
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 1

An Empirical Validation of Oracle Improvement
Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella

Abstract—We propose a human-in-the-loop approach for oracle improvement and analyse whether the proposed oracle improvement
process is helping developers to create better oracles. For this, we conducted two human studies with 68 participants overall: an oracle
assessment study and an oracle improvement study. Our results show that developers exhibit poor performance (29% accuracy) when
manually assessing whether an assertion oracle contains a false positive, a false negative or none of the two. This shows that
automated detection of these oracle deficiencies is beneficial for the users. Our tool OASIs (Oracle ASsessment and Improvement)
helps developers produce assertions with higher quality. Participants who used OASIs in the improvement study were able to achieve
33% of full and 67% of partial correctness as opposed to participants without the tool who achieved only 21% of full and 43% of partial
correctness.

Index Terms—Oracle Problem, Test Oracle, Oracle Assessment, Oracle Improvement, Human Study, Test Case Generation, Mutation
Testing

F

1 INTRODUCTION

Recent advances in test input generation have left the Oracle
Problem as a key remaining bottleneck in the improvement
of the overall effectiveness and efficiency of the software
testing process. Indeed, the effectiveness of testing depends
both on the quality of the test cases and on the quality of the
oracle [2], [40], [44]. There are many techniques for assessing
and improving the adequacy of test cases, e.g., their code
coverage, and many hundreds of studies about search-
based [16], [28] and symbolic execution [5] techniques alone.
In comparison, there is relatively little work to help the
software tester with the Oracle Problem, i.e., the problem of
defining accurate oracles, capable of detecting all and only
faulty behaviours exercised during testing [12], [18], [25],
[36], [37], [38]. Without a (good) oracle to determine whether
the test output is correct, test inputs that satisfy the strictest
adequacy criteria remain useless and testing is ineffective.

The oracle’s performance depends on two properties:
Completeness: All correct program states should be ac-
cepted by the oracle, which should raise an alarm only
on faulty states, with no false alarms (no false positives).
Soundness: All faulty program states should be rejected
by the oracle, so that there are no missed faults (no false
negatives). Oracle assessment must thus identify and report
false positives or false negatives (or both), so as to support
the developer in improving the oracle soundness and com-
pleteness.

In our previous work [19] we introduced an approach
that is based on search based test case generation [10], [15],
[28] to identify false positives and mutation testing [21],
[22] to identify false negatives. Our tool OASIs (Oracle

• G. Jahangirova is with Fondazione Bruno Kessler and University College
London.

• D. Clark is with University College London.

• M. Harman is with Facebook and University College London.

• P. Tonella is with Università della Svizzera Italiana (USI).

ASsessment and Improvement) [20] generates counterex-
amples as test cases that demonstrate incompleteness and
unsoundness. The tester uses them to iteratively improve
the oracle. The process continues until OASIs is unable to
generate new counterexamples and finishes with an im-
proved (more complete and sound) oracle.

Our approach necessarily places the human tester in
the loop, because modifications made to the oracle to
solve reported false positives and false negatives depend
on the intended program behaviour (vs. the implemented
behaviour), which we assume is known to developers
through informal knowledge, requirement documents and
other sources of documentation.

In the initial evaluation of our approach the human in
the iterative oracle improvement process was represented
by the first author. She had no familiarity with the sub-
jects, no previous experience in writing specifications but,
of course, knew very well how to interpret the output of
OASIs.

In this paper we aim to analyse further whether our
approach is helpful for testers to create better oracles. For
this purpose we conducted two different human studies
with 68 participants overall. 39 participants were involved
in our Oracle Assessment Study, where we assessed the ability
of humans to detect false positives and false negatives
manually, without any tool support. The results of this study
are indicative of how helpful the automated detection of or-
acle deficiencies could be for developers. Then, 29 different
participants were involved in our Oracle Improvement Study,
where they were assigned to two different groups (control
and treatment). Participants from the first group were given
initial assertion oracles (for which the oracle deficiency type
was indicated) to be improved manually. Participants from
the second group performed an iterative improvement pro-
cess on the same initial oracles with the support of our tool,
playing the role of the human in the loop. The comparison of
the quality achieved in the final oracles validates empirically
the effectiveness of the proposed approach.

This work extends our previous paper [19] with the
following novel contributions:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 2

• A novel human study on oracle assessment;
• A novel human study on oracle improvement.

The paper is organised as follows. Section 2 summarises
our previous work [19] and its preliminary evaluation. Sec-
tion 3 reports new experimental results of the oracle assess-
ment and oracle improvement studies, and enumerates the
threats to validity. We discuss the related work in Section 4.
Finally, Section 5 concludes the paper.

2 BACKGROUND

2.1 Quality of Assertions
Let us consider a program point, pp, in a program under
test, P . Let Σ be the set of all states that can occur in P and
I ⊆ Σ be the set of start states. We are interested in the set
of states that reach pp via execution of P on I .

Rpp = {s | ∃i ∈ I ∧ [[P]]pp i = s}

where [[P]]pp i indicates the state reached at pp by executing
P on i ∈ I .

We place an assertion, 〈assert〉, at pp with the intention
of using this assertion as an oracle. Let us define:

App = {s ∈ Rpp | 〈assert〉s = T}

to be the set of reachable states for P at pp on which the
assertion is true.

Let us consider the states that occur at pp and are correct
(the perfect oracle). We call this set Epp, and we can think of
Epp as the intersection between the set of correct states at pp
for a correct “ghost program” [1], G (an error free version of
the program), and Rpp, the reachable states of the program
under test.

Epp = {s ∈ Rpp | ∃i ∈ I ∧ [[G]]pp i = s}

Subsequently we will drop the subscript pp from R, E and
A where the program point is clear from context.

Fig. 1: Assertion improvement process: the intersection
between states where 〈assert〉 is true (A) and expected
states (E), restricted to the subset of reachable states (R),
is increased.

The overall aim of the testing process is to expose and
fix faults via a cycle of testing and revision of P so that Epp
is as large as possible at every program point in P , making
P closer to G. Oracle improvement occurs within a given
cycle, i.e., for a fixed P , during the testing phase. By oracle
improvement we mean a process aimed at refining 〈assert〉
so as to obtain a new assertion, 〈assert〉′ for which A′ has a
larger overlap with the currentE. Eventually, we would like

to obtain a new assertion such that A′ ∩E = A′ = E so that
the states at pp on which the new assertion is true are exactly
the “correct” states of the ghost program. The starting point
of this process is represented in Figure 1, left.

Here, the region (A − E) is the set of states of P which
are not “correct” but on which 〈assert〉 is True, that is the
set of reachable False Negatives, while (E − A) is the set of
“correct” states on which the assertion is False, that is the
set of reachable False Positives.

Definition 1 (False Negatives) A false negative is a reachable
program state where the given assertion is True, although such
state does not belong to the set of expected states according to the
intended program behaviour.

Definition 2 (False Positives) A false positive is a reachable
program state where the given assertion is False, although such
state does belong to the set of expected states according to the
intended program behaviour.

The notions of False Positives and False Negatives are
tightly connected with the notions of oracle soundness
and completeness. An assertion 〈assert〉 is Complete iff the
“correct” reachable states are a subset of the states accepted
by the assertion, i.e. E ⊆ A. An assertion 〈assert〉 is Sound
iff the accepted states are a subset of the “correct” reachable
states, i.e. A ⊆ E. Completeness implies that the number of
False Positives is zero; soundness implies that the number
of False Negatives is zero.

After testing for False Positives and False Negatives we
can strengthen 〈assert〉 to reduce the number of False Neg-
atives and simultaneously weaken it to reduce the number
of False Positives, producing a new assertion, 〈assert〉′ in
the process illustrated in Figure 1, right. By reducing the
number of False Positives and False Negatives, the proposed
oracle assessment and improvement process will make the
oracle more complete and sound.

2.2 Approach & Implementation

2.2.1 False Positive Detection

Given a program assertion, we detect its false positives
by generating execution scenarios where the assertion fails
while it should hold because the behaviour of the program
is deemed correct. In such a case, failure of the assertion
points to a bug in the assertion, not in the program.

1 publ ic i n t value (i n t x , i n t y) {
2 i n t r e s u l t = x − y ;
3 a s s e r t (r e s u l t != x) ;
4 re turn r e s u l t ; }

1 publ ic i n t value (i n t x , i n t y) {
2 i n t r e s u l t = x − y ;
3 i f (! (r e s u l t != x)) {} ; // t a r g e t
4 re turn r e s u l t ; }

1 @Test (timeout = 4000)
2 publ ic void t e s t 0 () throws Throwable {
3 S ubt rac t s u b t r a c t 0 = new Sub tra c t () ;
4 i n t i n t 0 = s u b t r a c t 0 . value (1 0 5 7 , 0) ; }

Fig. 2: Example of False Positive Detection

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 3

First, we perform a testability transformation [14] that
transforms the assertion in the code into a new branch. Let
us consider a program under test P containing n assertions
a1 . . . an:

ai = assert(ci), i ∈ [1 . . . n]

where ci is the boolean expression used in the assertion
ai. For each assertion ai, i ∈ [1 . . . n] in P the proposed
testability transformation takes ci, negates it and replaces
the assertion ai with a new branch containing the negated
condition:

if (!(ci)){}

Figure 2 shows an example of such a transforma-
tion. The condition of the assert statement at Line
4 ‘(result != x)’ in Figure 2 (top), is negated to
‘(!(result != x))’ and then the assertion is replaced
with the branch: ‘if (!(result != x)) {}’ in Figure 2
(middle). After this transformation, the criterion for false
positive detection turns into the standard branch coverage
criterion. We developed a test case generator to cover the
newly created branches as an extension of EvoSuite’s branch
coverage generator [9], [10]. Let P be the original program
and B the set of branches in P . Let P ′ be the transformed
version of P and B′ the set of branches in P ′. The standard
version of EvoSuite will aim to cover all the branches in
P ′. However, we are interested in covering only branches
BA = B′ − B, i.e., the set of branches that are created
as a result of the transformation of assertions in P into
branches. We altered the fitness function of EvoSuite so that
it aims to cover only the ‘then’ parts of the ‘if’ statements
at branches in BA. In Figure 2, the bottom part shows an
example of a test case generated as evidence of a False
Positive for the assertion at line 4 in the top part. Indeed,
if we execute the reported test case this assertion will fail, as
result is actually equal to x.

2.2.2 False Negative Detection
An assertion has no false negatives if it exposes all faults.
Therefore, if we deliberately insert a fault into the source
code of program P , a sound oracle ought to always report
the presence of this fault. Hence, to find evidence of false
negatives we use mutation testing to insert a (known) fault
into program P that corrupts the program state so that the
corrupted state reaches the given assertion and the assertion
statement does not fail.

1 publ ic i n t getMax (i n t a , i n t b) {
2 i n t max ;
3 i f (a >= b) {
4 max = a ; //max = −a ;
5 } e l s e {
6 max = b ;
7 }
8 a s s e r t (max >= a && max >= b) ;
9 re turn max ; }}

1 // 1 . getMax , Line 5 InsertUnaryOp Negation (max
:−1 ,1)

2 @Test (timeout = 4000)
3 publ ic void t e s t 0 () throws Throwable {
4 FastMath fastMath0 = new FastMath () ;
5 i n t i n t 0 = fastMath0 . getMax ((−1) , (−110)) ;}

Fig. 3: Example of False Negative Detection

First, we instrument the source code of the class so that
we can monitor (1) the values of all variables visible at the
program point where the assertion is located and (2) the
outcome of the assertion, i.e. whether it passes or fails. After
the instrumentation, we use EvoSuite’s strong mutation
killing criterion. Let us consider the implementation under
test P and its mutations M1, . . . ,Mk. Program P and each
of its mutants have n assertions a1, . . . , an:

ai = assert(ci), i ∈ [1 . . . n]

Let us consider the variables (v1, . . . , vmi
) in scope at the

assertion point ppi. Their values after running a test case
on P are (vP1 , . . . , v

P
mi

), while they are (v
Mj

1 , . . . , v
Mj
mi) after

running the same test case on mutant Mj .
In EvoSuite, a mutant is strongly killed if EvoSuite can

create a test case assertion (not to be confused with the
program assertions that are assessed for false negatives) that
evaluates to false if the test is executed on the mutant and
to true if it is executed on the original class. To detect
false negatives, we further restricted the notion of mutation
killing by adding two additional conditions to be satisfied:
(1) the conditions in the program assertions do not change
their values:

∀i ∈ [1 . . . n] : c
Mj

i = cPi

(2) at least, one of the variables visible at ppi has different
values in P and Mj :

∃i ∈ [1 . . . n] : v
Mj

1 6= vP1 ∨ . . . ∨ vMj
mi
6= vPmi

Condition (2) ensures that we exclude equivalent mu-
tants from our analysis, as if the mutant is equivalent it
could not lead to a change of value in any of the variables
at the assertion point.

