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Abstract
Bayesian probabilistic numerical methods are a
set of tools providing posterior distributions on
the output of numerical methods. The use of
these methods is usually motivated by the fact
that they can represent our uncertainty due to in-
complete/finite information about the continuous
mathematical problem being approximated. In
this paper, we demonstrate that this paradigm can
provide additional advantages, such as the possi-
bility of transferring information between several
numerical methods. This allows users to repre-
sent uncertainty in a more faithful manner and,
as a by-product, provide increased numerical ef-
ficiency. We propose the first such numerical
method by extending the well-known Bayesian
quadrature algorithm to the case where we are
interested in computing the integral of several re-
lated functions. We then prove convergence rates
for the method in the well-specified and misspec-
ified cases, and demonstrate its efficiency in the
context of multi-fidelity models for complex en-
gineering systems and a problem of global illu-
mination in computer graphics.

1. Introduction
Probabilistic numerics (Hennig et al., 2015) proposes ap-
proaching problems of numerical analysis from the point
of view of statistics. In particular, Bayesian probabilistic
numerical methods approach this problem from a Bayesian
point of view, and can provide posterior distributions on the
solutions of numerical problems (e.g. in the case of this pa-
per, the solution of some integral). These posterior distribu-
tions represent our epistemic uncertainty about these quan-
tities of interest. In the case of quadrature rules, the uncer-
tainty is due to the fact that we only have a finite number of
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function evaluations and therefore are uncertaint about the
value of the integral. The notion of Bayesian probabilistic
numerical method was independently introduced by several
authors (Larkin, 1972; Kadane & Wasilkowski, 1985; Dia-
conis, 1988; O’Hagan, 1992), but only recently formalised
by (Cockayne et al., 2017).

Apart from the uncertainty quantification property de-
scribed above, these methods have several other advantages
over “classical” (i.e. non-Bayesian) numerical methods (al-
though some of the classical and Bayesian methods coin-
cide (Diaconis, 1988)). First of all, they allow the user to
formulate all of its prior knowledge in the form of a prior,
making all of the assumptions of the numerical scheme ex-
plicit. Second of all, they can allow for coherent propaga-
tion of numerical uncertainties through chains of computa-
tion; see (Cockayne et al., 2017; Oates et al., 2017a).

However, one property which has not been studied so far is
the possibility of jointly inferring several quantities of in-
terest. In this paper, we study the problem of numerically
integrating a sequence of functions f1, . . . , fD (which are
correlated to one another) with respect to some probability
measure Π, and hence propose to build a model for joint
inference of

∫
f1dΠ, . . . ,

∫
fDdΠ. Such a joint model al-

lows for better finite-sample performance, and can also lead
to more refined posterior distributions on each of the indi-
vidual integrals.

To tackle this problem, we extend the well-known Bayesian
quadrature (O’Hagan, 1991) algorithm and study the per-
formance of the proposed methodology from a theoretical
and experimental point of view. In particular, we provide
asymptotic convergence results for the marginal posterior
variance on each of the integrals, both in the case of a well
specified and misspecified prior. We also demonstrate the
performance of our algorithm on some toy problems from
the engineering literature on multi-fidelity models, and on
a challenging problem from the field of computer graphics.

2. Methodology
Bayesian Quadrature Let (X ,B,Π) be a probability
space and consider some function f : X → R where
X ⊆ Rp, p ∈ N+. The classical problem of numerical
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integration is concerned with approximating the integral:

Π[f ] :=

∫
X
f(x)Π(dx),

where we assume
∫
X f

2(x)Π(dx) < ∞. Under fairly
general conditions on f , one can show that an optimal al-
gorithm (in terms of worst-case integration error in some
function space) takes the form of a quadrature (or cu-
bature) rule Π̂[f ] =

∑N
i=1 wif(xi) for some weights

{wi}Ni=1 ∈ R and samples {xi}Ni=1 ∈ X (see (Bakhvalov,
1971)). These are also sometimes denoted in vectorised
form as Π[f ] = w>f(X) where w = (w1, . . . , wN )>,
X = (x1, . . . ,xN )> and f(X) = (f(x1), . . . , f(xN ))>.
The notation Π̂[f ] is motivated by the fact that we can see
this object as an exact integral with respect to a discrete
measure Π̂ =

∑N
i=1 wiδxi , where δxi denotes the Dirac

delta measure taking value 1 at xi and 0 otherwise. Many
popular numerical integration methods take this form, in-
cluding Newton–Cotes rules, Gaussian quadrature, Monte
Carlo methods and sparse grids.

Let (Ω,F ,P) be another probability space. Bayesian
quadrature (BQ), introduced by (O’Hagan, 1991), pro-
poses to approach the problem of numerical integration by
first formulating a prior stochastic model g : X × Ω → R
for the integrand f (where ∀ω ∈ Ω, g(·, ω) represents a re-
alisation of g). This prior model is then conditioned on the
vector of observations f(X) to obtain a posterior model
for f , which is then pushed forward through the integral
operator to give a posterior on Π[f ].

A popular choice of prior is a Gaussian Process (GP)
GP(m, k) with m : X → R denoting the mean func-
tion (i.e. m(x) = Eω[g(x, ω)]), and c : X × X → R
denoting the covariance function/kernel (i.e. c(x,x′) =
Eω[(g(x, ω)−m(x))(g(x′, ω)−m(x′))]). Let us assume
that m = 0 (this can be done without loss of generality
since the domain can be re-parametrized to be centred at
0). After conditioning on X , we have a new Gaussian pro-
cess gN with mean and covariance:

mN (x) = c(x,X)c(X,X)−1f(X),

cN (x,x′) = c(x,x′)− c(x,X)c(X,X)−1c(X,x′),

for all x,x′ ∈ X . Here, c(X,X) is the Gram matrix
with entries (c(X,X))ij = c(xi,xj) and c(x,X) =
(c(x,x1), . . . , c(x,xN )) whilst c(X,x) = c(x,X)> .
The push-forward of this posterior through the integral op-
erator is a Gaussian distribution with mean and variance:

E [Π[gN ]] = Π[c(·,X)]c(X,X)−1f(X),

V [Π[gN ]] = ΠΠ̄ [c]−Π[c(·,X)]c(X,X)−1Π̄[c(X, ·)],

where Π[c(·,X)] = (Π[c(·,x1)], . . . ,Π[c(·,xN )]). These
expression can be obtained in closed-form if the ker-
nel mean Π[c(·,x)] =

∫
X c(x

′,x)Π(dx′) (also called

the representer of integration) and initial error ΠΠ̄[c] =∫
X×X c(x,x

′)Π(dx)Π(dx′) can be obtained in closed
form (here Π̄ indicates that the integral is taken with re-
spect to the second argument).

The choice of covariance function c can be used to encode
prior beliefs about the function f , such as smoothness or
periodicity, and is very important to obtain good perfor-
mance in practice. A popular example is the family of
Matérn kernels

cα(x,x′) = λ2 21−α

Γ(α)

(√
2α
‖x− x′‖22

σ2

)α
× Jα

(√
2α
‖x− x′‖22

σ2

)
,

(1)

for σ, λ > 0 where Jα is the Bessel function of the
second kind and α > 0 gives the smoothness of the
kernel. On X = Rp, this will give an RKHS norm-
equivalent to the Sobolev space Wα

2 (Rd)1. Examples of
infinitely smooth kernels include the squared-exponential
kernel c(x,x′) = exp(−‖x− x′‖22/σ2) where σ > 0, the
multi-quadric kernel c(x,x′) = (−1)dβe(σ2+‖x−x′‖22)β

for β, σ > 0, β 6∈ N and the inverse multi-quadric kernel
c(x,x′) = (σ2 + ‖x− x′‖22)−β for β, σ > 0.

