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An Energy Planning Oriented Method for Analyzing Spatial-temporal 1 

Characteristics of Electric Loads for Heating/cooling in District Buildings with 2 

a Case Study of one University Campus 3 

 4 

Abstract 5 

Accurate grasp of district power demand is of great significance to both sizing of 6 

district power supply and its operation optimization. In this study, an index system 7 

has been established and visualized through a Geographic Information System, for 8 

revealing both temporal and spatial characteristics of district power loads caused by 9 

heating/cooling systems, including load level and fluctuation characteristics, spatial 10 

distribution of electric loads, and load coupling relationships between individual 11 

buildings and the district. Principal component analysis was applied to identify the 12 

buildings with significant impact on district load management. Using this method, the 13 

spatial-temporal characteristics of electric loads caused by heating in one university 14 

campus in China were analyzed. The results showed that building type and the 15 

operation modes had great effects on the level and volatility of the district electric 16 

load caused by heating. Buildings with high load levels and strong coupling with the 17 

peak district electric load, such as academic buildings, often had a major impact on 18 

the power demand of the district. Therefore, they were considered as key targets for 19 

energy-saving renovation and operation optimization. Buildings with large load 20 

fluctuation, such as teaching buildings, could contribute to the peak load shaving by 21 

adjusting the heating systems’ operation. 22 
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1. Introduction 3 

With the large-scale construction of sustainable communities, district energy 4 

planning has become increasingly important. Rational design and optimal operation 5 

of district power systems generally need an accurate grasp of characteristics of district 6 

power load [1]. In a certain district, there may exist many types of buildings, with 7 

significantly different characteristics of energy load. In particular, the power loads for 8 

heating and cooling have dynamic characteristics dependent on season and time of 9 

day [2]. The dynamic characteristics of power loads for a district is not a simple 10 

addition of load characteristics of individual buildings, but an orderly coupling 11 

considering both time and space [3]. To better support district power supply capacity 12 

allocation and power dispatch, it becomes fundamental of identifying key indicators 13 

and developing appropriate analysis methods to capture both spatial and temporal 14 

characteristics of district power load, as well as the coupling relationships between 15 

the load of single buildings and the total district load [4]. 16 

Existing studies on district heating and cooling loads and energy consumption 17 

have investigated several analytical indicators using either field measured data or 18 

simulation results, but more efforts on improving the indices system are still highly 19 

needed. For example, using three indicators, namely, water consumption, electricity 20 

consumption and natural gas consumption, Zhou et al. [5] scrutinized data collected 21 

between 2006 and 2010 from 98 universities in Guangzhou, and allocated investigated 22 

universities with various types regarding to their energy consumption characteristics. 23 



3 

 

Noussan et al. [4] analyzed annual and monthly average heating loads, and hourly 1 

heating intensity of one district heating system, to reveal its main characteristics for 2 

heating load variation. Based on the simulation results, Xu et al. [6] have used two 3 

indices, namely, load rate and peak-valley difference ratio, to evaluate the 4 

performance of load leveling by different floor area ratios for office buildings, 5 

shopping malls and hotels. Cai et al. [7] monitored the cooling energy consumption 6 

of a certain district in Shanghai, and suggested a coincidence factor of about 0.5 for 7 

that district. Zhang et al. [8] used the DeST simulation package to model the hourly 8 

cooling load of 9 types of buildings located in the Guangzhou University Community, 9 

and adopted the coincidence factor to analyze the time difference in the peak loads 10 

among various types of buildings. Zhou et al. [3] utilized peak load, mean standard 11 

deviation and load ratio when analyzing the measured cooling capacity of a residential 12 

community in Shanghai, from perspectives like peak shaving, wave reduction and 13 

load sizing. From the study, they found that with more buildings involved, the district 14 

load exhibited less volatility, and the peak district load became smaller. Guan et al. [9] 15 

have analyzed the characteristic of daily, monthly and yearly energy use of university 16 

campus buildings, and calculated the coincidence factor of electric load, water load 17 

and heating load for a university campus in Norway using hourly measured field data. 18 