In Figure 3 (top) we provide an example of a method
with a weak assertion (at line 9). OASIs reports a False
Negative for this assertion, as in Figure 3 (bottom). The
report contains a test case and a description of the mutation
in the comments above the test case. As follows from
the description, the mutation applies a unary negation
operator to variable a at line 5, changing the value of
variable max from -1 to 1. However, the assertion in the
method does not react to this change, as in the mutated
version max is equal to 1, which is still greater than the
value of a == -1 and b == -110. This False Negative can be
eliminated by replacing the assertion in Figure 3 (top) with
assert (max >= a && max >= b && (max == a ||
max == b)).

2.2.3 Iterative Improvement Process
We propose a process for iterative oracle assessment and im-
provement based on the outcomes of false positive/negative
detection as reported by OASIs. OASIs is implemented as a
command-line tool which takes five parameters as input:
the source code location of the Java class, the name of the
class, the name of the method where the initial assertions
are located, the search budget for FP detection and the
search budget for FN detection. The last two parameters
are optional and, if omitted, OASIs uses the default budgets
of 60 seconds for FP and of 120 seconds for FN detection.
OASIs starts the oracle assessment process by first looking
for a False Positive. If no False Positive is detected, the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 4

search for False Negatives is initiated. The output of the
tool consists of a message which comprises the exact kind,
in case oracle deficiency is detected, or just indicates that no
deficiency was found. For each detected oracle deficiency,
the evidence (in the form of a test suite) is provided.

However, the output of OASIs on its own is not sufficient
for the improvement process. Therefore, the human is an
integral part of this semi-automated process, as a source of
knowledge about the intended behaviour of the program.
The human in the loop is tasked with manually improving
the oracle when a false negative or a false positive is
reported.

The starting point for iterative oracle assessment and
improvement is an initial oracle. This oracle can be the one
defined manually by developers, or can be produced auto-
matically by tools for invariant inference, like Daikon [7], or
can even be the empty (implicit) oracle, which catches only
program crashes or exceptions/errors. Oracle deficiencies (i.e.
false negatives or false positives) are detected and reported
automatically by OASIs.

The developer fixes the assertions in the program, based
on the reported oracle deficiencies. Some care must be taken
in this step, in order to recognise the following corner cases:
(1) A reported false positive might point to a bug in the
program, not in the assertion; (2) A test case killing a mutant
and triggering an assertion violation in the mutant might be
associated with consistent bugs in both implementation and
assertion; (3) A mutant might accidentally fix a fault in the
program, causing a reported false negative to point to a bug
in the program, not in the assertion.

The first case is important, since the improved oracle
is immediately used for fault detection when this case
occurs. Incorrectly changing the oracle when, in fact, it is
the program at fault will render the oracle unable to detect
fault actually present in the code. The other two are expected
to be extremely rare cases (no occurrence of the latter two
cases was observed in our experiments).

Once assertions have been improved by the developer,
the iterative process restarts and the new assertions are
assessed for the presence of further oracle deficiencies. The
process continues until no further counterexamples can be
generated and finishes with an improved (more complete
and sound) oracle.

2.3 Preliminary Validation

In this section we summarize our preliminary evaluation,
during which the human in the iterative oracle improve-
ment process was represented by the first author. She had
no familiarity with the subjects, no previous experience in
writing specifications but, of course, knew very well how to
interpret the output of OASIs.

We have assessed the applicability of our approach for
three types of initial oracles: (1) implicit oracle where no
assertion is present, hence fault detection relies entirely
on program crashing or raising exceptions; (2) inferred
properties, where we use invariants generated by Daikon
as initial assertions; (3) manual oracle, where initial oracles
are already provided with the code in the form of JML
specifications, which we transformed into standard Java
assertions.

TABLE 1: Average mutation score by subject for initial/test
case (µs) and improved (µ′s) oracle

Oracle Subj µs µ′s ∆ Â12 p-value

Implicit CM 16% 97.6% 81.6pp 1.0 1.4 · 10−5

CC. 8.3% 98.4% 90.1pp 0.98 2.2 · 10−5

Inferred CL 60.5% 98.8% 38.3pp 0.9 9.0 · 10−3

CM 50.2% 95.8% 45.6pp 0.91 4.7 · 10−4

Manual FE 78.8% 100% 21.2pp 0.9 6.3 · 10−7

LG 81.5% 100% 18.5pp 0.89 1.7 · 10−2

All All 50.1% 98.4% 48.3pp 0.92 < 2.2−16

Randoop All 45% 98.4% 53.4pp 0.93 5.3 · 10−7

EvoSuite All 46.9% 98.4% 51.5pp 0.95 3.8 · 10−6

The effectiveness of the improved oracle was assessed in
terms of increased fault detection with respect to the initial
and test case oracle. We analysed the mutation score for test
case assertions and for program assertions before and after
the improvement process. Table 1 shows results for each
type of initial oracle and each subject (CM: Commons Math,
CC: Commons Collections, CL: Commons Lang, FE: JavaFE,
LG: Logging). The improvement in mutation score is 85.9pp
(pp means percentage points) for implicit, 42.0pp for inferred
and 19.9pp for manual assertions. The improved program
assertions achieve 51.8pp and 53.4pp higher mutation score
than the test case assertions generated by EvoSuite and
Randoop respectively. In all cases, the observed mutation
score increase is statistically significant (p ≤ 0.05). The
Vargha-Delaney effect size Â12 is always large (in our study,
Â12 ≥ 0.89).

During our experiments we detected 4 real bugs in the
Apache Commons Math project (MATH-1256, MATH-1258,
MATH-1259, MATH-1414), which have been reported to
(and then fixed by) the developers. Overall, results show
that our approach is effective in improving all three types
of initial oracles. The process typically involved from one
to three iterations to converge to an oracle for which no
deficiency is reported.

3 HUMAN STUDY

We assessed (1) whether the proposed approach is beneficial
for developers to detect oracle deficiencies by conducting
an Oracle Assessment Study, and (2) whether the output of
the tool helps developers remove oracle deficiencies and
create better oracles by conducting an Oracle Improvement
Study. Both of our studies were approved by UCL’s Research
Ethics Committee (REC 12857/001 and REC 12005/001).
All the experimental data collected is available at the link:
https://github.com/guneljahan/OASIs/humanstudy.

3.1 Oracle Assessment Study
To improve an oracle one should first be aware of its current
deficiencies and then take actions to get rid of them. Our
approach automatically detects false positives and false
negatives in the assertions and reports them to the user. To
check whether the first task, oracle assessment, is difficult
for humans, which would indicate that the information
provided by our tool is potentially useful, we conducted
a study to analyse how successful developers are at assessing
oracles manually, with no tool support. With this overall goal
in mind, we explored the following research questions:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 5

RQ1: How effective are developers in determining whether
the oracle has a deficiency and, if it has one, what the
deficiency type is?
RQ2: What are the common misclassifications developers
make when assessing oracle deficiencies?

3.1.1 Object Selection
The starting point of our experimental design was the pre-
vious study by Staats et al. [39]. In this previous work Staats
et al. analysed the user’s ability to classify dynamically
generated invariants by Daikon as correct or incorrect. An
invariant is considered incorrect if there is a test input
capable of violating the invariant, which is in line with our
definition of a False Positive. Three Java classes were used
as subject programs in this previous study: StackAr, Matrix
and PolyFunction. StackAr is a stack class originally used in
user studies about Daikon [29]. Matrix is a class represent-
ing a matrix, found in the JAMA linear algebra package,
developed by The MathWorks and the National Institute
of Standard and Technology (NIST) [17]. PolyFunction is a
class representing a polynomial function, and is part of the
Math4J package [27]. The users involved in the previous
study analysed 336 invariants generated by Daikon for these
classes during the experiments. Moreover, at the end of
the task each participant was asked to manually write 5
invariants for each class.

We reused the subject programs of this study, and used
the dynamically generated and manually written invariants
as our initial oracles. However, the aim of our study was
not limited to the analysis of the developers’ ability to
detect False Positives, but to also include the same analysis
for False Negatives. Given this wider task, we decided to
give subjects more time for oracle assessment than in the
previous study. In our study, we provided participants with
10 assertions from two different classes to be evaluated in
30 minutes. By contrast, in the study by Staats et al. [39]
subjects were asked to analyse 112 invariants on average
in 60 minutes or 86 invariants on average in 35 minutes,
depending on the session.

We selected 15 assertions (5 from each class) among
336 properties inferred by Daikon and 37 human-written
assertions. The majority of assertions in this pool check
general properties of the class or basic properties of the
method (such as the immutability of some variables). Our
selection process favoured assertions that were checking the
functionality specific to the method under test rather than
the general properties. For each assertion we run our tool
to detect whether it has a false positive, a false negative
or no oracle deficiencies. In case no oracle deficiency was
found, we also analysed the assertion manually to ensure
that the output of the tool is correct. We selected the final
assertions so as to achieve a balance between the numbers
of Daikon-generated and human-written assertions, as well
as between the numbers of assertions with false positives,
false negatives and no oracle deficiencies at all.

Before executing the empirical study, we conducted a
pilot study with 2 volunteers (who were not included later
in the experiment itself). The results of the questionnaire and
the discussion after the pilot study showed that participants
think that the time provided was insufficient to analyse 10
assertions in total. Therefore, we reduced the number of

assertions to 6 for the main experiment (3 for each class).
We also slightly reduced the source code of all three case
examples to make the task more feasible.

Table 2 lists the classes from the work of Staats et al. [39]
that we reused in our experiments and the number of lines
of code, methods and assertions in them. Rows Assertion 1,
Assertion 2 and Assertion 3 indicate whether each assertion
has a false positive (FP), a false negative (FN) or no false
positives and no false negatives (None) and whether it is
human-written (H) or Daikon-generated (D).

TABLE 2: Assessment Study: Subject Programs

StackAr Matrix PolyFunction
SLOC 94 142 152
of Methods 11 17 12
of Assertions 3 3 3
Assertion 1 FN, D FP, D FN, H
Assertion 2 None, H FN, D FP, H
Assertion 3 FP, D None, H FN, D

3.1.2 Participants
To answer our research questions we conducted three sep-
arate experimental sessions. The first and third session
were conducted with master degree students of the Security
Testing course at the University of Trento. The second session
was conducted with professional developers who work at
Fondazione Bruno Kessler. The analysis of user feedback for
the first two sessions showed that participants thought
that they did not have enough time to perform the task.
Therefore, in the third session we changed the duration of
the task from 30 minutes to 45 minutes.

TABLE 3: Assessment Study: Experimental Sessions

Type of Part. # of Part. Duration
Session 1 MSc Students 20 75 min
Session 2 Prof. Developers 6 75 min
Session 3 MSc Students 13 90 min

Table 3 lists all the sessions conducted during the study,
the type and number of participants in each of them along
with the whole duration of the session. Overall, 33 master
degree students and 6 professional developers participated
in our experiments.