In practice, numerical inversion can be challenging since
the Gram matrix tends to be nearly singular, and so one
may wish to regularise the matrix using a Tikhonov penalty.
The inverses above can also potentially render the compu-
tation of the BQ estimator computationally expensive (up
to O(N3) cost in the most general settings), although this
can be alleviated in specific cases (Karvonen & Särkkä,
2017b). Even if this is not the case, the additional cost can
be worthwhile regardless since the method has been shown
to attain fast convergence rates (Briol et al., 2015a;b; Kana-
gawa et al., 2016; 2017; Bach, 2017) when the target inte-
grand and the kernel used are smooth.

Recent research directions in BQ include efficient sam-
pling algorithms (for the point set X) to improve the
performance of the method (Rasmussen & Ghahramani,
2002; Huszar & Duvenaud, 2012; Gunter et al., 2014;
Briol et al., 2015a; Karvonen & Särkkä, 2017a; Briol
et al., 2017), asymptotic convergence results (Briol et al.,
2015a;b; Kanagawa et al., 2016; Bach, 2017) and equiv-
alence of BQ with known quadrature rules for certain
choices of point sets and kernels (Sarkka et al., 2016; Kar-
vonen & Särkkä, 2017a). Furthermore, there has also been
a wide range of new applications, including to other nu-
merical methods in optimization, linear algebra and func-
tional approximation (Kersting & Hennig, 2016; Fitzsi-
mons et al., 2017), inference in complex computer models

1We say that two norms ‖ · ‖1 and ‖ · ‖2 on a vector space are
norm-equivalent if and only if ∃C1, C2 > 0 such that C1‖ · ‖2 ≤
‖ · ‖1 ≤ C2‖ · ‖2.
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(Oates et al., 2017c), and problems in econometrics (Oet-
tershagen, 2017) and computer graphics (Brouillat et al.,
2009; Marques et al., 2013; Briol et al., 2015b).

Although other stochastic processes could of course be
used (Cockayne et al., 2017), GPs are popular due to
their conjugacy properties, and the terminology Bayesian
quadrature usually refers to this case. Note that other
names for BQ with GP priors include Gaussian-process
quadrature (Sarkka et al., 2016) or kernel quadrature (Bach,
2017; Briol et al., 2017; Kanagawa et al., 2017). In fact,
a well-known alternative view of the posterior mean pro-
vided by BQ is that of an optimally-weighted quadrature
rule in a reproducing kernel Hilbert spaces (RKHS) in the
classical worst-case setting (Ritter, 2000). Let Hk be an
RKHS with inner product and norm denoted 〈·, ·〉k and ‖·‖k
respectively; i.e. a Hilbert space with an associated sym-
metric and positive definite reproducing kernel k : X ×
X → R such that f(x) = 〈f, k(·,x)〉k (see (Berlinet &
Thomas-Agnan, 2004) for a detailed study). Suppose that
our integrand f ∈ Hk and that

∫
X k(x,x)Π(dx) <∞. In

that case, using the Cauchy–Schwarz inequality, the inte-
gration error can be decomposed as:∣∣∣Π[f ]− Π̂[f ]

∣∣∣ ≤ ‖f‖k
∥∥∥Π [k(·,x)]− Π̂ [k(·,x)]

∥∥∥
k
.

The corresponding worst-case error over the unit ball of the
spaceHk is given by:

e
(
Hk, Π̂,X

)
= sup
‖f‖k≤1

∣∣∣Π[f ]− Π̂[f ]
∣∣∣

=
∥∥∥Π [k(·,x)]− Π̂ [k(·,x)]

∥∥∥
k

=
(
w>k(X,X)w − 2Π[k(·,X)]>w + ΠΠ̄[k]

) 1
2

.

This final expression can be minimised in closed form over
w ∈ RN to show that the optimal quadrature rule has
weights w = Π[k(·,X)]k(X,X)−1. This corresponds
exactly to the weights for the BQ posterior mean if we take
our prior on f to be a GP(0, k), whilst the worst-case er-
ror can be shown to correspond to the posterior variance
squared. The BQ estimator with prior GP(0, c) is therefore
optimal in the classical worst-case sense for the RKHSHc.

Multi-output Bayesian Quadrature We now extend the
set-up of our problem. Suppose we have a sequence of
probability spaces (Xd,Bd,Πd) and functions fd : Xd →
R for which we are interested in numerically computing
integrals of the form Πd[fd] for d = 1, . . . , D. In many
applications where we are faced with this type of prob-
lem, we also have prior knowledge about correlations be-
tween the individual fd. However, this information is of-
ten ignored and the integrals are approximated individually.
This is not a principled approach from a Bayesian point of

view since it means we are not conditioning on all avail-
able information. In this section, we extend the BQ algo-
rithm to solve this problem by building a joint model of
f1, . . . , fD in order to obtain a joint posterior on the inte-
grals Π1[f1], . . . ,ΠD[fD].

For notational convenience, we will restrict ourselves to the
case where all of the input domains are identical and de-
noted X , all of the probability measures are identical and
denoted Π, and the input sets X = {Xd}Dd=1 consist of
N points Xd = (xd,1, . . . ,xd,N ) per output function fd
(note the setup can be made more general if necessary).
We re-frame the integration problem as that of integrat-
ing some vector-valued function f : X → RD such that
f(x) = (f1(x), . . . , fD(x))>; i.e. we want to estimate
Π[f ] = (Π[f1], . . . ,Π[fD])>. In this multiple-integral set-
ting, we can have generalised quadrature rules of the form:

Π̂[fd] =

D∑
d′=1

N∑
i=1

(Wi)dd′fd′(xd′,i)

where Wi ∈ RD×D are weight matrices and (Wi)dd′

gives the influence of the value of fd′ at xd′,i on the
estimate of Π[fd]. The quadrature rule for f can be
re-written in compact form as Π̂[f ] = W>f(X) for
some weight matrix W ∈ RND×D (a concatenation
of {Wi}Ni=1) and function-evaluations vector f(X) =
(f1(x1,1), . . . , f1(x1,N ), . . . , fD(xD,1), . . . , fD(xD,N ))>.

These generalised quadrature rules encompass popular
Monte Carlo methods such as control variates or func-
tionals (Glasserman, 2004; Oates et al., 2017b), multi-
level Monte Carlo (Giles, 2015) and multi-fidelity Monte
Carlo (Peherstorfer et al., 2016b). However, it is impor-
tant to point out that these methods can only deal with
very specific relations between integrands, usually requir-
ing (

∫
X (fd(x)−fd′(x))2Π(dx))

1
2 to be small for all pairs

of integrands fd, fd′ . Our method will be able to make use
of much more complex relations.