To measure diversity, Weissmanna et al. [10] have developed the peak load ratio (PLR) 19 

index to represent the reduction in peak load of a district system from a simple sum 20 

up of peak loads from individual buildings. For a theoretical analysis, a total of 144 21 

load profiles of residential buildings were created in the dynamic building simulation 22 
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package IDA ICE, and the PLR reached 15%. Lu et al. [11] established a model to 1 

verify that the power supply can be adjusted according to HVAC's hourly load for a 2 

better grid load balancing. Using a robust database of monthly consumption, Derenski 3 

et al. [12] examined electricity and natural gas consumption intensity for hundreds of 4 

schools in Los Angeles County, and its relationships to key structural and categorical 5 

characteristics, including size, geography and school type. Corgnati et al. [13] have 6 

used a statistical model to predict energy consumption of 120 schools in Turin, Italy, 7 

in order to establish performance indicators on heating energy consumption as 8 

baseline values for heating supply contracts.  9 

A building energy management system contains large amount of operational 10 

information for buildings, and GIS (Geographic Information System) is an effective 11 

tool for analyzing building loads and energy consumption characteristics in district 12 

and urban scales. Luca et al. [14] investigated the electricity consumption of big 13 

consumers in southern Canton Ticino, Switzerland, to verify if there was a significant 14 

district cooling demand, and the possible district cooling connections between the 15 

consumers and the utilities were selected and mapped by GIS, as well as density of 16 

electricity consumption and peak power. Giuliano Dall’O et al. [15] have developed 17 

a database for building energy consumption and mapped the energy consumption of 18 

an Italian city on a GIS platform. Howard et al. [16] selected New York as a case study 19 

and established a statistical model based on a government database. The model was 20 

capable of estimating air-conditioning and domestic hot water loads for different 21 

building types in the city. The GIS platform can show the spatial differences of 22 
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building loads in the urban scale, and can also be used to guide formulation of energy 1 

policies with contributions from model predictions. Utilizing the multi-linear 2 

regression function of ARC GIS, Ma et al. [17] inserted missing values in the building 3 

information database and managed building information, such as shape coefficient 4 

and energy consumption per unit area, on the GIS platform. Quan et al. [18] used the 5 

GIS platform for data processing and building energy system modeling. In their study, 6 

Manhattan was used as a case study to analyze the regional spatial and temporal 7 

differences in building energy usage. 8 

According to the above literatures, existing studies indicated that: 1) from the 9 

perspective of data sources, building information data used in existing studies were 10 

either simulation data or monthly measured data, and there was a lack of high-11 

resolution data such as daily and hourly data. Therefore, it is impossible to perform 12 

in-depth analysis on dynamic characteristics of buildings; 2) in terms of index systems 13 

and analysis methods, existing indices were very simple and unitary, and could not 14 

address the regional load characteristics amongst district buildings at the full scale. 15 

Most existing studies focused on the magnitude of the building load only, such as 16 

monthly load characteristics, i.e. maximum value, minimum value, average value and 17 

standard deviation, and very few studies have analyzed coincidence factors. 18 

Additionally, no index system and methods are currently available to reveal the 19 

coupling relationship between the loads of single buildings and the total district load, 20 

as well as the contribution of single buildings to the district scale. Moreover, existing 21 

studies using GIS systems were mainly for establishing district building performance 22 
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database and for analyzing and displaying building attribute data. They did not 1 

effectively combine comprehensive analysis of district building load characteristics 2 

and space-time visualization; 3) building types investigated in existing studies were 3 

mainly from residential communities, so the analyses could not well reflect the 4 

diversity in building types, as well as its impact on the district load.  5 

To address the above mentioned issues, this study established a GIS-based index 6 

system, aiming to comprehensively reveal the temporal dynamic characteristics, load 7 

fluctuation characteristics and spatial distribution characteristics of district load, as 8 

well as coupling relationships of power loads for heating and cooling between 9 

individual buildings and the entire district. Using the principal component analysis 10 

method, the multi-criteria index system can well identify buildings that have 11 

significant impact on the district power operation. The work mentioned here can be 12 

used to serve energy-saving renovations, optimal operation and management of space 13 

heating and cooling systems, as well as district power dispatches. Finally, considering 14 

the high variation of university buildings, a university campus has been selected as a 15 

case study, and the developed index system was used to analyze spatial-temporal 16 

characteristics of the power load of space heating for all buildings in the campus, 17 

