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Abstract

Failed Error Propagation (FEP) can reduce test effectiveness and recent work proposed

an information theoretic measure, Squeeziness, as the theoretical basis for avoiding

FEP. This paper demonstrates that Squeeziness is not suitable for comparing programs

with different input domains. We then extend Squeeziness to Normalised Squeeziness

and demonstrate that this is more generally useful.
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1. Introduction

This paper is motivated by the need to understand and predict Failed Error Prop-

agation (FEP), a situation arising in software testing in which the program state is

corrupted, due to a faulty statement being executed, but the expected/correct output

is still produced. Clearly, FEP has the potential to reduce the effectiveness of testing

and empirical studies have confirmed that FEP is an issue in practice e.g. Masri et

al. found that most programs in their corpus were affected by coincidental correctness

(including FEP); 60% of tests were affected for 13% of the programs [5, 4, 2]. In what

follows, we distinguish between coincidental correctness, a general term meaning an

error is executed but the test oracle still observes the correct output, and FEP which is

a particular type of coincidental correctness.

In order to reason about FEP we make some strong, simplifying assumptions [1].

First, we assume that there is only one error in the program. Second, we assume that
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the error is not embedded in the body of a loop. The consequence of these assumptions

is that, if we examine the error program and its fixed version, there is a program point

immediately after the error in the error program, the alignment point, after which the

subprograms of the two programs are the same. We can then model FEP as the be-

haviour of a code fragment on a pair of different initial states for the fragment, i.e. the

corrupted and uncorrupted states produced at the alignment point by the two programs.

FEP occurs when the same output is observed. Thus, in our model, a prerequisite for

FEP is collisions (two different program states produce the same output), or many to

one behaviour by a code fragment. This FEP model and its assumptions have been sta-

tistically validated by Androutsopoulos et al. who report a rank correlation of over 0.95

between variations on an information theoretic measure and the probability of FEP in

numerical C programs with seeded errors [1].

This measure, Squeeziness, has been shown to be strongly associated with the prob-

ability of collisions [3]. In this current paper we examine an information theoretic

measure closely related to Squeeziness, called Normalised Squeeziness. This latter is

designed to compare different programs with different input domains. We show that it

has an improved correlation with the probability of collisions.

To simplify both the presentation and experimentation we assume in what follows

that the probability distribution is discrete and uniform. However, it is not difficult to

parametrise the reasoning with an arbitrary probability distribution. We examine cor-

relations between the probability of collisions, and both Squeeziness and Normalised

Squeeziness. Studying purely abstract functions, we experimentally demonstrate that

Normalised Squeeziness is the better estimation measure for the probability of colli-

sions.

2. Squeeziness

Definition 1. Entropy of a random variable.

H(X) = −
∑
x∈X

p(x)log2p(x)

Definition 2. Squeeziness [3]. Let I and O be random variables and f be a total

function, f : I → O. The Squeeziness of f on I , Sq(f, I), is defined as the loss of
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information after applying f to I

Sq(f) = H(I)−H(O)

The entropy of a random variable satisfies a partition property [6, 4, 2]. Consider

random variable A. We overload A to mean both the r.v. and its set of events. Consider

a partition of A with n parts. Let B be the r.v. with event space B1, . . . , Bn (the parts

of the partition) and name the associated probability distributions as follows:

A ∼ σ (1)

B ∼ σ′ where σ′(Bi) =
∑
a∈Bi

σ(a) (2)

Bi ∼ σi where 1 ≤ i ≤ n and for a ∈ Bi, σi(a) = σ(a)/σ′(Bi) (3)

We have the following property, used to construct the example motivating Normalised

Squeeziness..

Property 1. Partition Property of Entropy

H(A) = H(B) +
∑

1≤i≤n

σ′(Bi).H(Bi)

This can be interpreted as follows. Given a partition on a random variable, the

entropy of the random variable is equal to the expected value of the entropy within

each part plus the entropy between the parts.

A collision is said to have occurred when two different inputs map to the same

output. Let f : I → O be the input-output semantics of a program and I and O

be overloaded to represent random variables in the inputs and outputs respectively.

Let r.v. O ∼ σO. Let f−1o be the inverse image of o ∈ O. Then I =
⋃

o∈O Io

where Io = f−1o and
⋂

o∈O Io = ∅, i.e. {Io | o ∈ O} partitions I . Collisions

have the potential to cause FEP, if an infected state collides with an uninfected state.

We compare Squeeziness with the probability of collisions due to the execution of a

program.

Definition 3. Function Collision. A pair of inputs to function f , t, t′ ∈ I , collide if

t 6= t′ ∧ ft = ft′.
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Let us suppose that O = {o1, . . . , on} and Ii denotes set f−1oi with size mi.