We propose to approach this problem using an extended
version of BQ, where we impose a prior g : X × Ω→ RD
which is a GP(0,C) on the extended space (this is of-
ten called a multi-output GP or co-kriging model (Al-
varez et al., 2012)) where now C is matrix-valued and
(C(x,x′))dd′ = Eω∼P[gd(x, ω)gd′(x

′, ω)]. In this case,
after conditioning on X , we have a GP gN with vector-
valued mean mN : X → RD and matrix-valued covari-
ance CN : X × X → RD×D:

mN (x) = C(x,X)C(X,X)−1f(X),

CN (x,x′) = C(x,x′)−C(x,X)C(X,X)−1C(X,x′),

for C(x,X) = (C(x,x1), . . . , C(x,xN )) ∈ RD×ND
and Gram matrix C(X,X) ∈ RND×ND is:
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C(X,X) =


(C(X1,X1))1,1 . . . (C(X1,XD))1,D

(C(X2,X1))2,1

... (C(X2,XD))2,D
...

...
...

(C(XD,X1))D,1 . . . (C(XD,XD))D,D

 ,

where C(Xd,Xd′)d,d′ is an N × N matrix. The poste-
rior on the value of the integral vector Π[f ] can also be
obtained whenever the kernel mean Π[C(·,x)] and initial
error ΠΠ̄ [C] are available in closed form, which is poten-
tially a restrictive condition. The authors of (Briol et al.,
2015b) give a table of closed-form expressions of these
quantities for popular kernels in the uni-output case, and
we envision the same type of table being necessary for fu-
ture extensions of multi-output BQ. Alternatively, (Oates
et al., 2017b; 2016) proposed a kernel which is tailored to
the target probability measure Π and which could also be
extended to the multi-output case.

Proposition 1. Consider multi-output Bayesian Quadra-
ture with a GP(0,C) prior on f = (f1, . . . , fD)>. The
posterior distribution on Π[f ] is a D-dimensional Gaus-
sian distribution with mean and covariance matrix:

E [Π[gN ]] = Π[C(·,X)]C(X,X)−1f(X),

V [Π[gN ]] = ΠΠ̄ [C]−Π[C(·,X)]C(X,X)−1Π̄[C(X, ·)].

All proofs can be found in Appendix B. In this case, we
clearly end up with a generalised quadrature rule with
weight matrix: W BQ = (Π [C(·,X)]C(X,X)−1)> ∈
RND×D. In general, the computational cost for computing
the posterior mean and variance is now of orderO(N3D3).
However, several choices of kernels can reduce this cost
significantly, and it is also possible to obtain sparse GP ap-
proximations; see e.g. (Álvarez & Lawrence, 2011).

The choice of kernel C is of course once again of great
importance since it encodes prior knowledge about each
of the integrand and their correlation structure and should
be made based on the application considered. We also
remark that matrix valued kernels C can be described in
term of some scalar-valued kernel r on the extended space
X×{1, . . . , D} as (C(x,x′))dd′ = r((x, d), (x′, d′)). We
now present two choices of covariance functions which are
popular in the literature and will be used in this paper:

• The separable kernel is of the form

C(x,x′) = Bc(x,x′),

whereB ∈ RD×D is symmetric and positive definite,
and c : X × X → R is a scalar-valued reproducing
kernel. This treats the kernel as the product of two
scalar-valued reproducing kernels, one defined on X

and the other on {1, . . . , D}. A particular case of in-
terest is the linear model of coregionalization (LMC)
where the matrix is of the form (B)dd′ =

∑R
i=1 a

i
da
i
d′

for some aid ∈ R. This type of kernel can lead to a
lower computational cost of orderO(N3 +D3) when
evaluating all fd on the same input set and using ten-
sor product formulations (see Appendix C).

• The process convolution kernel (Ver Hoef & Barry,
1998; Higdon, 2002; Alvarez et al., 2012) models the
individual functions f1, . . . , fD as blurred transforma-
tions of R ∈ N+ underlying functions. It is given by:

(C(x,x′))d,d′ = cd,d′(x,x
′) + cwd(x,x′)δd,d′ ,

where δdd′ = 1 if d = d′ and 0 else. Here there
are two parts of the kernel, first cd,d′ : X × X → R
defined as:

cd,d′(x,x
′) =

R∑
i=1

∫
X
Gid(x− z)×∫

X
Gid′(x

′ − z′)ci(z, z′)dz′dz,

and cwd : X ×X → R representing covariance inher-
ent to the dth function and Gid : X → R is a blurring
kernel2 which is a continuous function either having
compact support or being square integrable. Notice
that taking Gid(x− z) = aidδ(x− z) (where δ(·) rep-
resents a Dirac function) gives back the LMC case.

Note that it is also common to combine kernels, by sum-
ming them (i.e. C(x,x′) =

∑Q
q=1Cq(x,x

′)) in order to
obtain more flexible models. The kernel means and initial
error, as well as other details for implementation are pro-
vided in Appendix C.

3. Theoretical results
In this section, we begin by exploring properties of multi-
output BQ with GP(0,C) prior as an optimally-weighted
quadrature algorithm in vector-valued RKHSHC .

Let HK be a vector-valued RKHS with norm and inner
product denoted ‖ · ‖K and 〈·, ·〉K respectively. These
spaces were extensively studied in (Pedrick, 1957; Mic-
chelli & Pontil, 2005; Carmeli et al., 2006; 2010; De Vito
et al., 2013), and generalise the notion of RKHS to vector-
valued functions. In the multi-output case, there is also
a one-to-one correspondance between the RKHS HK and
the kernel K. Theorem 3.1 in (Micchelli & Pontil, 2005)
shows that the minimizer of the variational problem:

min
h∈HK

{
‖h‖2K : h : X → RD,h(xi) = f(xi) ∀xi ∈X

}
2Note that the term “blurring kernel” does not mean the func-

tion is a reproducing kernel.
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takes the form of the multi-output posterior GP mean mN

obtained after conditioning a GP(0,K) on some data set
X . We can therefore extend a well-known result from
the uni-output case to show that Π̂BQ[fd] is an optimally
weighted quadrature rule for all fd in terms of their worst-
case integration error, denoted:

e(HC , Π̂,X, d) := sup
‖f‖C≤1

∣∣∣Π[fd]− Π̂[fd]
∣∣∣ . (2)

Proposition 2 (Optimally weighted quadrature rule in
HC). For a fixed point set X , denote by Π̂[f ] =
W>f(X) any quadrature rule for the vector-valued func-
tion f = (f1, . . . , fD) and by Π̂BQ[f ] = W>

BQf(X) the
BQ rule with GP(0,C) prior. Then, ∀d = 1, . . . , D:

WBQ = arg min
W∈RND×D

e(HC , Π̂,X, d).

In specific cases, it is also possible to characterise the rate
of convergence of the worst-case error for each element fd.
This is for example the case with the separable kernel intro-
duced in Sec. 2, as will be demonstrated in the Theorem 1
below. First, we introduce some technical definitions which
will be required for the statement of the theorem.

We say that a domain X ⊂ Rp satisfies an interior cone
condition if there exists an angle θ ∈ (0, π2 ) and a radius
r > 0 such that ∀x ∈ X , a unit vector ξ(x) exists such
that the cone {x + λy : y ∈ Rp, ‖y‖2 = 1,y>ξ(x) ≥
cos θ, λ ∈ [0, r]} is a subset of X .

For a point setX , we call hX,X := supx∈X infxj∈X ‖x−
xj‖2 the fill distance, qX := 1

2 minj 6=k ‖xj−xk‖2 the sep-
aration radius and ρX,X := hX,X /qX the mesh ratio. We
will assume we evaluate all integrands on the same point
setX which satisfies either of these assumptions:

(A1) X consists of independently and identically dis-
tributed (IID) samples from some probability measure
Π′ which admits a density π′ > 0 on X .