based on field monitored data from the campus energy monitoring platform. 18 

 19 

2. Development of the Spatial-temporal Characteristics Analysis Method for 20 

Managing Power Loads of space heating/cooling in District Buildings 21 

Fig. 1 shows the proposed analysis method regarding to spatial-temporal 22 

characteristics of power loads for heating/cooling district buildings. Firstly, from the 23 
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perspective of time dynamic characteristics, load fluctuation characteristics and 1 

coupling relationships between the loads of single buildings and the total district load, 2 

an index system for analyzing the power load characteristics of heating and cooling 3 

systems for buildings within the district was established. Using this index system, both 4 

power load characteristics of space heating/cooling in individual buildings and the 5 

coupled power load characteristics of individual buildings within the entire district can 6 

be analyzed. Using the GIS platform, the spatial distribution characteristics of district 7 

loads could be clearly visualized. The differences in both time and space among various 8 

types of buildings can be very useful for power deployment within the district. Finally, 9 

using the principal component analysis method, buildings with significant contributions 10 

to the overall district load would be identified, according to their load characteristics. 11 

 12 

Fig. 1. Spatial-temporal characteristics analysis method of power loads for 13 

heating/cooling in district buildings 14 

 15 

2.1. An index system for analyzing power load characteristics of space heating/cooling 16 

in district buildings 17 
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An index system representing characteristics of district power loads for space 1 

heating/cooling is shown in Table 1, based on a comprehensive literature review [3-12, 2 

19]. When analyzing power load characteristics, load level needs to be firstly identified. 3 

Mean hourly power load is a basic index to assess the power load magnitude, while 4 

peak load is important for determining district power supply capacity. Seasonal power 5 

consumption intensity is an important index for evaluating energy consumption of 6 

space heating. Therefore, in this system, load level was determined by three indices, 7 

namely, daily peak load, daily average load and seasonal power consumption intensity. 8 

Besides load level, another main feature of power loads is load fluctuation, as it can 9 

provide useful information for equipment operation optimization, power grid 10 

dispatching and peak load shaving. Four indices, i.e. daily peak-to-valley difference 11 

ratio, daily load rate, weekly imbalance rate and seasonal load rate, therefore, would be 12 

identified to analyze load fluctuations at different time periods. Daily peak-to-valley 13 

difference rate could be used to represent load fluctuation within a day, with a larger 14 

value for a greater load fluctuation. Daily load rate reflects the balance of load 15 

distributions during the day, with a larger value for more evenly distributed load during 16 

the day. Weekly imbalance rate depicts changes in daily peak load during the week, 17 

with a greater value for a smaller load fluctuation during the week. Seasonal load rate 18 

could be used to analyze volatility of hourly load throughout the heating/cooling season, 19 

with a larger value for a smaller seasonal load fluctuation. The above two types of 20 

indices can reflect load size and its variation features for both individual buildings and 21 

the whole district from the perspective of time dimensions. Besides this, it is also 22 
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important to decouple the relationships between the loads of individual buildings and 1 

the total district load. Coincidental rate and diversity factor are two important indices 2 

to reflect the degree of load coupling of individual buildings and the district. The 3 

coincidental rate is the ratio of individual building load at the moment of district peak 4 

load to its own peak load. It is used to characterize the consistency between the peak 5 

load moment of each building and the district peak load moment. The larger the value 6 

is, the more consistent the two peak load moments are, giving a higher degree of the 7 

coupling between the two. The diversity factor is the ratio of the total peak load of each 8 

building to the district peak load. The smaller the value is, the more concentrated the 9 

peak load time of each building is, and the greater the fluctuation of district load is. 10 

Regarding to this index, a higher value indicates the energy consuming behavior in each 11 

building varies larger in time, with smaller district load fluctuations accordingly. 12 

 13 

Table 1: An index system to analyze power load characteristics of space 14 

heating/cooling in district buildings 15 

Categories No. Indices  Index definitions 

 

 

 