3.1.3 Experimental Procedure
At the beginning of each session we provided an identical
30 minute training to the participants: (1) explaining what
the oracle problem is; (2) explaining what a false positive
and a false negative is; (3) overviewing Java assertions;
(4) showing multiple examples of false positives and false
negatives in Java assertions; (5) introducing utility classes
and constructs used to write assertions (e.g., the boolean
implication operator and the way to refer to old values of
variables). In the training, the motivation for the assertions
in the program was explained to be regression testing, as
in regression testing users can assume that the program
behaves correctly as is. Correspondingly, the user’s task is to
determine whether assertions match the program’s current

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 6

behaviour. Indeed, asking participants to judge whether
invariants match the intended program behaviour would
have made the task overly difficult, since participants are
not the developers of the classes under study. We also
recommended participants to start their analysis of the
assertions from the search for false positives. In fact, only
after making sure that there is no false positive (the assertion
is correct), it makes sense to check whether the assertion
has false negatives (the assertion is strong enough to expose
arbitrary faults).

After the training session, each subject received an exper-
iment package, consisting of the randomly assigned group
id, a statement of consent and instructions on how to pro-
ceed with the task. Participants were divided into groups
in order to have a balanced number of responses for each
subject class. Instructions directed the participants to the
website where the source code of Java classes for their group
could be downloaded and to the online questionnaire.

During the task, each participant was assigned two Java
classes with three assertions each. The objective was to
indicate for each assertion whether (1) it has a false positive
(2) it has a false negative (3) it has no false positives and no
false negatives. In case the subject did not know the answer
the option “I don’t know” was provided as well. Once the
30 minute (45 minute for the third session) period assigned
to the task was complete, the participants proceeded to the
questionnaire to answer questions about their background
and to provide feedback about the session.

3.1.4 Results
RQ1: User Effectiveness

To answer RQ1 we calculated the correct/incorrect clas-
sification ratios for each participant group, investigated the
parameters that affect users’ performance and measured the
agreement rate between participants.

Classification Results. Table 4 presents the results for
the two sessions (Session 1 - SS1, Session 3 - SS3) conducted
with students. Column All shows the overall number of
classifications obtained for each assertion. Columns Correct
and Incorrect show the number of correct and incorrect
classifications respectively. Column Don’t Know reports the
number of cases when the option “I don’t know” was picked
for the assertion. While the duration of these sessions was
different (30 min vs. 45 min), the results for them are quite
similar with the 25% and 26% correct classification rates.

Table 5 shows the results for the 6 professional devel-
opers. With 48% correct classification rate they exhibited
almost twice better performance than students. For 4 out
of 9 assertions, professional developers had no incorrect
classifications at all, either always correctly classifying an
assertion (M3) or selecting the answer ”I don’t know” rather
than giving an incorrect answer (P2, S2, S3).

Figure 4 provides more insight into the participants’
performance by showing the number of participants giving
the same number of correct answers (which range from 0
to 6). As it can be seen, 10 out of 33 students were not
able to correctly classify a single assertion. This was not
the case for professional developers, as each of them was
able to correctly assess from at least 1 to up to 4 assertions.
The highest performance of 5 and 6 correct answers was
exhibited by just one student.

N
um

be
r o

f P
ar

tic
ip

an
ts

0

1

2

3

4

5

6

7

8

9

10

Number of Correct Answers
0 1 2 3 4 5 6

Students Professional Developers

Fig. 4: Number of Participants grouped by Number of
Correct Answers

Overall, for 39 participants the average correct classifica-
tion ratio is only 29%, see Table 6. There are no assertions
that were incorrectly or correctly classified by all partici-
pants. In 22% of cases the option “I don’t know” was picked
and in 49% the provided classification was wrong.

We tested the statistical significance of our results. Ac-
cording to the Pearson-Klopper method for calculating
binomial confidence intervals (at 95% confidence level),
for students the correct classification rate is in the range
[0.1936:0.2190] with mean 0.2525; for professional devel-
opers in the range [0.3040:0.6451] with mean 0.472; and
for all participants in the range [0.2293:0.3488] with mean
0.2863. The difference between students’ and professional
developers’ performance is statistically significant according
to Fisher’s exact test (two-sided) with p = 0.01488 at
95% confidence level. We conclude that there is inferential
statistical evidence that the professional developers were
significantly better at oracle assessment than students.

Parameters affecting user effectiveness. In the back-
ground questionnaire we asked participants questions about
their programming experience, their assessment on the un-
derstandability of training material and their satisfaction
with the time provided for the task. To analyse whether
any of these factors affected subjects’ effectiveness, we cal-
culated the ratios of correct, incorrect and “I don’t know”
answers within each group corresponding to different pa-
rameter values. The first/second columns in Table 7 show
the parameter values and the number of overall responses
within each group, while the next columns list the oracle
assessment answers. Column Conf. Int. shows confidence
intervals (at 95% confidence level) for each response.

As the table shows, the rate of correct answers increases
when we switch from the group with ”< 1 year” to the
group with ”1−3 years” of programming experience. How-
ever, this increase does not continue for the group with
”> 3 years” of programming experience. A similar pattern
holds for Java and Industry Experience. Regarding the time
provided for the task, the number of responses are equal for
both groups, but the ratio of correct answers is higher when
the answer was ”yes”. The user effectiveness also increases
as the understandability of the provided training material

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 7

TABLE 4: Results: Students (SS1 - 1st session, 20 students; SS3 - 3rd session, 13 students)

Assertion Deficiency All Correct Incorrect Don’t Know
SS1 SS3 SS1 SS3 SS1 SS3 SS1 SS3

M1 FP 13 8 2 (15%) 1 (13%) 10 (77%) 7 (88%) 1 (8%) 0 (0%)
M2 FN 13 8 7 (54%) 5 (63%) 3 (23%) 1 (13%) 3 (23%) 2 (25%)
M3 None 13 8 6 (46%) 3 (38%) 5 (38%) 1 (13%) 2 (15%) 4 (50%)
P1 FN 13 9 1 (8%) 2 (22%) 9 (69%) 5 (56%) 3 (23%) 2 (22%)
P2 FP 13 9 2 (15%) 1 (11%) 5 (38%) 4 (44%) 6 (46%) 4 (44%)
P3 FN 13 9 1 (8%) 1 (11%) 8 (61%) 5 (56%) 4 (31%) 3 (33%)
S1 FN 14 9 3 (21%) 1 (11%) 8 (57%) 8 (89%) 3 (21%) 0 (0%)
S2 None 14 9 5 (36%) 3 (33%) 9 (64%) 5 (56%) 0 (0%) 1 (11%)
S3 FP 14 9 3(21%) 3 (33%) 8 (57%) 5 (56%) 3 (21%) 1 (11%)

120 78 30 (25%) 20 (26%) 65 (54%) 41 (52%) 25 (21%) 17 (22%)
198 50 (25%) 106 (53%) 42 (21%)

TABLE 5: Results: Professional Developers (2nd session, 6
developers)

Assertion All Correct Incorrect Don’t Know
M1 4 1 (25%) 3 (75%) 0 (0%)
M2 4 2 (50%) 1 (25%) 1 (25%)
M3 4 4 (100%) 0 (0%) 0 (0%)
P1 5 3 (60%) 1 (20%) 1 (20%)
P2 5 1 (20%) 0 (0%) 4 (80%)
P3 5 2 (40%) 2 (40%) 1 (20%)
S1 3 0 (0%) 2 (67%) 1 (33%)
S2 3 2 (67%) 0 (0%) 1 (33%)
S3 3 2 (67%) 0 (0%) 1 (33%)

36 17 (48%) 9 (25%) 10 (27%)

TABLE 6: Results: Overall (39 participants)

Assertion All Correct Incorrect Don’t Know
M1 25 4 (16%) 20 (80%) 1 (4%)
M2 25 14 (56%) 5 (20%) 6 (24%)
M3 25 13 (52%) 6 (24%) 6 (24%)
P1 27 6 (22%) 15 (56%) 6 (22%)
P2 27 4 (15%) 9 (33%) 14 (52%)
P3 27 4 (15%) 15 (56%) 8 (30%)
S1 26 4 (15%) 18 (69%) 4 (15%)
S2 26 10 (38%) 14 (54%) 2 (8%)
S3 26 8 (31%) 13 (50%) 5 (19%)

234 67 (29%) 115 (49%) 52 (22%)

Fig. 5: What was the main challenge while performing the
task?

increases (according to participants). However, even when
participants think that the time allocated for the task was
enough, their average effectiveness is only 32%. Similarly,
when they rate the provided training material with the
highest possible mark, the average effectiveness is still only
35%.

We calculated the Pearson correlation coefficient be-
tween the ratio of correct answers and each of the factors
in Table 7. The correlation coefficients are positive for all
factors except Java Experience. Industry Experience is the
factor with the highest correlation rate and the only one
where correlation is statistically significant (p ≤ 0.05). Even
for this factor, the correlation is moderate, not strong. The

permutation test for the analysis of co-factors gives similar
results.

To get participants’ opinion on the difficulties associated
with the task, we asked them a multiple-choice question
“What was the main challenge while performing the task?”.
We got responses from all 39 participants with 54 answers
selected. As Figure 5 shows, the main challenge for par-
ticipants was to understand the source code of the classes,
followed by understanding the assertions.

Agreement rate between participants. To analyse how
much homogeneity there is between the classifications pro-
vided by users, we measured the degree of inter-rater
agreement. Fleiss’ kappa [8] is the most common statistical
measure for assessing the reliability of agreement between a
fixed number of raters when classifying items. It calculates
the degree of agreement in classification over the one that
would be obtained by chance. However, as we have overall
9 assertions and each participant classified only a subset (6)
of them, Fleiss’ kappa is not applicable to our data. Hence,
we instead used Krippendorff’s alpha [23] coefficient, which
generalizes Fleiss’ kappa to incomplete (missing) data. Krip-
pendorff’s alpha takes value between 0 and 1, where 0 is
perfect disagreement and 1 is perfect agreement. When it is
less than 0 disagreements are systematic and exceed what
can be expected by chance.

Table 8 shows the number of raters and Krippendorff’s
alpha value for each subject group and for all subjects
(i.e., students, professionals and all participants). The high-
est agreement rate is for the assertions in class Matrix,
for professionals. According to Landis and Koch’s [24] in-
terpretation of agreement rate values, professionals have
reached a fair agreement. This is related to the fact that all
professionals have classified one of the assertions (M3) in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 8

TABLE 7: Results for different parameter values

All Correct Incorrect Don’t Know Conf. Int. Pearson Correlation Co-Factor Analysis
Coeff. p-value Coeff. p-value

Progr. Exp. (37)

0.0728 0.6642 2.2370 0.9220<1 year (7) 42 8(19%) 30(71%) 4(10%) [0.09:0.34]
1 - 3 years (13) 78 27(35%) 31(40%) 20(26%) [0.24:0.46]
>3 years (17) 102 26(25%) 49(48%) 27(26%) [0.17:0.35]

Java Exp. (37)

-0.0310 0.8649 -3.830 0.6860None (3) 18 5(28%) 9(50%) 4(22%) [0.10:0.53]
<1 year (12) 72 23(32%) 35(49%) 14(19%) [0.21:0.44]

1-3 years (16) 96 22(23%) 48(50%) 26(27%) [0.15:0.33]
>3 years (6) 36 11(31%) 18(50%) 7(19%) [0.16:0.48]

Industry Exp.(36)

0.4126 0.0112 10.4270 0.0190None (19) 114 18(16%) 62(54%) 34(30%)) [0.10:0.24]
<1 year (9) 54 20(37%) 26(48%) 8(15%) [0.24:0.51]

1-3 years (5) 30 15(50%) 11(37%) 4(13%) [0.31:0.69]
>3 years (3) 18 6(33%) 8(44%) 4(22%) [0.13:0.59]

Enough Time (36)

0.2001 0.2334 12.770 0.4900No (18) 108 26(24%) 57(53%) 25(23%) [0.16:0.33]
Yes (18) 108 35(32%) 49(45%) 24(22%) [0.24:0.42]

Training (38)

0.2681 0.0989 4.2590 0.66701 (1) 6 0(0%) 5(83%) 1(17%) [0.00:0.46]
2 (3) 18 3(17%) 4(22%) 11(61%) [0.04:0.31]

3 (12) 72 20(28%) 39(54%) 13(18%) [0.18:0.40]
4 (12) 72 19(26%) 36(50%) 17(24%) [0.17:0.38]
5 (10) 60 21(35%) 29(48%) 10(17%) [0.23:0.48]

this class correctly, therefore fully agreeing. The agreement
rate for class StackAr between professionals and also for all
participants is negative (poor). In all the other cases, there is
a slight agreement between students, professionals and all
participants.