(A2) X is a quasi-uniform grid on X ⊂ Rp (i.e. satis-
fies hX,X ≤ C1N

− 1
p for some C1 > 0) and satisfies

hX,X ≤ C2qX,X for some C2 > 0.

Examples of point sets satisfying (A2) include uniform
grid points in some hypercube.

Theorem 1 (Convergence rate for BQ with separable ker-
nel). Suppose we want to approximate Π[f ] for some f :
X → RD and Π̂BQ[f ] is the multi-output BQ rule with the
kernel C(x,x′) = Bc(x,x′) for some positive definite
B ∈ RD×D and scalar-valued kernel c : X × X → R.
Then, ∀d = 1, . . . , D, we have:

e(HC , Π̂BQ,X, d) = O
(
e(Hc, Π̂BQ,X)

)
.

In particular, assume that X ⊂ Rp satisfies an interior
cone condition with Lipschitz boundary3 and X satisfies
assumption (A1) or (A2). Then, the following rates hold:

• IfHc is norm-equivalent to an RKHS with Matérn ker-
nel of smoothness α > p

2 , we have ∀d = 1, . . . , D:

e(HC , Π̂BQ,X, d) = O
(
N−

α
p+ε
)
,

for ε > 0 arbitrarily small.

• If Hc is norm-equivalent to the RKHS with squared-
exponential, multiquadric or inverse multiquadric
kernel, we have ∀d = 1, . . . , D:

e(HC , Π̂BQ,X, d) = O
(

exp
(
−C1N

1
p−ε
))

,

for someC1 > 0 and for some ε > 0 arbitrarily small.

Proposition 3 (Convergence rate for sum of kernels). Sup-
pose that C(x,x′) =

∑Q
q=1Cq(x,x

′). Then:

e(HC , Π̂BQ,X, d) = arg max
q∈{1,...,Q}

O
(
e(HCq , Π̂BQ,X, d)

)
.

We clarify that the notation with ε is common in the nu-
merical integration literature, and is used to hide powers of
log n terms since these do not have a significant influence
on the asymptotic convergence rate.

It is interesting to note that the rate of convergence for
multi-output BQ is the same as that of uni-output BQ
(Briol et al., 2015b). This can be explained intuitively
by the fact that, when adding a new integrand, we can
only gain by a constant factor since we always evaluate
the functions at the same input points. In fact the proof
of Thm. 1 provides an expression for this improvement
factor (in terms of WCE) for any integrand fd, and this
depends explicitly on its correlation with the other func-
tions: |

∑D
i,j=1(B−1)ijBidBjd|. From a practitioner’s

viewpoint, this can clearly be used to balance the value of
using several integrands with the additional computational
cost incurred by using multi-output BQ.

We now give a result in the misspecified setting when the
function f is assumed to be smoother than it is. In this case,
it is still possible to recover the optimal convergence rate:

Theorem 2 (Misspecified Convergence Result for Sepa-
rable Kernel). Let cα be a kernel norm-equivalent to a
Matérn kernel of smoothness α on some domain X with
Lipschitz boundary and satisfying an interior cone condi-
tion. Consider the BQ rule Π̂BQ[f ] corresponding to a sep-
arable kernel Cα(x, x′) = Bcα(x, x′) with X satisfying

3Formally defined in Appendix A for completeness.
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Figure 1. Multi-fidelity modelling: Plot of the Step function (top),
Forrester function (bottom) for the low fidelity (left) and high fi-
delity (right). Each plot gives the true function (blue) and their
unit-output (dashed, red), LMC-based multi-output (dashed, yel-
low) and PC-based multi-output (dotted purple) approximations.

(A2), and suppose that f ∈ HCβ where p
2 ≤ β ≤ α. Then,

∀d = 1, . . . , D:∣∣∣Π[fd]− Π̂BQ[fd]
∣∣∣ = O

(
N−

β
p+ε
)
,

for some ε > 0.

This last theorem demonstrate that the method is rate adap-
tive as long as we choose a kernel which is too smooth.
However, it also demonstrates a drawback of the separa-
ble kernels: if one of the integrands is rough but all other
are smooth, then the worst-case error could potentially con-
verge slowly for all of them.

Finally, we note that studying the method in other infor-
mation complexity settings than the worst-case would also
be interesting. For example, it is trivial to show that the
method above satisfies the definition of Bayesian proba-
bilistic numerical method of (Cockayne et al., 2017) (Def.
2.5). Furthermore, optimality conditions for this method
could also be obtained in a game-theoretic setting (in terms
of a two-player mixed strategies game) by extending the
theory on gamblets by (Owhadi & Scovel, 2017).

4. Applications
Multi-fidelity modelling Consider some function f high :
X → R representing some complex engineering model of
interest, which we would like to use for some task such
as statistical inference or optimization. These models usu-
ally require the simulation of underlying physical systems,
which can make each evaluation prohibitively expensive
and will therefore limit N to the order of tens or hundreds.
To tackle this issue, multi-fidelity modelling proposes to
build cheap, but less accurate, alternatives f low

1 , . . . , f low
D−1 :

Model BQ LMC-BQ PC-BQ

Step (l) 0.02 (0.22) 0.02 (0.21) 0.02 (0.52)
Step (h) 0.41 (0.03) 0.09 (0.09) 0.04 (0.15)
For. (l) 0.08 (4.91) 0.08 (4.95) 0.07 (33.95)
For. (h) 3.96 (3.98) 2.86 (27.01) 1.06 (63.80)

Figure 2. Multi-fidelity modelling: Performance of uni-output
BQ and multi-output BQ (with LMC and PC kernels) on the step
function (Step) and the Forrester function with jump (For.) in the
low fidelity (l) and high fidelity (h) cases. The values given are
absolute errors with the posterior variance in brackets.

X → R to f high, and use the cheaper models in order to
accelerate computation for the task of interest. This can be
done using surrogate models (e.g. support vector machines,
GPs or neural networks), projection-based models (Krylov
subspace or reduced basis methods) or models where the
underlying physics is simplified; see (Peherstorfer et al.,
2016a) for an overview.

In this section, we consider the problem of numerical inte-
gration in such a multi-fidelity setup. Note that two related
methods for Monte Carlo estimation are the multi-fidelity
Monte Carlo estimator (Peherstorfer et al., 2016a) and the
multilevel Monte Carlo of (Giles, 2015), both of which are
based on control variate identities.

We approach this problem with multi-output BQ on the
vector-valued function f = (f high, f low

1 , . . . , f low
D−1)>.

