 18 NLFF extrapolations of the same
HMI magnetogram at 12:00UT, obtained with 18 different
combinations of the parameters (m3, m4, wd, whor), in order to
pin down successful parameter sets. Unphysical NLFF
solutions with <E E0 and solutions where >E E 0.1div were
discarded from further consideration. Seven solutions were
found with favorable properties for helicity modeling, with

E E 0.1div . Out of those, two parameter sets were chosen for
further consideration. In combination with (m1, m2, wf , ν)=(1,
1, 1, 10−3), our first selected choice (m3, m4, wd , whor)=(10−3,
10−3, 2, µBhor) delivered an NLFF solution with an
exceptionally low solenoidal level ( <E E 0.01div ). An NLFF
model solution close to the limit E E 0.1div , suggested as to
be tolerable for helicity modeling in Valori et al. (2016), was
found based on the choice (m3, m4, wd , whor)=(10−3, 10−3, 1,
1), and also selected for further analysis.

We used these two sets of free model parameters to compute
the full time series of NLFF models for NOAA11158 between
February 12 00:00UT and February 16 00:00UT (hereafter
called SERIESII and SERIESI respectively), in order to
demonstrate how important the degree of · B of the input
NLFF solutions is for successful helicity computation.

3. Results

3.1. Properties and Quality of NLFF Modeling

In Figures 1(a) and (b), the NLFF model solution of SERIESI
and SERIESII for February14 21:00UT are shown, respec-
tively. Both reveal a low-lying system of helical magnetic field
along the main polarity inversion line in the AR center, in
agreement with earlier works (e.g., Jing et al. 2012; Sun et al.
2012; Inoue et al. 2013).

Based on the used free parameter sets, the binned vector
magnetic field, Borig, is changed to a different degree during
NLFF modeling. Following DeRosa et al. (2015), we
characterize the modifications of the vector field at the lower

boundary (z= 0) as

( )D = -B B 8i i
orig

for each component { }=i x y z, , , where B is the final magnetic
field at the lower boundary of the NLFF model. The
magnitudes of the changes are considered separately for the
vertical (Dz) and horizontal magnetic field ∣( )∣D = D D,h x y . In

addition, we use the normalized change, D = -
~ ~~
B B

orig
, to

incorporate the measurement uncertainties for each component,
si, where  s=B Bi i i and  =B Bi i

orig orig/si, for the computation

of D
~

z and ∣( )∣D = D D
~ ~ ~

, 2h x y . Table 1 lists the rms values
for the magnitudes of the (normalized) changes of the vertical
and horizontal magnetic field components. The normalized
changes tend to be larger in weak field regions, i.e., outside of
the AR core (see Figures 1(c) and (d)).
Figure 2(a) shows the mean current-weighted angle for

SERIESI (gray stars), with a median of q =   9 .8 1 .5J . For
the volume-averaged fractional flux (black triangles), we find a
median value of ∣ ∣á ñ ´ = f 10 13.3 2.5i

4 . Figure 2(c) shows
that E E 0.05div , with a median value of

= E E 0.06 0.02div , for the majority of time instances
considered. For SERIESII, we find the median values
q =   15 .6 2 .7J and ∣ ∣á ñ ´ = f 10 2.2 1.0i

4 . The nonsole-
noidal contribution to the total energy is considerably lower
than in SERIESI (Figure 2(d)), with a median value

= E E 0.005 0.003div . Note that the improved solenoidal

Figure 1. NLFF model solution for February14 at 21:00UT in (a) SERIESI and (b) SERIESII. Sample field lines outlining the large-scale magnetic field are colored
green. Those originating from the AR center are color-coded according to the total absolute current density, ∣ ∣J , at their footpoints. The gray scale background shows
the measured vertical magnetic field, Bz, scaled to ±1 kG. Panels (c) and (d) show the respective normalized changes at the lower NLFF boundary. Black/gray
contours are drawn at ±750G.

Table 1
Changes to the Measured Magnetic Field during NLFF Modeling, as Shown in

Figures 1(c) and (d)

Series Dz
rms Dh

rms D
~

z

rms
D
~

h

rms

(G) (G) (G) (G)

I 68.74 181.36 4.30 2.42
II 63.03 103.54 4.06 2.88
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condition in SERIESII is achieved at the slight expense of
force-freeness.