TABLE 8: Agreement rate between participants

Students Professionals All
Alpha # Alpha # Alpha

Matrix 21 0.124 4 0.324 25 0.091
PolyFunction 22 0.006 5 0.042 27 0.011

Stack 23 0.005 3 -0.102 26 -0.006
33 0.010 6 0.015 39 0.049

Overall, these low agreement rate values show that
although all subjects, even those with industry experience,
find oracle classification hard, there is no evidence for
systematic bias nor consistent misunderstanding among
subjects regarding their incorrect oracle inferences. For ex-
ample, it is never the case that participants consistently
agree on classifying an assertion which actually has a false
positive as an assertion with a false negative.

RQ1 (effectiveness): Our experiments show that subjects
can only achieve a poor correct classification rate (29%) when
assessing whether an assertion contains a false positive, a false
negative or none of the two. Professional developers achieve
a significantly higher correctness rate (48%) than students
(25%), but still such correctness rate is largely below the
desirable value (100%). The inter-rater agreement was also
quite poor, confirming that the oracle assessment is indeed a
difficult task for humans. We observed a moderately strong
evidence that industrial experience is correlated with correct
classification rate, but found no such evidence of any other
correlations.

RQ2: Misclassifications
Harder to Detect Oracle Deficiencies. To investigate

which type of oracle deficiencies is harder to detect for
developers, we summarized the results of the oracle assess-
ment task for each type of oracle deficiency and participant
group (see Figure 6). As the figure reveals, both students
and professional developers are more successful in detecting
false negatives than false positives (27% vs. 21% overall).
However, the best result is achieved for assertions with no
oracle deficiencies at all. For these assertions, professionals
were able to provide correct classifications in 87% of the
cases.

We asked the question “Which oracle deficiency is
harder to detect?” to the participants in the exit question-
naire. As Figure 7 shows, the number of people finding false
positives harder to detect than false negatives is slightly
higher, which is inline with our results. However, to check
whether the response of participants considering false neg-
atives harder than false positives is consistent with the
actual results we observed for their performance, we calcu-
lated correct classification rates for false positives and false
negatives by both the ”FP is harder” and ”FN is harder”
groups. The results show that the ”FN is harder” group
is more successful in detecting false positives (29%) than
false negatives (19%). Similarly, the ”FP is harder” group
shows better results for assertions with false negatives (31%)
than for the ones with false positives (18%). Therefore, the
participants’ intuition about the difficulty of each oracle
deficiency type is confirmed by the results observed for each
group of deficiency.

Misclassification types. To analyse the type of mistakes
participants made when assessing oracles, we calculated
how often each of the 6 possible misclassifications has
occurred. Column Class-Misclass in Table 9 lists these mis-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 9

Students

Professionals

Overall

Students

Professionals

Overall

Students

Professionals

Overall

0 10 20 30 40 50 60 70 80 90 100

16%

14%

16%

23%

24%

23%

26%

42%

23%

39%

45%

50%

35%

53%

54%

25%

59%

45%

86%

39%

27%

41%

24%

21%

33%

18%

Correct Incorrect Don't Know
FP

FN

None

Fig. 6: Correctness rate divided by FP, FN and None

0

5

10

15

20

FP FN

1

4

13
16

Students Professionals

Fig. 7: Which Oracle Deficiency is harder to detect?

classifications, where the notation OD1-OD2 means that the
assertion has an oracle deficiency of type OD1, but was
classified as having OD2. Columns Students, Professionals
and All show the rate of each misclassification for the cor-
responding participant group. These rates were calculated
by dividing the number of times the misclassification OD1-
OD2 took place by the overall number of assertions with
OD1.

TABLE 9: Misclassifications

Class-Misclass Students Professionals All
FP-FN 29% 25% 28%
FP-None 30% 0% 26%
FN-FP 17% 18% 17%
FN-None 36% 18% 33%
None-FP 25% 0% 22%
None-FN 20% 0% 18%

As the Table 9 shows, students have made each possible
misclassification. In contrast, for professional developers

three out of six possible erroneous classifications never
took place. The ratio of each misclassification is higher for
students than for developers, except FN-FP, for which the
difference is negligible. Students misclassify false positives
as false negatives or ”None” at very close ratios (29%
vs. 30%), while for professionals such difference is more
perceptible (25% vs. 0%). Despite the fact that false positives
are being misclassified more often, the most common error
for all participants is FN-None. This shows that users often
fail to recognise the bugs that the assertion can miss, and
therefore tend to classify weak assertions as strong. One of
the least prevalent misclassifications is None-FN, showing
that strong assertions are classified as weak more rarely.

RQ2 (misclassifications): False positives were perceived
(and were actually found) to be the hardest category to identify
for all subjects. The most common misclassification consists of
weak assertions regarded as free of deficiencies, showing that
identifying faults potentially missed by an assertion is a quite
difficult task for humans.

3.2 Oracle Improvement Study
Once developers are aware of assertion deficiencies, they
must improve the assertion so as to remove deficiencies. To
support developers in this process, our tool automatically
generates counterexamples that demonstrate the reason for
each type of oracle deficiency. To check whether this leads to
a more effective oracle improvement process, we conducted
a study to compare the improvement process when using
our tool against manual improvement unaided by our tool.
We addressed the following research questions:
RQ3: What is the quality of assertions improved using our
tool compared to assertions improved manually?
RQ4: When using our tool, how many iterations and how
much human effort does the iterative improvement process
require to remove all oracle deficiencies in the assertion?

3.2.1 Participants
In our approach, the developer is an integral part of the
oracle improvement process. To analyse how beneficial is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 10

TABLE 10: Improvement Study: Participants

Participant Group Experience # of Jobs Amount Job Title
P1 Without Tool 8 years 7 1000+ USD C, C++, Java Developer
P2 Without Tool 3 years 0 0 USD Software Quality Assurance Analyst
P3 Without Tool 3 years 18 1000+ USD Software Tester
P4 Without Tool 3 years 4 3000+ USD Full Stack Software Engineer
P5 Without Tool 5 years 0 0 USD Expert in Automation QA
P6 With Tool 3 years 0 0 USD Software Quality Assurance Engineer
P7 With Tool 1 year 2 15 USD Test Automation Engineer
P8 With Tool 3 years 1 40 USD Test Manager (Manual,Automation,Security)
P9 With Tool 6 years 0 0 USD QA Automation Engineer
P10 With Tool 5 years 0 0 USD Full Stack Java Enterprise Developer

the use of our tool for developers with various backgrounds,
two different groups of participants were involved in our ex-
periments. We recruited the participants for the first group
by sending personal email invitations to 28 PhD students
from Fondazione Bruno Kessler and to 19 PhD students and 2
postdoctoral researchers from University College London. No
financial incentive was offered in this invitation. Overall,
17 PhD students and 2 postdoctoral researchers agreed to
participate.

Our second group of participants were developers from
Upwork. Upwork is a global freelancing platform where
businesses and independent professionals collaborate re-
motely. To hire developers on this platform, we registered
there as a client, by filling in necessary details and then
adding and verifying the payment method. After registra-
tion, we posted two different fixed-price jobs: 1) without
using the tool, with a payment of 20 USD; 2) using the tool,
with a payment of 30 USD. The difference in the price is
due to the training on how to use our tool job, an extra
activity that is carried out only for the second job. For both
jobs we required candidates to pass a qualification test.
Overall, we received 20 job proposals for the first and 12
job proposals for the second job. We aimed to have five
freelancers completing each job. To reach this quota we had
to hire 15 freelancers overall: four of them did not pass the
qualification test and one did not submit the last part of the
task.

Participants for each job were selected so that there
is a balance in terms of experience between control and
treatment groups on average. Table 10 lists our final list
of participants from the Upwork platform. Column Group
shows whether each participant worked on a task with or
without the tool. Column # of Jobs shows the number of jobs
each freelancer did on the Upwork platform and Column
Amount shows how much money each freelancer has earned
overall.

We had limited control on the group composition (we
could just approximately balance the level of Experience). In
fact, it turned out that the group Without Tool includes par-
ticipants with slightly higher # of Jobs and Amount, possibly
giving a slight unfair advantage to this group of subjects.
We deemed this possible bias acceptable since it reduces the
chance of Type I errors (incorrectly inferring that our tool
provides benefits to its users).

3.2.2 Experimental Procedure

The main structure of our experimental procedure is shown
in Figure 8. The PhD student/Postdoc sessions were organ-
ised individually for each participant as a single 1.5 - 2 hour
session. In Upwork we divided our experimental session
into milestones, i.e., subtasks with separate budgets and
deliverables. Each participant had to pass each milestone
to be able to proceed with the next one. The green bars in
Figure 8 show the content and the payment offered for each
milestone.

Each experimental session started with a 30-minute Ora-
cle Improvement Training, which contained all the information
from the Oracle Assessment Study training material, with
the addition of multiple examples on how to improve the
assertions to remove oracle deficiencies. For the participants
from Upwork, this material was provided in written form,
while for the PhD student/Postdoc sessions it was delivered
in the form of a presentation.

The training was followed by an Oracle Improvement Prac-
tice Task, where participants were provided with 4 simple
Java methods with an initial assertion each. The objective of
the task for the participants was to improve the assertions so
that they have no false positives and no false negatives. The
aim of the task was to ensure that participants understand
the oracle improvement process. In the Upwork setting, par-
ticipants submitted their improved assertions online. In case
any of the four assertions still had oracle deficiencies left, the
written feedback explaining the reason for the oracle defi-
ciency was sent to them. Participants could resubmit based
on the feedback provided. In case the participant was not
able to finish the improvement process after two iterations
of feedback, her/his participation in the experiment was
terminated. This was the case for 4 participants out of 15. In
the PhD student/Postdoc sessions, this part was conducted
in a more interactive way, where participants could write
the improved assertion and receive immediate feedback,
possibly followed by a discussion, and could subsequently
improve the assertion until all deficiencies were removed.
All participants from PhD student/Postdoc sessions have
passed the practice task.

The Tool Training was conducted only with participants
from the treatment (With Tool) group. The training material
was provided in written form to participants from Upwork
and in the form of a presentation to the others. The training
included information on: (1) how to run the tool; (2) the
output of the tool for False Positives; (3) the output of the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 11

Oracle Improvement
Training

Oracle Improvement

Practice Task Tool Training Final Task Questionnaire

5 USD 15 USD10 USD

Fig. 8: Oracle Improvement Study: Experimental Procedure

tool for False Negatives, including the explanation of each
mutation operator that could be applied to the source code.

To give a hands-on experience on the use of the tool,
participants ran the tool and analysed its output for the
methods from the Oracle Improvement Task. We reused these
methods to ensure that participants performing the task
with the tool did not get more examples and experience
of oracle improvement than participants not using the tool.
We provided a machine with pre-installed tool to the partic-
ipants in the PhD student/Postdoc sessions.

We provided instructions on where to download the tool
and how to run it on their machine to participants from
Upwork. Participants from Upwork were also required to
submit a written description of the output produced by the
tool for each method, to check that they could understand
it properly. For False Positives they had to explain why
the generated test case makes the assertion fail. For False
Negatives they had to describe the applied mutations and
why the assertion does not react to them. Examples of such
descriptions were provided in the training material.

After participants received all the necessary training,
they proceeded with the Final Task. In this task they were
provided with a single Java class StackAr which had an
assertion with a false positive in the top method and an
assertion with a false negative in the pop method. The
objective of the task was to improve both assertions so
that they have no oracle deficiencies. The aim of the task
was to compare the outcome of the oracle improvement
process when participants use the tool and when they do
not. Participants from both groups knew the type of oracle
deficiency each assertion has.