Note that multi-output Gaussian processes were already
proposed for multi-fidelity modelling in (Perdikaris et al.,
2016; Parussini et al., 2017), and we extend their method-
ologies to the task of numerical integration. We consider
two toy problems from this literature (Raissi & Karni-
adakis, 2016) to highlight some of the advantages and dis-
advantages of our methodology

1. A step function on X = [0, 2]:

f low
1 (x) =

{
0, x ≤ 1

1, x > 1
f high(x) =

{
−1, x ≤ 1

2, x > 1

2. The Forrester function with Jump on X = [0, 1]:

f low
1 (x) =

{
(3x−1)2 sin(12x−4)

4 + 10(x− 1), x ≤ 1
2

3 + (3x−1)2 sin(12x−4)
4 + 10(x− 1), x > 1

2

f high(x) =

{
2f low(x)− 20(x− 1), x ≤ 1

2

4 + 2f low(x)− 20(x− 1), x > 1
2

The functions and conditioned GPs are given in Fig. 1,
whilst the uni-output and multi-output BQ estimates for in-
tegration of these functions against a uniform measure Π
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are given in the table in Fig. 2. In both cases, 20 equidis-
tant points are used, with point number 4, 10, 11, 14 and 17
used to evaluate the high fidelity model and the others used
for the low fidelity model. The choice of kernel hyperpa-
rameters is made by maximising the marginal likelihood
(often called empirical Bayes). Further details, and an ad-
ditional test function can be found in Appendix D.2.

Note that both of these problems are challenging for several
reasons. Firstly, due to their discontinuity, the integrands
are not in the RKHS HC corresponding to the kernel C
used in multi-output BQ. In particular, the problems are
misspecified in the sense that the true function is not in the
support of the prior. It is therefore difficult to interpret the
posterior distribution on Π[f ], and we end up with credible
intervals which are too wide. This is for example illustrated
in the values of the posterior variance for the high-fidelity
Forrester function. Secondly, in each case, the high and
low-fidelity models are defined on different scales and so
require tuning of several kernel hyper-parameters. This can
of course make it challenging for multi-output BQ since the
number of function evaluations N is small and empirical
Bayes will tend to be inefficient in those cases.

However, despite these two issues, it is interesting to note
that both of the multi-output BQ methods manage to sig-
nificantly outperform uni-output BQ in terms of point esti-
mate, as the sharing of information allows the multi-output
models to better represent the main trends in the functions.
Furthermore, the multi-output BQ does not suffer from the
issues of overconfident posterior credible intervals present
in uni-output BQ; contrast for example the posterior vari-
ances for the high-fidelity step function.

Global illumination In this section, we apply multi-
output BQ to a challenging numerical integration problem
from the field of computer graphics, known as global il-
lumination. BQ was previously applied to this problem in
several papers (Brouillat et al., 2009; Marques et al., 2013;
Briol et al., 2015b), but we propose to extend these results
using multi-output BQ.

Global illumination is a problem which occurs when try-
ing to obtain realistic representation of light interactions
for the design of virtual environments (e.g. a video game).
One model of the amount of light coming from an object
towards the camera (representing the current viewpoint on
this environment) is given by the following equation:

L0(ω0) = Le(ω0) +

∫
S2
Li(ωi)ρ(ωi, ω0)[ωi · n]+dΠ(ωi).

where [x]+ = max(0, x). The function L0 : S2 → R
evaluated at ω0 is called the outgoing radiance in direction
ω0 (the angle of the outgoing light from the object normal
n), Le(ω0) : S2 → R is the amount of light emitted by

the object, and Li : S2 → R evaluated at ωi is the amount
of light reflected by the object (which originated from an
angle ωi from the object’s normal n). Here, S2 = {x =
(x1, x2, x3) ∈ R3 : ‖x‖2 = 1} and ρ(ωi, ω0) : S2 ×
S2 → R is called the bidirectional reflectance distribution
and represents the proportion of light being reflected.

We follow (Briol et al., 2015b) and consider the problem
as Π[hω0 ] =

∫
S2 h

ω0(ωi)Π(dωi) where Π is the uniform
measure on S2, and hω0(ωi) = Li(ωi)ρ(ωi, ω0)[ωi · ω0]+
is a function which can be evaluated by making a call to an
environment map (which we consider to be a black box).
One scenario which is common in these type of problems
is to look at an object from different angles ω0, with the
camera moving. In this case, it is reasonable to assume
that the different integrands hω0 will be very similar when
the difference in the angle ω0 is small, and it is therefore
natural to consider jointly estimating their integrals. In
the experiments we consider five integrands fi = hω

i
0 for

i = 1, . . . , 5 where ω1
0 , . . . , ω

5
0 are on a great circle of the

sphere at intervals determined by an angle of 0.005π.

We therefore consider two-output and five-output BQ with
independent and identically distributed (Monte Carlo) sam-
ples X from the uniform measure Π. We propose to use
a separable kernel with scalar-valued RKHS Hc being a
Sobolev space of smoothness 3

2 over S2 and has kernel
c(x,x′) = 8

3 − ‖x − x
′‖22. For the matrix B representing

the covariance between outputs, we propose to make this
covariance proportional to the difference in angle at which
the camera looks at the object. In particular we choose
(B)ij = exp(ωi0 · ω

j
0 − 1) for simplicity, but this could be

generalised to include a lengthscale and amplitude hyper-
parameter to be learnt together with the hyperparameters of
the scalar-valued kernel c.

The GP means for the one-output and five-output cases are
given in Fig. 3, and we can clearly notice a significant im-
provement in approximation accuracy with the larger num-
ber of outputs. Results for integration error are given in Fig.
4. As noticed, the integration error (for a fixed number of
evaluationsN of each integrand) is significantly reduced by
increasing the number of outputs D. The individual poste-
rior variances for this problem (see Appendix D.3 Fig. 10)
are also smaller, reflecting the fact that our uncertainty is
reduced due to use of observations from other integrands.

In fact, a small extension of Thm. 1 (combined with the
rate for the scalar-valued kernel in (Briol et al., 2015b))
allows us to obtain an asymptotic convergence rate for the
posterior variance on each integral Π[fd]:
Corollary 1. LetX be the sphere S2 andX be IID uniform
points onX . AssumeC is a separable kernel with c defined
above. Then e(HC , Π̂BQ,X, d) = OP

(
N−

3
4

)
.

The same rate with improved rate constant was observed
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Figure 3. Global illumination: Plot of f1 (left) and f2 (right) in
the case of the red channel. The plots give the true functions being
approximated (top), the uni-output approximations (middle) and
the five-output approximations with LMC kernel (bottom).

in (Briol et al., 2015b) when using QMC point sets, and
similar gains could be obtained in this multi-output case.

We note that there a significant potential further gains for
the use of multi-output BQ in this setting. Similar integra-
tion problems need to be computed for three colors in every
pixel of an image, and for every image in a video. This is
challenging computationally and limits the use of Monte
Carlo methods to a few dozen points. Designing specific
matrix-valued kernels could provide enormous gains since
we end up with thousands of correlated integrands. Fur-
thermore, the weights only depend on the choice of kernel
and not on function values, so that all of the weights could
be pre-computed off-line to be later used in real-time.

5. Conclusion
We have proposed an extension of Bayesian Quadrature to
the case where we are interested in numerically computing
the integral of several functions which are related. In par-
ticular we have proposed a new algorithm based on jointly
modelling the integrands with a Gaussian prior. Then, we
provided a theoretical study of the rate of convergence for
the case where the kernel is separable and illustrated the po-
tential of our methodology on applications in multi-fidelity

Figure 4. Global illumination: Plot of error estimates for f1 (top)
and f2 (bottom), in the case of the red, green and blue channels.
The log-error is plotted for uni-output BQ (red), two-output BQ
based on LMC (blue), five-output BQ based on LMC (magenta)
and standard Monte Carlo (dotted black).

modelling and computer graphics. Our main contribution
however, has been to highlight the natural extension of
Bayesian probabilistic numerical methods to the joint es-
timation of the solution of several numerical problems (in
this case, numerical integration problems).