Further, let d =
∑n

i=1mi denote the input space size. Given a uniform distribution on

inputs, the probability of collision is the following (sampling without replacement) [3].

PColl(f) =

n∑
i=1

mi ∗ (mi − 1)

d ∗ (d− 1)

We can approximate this by the following function (sampling with replacement).

pcoll(f, I) =
∑
o∈O

σ2
O(o)

The two measures converge as the size of the input space gets larger.

3. A Squeeziness Limitation

In this section we examine the suitability of Squeeziness for comparing functions

with different input domains.

Example 1. Consider a function f from I to O and a function g1 formed by taking the

disjoint union of k > 1 copies of f as follows: g1 has input domain I ′ = {xi|x ∈

I ∧ 1 ≤ i ≤ k} and output domain O′ = {yi|y ∈ O ∧ 1 ≤ i ≤ k} (I ′ has k copies

of I and O′ has k copies of O); and for all x ∈ I and 1 ≤ i ≤ k, if f(x) = y then

g1(x
i) = yi.

I ′ is partitioned into k parts, I1, . . . , Ik, and each Ii is a copy of I . Similar is true

for O′, the Oi, and O. The probability distribution over the parts in each case is the

uniform distribution with probability 1/k. Let J be the random variable in the parts of

I ′ and let σI be the probability distribution on the events of random variable I . Then

I ∼ σI , I ′ ∼ σ (where for 0 ≤ i ≤ k, x ∈ I, σ(xi) = 1/k . σI(x)), and J ∼ Uk (the

uniform probability distribution on k discrete items).

We can similarly consider the output space for g1 where J is again the random

variable in the parts of the partition and σO is the probability distribution on O (O ∼

σO, O′ ∼ σ where for 0 ≤ i ≤ k, x ∈ O, σ(xi) = 1/k . σO(x), and J ∼ Uk).

Now consider the Squeeziness of f and g1. We have that Sq(f, I) = H(I)−H(O)

and Sq(g1, I ′) = H(I ′)−H(O′). By the partition property
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H(I ′) = H(J) +
∑

0≤i≤k

1/k .H(Ii) = log2k +H(I)

and by the same argumentH(O′) = log2k +H(O), so

Sq(g1, I
′) = H(I ′)−H(O′) = H(I)−H(O) = Sq(f, I)

Calculating the probability of collisions for f : I → O and g1 : I ′ → O′ we have:

pcoll(f, I) =
∑
o∈O

σ2
O(o)

pcoll(g1, I
′) =

∑
o∈O′

[1/k . σO(o)]
2 = 1/k2 .

∑
o∈O′

σ2
O(o)

In the above, f and g1 have the same Squeeziness. However, the probability of

collisions is higher with f than g1 since the inverse images of outputs have the same

sizes but the input domain size is larger for g1 than f (i.e. for f one is more likely to

choose two inputs mapped to a given output).

Thus, as Squeeziness uses the random variable in inputs as a parameter, it may not

be a good basis for comparing two programs if they have different input domains. An

alternative, to using the loss of information, is to measure the proportion of information

lost.

Definition 4. Normalised Squeeziness. The Normalised Squeeziness of total function

f : I → O, NSq(f), is defined as the proportion of information lost after applying f

to I

NSq(f) =
H(I)−H(O)

H(I)

In the following section we report on the results of experiments that evaluated Nor-

malised Squeeziness by comparing it with Squeeziness and what appears to be the first

method of estimating the likelihood of FEP; the Domain To Range Ration (DTRR) [3].

Given a function (or program) p, the DTRR of p is simply the size of the output domain

divided by size of the input domain. The Domain to Range Ratio provides a rough in-

dication of the number of inputs that map on to a single output, and thus, an estimate

of the probability of collisions, and by implication, the likelihood of FEP.
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4. Simulation Study

This section describes a study that evaluated the DTRR, Squeeziness, and Nor-

malised Squeeziness metrics by comparing them with a fourth metric (probability of

collisions). We initially replicated the previous work, using fixed input domain size;

the results are not described since they were consistent with earlier work (Squeeziness

correlates strongly with probability of collision and more strongly than DTRR). In the

following we describe two new experiments. All of the metrics of interest can be com-

puted if we know the sizes of the inverse images of outputs. Thus, we followed the

previously used approach of randomly1 choosing inverse image sizes [3], which we

now describe.

4.1. Variable Input Domain Size and Fixed Maximum Inverse Image Size

Let us suppose that we have chosen maximum input domain size Md and also

we have chosen a maximum Mm on the size of the inverse image of outputs. In the

experiments described in this section, we fixed Md and Mm and each experimental

subject was generated as follows. First, the size of the input domain d was randomly

chosen from the range 1 to Md. Second, we iteratively generated inverse image sizes

in the range from 1 to Mm until the sum of these was at least Md; if the sum exceeded

Md then we reduced the size of the last value chosen so that the sum was Md. This

resulted in a value of d and values of the mi. We then computed the four metrics of

interest. This process was repeated 100 times for each Md/Mm pair used.