The control group was instructed to improve the asser-
tions manually. The treatment group had the tool to guide
them: for each improvement step they could run the tool
and if an oracle deficiency was detected, based on the test
cases reported as an evidence they could decide on the next
improvement step. The stopping point for the participants
from the treatment group was when the tool reported no
oracle deficiencies, while for the control group it was only
the participant’s own confidence in the final assertions. In
the Upwork experiments we offered a bonus of 5 USD to
participants from the control group who were able to submit
assertions with no oracle deficiencies.

Once the task was over, participants were asked to
submit their final assertions along with the information
about their background, as well as their assessment of the
experimental session through the exit questionnaire.

3.2.3 Oracle Improvement Process: Possible Cases

In our experiments, the initial assertions have either a false
positive or a false negative. After getting the report of the
tool for the initial oracle deficiency, the developer has to
decide on the improvement step to take. Depending on this
improvement step, the new assertion can, in the best case,
be Fully Correct (no oracle deficiencies), can have an oracle
deficiency (of the same or new type) or can lead to a Crash in
the program. Figure 9 shows all the possible state changes
for the assertion during the improvement process.

Fig. 9: Oracle Improvement Process: Possible Outcomes

The example in Figure 10 (top) shows a shortened ver-
sion of the class StackAr that we have used in our study. In
method pop there is an initial assertion which has a False
Negative. The bottom part of Figure 10 shows assertions that
were produced by different developers as an improvement
to the initial one after one iteration of improvement process.

The first assertion in Figure 10 (bottom) causes a Crash. It
can lead to ArrayIndexOutOfBoundsException, if the value of
variable topOfStack is equal to -1 when the assertion gets
executed. Assertions are part of source code, but they should
not cause any side effects. Therefore it is unacceptable that
they lead to an exception during program execution. When
our tool performs False Positive detection, if during the
search process any test case causes an exception, such that
the error stack trace for this exception contains the line
number of the assertion in the code, the test case gets
reported to the developer as an evidence of Crash.

The second assertion shows how an attempt to fix a False
Negative can lead to the introduction of a False Positive.
This assertion claims that the value of topOfStack has
been incremented, while in fact it was decremented. This
makes the assertion fail any time it gets executed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 12

publ ic c l a s s StackAr {
p r i v a t e Object [] theArray ;
p r i v a t e i n t topOfStack ;

publ ic StackAr (i n t c a p a c i t y) {
theArray = new Object [c a p a c i t y] ;
topOfStack = −1;

}

publ ic void pop () throws UnderflowException {
//instrumentat ion
i n t old topOfStack = topOfStack ;
//instrumentat ion
Object [] old theArray =

Arrays . copyOf (theArray , theArray . length) ;

i f (topOfStack == −1)
throw new UnderflowException () ;

theArray [topOfStack] = n u l l ;
topOfStack = topOfStack − 1 ;

a s s e r t (theArray [topOfStack + 1] == n u l l) ;
}

}

(1) a s s e r t (theArray [topOfStack] == n u l l) ;
(2) a s s e r t (theArray [topOfStack + 1] == n u l l &&

topOfStack − 1 == old topOfStack) ;
(3) a s s e r t (theArray [topOfStack + 1] == n u l l &&

old topOfStack − 1 == topOfStack) ;
(4) a s s e r t (theArray [topOfStack + 1] == n u l l &&

old topOfStack − 1 == topOfStack &&
val idateArray (theArray , old theArray ,

old topOfStack))

Fig. 10: Class StackAr: method pop

The third assertion shows an example of a correct im-
provement step. The initial assertion checked the property
stating that the value of theArray at index topOfStack
is equal to null. The improved assertion adds an additional
check stating that the value of topOfStack was changed
correctly, i.e., it was decremented by one. This assertion is
stronger than the initial one, but it still has a False Negative.
The Fully Correct assertion for method pop would be asser-
tion number 4 in Figure 10 (bottom). Along with the previ-
ous checks, it also ensures that method validateArray
returns true. In turn, method validateArray loops
through the array and checks whether all the elements in
theArray and old_theArray, except the one at index
topOfStack + 1, are equal. Therefore, to ensure Fully
Correctness in this case one should check that the method
has changed correctly the part of the stack state it was
supposed to change (i.e., the values of topOfStack and
theArray[ind], with ind = old_topOfStack) and that
it has not affected the rest of the state (i.e., the values
of elements in theArray[ind], except for index ind =
old_topOfStack).

Generating fully correct oracles might be an expensive
and difficult process. Therefore, Partially Correct assertions
as the initial one in method pop or the third one in Figure
10 (bottom) might be regarded as sufficiently adequate in
practice. In fact, a complete specification of the state changes
that a method should perform might provide, in practice, a
powerful enough method to catch most incorrect implemen-

tations, even if such assertion is only partially correct, by
not ruling out method implementations that operate state
changes on the part of the state that is supposed to be
untouched by the operation implemented by the method.

In our approach the level of partial correctness can be
quantified as the mutation score of the assertion: a higher
mutation score indicates that the assertion is capable of
ruling out a higher number of incorrect state changes per-
formed by buggy implementations (mutants), possibly in-
cluding state changes that affect the supposedly unchanged
substate.

3.2.4 Results
Quality of Final Assertions

Table 11 shows the results for the participants who
improved the assertions manually. Column Overall T. shows
the overall time spent on improving each assertion, as
reported by each participant. Column Outcome shows the
oracle deficiency or the level of correctness the final asser-
tion has reached, where the distinction among FN, Partially
Correct and Fully Correct is that an assertion labelled FN
has some initial mutation score m; an assertion labelled Par-
tially Correct has mutation score > m and < 1; an assertion
labelled Fully Correct has mutation score = 1 (assuming in
all three cases that there is no residual false positive, which
would cause otherwise the labelling FP).

The results presented in Table 11 show that only five out
of nine participants in the PhD student/Postdoc sessions
achieved full correctness for Assertion 1. The assertions
submitted by the remaining four participants either still
have a false positive or cause a crash in the program. None
of the participants was able to improve Assertion 2 to the
point of full correctness, but five out of nine participants
have achieved partial correctness. The participants from
Upwork (UP1-UP5) performed worse for Assertion 1 and
better for Assertion 2 in comparison to the participants from
PhD student/Postdoc sessions. For the first assertion, only
one participant achieved full correctness. For the second
assertion four participants submitted partially correct asser-
tions and no one submitted a fully correct one.

Table 12 shows the results for the participants who used
our tool to improve the assertions. Here, column Overall T.
comprises the running time of the tool, reported in column
Tool T., and the time the developer spent on analysing
the output of the tool and improving assertions, i.e., the
human cost, reported in column Human T. Every time the
participant ran our tool, we recorded the time of the day
and the assertions in the code. Based on this information,
we calculated the human cost as the sum of time intervals
between tool runs and the running time of the tool as the
sum of tool run durations for all iterations.

When using the tool, all the participants from both
PhD student/Postdoc sessions and Upwork sessions have
achieved full correctness for Assertion 1. As our PhD stu-
dent/Postdoc experimental sessions were limited in time,
initially we configured the tool so that it reports false
negatives for Assertion 2 only until partial correctness was
achieved (as in the third assertion in Figure 10). Five partici-
pants (marked with an asterisk in Table 12) have run the tool
with this configuration. As they achieved the desired partial
correctness in a relatively short time, we used the standard

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 13

TABLE 11: Improvement Study: Results Without Tool

Participant Assertion1 Assertion2
Outcome Overall T. Outcome Overall T.

P1 Crash 45:00 Partially Correct 30:00
P2 Fully Correct 5:00 FP 10:00
P3 FP 5:00 FP 10:00
P4 Crash 25:00 Partially Correct 10:00
P5 Fully Correct 2:00 Partially Correct 4:00
P6 FP 6:00 Partially Correct 6:00
P7 Fully Correct 10:00 FN 7:00
P8 Fully Correct 16:00 FP 10:00
P9 Fully Correct 7:00 Partially Correct 2:00

UP1 Partially Correct 20:00 Partially Correct 20:00
UP2 Fully Correct 45:00 FN 40:00
UP3 FN 45:00 Partially Correct + FP 30:00
UP4 Partially Correct 17:00 Partially Correct 18:00
UP5 Partially Correct 25:00 Partially Correct + FP 35:00

21% Partially Correct 18:12 64% Partially Correct 15:28
43% Fully Correct

TABLE 12: Improvement Study: Results With Tool

Participant Assertion1 Assertion2
Outcome Overall T. Tool T. Human T. Outcome Overall T. Tool T. Human T.

P10* Fully Correct 19:02 03:53 15:09 Partially Correct 14:07 07:48 06:19
P11* Fully Correct 18:01 05:22 12:39 Partially Correct 24:06 14:16 09:50
P12* Fully Correct 21:11 03:52 17:19 Partially Correct 13:59 07:47 06:12
P13* Fully Correct 16:37 10:26 06:11 Partially Correct 10:56 07:52 03:04
P14* Fully Correct 10:27 06:03 04:24 Partially Correct 20:03 11:27 08:36
P15 Fully Correct 12:59 06:41 06:18 Partially Correct + FP 52:18 15:04 37:14
P16 Fully Correct 19:51 10:49 09:02 Partially Correct + FP 44:06 19:16 24:50
P17 Fully Correct 12:20 07:10 05:10 Partially Correct + FP 47:44 28:08 19:36
P18 Fully Correct 12:44 06:03 06:41 Fully Correct 40:40 15:55 24:45
P19 Fully Correct 47:38 14:15 33:23 Partially Correct 34:43 16:17 18:26
UP6 Fully Correct 13:46 07:48 05:58 Fully Correct 22:14 10:48 11:26
UP7 Fully Correct 15:17 09:15 06:02 Partially Correct 31:38 10:47 20:51
UP8 Fully Correct 08:24 04:57 03:27 Fully Correct 22:16 10:05 12:11
UP9 Fully Correct 09:25 05:34 03:51 Fully Correct 06:28 03:57 02:31
UP10 Fully Correct 16:36 08:53 07:43 Fully Correct 28:20 11:16 17:04

100% Fully Correct 16:57 07:24 09:33 33% Fully Correct 27:33 12:42 14:51
67% Partially Correct

configuration of the tool reporting all false negatives for
the rest of the participants. As a result, these participants
received a false negative report after achieving partial cor-
rectness. However, only one of them was able to improve the
assertion to the point of full correctness. Three participants
(P15, P16, P17) understood the reason of the reported false
negative and made steps towards improvement, but the
added checks contained a false positive which they were
not able to remove by the end of experimental session.
Participant P19 was not able to understand the reason for
the reported false negative, and, therefore did not improve
the assertion beyond the point of partial correctness. The
same scenario occurred also for Upwork Participant UP9.
The rest of Upwork participants (four out of five) were
successful in achieving full correctness.

In Tables 11 and 12 we do not indicate explicitly the level
of partial correctness (i.e., the mutation score), because it
is the same across all participants: Partial Correctness for
Assertion 1 has mutation score = 75%, while for Assertion 2
it is 92%.

Overall, for Assertion 1, participants achieved 43% of full
and 21% of partial correctness when improving assertions
manually versus 100% of full correctness when improving
assertions using our tool. For Assertion 2 manual improve-
ment led to 64% of partial correctness as opposed to 33% of
full and 67% of partial correctness when using the tool. We
checked the statistical significance of the difference between
the manual and tool-supported improvement by applying
the Fisher’s exact test (two-sided) in two different configu-
rations. In the first configuration we compared the outcomes
of assertions in terms of achieving partial correctness and
in the second in terms of achieving full correctness. In
both cases the difference is statistically significant at 95%
confidence level, with p = 0.00025 in the first configuration
and p = 0.00067 in the second.

We conducted a co-factor analysis to check if the type
of participants (whether they are from Upwork or PhD stu-
dent/Postdoc sessions) is significantly affecting their perfor-
mance. Another co-factor here is whether the tool was used
or not, while mutation score is the dependent variable. The

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 14

permutation test shows that the effect of participant type is
not statistically significant with p = 0.33333, but the effect
of tool usage is statistically significant with p < 2 ∗ 10−16.