There are several possible extensions of multi-output BQ
which we reserve for future work. One important question
remaining is that of the choice of sampling distribution. In
the uni-output case, it is well known that obtaining an op-
timal sampling distribution with respect to the Vn[Π[f ]] is
intractable in most cases. (Briol et al., 2017) proposed an
algorithm to approach such a distribution, and (Kanagawa
et al., 2017) provided conditions on the point sets to guar-
antee fast convergence. In the multi-output case, the prob-
lem is even more complex due to the interaction between
the different integration problems. However, the literature
on the design of experiments for co-kriging/multi-output
GPs may be of interest, and the use of more advanced sam-
pling distributions will certainly provide significant gains.
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A. Additional Background
A.1. Sobolev Spaces

The RKHS induced from the Matérn kernel cα defined in Equation 1 is norm-equivalent to a Sobolev space (Adams &
Fournier, 2003). When α ∈ N, these spaces are defined as:

Wα
2 (X ) := {f ∈ L2(X ) : Dνf ∈ L2(X ) exists ∀ν ∈ Np0 with |ν| ≤ α} ,

with inner product

〈f, g〉Wα
2 (X ) :=

∑
|ν|≤α

〈Dνf,Dνg〉L2(X )

for all f, g ∈ Wα
2 (X ). This means that all functions in Hkα will have smoothness α (here Dν denotes the total derivative

corresponding to the multi-index ν = (ν1, . . . , νp) ∈ Np0).

It is also possible to have fractional Sobolev spaces; i.e. the smoothness α > 0 can take any positive real value. For
X = Rp and denoting by f̂ the Fourier transform of f , these spaces are given by:

Hα(Rp) :=

{
f ∈ L2(Rp) :

∫
|f̂(ξ)|2(1 + ‖ξ‖2)αdξ <∞

}
with associated inner product:

〈f, g〉Hα(Rp) :=

∫
f̂(ξ)ĝ(ξ)(1 + ‖ξ‖2)αdξ

for all f, g ∈ Hα(Rd) where ĝ denoted the complex conjugate of ĝ.

A.2. Lipschitz Boundary Conditions

In this section we introduce the notion of Lipschitz boundary condition, which is required for our domain X in the theory
in Section 3. The introduction in this section follows that of Section 3 in (Kanagawa et al., 2017).

To do so, we begin by introducing special Lispchitz domains. For d > 2, we say that an open set X ⊂ Rp is a special
Lipschitz domain if there exists a rotation of X , denoted by X̃ , and a function φ : Rp−1 → R that satisfy the following:

1. X̃ = {(x, y) ∈ Rp : y > φ(x)}.

2. φ is a Lipschitz function such that |φ(x)− φ(x′)| ≤M‖x− x′‖∀x, x′ ∈ Rp−1, where M > 0 is called the Lipschitz
bound of X .

With this definition now complete, we can define the notion of a domain with Lipschitz boundary. Let X ⊂ Rp be an open
set and ∂X be its boundary. We say the boundary is Lipschitz ∃ε,M > 0,K ∈ N and open sets U1, . . . , UL ⊂ Rp where
L ∈ N ∪ {∞} such that the following holds:

1. For any x ∈ ∂X , ∃i such that B(x, ε), the ball centred at x of radius ε, satisfies B(x, ε) ⊂ Ui.

2. Ui1 ∩ . . . ∩ UiK+1
= ∅ for any distinct indices {i1, . . . , iK+1}.

3. For each index i, ∃ a special Lipschitz domain Xi ⊂ Rp with Lipschitz bound b such that Ui ∩ X = Ui ∩ Xi and
b ≤M .

B. Proofs
PROOF OF PROPOSITION 1

Proof. This proof follows directly the proof for the uni-output case in (Briol et al., 2015b). Suppose we have a prior on f ,
denoted g, which is a Gaussian process GP(0,C). Conditioning on some observations (X,Y ) = {(Xj ,Yj)}Dj=1, we get
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a Gaussian process posterior gN where the mean and covariance functions are given by:

mN (x) = C(x,X)C(X,X)−1f(X),

CN (x,x′) = C(x,x′)−C(x,X)C(X,X)−1C(X,x′).

Several applications of Fubini’s theorem on each element of the vectors give:

E [Π[gN ]] =

∫
Ω

∫
X
gN (x, ω)Π(dx)P(dω) =

∫
X
mN (x)Π(dx) = Π[C(·,X)]C(X,X)−1f(X),

V[Π[gN ]] =

∫
Ω

[∫
X
gN (x, ω)Π(dx)−

∫
X
mN (x)Π(dx)

]2

P(dω)

=

∫
X

∫
X

∫
Ω

[gN (x, ω)−mN (x)] [gN (x′, ω)−mN (x′)]P(dω)Π(dx)Π(dx′)

=

∫
X

∫
X
CN (x,x′)Π(dx)Π(dx′)

= ΠΠ̄[C]−Π[C(·,X)]C(X,X)−1Π̄[C(X, ·)].

PROOF OF PROPOSITION 2

Proof. Denote by ed the vertical vector of length D with dth entry taking value 1 and all other entries taking value 0, and
by Cd

x(y) = C(y,x)ed the dth column of C(y,x). We notice that the representer of the integral is given by:

Π[fd] = Π[f>ed] = Π [〈f ,C(·,x)ed〉C ] = 〈f ,Π [C(·,x)ed]〉C =
〈
f ,Π

[
Cd

x

]〉
C
.

Using the Cauchy-Schwartz inequality, we get:∣∣∣Π[fd]− Π̂[fd]
∣∣∣ ≤ ‖f‖C

∥∥∥Π[Cd
x]− Π̂[Cd

x]
∥∥∥
C
.

Taking supremums, we then obtain the following expression for the worst-case integration error:

sup
‖f‖C≤1

∣∣∣Π[fd]− Π̂[fd]
∣∣∣ =

∥∥∥Π[Cd
x]− Π̂[Cd

x]
∥∥∥
C
.

We note that Π[Cd
x] ∈ HC and that the multi-output BQ rule is given by

Π̂BQ[Cd
x] = Π[C(·,X)]C(X,X)−1Cd

x(X),

and corresponds to an optimal interpolant in the sense of Thm 3.1 (Micchelli & Pontil, 2005). We must therefore have that,
for fixed quadrature pointsX , any quadrature rule Π̂[Cd

x] satisfies:∥∥∥Π[Cd
x]− Π̂BQ[Cd

x]
∥∥∥
C
≤

∥∥∥Π[Cd
x]− Π̂[Cd

x]
∥∥∥
C
.

Combining the equation above with the expression for the worst-case integration error of fd gives us our final result.

PROOF OF THEOREM 1

Proof. For the sake of clarity, we will distinguish between uni-output BQ and multi-output BQ rules and weights by adding
subscripts corresponding to their kernel; i.e. ΠC

BQ[f ] and WC
BQ denote the multi-output case and Πc

BQ[f ] and W c
BQ denote

the uni-output case.
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We start this proof by writing an expression for the weights of the multi-output BQ algorithm in terms of weights for the
uni-output BQ algorithm:

WC
BQ =

(
Π[C(·,X)]C(X,X)−1

)>
=

(
(Π[B ⊗ c(·,X)]) (B ⊗ c(X,X))

−1
)>

=
(
(B ⊗Π[c(·,X)])

(
B−1 ⊗ c(X,X)−1

))>
=

(
BB−1 ⊗Π[c(·,X)]c(X,X)−1

)>
=

(
ID ⊗

(
wc

BQ

)>)>
= ID ⊗wc

BQ.