3.2. Effect of Divergence on Helicity Computations

Fast-evolving NOAA11158 showed a considerable increase
of unsigned magnetic flux starting on late February12, at a
time when a pronounced filament started to emerge (for an in-

depth analysis see Sun et al. 2012). Parts of the filament
erupted during two eruptive flares, an M6.6 flare (SOL2011-
02-13T17:38) and an X2.2 flare (SOL2011-02-15T01:56).
Figure 3(a) shows the corresponding total (E; black solid line)
and potential field (E0) energy for SERIESI (green dotted line)
and SERIESII (blue solid line), including a considerable
increase, starting with the emergence of the filament early on
February13.

Figure 2. Quality of NLFF magnetic fields of SERIESI (left panels) and SERIESII (right panels). qJ (gray stars) in panels (a) and (b) quantifies the degree of force-
freeness. The fractional flux, ∣ ∣á ñfi (black triangles), quantifies the level of · B. The nonsolenoidal contribution, Ediv, to the total energy is shown in panels (c)
and (d).

Figure 3. (a) Total energy (E; black solid line) and potential energy (E0) for SERIESI (green dashed) and SERIESII (blue solid). Panel (b) shows the corresponding
total helicity, H , derived using the FVCoulomb method. In panels (c) and (d), the contributions of HJ and HPJ are shown, respectively. Vertical dashed and solid lines
mark the GOES peak time of M- and X-class flares, respectively.
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Figure 3(b) shows the total helicity, H , computed with the
FVCoulomb method. While exclusively positive values are found
for H when based on SERIESII, the corresponding curve of
SERIESI shows an unexpected behavior, including rapid and
drastic changes, independent of the occurrence of the eruptive
flares. A closer look into the contributors to the total helicity,
HJ (Figure 3(c)) and HPJ (Figure 3(d)), reveals that these
changes mainly stem from the contribution of HPJ. The
magnitudes of HJ differ less, with slightly lower values
obtained from SERIESII.

Though not shown explicitly, we note that the results derived
using the FVDeVore method show a similar behavior, though
slightly less extreme. In SERIESI, a good match of H (and
thus HPJ) between the two methods is only found during a short
time interval, between February14 ∼12:00UT and early
February15, i.e.,where the input magnetic fields were more
divergence-free ( ∣ ∣á ñ µ -f 10i

4 and E E 0.01div ) than at
other times (compare Figure 2(c)). In contrast, FVCoulomb and
FVDeVore deliver almost identical results for the entire SERIESII.

3.3. Effect of Divergence onto Eruptivity Proxies

Often employed are proxies quantifying the nonpotentiality
and eruptivity in the form of the free energy ratio, E EF 0, and
the helicity ratio, ∣ ∣ ∣ ∣H HJ . In Figure 4, we compare the effect
of divergence in SERIESI (left panels) and SERIESII (right
panels) onto the corresponding values derived with the
FVCoulomb and FVDeVore method.

While E EF 0 is growing prior to the eruptive flares and 0.2
in SERIESII (Figure 4(b)), this is not the case for SERIESI
(Figure 4(a)). Also, in SERIESI, E EF 0 appears rather large
prior to the presence of strong magnetic fluxes (before late
February 12) at a time when the AR did not exhibit signatures
of a filament. Thus, the energy (ratio) at those times is mostly

dominated by the level of · B, and in that sense indicates that
anything below E E 0.2F 0 is not significant.
The effect on the helicity ratio ∣ ∣ ∣ ∣H HJ is equally severe.

While it may serve as a proxy for eruptivity, with (increasing)
decreasing trend (before) after the major flares in SERIESII, and
values ∣ ∣ ∣ ∣ H H 0.2J prior to flare occurrence (Figure 4(d)),
such a conclusion cannot be drawn based on SERIESI
(Figure 4(c)). Here, clear and smooth trends around flares are
hard to discriminate. In particular, ∣ ∣ ∣ ∣H HJ exceeds a value of
one at times when HPJ based on the respective method takes
unexpected turns (compare the dashed blue line in Figure 4(c)
and the green dotted line in Figure 3(e) for the FVCoulomb
method). Again, ∣ ∣ ∣ ∣H HJ based on the two different methods
agrees only for times in SERIESI when the underlying magnetic
field is more divergence free (compare Figures 2(a) and (c)).