RQ3 (Quality of Final Assertions): The tool helped de-
velopers produce assertions with higher quality. Participants
who used the tool were able to achieve 67% of full and 33%
of partial correctness, while participants without tool achieved
only 21% of full and 43% of partial correctness. The difference
is statistically significant.

Manual Improvement Process
To understand the approach of developers when improv-

ing the assertions manually we asked them what was their
strategy for the detection and improvement of false posi-
tives and false negatives. Figure 11 shows the participants’
answers to the multiple-choice questions.

24%

18%

6%

53%

Reading the Code (RC)
Executing with Debugging (D)
Executing without Debugging (ND)
Other (O)

19%

19%

6%

56%

False Positives False Negatives

O

RC
ND

D

ND

O

RC

D

Fig. 11: Strategies to Manually Detect FP and FN

Around 55% of participants just read the code when
performing manual improvement, while around 40% also
executed the code with or without debugging enabled. In
case the option ”Other” was picked, the participant could
describe his/her strategy using the textbox provided in
the questionnaire. Only three participants have provided
meaningful descriptions of their strategies. The first par-
ticipant noted that he ran the method with the improved
assertion distinguishing ”empty case, one element, more
than one element”. The second participant described his
strategy as ”reading the commented description of what the
function should do” and then encoding his interpretation
of the expected behaviour in a boolean formula using the
”old” and updated variables. The description of the third
participant was ”to try to study instances that will make
the assertion fail”, define what the assertion for this method
should look like and then compare it with the current one
and improve it.

Overall, the participants’ approach to oracle improve-
ment seems strongly based on static inspection of code and
documentation. Dynamic analysis, tracing and debugging
are not widely used. We conjecture the following reasons for
such strategies: (1) the definition of assertions might be per-
ceived as a coding/documentation activity; (2) debugging

and fixing bugs in assertions is not as common as debugging
and bug fixing in the code. There seems to be no standard
practice for handling issues that affect assertions – hence,
the need for a well-established approach and for supporting
tools.

Iterative Improvement Process
Analysis of the time required to complete the iterative

improvement process (see Tables 11, 12) is quite problem-
atic, because we had to measure time differently in the
different settings of the experiments. Specifically, the PhD
student/Postdoc group without tool marked time in a paper
sheet in a strictly controlled classroom setting, so their
reported time is quite reliable.

On the contrary, Upwork participants self reported the
time spent to improve the assertions without tool in an
uncontrolled environment. They might have inflated times
a bit to justify their remuneration and they might have
been quite approximate in their time measurement. Time
values measured for both groups when using the tool were
obtained in a completely different way, since these values
have been extracted from the tool execution logs. This
means that they are very accurate, but also quite different
from the times that humans self-report. Because of such
differences, we can make only limited claims on time.

Overall, we observe that the order of magnitude is the
same. In fact, the overall average time ranges between 15:28
and 27:33, considering both groups and treatments, with
two intermediate values at 16:57 and 18:12. This indicates
that the introduction of the tool can be extremely beneficial
to the assertion quality (as shown in previous section) with-
out having any remarkable impact on the time developers
take to complete the improvement process. We can also
notice that the human time (Column Human T.) when the
tool is used (see Table 12), tends to be lower than the
human overall time when no tool is available (see Table 11).
It is only when the tool time (Column Tool T.) is added
that we get comparable times to the setting without tool.
These findings indicate that the tool execution time has a
significant impact on the improvement process and that
any performance improvement that could be achieved on
the tool speed (the tool is a research prototype and was
not optimized for performance) could directly benefit the
overall iterative improvement time experienced by the tool
users.

Figure 12 shows the overall number of iterations and the
outcome of each iteration for both assertions and for all 15
participants who used the tool in the oracle improvement
process. For the first assertion the number of iterations
varied from 1 to 8 and the average number of iterations
required to achieve full correctness was 2.93. For the second
assertion the number of iterations varied from 1 to 13 and
the average number of iterations was equal to 4.66. The
average number of iterations participants went through to
achieve full correctness was 3.8, while for partial correctness
it was 3.66. Since these two numbers are approximately the
same, we can conjecture that participants who were able
to achieve full correctness performed bigger improvement
steps, since they achieved higher quality in approximately
the same number of iterations. At each iteration developers
spent on average 195 seconds for the analysis of tools’

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 15

Fig. 12: Improvement Study Results: Iterative Process Details

output and fixing the oracle deficiency in case of Assertion
1 and 191 seconds in case of Assertion 2.

Only three participants (P14, P18, UP8) were able to
improve the first assertion to the point of full correctness
immediately after getting the report for the initial false
positive, i.e. in one iteration. The more common scenario
is to have a sequence of iterations (from 2 to 8) in which the
tool still reports false positives. When trying to fix the false
negatives in Assertion 2, 9 participants have introduced a
false positive and 2 participants have introduced a crash
into the assertion. A very peculiar case is the improvement
process followed by Participant P17, since in 7 out of 13
iterations the tool reported a Crash.

The oracle deficiencies with an asterisk in Figure 12
denote the cases where the tool was run on an assertion
identical to the initial one. This means the participant has
decided to restart the process from the initial assertion. Five
participants has acted so in eight different cases after on
average 2.3 iterations of improvement. While it is under-
standable that after making a series of unsuccessful changes
to the assertion, developers roll them back and restart from
scratch, the initial iterations serve apparently no purpose,
as the same deficiency that was already reported initially is
analysed later in the process.

RQ4 (Human Effort for Iterative Process): The introduc-
tion of the tool in the process does not impact the overall
iterative improvement time to any major extent. If we exclude
the tool execution time, it actually reduces the time required
from humans. The number of iterations varied between 1
and 13, with an average of 3.9 iterations. In each iteration,
developers spent, on average, 193 seconds of manual effort.

Tool Performance and User Feedback
We measured the performance of our tool during the

experiments as the amount of time it took to report the
presence or absence of oracle deficiencies. The tool starts
each iteration from a search for a false positive. In case
no false positive is detected, the search for false negative
is initiated. Therefore, the detection time for false negative
includes the whole search budget of a false positive (60
seconds by default). Similarly, the tool uses its search budget
for both false positives and false negatives before reporting
that no evidence of oracle deficiencies was found. On aver-
age, during our experiments false positives were reported
in 60, crashes in 62 and false negatives in 162 seconds, while
the report for no oracle deficiencies took 271 seconds.

To get insight into the perceived quality of the tool, we
asked participants to rate their experience with it in the exit
questionnaire. We asked five Likert scale format questions,
with a range of options from 1 (strongly disagree) to 5
(strongly agree). Figure 13 lists the questions an shows the
answers of participants to each of them. As results show,
the tool was assessed to be easy to run (4.5 on average). The
usefulness of its output to understand the reason of a false
positive was rated as 4.07, while its helpfulness to fix a false
positive was evaluated as 4.13. For false negatives both of
these numbers were a bit lower: 3.87 on average.

We also asked a multiple-choice question about the main
difficulties users face when trying to interpret the output
of the tool for each oracle deficiency. Figure 14 shows the
percentages of chosen answers. For false positives, under-
standing the reported test cases (40%) and understanding
why the test case makes the assertion fail (40%) were equally
challenging for participants. For false negatives the main
difficulty was figuring out why the assertion does not react

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 16

Fig. 13: User Feedback on Tool

20%

40%

40%

Test Cases (TC)
Why Assertion Fails for TC (AF)
Other (O)

5%

21%

47%

26%

Test Cases (TC)
Why Assertion does
not React to Mutation (AM)
Reported Mutations
Other (O)

False Positives False Negatives

O

O

AF

TC

AM

RM TC

Fig. 14: Difficulties in Understanding Tool’s output

to the mutation (47%), followed by understandability of the
reported test cases (26%) and reported mutations (21%).

3.3 Threats to Validity

Internal. A threat to internal validity may result if the
training material or experiment objectives were unclear to
participants. To mitigate this threat we thoroughly revised
all our training materials and tested them on a pilot study.
Moreover, in the Improvement Study we included a practice
task and ensured that participants had successfully com-
pleted it before proceeding to the real task. For Upwork par-
ticipants, who received the training material and performed
the tasks in remote mode, after each type of training (oracle
improvement and tool) we required a test to be completed.
They could proceed with the final task only after passing
these tests.

In the Assessment Study participants were assigned tasks
randomly to avoid bias and to have the same number of

data points for all classes. In the Improvement Study we
assigned participants from PhD student/Postdoc sessions’
to control/treatment groups randomly, while Upwork par-
ticipants were assigned based on their programming experi-
ence. During the Improvement Study each subject was either
using the tool or not using it for both assertions, so as to
eliminate learning effects that could influence our results.

A part of our Improvement Study was performed in
a remote setting using the Upwork freelancing platform.
The training provided to these participants was in a writ-
ten form. Moreover, participants could work on the tasks
at their own discretion and we could not oversee their
behaviour. In the exit questionnaire, Upwork participants
rated the training material as 4.8 out of 5, on average, which
indicates that they were satisfied with its quality. For the
participants who used the tool, we collected metadata on
each tool run, therefore we could check the timeframe and
iterative process for each assertion. Participants who did
not use the tool self-reported time spent on each assertion.
We include this information in our results, but acknowledge
that it is not reliable. Overall, co-factor analysis shows that
results of Upwork participants are not significantly different
from the results of other participants.

In both studies, our measurements of user effectiveness
are obtained by comparing participants’ results against the
outcome of OASIs. While OASIs provides evidence for
any oracle deficiency it detects, it may report no oracle
deficiencies even if some (undetected) is actually there. To
deal with this issue, the authors thoroughly studied each
assertion with no oracle deficiencies according to OASIs, to
ensure that the tool’s judgement is indeed correct.

External. The classes used in our study were not devel-
oped by our participants and may have been unfamiliar to
them. However, it is a common practice that developers
test the code not written by them. We selected three Java
classes for our Assessment Study due to limited time for
the sessions. Similarly, our Improvement Study analyses

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 17

only one Java class. Furthermore, our case examples were
chosen to be simple enough to be quickly understood.
We acknowledge that our results cannot be generalised to
other Java classes. However, we had a large number of
participants in each study, and therefore we believe that
our results provide insight into the behaviour of developers
with different experience and background in the oracle
assessment and improvement process.

A further threat to external validity is that our results
might be biased by the population of developers who were
registered at Upwork. Results could have been different
if we had involved a different population of professional
developers (e.g., using another freelancing platform). We
mitigated this threat by introducing a qualification test. By
adopting such a filter, we expect to be able to recruit a subset
of workers with similar skills in any platform.

4 RELATED WORK

The importance of oracles as an integral part of the testing
process has been a key topic of research for over three
decades [36], [40], [44]. For a recent survey on the oracle
problem and techniques for defining software oracles the
reader is referred to the comprehensive review by Barr et al.
[2]. In this review of related work we focus on previous
work on oracle generation, improvement and studies of
software engineers’ behaviour with regard to oracles.

4.1 Automated Oracle Generation

4.1.1 Test Case Assertions
Modern test case generators as EvoSuite [9], [10] and Ran-
doop [31] have the capability to automatically synthesize
test case assertions. Randoop annotates the source code of
the class to identify observer methods and uses them in
assertion generation. EvoSuite applies the mutation-driven
approach, where for each test case it selects assertions with
the highest mutation killing score [12].

The work by Staats, Gay and Heimdahl [38] uses an ap-
proach similar to Evosuite’s, where for each test case input
it uses mutation analysis to rank variables (not assertions)
in terms of fault-finding effectiveness. It then reports a set
of top-ranked variables to the developers, so that they can
manually write assertions that check the expected values
for each variable. The work by Loyola et al. [25] explores a
similar scenario, but program variables are ranked based on
the dependencies observed between them during program
execution. The analysis begins by using data flow analysis to
construct a network of program variables for each test input.
Then network centrality metrics are used to rank variables
in terms of relevance or centrality in the resulting network.