Using the above, we can find an expression for the multi-output BQ approximation with some kernel C1 = Bc1 of the
project mean element with respect to kernel C2 = Bc2 in terms of the uni-output BQ approximation with kernel c1 of the
kernel mean of c2.

Π̂C1

BQ [(C2)dx] =
(
WC1

BQ

)>
(C2)dx(X)

= (I ⊗wc1
BQ)>(C2)dx(X)

= (I ⊗wc1
BQ)>(Bed ⊗ c2(X,x))

= IBed ⊗
(
wc1

BQ

)>
c2(X,x)

= BedΠ̂
c1
BQ[c2(·,x)].

As discussed, taking both kernels to be the same, the integration error for each individual integrand can be bounded as
follows:

sup
‖f‖C2

≤1

∣∣∣Π[fd]− Π̂C1

BQ [fd]
∣∣∣2 =

∥∥∥Π
[
(C2)dx

]
− Π̂C1

BQ

[
(C2)dx

]∥∥∥2

C2

=
∥∥∥(Bed)

(
Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
)∥∥∥2

C2

=

D∑
i,j=1

(B−1)ij ×
〈
Bid(Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]),Bjd(Π [c2(·,x)]− Π̂c1
BQ [c2(·,x)])

〉
c2

=

D∑
i,j=1

(B−1)ijBidBjd

∥∥∥Π [c2(·,x)]− Π̂c1
BQ [c2(·,x)]

∥∥∥2

c2

≤ K
∥∥∥Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
∥∥∥2

c2
.

Here, we first used the definition of worst-case error, then the definition of the HC2 norm in terms of Hc2 norm (as
given for the seperable kernel in (Alvarez et al., 2012)), and the final inequality follows by taking K > 0 to be K =
|
∑D
i,j=1(B−1)ijBidBjd|. Taking the square-root on either side gives us:

sup
‖f‖C2

≤1

∣∣∣Π[fd]− Π̂C1

BQ [fd]
∣∣∣ ≤ √

K
∥∥∥Π [c2(·,x)]− Π̂c1

BQ [c2(·,x)]
∥∥∥
c2

=
√
K sup
‖f‖c2≤1

∣∣∣Π[fd]− Π̂c1
BQ[fd]

∣∣∣ . (3)

We can take C1 equal to C2 to get:

sup
‖f‖C≤1

∣∣∣Π[fd]− Π̂C
BQ[fd]

∣∣∣ ≤ √
K sup
‖f‖c≤1

∣∣∣Π[fd]− Π̂c
BQ[fd]

∣∣∣ .
The convergence for the separable kernel case is therefore driven by the convergence of the scalar-valued kernel. We can
therefore use results from the uni-output case in (Briol et al., 2015b; Oates et al., 2016; Briol et al., 2017; Kanagawa et al.,
2017) to complete the proof.
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PROOF OF PROPOSITION 3

Proof. Note that if the kernel is actually of the form C(x,x′) =
∑Q
q=1Bqcq(x,x

′), we can use the triangle inequality
satisfied by the norm ofHC to show that (for some C2 > 0):

sup
‖f‖C≤1

∣∣∣Π[fd]− Π̂BQ[fd]
∣∣∣ ≤ C2

Q∑
q=1

∥∥∥Π [cq(·,x)]− Π̂BQ [cq(·,x)]
∥∥∥2

c
,

so that the overall convergence is dominated by the slowest decaying term.

B.1. Proof of Theorem 2

Proof. Denote by Π̂Cα
BQ[f ] the multi-output BQ rule based onCα, Π̂cα

BQ[f ] the uni-output BQ rule based on cα and f̂αd the
interpolant corresponding this rule. We start by upper bounding the integration error in the uni-output case:∣∣∣Π[f ]− Π̂cα

BQ[f ]
∣∣∣ ≤ K1‖π‖L∞(X )‖f − f̂α‖L1(X )

≤ K2‖f − f̂α‖L2(X )

≤ K3h
β
X,Xρ

α
X,X ‖f‖L2(X )

≤ K4h
β
X,Xρ

α
X,X ‖f‖Wβ

2 (X )

≤ K5h
β
X,Xρ

α
X,X ‖f‖cβ ,

for some K1, . . . ,K5 > 0. The first and second inequality correspond to Holder’s inequality and the third inequality
follows from Theorem 4.2 in (Narcowich et al., 2006). Finally, the fourth and fifth inequalities follow from the definition
the Sobolev norm and the norm-equivalence ofHcβ and W β

2 (X ).

Dividing the above by ‖fd‖β on both sides and taking supremums over the unit ball ofHcβ we get a result for the worst-case
error in the uni-output case:

e(Hcβ , Π̂
cα
BQ,X) ≤ K6h

β
X,Xρ

α
X,X .

We can then upper bound the integration error in the multi-output case using Theorem 1 as follows:∣∣∣Π[fd]− Π̂Cα
BQ[fd]

∣∣∣ ≤ ‖f‖Cβe(HCβ , Π̂
Cα
BQ,X, d)

≤ K6‖f‖Cβe(Hcβ , Π̂
cα
BQ,X)

≤ K7‖f‖Cβh
β
X,Xρ

α
X,X ,

for some K6,K7 > 0. When (A2) is satisfied, then we can use the assumption that hX,X ≤ CqX for some constant
C > 0 and the fact that hX,X converges as N−

1
p to show that the integration error satisfies:∣∣∣Π[fd]− Π̂Cα

BQ[fd]
∣∣∣ ≤ K7‖f‖Cβh

β
X,Xρ

α
X,X ≤ K8‖f‖Cβh

β
X,X = O

(
N−

β
p

)
,

for some K8 > 0.

C. Implementation
In this appendix, we present some complementary details which will help users reproduce experiments in the paper.

C.1. Prior specification

C.1.1. SEPARABLE KERNEL

The separable matrix-valued kernel is of the form C(x,x′) = Bc(x,x′) where c : X ×X → R is a scalar-valued kernel.
If all of the elements fd of the vector-valued function f are evaluated on the same data set X = (x1, . . . ,xN ), then the
Gram matrix can be expressed as

C(X,X) = B ⊗ c(X,X),
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where ⊗ denotes the Kronecker product. Due to properties of the Kronecker, its inverse can then be computed as:

C(X,X)−1 = B−1 ⊗ c(X,X)−1.

It is straightforward to show that similar expressions can be obtained for the multi-output case of the kernel mean:

Π[C(·,X)] = B ⊗Π[c(·,X)] = B ⊗
(∫
X
c(x,X)Π(dx)

)
,

and initial error:

ΠΠ[C] = B ΠΠ̄[c] = B

∫
X×X

c(x,x′)Π(dx)Π(dx′).

These expressions can of course be obtained in closed form whenever the kernel mean and initial error of the scalar-valued
kernel are available in closed form. We refer the reader to the table in (Briol et al., 2015b) for a list of popular kernels for
which this is possible.