Load level 

I Daily peak load  
Maximum hourly power load in the typical 

day of the heating/cooling seasons 

II 
Daily Average 

Load 

Mean hourly power load in the typical day of 

the heating/cooling seasons   

III 

Seasonal power 

consumption 

intensity  

Total power consumption per unit area 

during the heating/cooling  seasons 

Load 

fluctuations 

IV 

Daily peak-to-

valley difference 

rate 

The ratio of the difference between the 

maximum and the minimum hourly power 

loads to the maximum hourly value in the 

typical day 

V Daily load rate  
The ratio of mean hourly load to the 

maximum hourly load in the typical day 
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VI 
Weekly 

imbalance rate  

Ratio of the average of the daily maximum 

hourly power load to the maximum hourly 

power load in the typical week 

VII 
Seasonal load 

rate  

Ratio of average hourly power load to the 

maximum value of the heating/cooling 

seasons 

 

Load 

coupling 

relationship  

VIII 
Coincidental 

rate  

The ratio of individual building load at the 

moment of district peak load to its own peak 

load. 

IX Diversity factor   

Ratio of the sum of the maximum hourly 

power load of each building to the maximum 

hourly power load of the district 

 1 

2.2. Analysis on spatial characteristics of power loads of space heating/cooling in 2 

district buildings using the GIS system 3 

GIS systems are a kind of data management system with professional spatial forms. 4 

The GIS technology integrates map visualization effects and geographic analysis 5 

functions with general database operations, to provide functions like data storage and 6 

query, statistics, analysis, display and forecasting. Spatial location data, attribute feature 7 

data and time domain feature data constitute the three basic elements of geospatial 8 

analysis. Making the best use of a large number of buildings within a district and the 9 

huge amount of field monitored power load data for space heating/cooling, it is a robust 10 

way to establish a district building model within the GIS system, which can 11 

instantaneously display time-domain characteristics of power loads and provide basic 12 

information for district power dispatch and operations. 13 

 14 

2.3. Selection of key buildings using principal component analysis 15 

The indices proposed in this study for identifying power load characteristics of 16 

space heating/cooling included load level, load fluctuation and coupling relationships 17 
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between the loads of single buildings and the total district load. The three types of 1 

indices have their own emphases and the information reflected by the indices must be 2 

analyzed together so as to fully reveal actual characteristics of district loads. Using the 3 

principal component analysis method [20], a set of complex correlation variables (i.e. 4 

the above load characteristic indices) were converted into a few independent variables 5 

through linear combinations. In this way, information provided by these indices could 6 

be maximized by eliminating overlapped information and leaving major indices for a 7 

detailed analysis. 8 

 9 

3. Data Acquisition and Process  10 

3.1. Case study 11 

The selected university campus was located in a climate with hot summer and cold 12 

winter in China. The annual precipitation level was high with limited solar radiation. 13 

Average annual temperature was varying between 15.9°C and 17.0°C. For summer, 14 

the outdoor design temperature was 31.6°C, with relative humidity of 64%, and for 15 

winter, the outdoor design temperature was -2.4°C, with relative humidity of 76% [21]. 16 

It was a comprehensive university with a total of seven campuses located in different 17 

cities, and this study has selected one campus for the case study. The campus mainly 18 

contained four types of buildings, i.e. teaching buildings, research buildings, offices 19 

buildings and dormitories, with a total building area of 255,724m2. Detailed 20 

information about the investigated buildings is provided in Table 2. Electricity is the 21 

sole energy resource for all the space heating and cooling systems in these buildings. 22 
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Table 2: Buildings under investigation 1 

Buildings 
Total area 

(m2) 

Year of 

constructio

n 

Heating and cooling 

systems 

Heating and 

cooling area 

(m2) 

Building 

types 

A 15269 2007 Split heat pump 10180 
Academic 

bldg. 

B 20511 2005 VRV 12780 
Academic 

bldg. 

C 37500 2001 Split heat pump/VRV 11880 
Academic 

bldg. 

D 21157 2006 Split heat pump 14750 
Teaching 

bldg. 

E 40795 2001 
Centralized all air 

System 
18799 

Teaching 

bldg. 

F 37500 2001 

Split heat 

pump/Centralized heat 

pump system 

11435 

Academic 

bldg. 

G 14000 2004 VRV 8250 Office bldg. 

H 46592 2006 VRV 24300 
Academic 

bldg. 