The test case oracles generated by all these approaches
are specific to a single run. To capture general, rather than
concrete behaviour, the work by Fraser and Zeller [11]
generates parameterised unit tests for which oracles are
represented in the form of pre- and postconditions char-
acterising test input and test result. The evaluation shows
that parameterised unit tests are more expressive and cover
72.6% more branches than concrete unit tests. However, they
are more expensive to produce and may require several
minutes per test case generation.

Different approaches have been proposed to assess the
quality of already generated test case assertions. The work
by Schuler and Zeller [37] addresses the problem of tradi-
tional coverage metrics not reflecting the actual oracle qual-
ity and introduces the concept of checked coverage – the
dynamic slice of covered statements that actually influence
the oracle. The results of their study show that checked
coverage is a better indicator of the quality of testing than
coverage alone.

Huo and Clause [18] introduce a technique that is based
on dynamic tainting and works by tracking the flow of
controlled (explicitly provided by the test itself) and uncon-
trolled inputs along data- and control-dependencies. When
a test finishes execution, the tracked information is used
to generate reports that identify brittle assertions, assertions
that check values that are derived from uncontrolled inputs,
and unused inputs, inputs that are controlled by the test
but are not checked by any assertion. In the evaluation
of 4,000 real test cases, 164 tests were found to contain
brittle assertions and 1,618 tests to contain unused inputs.
While the technique contains a separate step to filter false
positives, the final false positive rate is still very high: 63%
on average for brittle assertions and 40% for unused inputs.

4.1.2 Specification Mining
Another form of automated oracles are mined specifica-
tions. The work by Nguyen, Marchetto and Tonella [42]
evaluates three types of such automated oracles in terms of
cost and effectiveness: data invariants, temporal invariants
and finite state automata. The following tools are used as
representatives of these mined specifications: KLFA [26] for
FSA oracles, Daikon [7] for data invariants and Synoptic [3]
for temporal invariants. The procedure adopted for the
experimental design is as follows: while a subject system
P is running, its execution is monitored to obtain traces, and
different automated oracles are inferred from those traces.
Then, due to the new usages, the automated oracle may
report alarms when the execution violates them. Alarms
might be due to a fault that has been triggered, or they may
be wrong (false positives). Results show that automated
oracles can detect several real faults, but such fault detection
capability comes at the price of a quite high false positive
rate (30% on average).

The work by Zhang et al. [46] presents iDiscovery, a
technique that employs a feedback loop between symbolic
execution and dynamic invariant discovery to infer accurate
and complete invariants. In each iteration, iDiscovery trans-
forms Daikon invariants into assertions and adds them to
the program. The instrumented program is analysed with
symbolic execution to generate additional tests to augment
the initial test suite provided to Daikon. With the newly
added inputs, dynamic invariant discovery will be based
on a richer set of program executions enabling discovery
of higher quality invariants. Experimental results show that
iDiscovery is able to falsify from 24% to 72% of the invariants
generated by Daikon.

Overall, the existing work in generation and assessment
of oracles focuses mainly on the oracles for single test
inputs. Our preliminary evaluation showed that assertion
oracles generated using our approach have higher fault
detection capability than the ones generated by Evosuite

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 18

and Randoop. A few approaches as the generation of pa-
rameterised unit tests [11] or iDiscovery [46] address oracles
for more general behaviour. The evaluation of oracles in
automatically generated parameterised unit tests shows that
they still have 19.6% false negative and 8.3% false positive
rate. Therefore, our approach can be applied also to these
oracles to further improve them. Similarly, it can be applied
to the final Daikon invariants generated by iDiscovery.

4.2 Human Studies

Automatically generated oracles capture the implemented
behaviour of the program rather than intended behaviour.
Therefore, to turn them into oracles useful for fault detection
developers have to identify and fix the incorrect ones, which
requires human intelligence. Rather than using the human
input directly, some approaches reuse the artefacts produced
by humans for the program under test.

The work by Pastore and Mariani [34] aims to identify
the incorrectly synthesized assertions using the manually
written test cases as the source of human knowledge about
the system. They present their tool ZoomIn, which pinpoints
wrong assertions by comparing the executions produced by
the manual test cases to the executions produced by the
automatically generated test cases. Their intuition is that the
execution of an automatic test case is likely to constitute
a failure if it produces anomalous variable values while
covering a case already tested by the developers. For the
purpose of evaluation 7 real faults from Apache Commons
Math library were selected and ZoomIn was applied to
the test cases generated by EvoSuite. Results show that
ZoomIn has been able to detect 50% of the analyzed non-
crashing faults requiring inspection of less than 1.5% of the
automatically generated assertions.

The work by Goffi et al. [13] introduced Toradocu, which
uses developer-written Javadoc comments to create auto-
mated oracles for exceptional behaviours. The experimental
evaluation of Toradocu shows that it improves the fault-
finding effectiveness of EvoSuite and Randoop test suites
by 8% and 16% respectively, and it reduces EvoSuite’s
false positives by 33%. The later work by Blasi et al. [4]
extends Toradocu so that it produces specifications not only
for exceptional behaviours, but also specifications capturing
for normal pre- and postconditions. Such extended Toradocu
achieves a precision of 91% and a recall of 83% in translating
Javadoc comments into method specifications. These speci-
fications enable Randoop to generate test cases that reveal
more defects and produce fewer false alarms.

Only two human studies have been conducted to evalu-
ate the capability of humans to improve automated oracles.
They respectively used CrowdSourcing [35] to verify test
case assertions and real developers to determine the quality
of invariants [39]. In general, CrowdSourcing a problem
consists of specifying it in the form of a Human Intel-
ligence Task (HIT) and making the problem available in
a CrowdSourcing platform, where registered workers can
choose to complete HITs for a small remuneration. Pastore,
Mariani and Fraser [35] proposed the idea of CrowdOracles,
where test cases with synthesized assertions are verified
with respect to the documentation and fixed by the crowd.
The results show that CrowdOracles are a viable solution

to address the oracle problem. However, to be successful,
this approach requires a qualified crowd, which is not easy
to find; monetary investment, which can be high in case
of a big number of test cases and assertions; and also the
existence of a good documentation for the programs under
test, for the crowd to be able to determine right and wrong
assertions.

Staats et al. [39] conducted an empirical study with 30
participants to determine the user classification effectiveness
for invariants generated using Daikon, and to understand
what factors lead to successful or unsuccessful classification.
In each study, participants were given one of three Java
classes with automatically generated invariants. Participants
were asked to determine, for each generated invariant, if the
invariant was correct or incorrect with respect to the Java
class. On average, study participants misclassified 9.1-39.8%
of correct invariants and 26.1-58.6% of incorrect invariants.

To evaluate classifications made by each participant,
authors needed to determine whether each invariant was
correct or incorrect. For this they employed two automated
approaches to try to falsify invariants. First, they applied
Randoop using 100,000 test inputs (far more than the 1,000
used to generate the invariants). Second, a different, manu-
ally written random test generation harness was produced
for each case example, and then applied for a long period
of time (24 hours). For any remaining invariants, three of
the authors manually examined each one, attempting to
develop a test input capable of violating the invariant. When
failing, they tried to understand whether the invariant was
indeed correct. Invariants that they could not falsify were
accepted as correct. As we have noted before, the definition
of invariant correctness in this study is in line with our
definition of false positives. So, to recheck the classification
of the authors, we applied OASIs, considering only false
positive detection, to the invariants used in the study by
Staats et al. [39]. Table 13 shows that while the approach
described in the paper [39] found 73 assertions with a false
positive among 324 assertions, our approach found false
positives in 60 more assertions.

TABLE 13: Improvement Study: Results Without Tool

Class # of Assertions Incorrect
In Paper [39] OASIs

Matrix 122 18 42
Poly 121 26 50

StackAr 81 29 41
Overall 324 73 133

Our human study was designed to assess the usefulness
of the information that our tool provides to developers.
Evidence for the necessity and importance of such kind
of studies can be found in empirical research on program
debugging tools. Indeed, our tool in some ways resembles
these in that it assists the developer to ”repair” the oracle.
The work by Parnin and Orso [33] analyses whether auto-
mated debugging tools are actually helping programmers.
Their results show that debugging tools are helpful in com-
pleting a task significantly faster, but only for experienced
developers and simpler code. The study by Tao et al. [41]
shows that automatically generated high-quality patches

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 19

significantly improve debugging correctness of developers,
but this effect is limited to difficult bugs. Moreover, de-
bugging time is significantly affected by participant type
and the specific bug to fix. The user study by Wang et al.
[43] demonstrates that the support provided by information
retrieval based techniques is helpful to developers only in
getting to the faulty file quickly, but not in understanding
and fixing the bug within that file. In contrast, our human
study confirmed our hypothesis that OASiS is useful to the
developer in all tasks associated with oracle improvement.

Overall, the results of the two existing human studies
[35], [39] addressing the oracle problem are not consistent
with each other: the second study indicates that human
testers are not good at identifying correct test oracles, while
the first one indicates that qualified human testers can
reliably identify correct test oracles and fix the incorrect
ones. While this might be partially explained by the different
nature of the oracles considered in the two studies (test
case assertions vs. Daikon invariants), it also shows that
there is a strong need for more experiments analysing the
performance of human testers in the oracle improvement
process.

4.3 Tool Output Improvement

Our tool OASIs can provide the evidence of existing oracle
deficiencies and can guide developers in fixing them. Such
evidence/guidance takes the form of automatically gener-
ated test cases. Any improvement in the understandability
of these test cases is beneficial for the adoption of our ap-
proach. Therefore, the techniques to improve the readability
of automatically generated test cases [6] or to provide test
case summaries in natural language [32] are all related to
our work. The analysis of the iterative oracle improvement
process using OASIs shows that around 45% of time for each
iteration is spent on actually running the tool. The main
cost associated with the execution of OASIs is the mutation
analysis step, performed to identify false negatives. One
performance optimisation could be to avoid analysing all
possible mutations for a method, considering only a mean-
ingful/representative subset of such mutations. Therefore,
the works on mutant selection [30], [45] can become a part
of our implementation in future work.

5 CONCLUSION

We analysed whether our approach for oracle assessment
and improvement with the human in the loop supports the
creation of better oracles. The role of the human in the loop
was played by developers with different backgrounds and
experience: master degree students, PhD students, postdoc-
toral researchers, professional developers and freelancers
from the Upwork platform. Our results show that humans
perform poorly when assessing oracles manually. Their
correct classification rate is 29%, on average. Professional
developers (48%) show almost twice better performance
than students (25%), but still misclassify more than half
of oracle deficiencies. Overall, false positives are harder to
detect than false negatives. However, the most common mis-
classification type is when an assertion with a false negative
is classified as an assertion having no oracle deficiencies.

We analysed the effect of multiple factors (experience, level
of satisfaction with time allocated for the task and with
the training material provided) on users’ performance, but
found no strong correlation with any of them.

When provided with the information on the type of
oracle deficiency the assertion has and asked to improve
it manually, developers, on average, achieved 21% of full
and 43% of partial correctness. These numbers increased
significantly, with developers achieving 67% of full and
33% of partial correctness when the they used our tool
OASIs for the improvement process. The overall number
of iterations varied from 1 to 13, with an average of 3.8 for
full and of 3.66 for partial correctness. Results show that
developers struggle with achieving full correctness. None
of the participants doing manual improvement was able
to improve any of the assertions in our study to a fully
correct state. 3 participants from the group with the tool ran
it for 2.6 extra iterations on average after achieving partial
correctness to produce a fully correct assertion, but they did
not succeed. While the reports of OASIs, informing users
that their assertions are only partially correct, were judged
definitely useful (they prevent developers from believing
the their oracles will not miss any faults), in practice users
might prefer to stop the improvement process at a partially
correct state, due to the substantial effort incurred to achieve
full correctness.

Overall, our results show that the proposed approach
supports the developer in both the oracle assessment and
oracle improvement processes, and leads to the creation
of more sound and complete oracles. Our future work
will be to optimise the performance of OASIs, so that it
takes less time to run and leads to a smoother incremental
improvement process. The user feedback collected during
these studies about the understandability and helpfulness of
the tool’s output, including the difficulty in understanding
the automatically generated test cases, will be addressed
by incorporating existing works in the area of test code
understandability into the implementation of OASIs.