(a) (105, 200) (b) (105, 200) (c) (105, 200)

Figure 1: Datasets used to derive the statistical test results reported in the first row of Table 1.

1Note that randomisation was facilitated by Python’s inbuilt random module.
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Parameters DRR Sq NSq

Md Mm ρDRR P(2-tailed) ρSq P(2-tailed) ρNSq P(2-tailed)

105 200 0.004 0.969 0.024 0.812 0.999 4.81E-127

105 200 -0.073 0.468 -0.068 0.501 0.997 6.05E-112

105 2000 -0.148 0.141 -0.088 0.386 0.995 3.26E-100

105 2000 -0.113 0.265 -0.055 0.589 0.996 3.99E-104

106 200 -0.306 0.002 -0.201 0.045 1.000 1.46E-160

106 200 -0.091 0.367 -0.199 0.047 0.999 1.15E-147

Table 1: Correlations between Prob. of Collisions and Squeeziness, Normalised Squeeziness, and DTRR

We used the following pairs of values (Md,Mm): (105, 200), (105, 2000), (106, 200),

using each twice to explore sampling effects. The results are shown in Table 1. Fig-

ures 1a to 1c show the distributions of values for the three experiments that are pre-

sented in the first row of Table 1 (the distribution of values are similar for the other

experiments). The order of the scatterplots corresponds to the arrangement in Table 1.

Interestingly, in several cases the correlation between Squeeziness and the Proba-

bility of Collisions is negative but in others the correlation is positive. It thus appears

that Squeeziness is not a good basis for predicting Probability of Collisions. A similar

observation can be made with respect to DTRR. In contrast, Normalised Squeeziness

consistently has a strong, positive correlation with the Probability of Collisions, ob-

taining a correlation coefficient that is always above 0.995.

4.2. Variable Input Domain Size and Variable Maximum Inverse Image Size

The experiments described above used fixed Mm. To allow greater variety, we ran

experiments in whichMmwas randomly chosen (for each experimental subject) in the

range 1 to MMm for some MMm.

We used two pairs of values for (Md,MMm), (105, 200), (105, 2000), again us-

ing each pair twice. The results (Table 2) indicate that again only Normalised Squeezi-

ness is correlated with Probability of Collisions. Interestingly, the correlation is marginally

weaker than before but we still obtain a positive, strong, and consistent correlation co-
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Parameters DRR Sq NSq

Md MMm ρDRR P(2-tailed) ρSq (2-tailed) ρNSq P(2-tailed)

105 200 0.559 1.49E-09 0.559 1.45E-09 0.921 7.37E-42

105 200 0.610 1.57E-11 0.606 2.29E-11 0.925 7.03E-43

105 2000 0.562 1.19E-09 0.570 6.22E-10 0.975 6.24E-66

105 2000 0.672 2.04E-14 0.674 1.54E-14 0.959 2.29E-55

Table 2: Experiments based on Md and MMm.

efficient.

4.3. Threats to Validity

There are several threats to validity. The threats to internal validity relate to the

possibility that the tools used in the experiments were faulty. We addressed these in

two main ways. First, we carefully tested the tool we developed for the simulations

and the components it was built from. In addition, we ran a replication study, obtaining

results that were similar to those produced in previous work. For the statistical analysis

we utilised a widely used tool (SPSS)

Threats to construct validity refer to the possibility that we did not measure prop-

erties of interest. As previously explained, we concentrated on the probability of col-

lisions. There is a clear connection between collisions and FEP (for a sub-program

following the alignment point) and this observation has been supported by previous

work. However, experiments that looked at actual FEP would have value.

Threats to external validity relate to our ability to generalise from any results given.

There are always such threats and in this case the main threat comes from the way in

which the simulations were generated: it is possible that the inverse images of outputs

are very differently distributed in real programs. To address this, we require experi-

ments using a range of real programs along with faulty versions. This is an issue that

will be addressed by future work.
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5. Conclusions

Previous work introduced the measure called Squeeziness, which can be used to

estimate the likelihood of FEP [3]. In this paper, we showed that Squeeziness is less

appropriate for comparing programs that have different input domains and Normalised

Squeeziness resolves this issue. Specifically, we found that, when the input domain

size varied, there was little correlation between the Probability of Collisions and the

two previous measures (Squeeziness and the Domain to Range Ratio). However, there

was a correlation between Normalised Squeeziness and the Probability of Collisions.
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