C.1.2. PROCESS CONVOLUTION KERNEL

In this section, we consider the process convolution kernel given by:

(C(x, x′))d,d′ = cd,d′(x, x
′) + cwd(x, x′)δd,d′ ,

cd,d′(x, x
′) =

R∑
i=1

∫
X
Gid(x− z)

∫
X
Gid′(x

′ − z′)ci(z, z′)dz′dz,

This is used in Sec. 4 in the two-output case. There, blurring kernels and reproducing kernels are:

G1
1(r) = λ2

1 exp

(
− r2

2σ2
1

)
,

G1
2(r) = λ2

2 exp

(
− r2

2σ2
2

)
,

c1(x, y) = λ2
3 exp

(
− (x− y)2

2σ2
3

)
,

G2
1(r) = λ2

4 exp

(
− r2

2σ2
4

)
,

G2
2(r) = λ2

5 exp

(
− r2

2σ2
5

)
,

c2(x, y) = λ2
6 exp

(
− (x− y)2

2σ2
6

)
,

for some constants σi, λi > 0 for i = 1, . . . , 6. Note that for simplicity, we did not include cw1 and cw2 . The kernel mean
and initial error can easily be computed in closed form using Gaussian identities.

C.2. Hyper-parameters

One of the main challenges when using uni-output BQ and multi-output BQ is the selection of appropriate hyperparameters.
In this section, we consider multi-output BQ with GP(0,C) prior we denote the hyperparameters of the kernelC in vector
form as θ = (θ1, . . . , θl). To optimise these parameters, we propose to use an empirical-Bayes approach and maximise the
log-marginal likelihood:

log p (f(X)|X,θ) = −1

2
f(X)>C(X,X)−1f(X)− 1

2
log |C(X,X)| − ND

2
log(2π).

This can be efficiently optimised by making use of gradients of the log-marginal likelihood ∀i ∈ {1, . . . , l}:

∂ log p (f(X)|X,θ)

∂θi
=

1

2
f(X)>C(X,X)−1 ∂C(X,X)

∂θi
C(X,X)−1f(X)− 1

2
Tr
(
C(X,X)−1 ∂C(X,X)

∂θi

)
.
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D. Extended Numerical Experiments
In this appendix, we provide additional results for the multi-output BQ experiments provided in Sec. 4 for the multifidelity
toy models and the global illumination problem. We also include numerical results for a popular variational approximation
of multi-output GP.

D.1. Scaling multi-output BQ with variational approximations

Computational burdens are heavy for multi-output BQ due to the inversion of ND × ND matrix. The computational
complexity is O(N3D3) and the storage is O(N2D2). (Álvarez & Lawrence, 2011) introduced and fully discussed a
sparse approximation of multi-output GPs with process convolution kernels, using the fact that outputs are conditionally
independent if the latent functions is fully observed. This idea can then be extended to multi-output BQ by taking our
posterior on the value of the integrals as the pushforward through the integral operator of the approximate multi-output GP.

Consider functions f1(x) = 3 cos(πx5 ) and f2(x) = 0.7 cos( 2.2πx
10 ) on X = [−5, 5]. Computational times and log-

errors of multi-output BQ estimates for integrals of these functions against a uniform measure Π with and without the
variational approximation by (Álvarez & Lawrence, 2011) using different number of equidistant points between −5 and 5
are given in Fig. 5. This approximation is considered for different number of points evaluated from the latent function, i.e.
C = 5, 15, 25, 35. Regarding the process convolution kernel, G1

1, G2
1, c1, G1

2, G2
2, c2 are squared-exponential kernels with

amplitude and lengthscale parameters (
√

3, 1.3), (0.7, 1), (1, 1), (0.9, 0.6), (0.6, 0.5) and (0.8, 1) respectively.

Clearly, with a large enough number of points C, the same integration accuracy as for the full GP can be obtained at much
lower computation cost. This could make variational approximations a promising approach for multi-output BQ, but this
would warrant a much more extensive study.

Figure 5. Variational approximation: Plot of the computational times (in seconds) and log-errors of full/ approximated multi-output BQ
against the number of points given for different number of points evaluated from the latent function.

D.2. Multi-fidelity modelling

In Fig. 6, we give an extended version of Fig. 1 which includes credible intervals for each of the multi-output GP models.
For both functions, the high-fidelity confidence intervals in the uni-output case are overly pessimistic, whereas for the
multi-output cases, the posterior is concentrated on the true functions. One interesting point is that both of the multi-output
BQ methods are over-confident near the kinks in the functions. This is to be expected since the true functions do not like
in the RKHS corresponding to the kernel used for these BQ rules.

As an extension to these experiments, we consider a steady-state version of the Allen-Cahn equation on [0, 10] subject to a
sinusoidal forcing term and with boundary conditions:

ε
∂2u

∂x2
+ u− u3 = sin(x), u(0) = 1, u(10) = −1, (4)

where ε controls the rate of diffusion (Trefethen, 2010). Our target is to approximate the integral of the solution of Eq. 4 for
ε ≈ 0. We take solutions of Eq. 4 on X = [0, 10] with ε = 2 and ε = 0.1 as our low-fidelity model and high-fidelity model
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Figure 6. Multi-fidelity modelling: Plot of the Step function (top) and Forrester function (bottom) in blue. The Gaussian Process 95%
credible intervals are given by dotted red lines in each case.

respectively. Ideally, we would prefer to take ε as small as possible but this complicates the numerical approximation of
the solution.

The functions considered and corresponding posteriors are given in Fig. 7 and 8, while the uni-output and multi-output
BQ estimates for integration of these functions against a uniform measure Π are given in the table in Fig. 9. Integer points
between 0 and 10 are evaluated, with points at 2, 5 and 8 being used to evaluate the high fidelity model and the others used
for the low fidelity model. The choice of kernel hyperparameters is made by maximising the marginal likelihood. Clearly,
the two multi-output BQ algorithm give posteriors on the high-fidelity model which are much more concentrated on the
true function than the uni-output BQ.

D.3. Global illumination problem

In Fig. 10, we plot the evolution of the worst-case integration error as N increases for the uni-output, two-output and five-
output BQ with LMC kernel. As expected from Thm 1, the convergence occurs at the same rate in N but with a smaller
rate constant the more outputs there are.
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Figure 7. Multi-fidelity modelling: Plot of the solutions of Equation 4 for ε = 2 (left) and ε = 0.1 (right). Each plot gives the true
function (blue) and their uni-output (dashed, red), LMC-based multi-output (dashed, yellow) and PC-based multi-output (dotted purple)
approximations.

Figure 8. Multi-fidelity modelling: Plot of the solutions of Equation 4 for ε = 2 (top) and ε = 0.1 (bottom) in blue. The Gaussian
Process 95% credible intervals are given by dotted red lines in each case.

Model BQ LMC-BQ PC-BQ
AC (l) 0.004 (0.197) 0.006 (0.187) 0.007 (0.388)
AC (h) 0.211 (0.27) 0.002 (0.444) 0.037 (0.191)

Figure 9. Multi-fidelity modelling: Performance of uni-output BQ and multi-output BQ (with LMC and PC kernels) on the Allen-Cahn
problem (AC) both for the low fidelity (l) and high fidelity (h) cases.
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Figure 10. Global illumination: Plot of the worst-case integration error for f1, f2 in the case of the red, blue and green channels. Uni-
output BQ is given in red (full line) whilst two-output BQ based on LMC is given in blue (dashed and dotted line) and five-output BQ
based on LMC is given in magenta (dashed line).