ACKNOWLEDGMENTS

This work was partially supported by the ERC Advanced
project Precrime (ERC Grant Agreement n. 787703) and the
UKRI EPSRC project InfoTestSS (EP/P005888/1).

REFERENCES

[1] K. Androutsopoulos, D. Clark, H. Dan, R. M. Hierons, and M. Har-
man. An analysis of the relationship between conditional entropy
and failed error propagation in software testing. In 36th Interna-
tional Conference on Software Engineering, ICSE ’14, Hyderabad, India
- May 31 - June 07, 2014, pages 573–583, 2014.

[2] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The
oracle problem in software testing: A survey. IEEE Transactions on
Software Engineering, 41(5):507–525, May 2015.

[3] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D.
Ernst. Leveraging existing instrumentation to automatically infer
invariant-constrained models. In Proceedings of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE ’11, pages 267–277, New York,
NY, USA, 2011. ACM.

[4] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezzè,
and S. D. Castellanos. Translating code comments to procedure
specifications. In ISSTA 2018, Proceedings of the 2018 International
Symposium on Software Testing and Analysis, Amsterdam, Nether-
lands, July 2018.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 20

[5] C. Cadar and K. Sen. Symbolic execution for software testing:
Three decades later. Communications of the ACM, 56(2):82–90, Feb.
2013.

[6] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer. Modeling
readability to improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, pages 107–118, New York, NY, USA, 2015. ACM.

[7] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69:35–45, December 2007.

[8] J. Fleiss et al. Measuring nominal scale agreement among many
raters. Psychological Bulletin, 76(5):378–382, 1971.

[9] G. Fraser and A. Arcuri. Evolutionary generation of whole test
suites. In M. Núñez, R. M. Hierons, and M. G. Merayo, editors,
11th International Conference on Quality Software (QSIC), pages 31–
40, Madrid, Spain, July 2011. IEEE Computer Society.

[10] G. Fraser and A. Arcuri. EvoSuite: automatic test suite generation
for object-oriented software. In 8th European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE ’11), pages 416–419. ACM,
September 5th - 9th 2011.

[11] G. Fraser and A. Zeller. Generating parameterized unit tests. In
Proceedings of the 2011 International Symposium on Software Testing
and Analysis, ISSTA ’11, pages 364–374, New York, NY, USA, 2011.
ACM.

[12] G. Fraser and A. Zeller. Mutation-driven generation of unit tests
and oracles. IEEE Trans. Software Eng., 38(2):278–292, 2012.

[13] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè. Automatic gen-
eration of oracles for exceptional behaviors. In Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, pages 213–224, New York, NY, USA, 2016. ACM.

[14] M. Harman, L. Hu, R. M. Hierons, J. Wegener, H. Sthamer, A. Bare-
sel, and M. Roper. Testability transformation. IEEE Trans. Software
Eng., 30(1):3–16, 2004.

[15] M. Harman, Y. Jia, and Y. Zhang. Achievements, open problems
and challenges for search based software testing (keynote). In
8th IEEE International Conference on Software Testing, Verification and
Validation (ICST 2014), Graz, Austria, April 2015.

[16] M. Harman, A. Mansouri, and Y. Zhang. Search based software
engineering: A comprehensive analysis and review of trends tech-
niques and applications. Technical Report TR-09-03, Department
of Computer Science, King’s College London, April 2009.

[17] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. Miller, R. Pozo, and
K. Remington. Jama: A java matrix package. URL: http://math. nist.
gov/javanumerics/jama, 2000.

[18] C. Huo and J. Clause. Improving oracle quality by detecting brittle
assertions and unused inputs in tests. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, (FSE-22), Hong Kong, China, November 16 - 22, 2014,
pages 621–631, 2014.

[19] G. Jahangirova, D. Clark, M. Harman, and P. Tonella. Test oracle
assessment and improvement. In Proceedings of the 25th Inter-
national Symposium on Software Testing and Analysis, ISSTA 2016,
pages 247–258, New York, NY, USA, 2016. ACM.

[20] G. Jahangirova, D. Clark, M. Harman, and P. Tonella. OASIs:
Oracle assessment and improvement tool. In Proceedings of the
27th International Symposium on Software Testing and Analysis (Tool
Demonstrations), ISSTA 2018, New York, NY, USA, 2018. ACM.

[21] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. IEEE Transactions on Software Engineering,
37(5):649 – 678, September–October 2011.

[22] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and
G. Fraser. Are mutants a valid substitute for real faults in software
testing? In International Symposium on Foundations of Software
Engineering (FSE), pages 654–665, 2014.

[23] k. krippendorff. Content analysis: An introduction to its method-
ology. sage, thousand oaks krippendorff k (2011) principles of
design and a trajectory of artific iality. 28, 01 2004.

[24] J. R. Landis and G. G. Koch. The measurement of observer
agreement for categorical data. Biometrics, 33(1), 1977.

[25] P. Loyola, M. Staats, I. Ko, and G. Rothermel. Dodona: automated
oracle data set selection. In International Symposium on Software
Testing and Analysis, ISSTA ’14, San Jose, CA, USA - July 21 - 26,
2014, pages 193–203, 2014.

[26] L. Mariani and F. Pastore. Automated identification of failure
causes in system logs. In Proceedings of the 2008 19th International

Symposium on Software Reliability Engineering, ISSRE ’08, pages 117–
126, Washington, DC, USA, 2008. IEEE Computer Society.

[27] Math4J. A java numerics package. 2005.
[28] P. McMinn. Search-based software test data generation: A survey.

Software Testing, Verification and Reliability, 14(2):105–156, June 2004.
[29] J. W. Nimmer and M. D. Ernst. Automatic generation of program

specifications. SIGSOFT Softw. Eng. Notes, 27(4):229–239, July 2002.
[30] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf. An

experimental determination of sufficient mutant operators. ACM
Trans. Softw. Eng. Methodol., 5(2):99–118, 1996.

[31] C. Pacheco and M. D. Ernst. Randoop: Feedback-directed ran-
dom testing for java. In Companion to the 22Nd ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications
Companion, OOPSLA ’07, pages 815–816, New York, NY, USA,
2007. ACM.

[32] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall.
The impact of test case summaries on bug fixing performance:
An empirical investigation. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 547–558, New
York, NY, USA, 2016. ACM.

[33] C. Parnin and A. Orso. Are automated debugging techniques actu-
ally helping programmers? In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 199–
209, New York, NY, USA, 2011. ACM.

[34] F. Pastore and L. Mariani. Zoomin: Discovering failures by detect-
ing wrong assertions. In Proceedings of the International Conference
on Software Engineering, 2015.

[35] F. Pastore, L. Mariani, and G. Fraser. Crowdoracles: Can the crowd
solve the oracle problem? In ICST’13: Proceedings of the 6th Inter-
national Conference on Software Testing, Verification and Validation,
pages 342–351. IEEE Computer Society, 2013.

[36] D. K. Peters and D. L. Parnas. Using test oracles generated from
program documentation. IEEE Transactions on Software Engineering,
24(3):161–173, 1998.

[37] D. Schuler and A. Zeller. Assessing oracle quality with checked
coverage. In Fourth IEEE International Conference on Software Test-
ing, Verification and Validation, ICST 2011, Berlin, Germany, March
21-25, 2011, pages 90–99, 2011.

[38] M. Staats, G. Gay, and M. P. E. Heimdahl. Automated oracle
creation support, or: How I learned to stop worrying about fault
propagation and love mutation testing. In 34th International Con-
ference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich,
Switzerland, pages 870–880, 2012.

[39] M. Staats, S. Hong, M. Kim, and G. Rothermel. Understanding
user understanding: Determining correctness of generated pro-
gram invariants. In Proceedings of the 2012 International Symposium
on Software Testing and Analysis, ISSTA 2012, pages 188–198, New
York, NY, USA, 2012. ACM.

[40] M. Staats, M. W. Whalen, and M. P. E. Heimdahl. Programs, tests,
and oracles: the foundations of testing revisited. In Proceedings of
the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 391–400, 2011.

[41] Y. Tao, J. Kim, S. Kim, and C. Xu. Automatically generated patches
as debugging aids: A human study. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 64–74, New York, NY, USA, 2014.
ACM.

[42] P. Tonella, C. D. Nguyen, A. Marchetto, K. Lakhotia, and M. Har-
man. Automated generation of state abstraction functions using
data invariant inference. In Proceedings of the 8th International
Workshop on Automation of Software Test (AST), 2013.

[43] Q. Wang, C. Parnin, and A. Orso. Evaluating the usefulness of
ir-based fault localization techniques. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA
2015, pages 1–11, New York, NY, USA, 2015. ACM.

[44] E. J. Weyuker. On testing non-testable programs. The Computer
Journal, 25(4):465–470, Nov. 1982.

[45] W. E. Wong and A. P. Mathur. Reducing the cost of mutation
testing: An empirical study. Journal of Systems and Software,
31(3):185–196, 1995.

[46] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid.
Feedback-driven dynamic invariant discovery. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis,
ISSTA 2014, pages 362–372, New York, NY, USA, 2014. ACM.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, SEPTEMBER 2018 21

Jahangirova Gunel is a PostDoctoral Re-
searcher at the Software Institute of Universita’
della Svizzera Italiana (USI) in Lugano, Switzer-
land. She had her PhD in a joint program be-
tween Fondazione Bruno Kessler, Trento, Italy
and University College London, London, UK. Her
PhD work was about oracle problem in software
testing, in particular, assessment, improvement
and placement of test oracles. Her current re-
search interests include automatic generation of
program assertions, mutation testing, failed error

propagation and testing of deep learning systems.

Mark Harman works full time at Facebook Lon-
don and also holds a part-time professorship at
UCL. At Facebook he worked on the deployment
of Sapienz to test mobile apps, leading to thou-
sands of bugs being automatically found and
in multimillion line communications and social
media apps in daily use by over 1.4Bn peo-
ple worldwide. He co-founded the field SBSE,
a research area with authors spread over more
than 40 countries, and is also known for work
on source code analysis, software testing, app

store analysis and empirical software engineering. He received the IEEE
Harlan Mills Award and the ACM Outstanding Research Award in 2019
for this work. In addition to Facebook itself, Mark’s scientific work is
supported by the European Research Council (ERC), with an advanced
fellowship grant, and has also been supported by the UK Engineering
and Physical Sciences Research Council (EPSRC), with platform and
programme grants.

Paolo Tonella is Full Professor at the Faculty of
Informatics and at the Software Institute of Uni-
versita’ della Svizzera Italiana (USI) in Lugano,
Switzerland. He is also Honorary Professor at
University College London, UK. Until mid 2018
he has been Head of Software Engineering at
Fondazione Bruno Kessler, Trento, Italy. Paolo
Tonella holds an ERC Advanced grant as Prin-
cipal Investigator of the project PRECRIME. In
2011 he was awarded the ICSE 2001 MIP (Most
Influential Paper) award, for his paper: “Analysis

and Testing of Web Applications”. He is the author of ”Reverse Engi-
neering of Object Oriented Code”, Springer, 2005, and of “Evolutionary
Testing of Classes”, ISSTA 2004. Paolo Tonella was Program Chair of
ICSM 2011 and ICPC 2007; General Chair of ISSTA 2010 and ICSM
2012. He is/was associate editor of TOSEM/TSE and he is in the edi-
torial board of EMSE and JSEP. His current research interests include
deep learning testing, web testing, search based test case generation
and the test oracle problem.

David Clark is a Reader in Program Analysis at
the Department of Computer Science of Univer-
sity College London. He gained his PhD at Im-
perial College while his first permanent appoint-
ment was at Kings College London before mov-
ing to UCL in 2010. He is most widely known for
his seminal work in applying information theory
as a program analysis to measure flow insecu-
rity. His current research interests are dominated
by software testing and, in particular, an attempt
to construct an information theory based set of

principles for it. Current topics of interest to him in this area include test
suite diversity, using Deep Neural Nets for property based testing, and
problems associated with test oracles.