4. Summary and Discussion

We aimed at testing the sensitivity of magnetic energy and
helicity computations, based on real solar observations, in
terms of the quality of the employed coronal magnetic field
model. We employed the method of Wiegelmann & Inhester
(2010) based on two different free model parameter sets to a
time series of observed vector magnetograms, in order to obtain
two time series of NLFF models (SERIESI and SERIESII). A
high degree of force-freeness is crucial for the validity of an
NLFF solution with respect to the measured photospheric field
it is based on. A low level of divergence is mandatory for a
reliable computation of magnetic helicity (Valori et al.
2013, 2016).
While the NLFF fields of SERIESI are of “standard” quality

( q 10J , ∣ ∣á ñ µ -f 10i
3, and E E 0.05div ), those of SER-

IESII are of higher solenoidal quality ( ∣ ∣á ñ µ -f 10i
4 and

E E 0.01div ) and slightly lower force-freeness (Figure 2).
The numbers for SERIESII represent remarkably good values

Figure 4. Magnetic energy ratio, E EF 0, for (a) SERIESI and (b) SERIESII. Panels (c) and (d) show the helicity ratio, ∣ ∣ ∣ ∣H HJ , respectively. Blue dashed and green
dotted lines represent the model solutions based on the FVCoulomb and FVDeVore methods. Vertical dashed and solid lines mark the GOES peak time of M- and X-class
flares, respectively.
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for observation-based NLFF modeling, competing with the
best-performing models discussed in DeRosa et al. (2015),
while better preserving the original input vector magnetic field
(compare the rms values in Tables 1 and 3 of DeRosa et al.
2015).
We applied two different FV methods to compute the

magnetic helicity of Thalmann et al. (2011; “FVCoulomb”) and
Valori et al. (2012; “FVDeVore”), which are based on different
gauges (Coulomb versus DeVore, respectively) and employ
different mathematical approaches (differential versus integral
formulation for the vector potentials, respectively). We applied
both methods to both NLFF time series and find that the
different methods deliver almost identical results (i.e., H , as
well as HJ and HPJ), given a sufficient solenoidal quality of the
input magnetic field. We therefore suggest that, quite generally,
helicity computations may be meaningful and trustworthy only
if E E 0.05div and ∣ ∣á ñ ´ f 10 5i

4 for the underlying
magnetic field model.

The different methods react differently on the quality of the
input fields, with FVCoulomb being more sensitive, with larger
absolute variations in HPJ (Figure 3(d)), and hence H
(Figure 3(b)). The least difference, even for nonnegligible
divergence, is found for HJ, both between the methods and
between the two NLFF series (Figure 3(c)), which seems to
point to an inconsistency in context with the potential field. In
comparison, the magnetic energy shows only little sensitivity to
the quality of the underlying NLFF solution (Figure 3(a)).
Irrespective of the method, the proxies for nonpotentiality,
E EF 0, and for eruptivity, ∣ ∣ ∣ ∣H HJ , are affected to a degree
that allows reliable conclusions only if the input NLFF field is
solenoidal enough (Figure 4).

In our case, the unexpected behavior of HPJ (and thus H ) in
SERIESI is caused by a too large divergence of the underlying
NLFF solutions ( ∣ ∣á ñ ´ f 10 5i

4 and E E 0.05div ). Corre-
spondingly, we are able to verify the doubts of Moraitis et al.
(2014) concerning the reliability of their long-term helicity
analysis of ARs NOAA11072 ( ∣ ∣á ñ ´ = f 10 1.3 0.2i

3 ) and
NOAA11158 ( ∣ ∣á ñ ´ = f 10 7.2 0.9i

4 ). Corresponding
judgment of other earlier works are difficult because relevant
control parameters were not reported (e.g., Jing et al.
2012, 2015).

The effect of nonsolenoidal contributions to H may be case
dependent, however. A similar behavior may in some cases just
represent the correct evolution. For instance, the most eruptive
case of MHD simulations analyzed in Pariat et al. (2017) shows
a change of the sign of HPJ, though smoothly and to values
small compared to the pre-eruption value. Also, a variation of
the sign of HJ around zero, around times when strong magnetic
flux is initially emerging in an AR, may just be physical
(compare Figures 3 and 6 of Pariat et al. 2017).

In summary, we find that a quantitative assessment of the
consistency of NLFF models in terms of force- and divergence-
freeness is mandatory for making any reliable statement
involving their energy and helicity content. Moreover, despite
the necessity of high-quality (i.e., low-divergence) input
magnetic fields for helicity computation, simplistic interpreta-
tions of the computed magnetic helicity of complex magnetic
systems should be taken with care.
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