I 5600 2002 Split heat pump 2088 Dormitory 

J 5600 2002 Split heat pump 2088 Dormitory 

K 5600 2002 Split heat pump 2088 Dormitory 

L 5600 2002 Split heat pump 2088 Dormitory 

 2 

3.2. Data acquisition and processing methods 3 

The university has installed a building energy monitoring platform on the campus. 4 

From 2008, the electricity used for space heating and cooling has been monitored and 5 

recorded hourly for each building within the campus. This study used hourly electric 6 

load data of space heating collected within a whole winter period between October 7 

2016 and March 2017. 8 

The processing of raw data exported from the energy monitoring platform 9 

revealed the following types of outliers [22]: 10 

(1) Short-term continuous zero values: this was often due to power-off caused by 11 
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maintenance, monitoring equipment failures etc. ; 1 

(2) Individual zero value: a single zero value occurred in consecutive non-zero 2 

values, which may be due to data transmission failures; 3 

(3) Load glitches: a sudden increase or decrease of adjacent values, may be caused 4 

by a failure of monitoring equipment or data processing error; 5 

(4) Consecutive mutations: the value increases or decreases over a continuous 6 

period of time. 7 

The existence of abnormal values will cause deviations in the analysis results. 8 

Because of the large sample size of this study, it was impossible to filter outliers 9 

manually. To tackle this, the Local Outlier Factor (LOF) [23] method was adopted to 10 

identify and process existing outliers in the raw data for this study. The LOF method 11 

is an outlier monitoring algorithm proposed by Breunig, on the basis of data density 12 

differences. When using this method, the reachability distance of two data points q, p, 13 

defined as reach_distk(q,p), is calculated by Equation (1), 14 

reach_distk(q,p)=max｛distk(p),dist(q,p)｝           (1) 15 

Where, distk(p) is the K distance between data point p and its kth nearest data; dist(q,p) 16 

is the Euclidean distrance; and dist(q,p)≤ distk(p).  17 

The reciprocal of the average reachable distance of the defined data q to data k is 18 

the local reachable density. Then the local reachable density of point q, namely lrdk 19 

(q), is, 20 

                 𝑙𝑟𝑑𝑘(𝑞) =
𝑘

∑ 𝑟𝑒𝑎𝑐ℎ—𝑑𝑖𝑠𝑡(𝑞,𝑝)𝑝∈𝐾𝑁𝑁(𝑞)
                    (2) 21 

Where KNN(q) is the k-adjacent set of point q. 22 
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Finally, the outlier degree of point q, namely 𝐿𝑂𝐹(𝑞), is the average of the ratio 1 

of the k-adjacent reach density of q to the reachable density of point q, and the 2 

equation is as follows, 3 

                      𝐿𝑂𝐹(𝑞) =
∑

𝑙𝑟𝑑𝑘(𝑞)

𝑙𝑟𝑑𝑘(𝑝)𝑝∈𝐾𝑁𝑁(𝑞)

𝑘
                     (3) 4 

If the 𝐿𝑂𝐹 value is much bigger than 1, it means that the density of point q is 5 

very different from the overall data density, and data point q is considered as an outlier. 6 

The closer to 1 the 𝐿𝑂𝐹 value is, the more normal the point q is.  7 

Based on the calcuation results of outlier degree of the data in this case study, 8 

existing outliers in the raw data were identified by the rule that LOF is larger than 3. 9 

For those continuous zero values appearing in the data, they were replaced by the 10 

energy use data under similar meteorological conditions. For other abnormal values, 11 

they were corrected by linear regressions. 12 

 13 

4. Data Storage and Calculation of District Power Loads of Campus Buildings in 14 

the GIS System 15 

As one type of GIS systems, ArcGIS has the capability of storing data, analyzing 16 

data and then visualizing the results. All kinds of data could be imported into the 17 

ArcGIS, and be categorized and stored with concept of layers. For example, the 18 

building with its geographic coordinates and geospatial information can be imported 19 

into the ArcGIS as one layer, and data regarding to the building’s performance and 20 

electricity use can be imported into the ArcGIS as another layer. These data can be 21 

considered as attributes for different buildings, expressed as attribute tables, where 22 
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datasets could be integrated, transformed and aggregated. By joining or uniting 1 

datasets with common characteristics, data for the same kinds of buildings could be 2 

integrated into one single table. Data transformation and aggregation including 3 

calculation or statistics are necessary steps to analyze the collected preliminary data, 4 

and the processed results could be created as new attributes to be visualized through 5 

the ArcGIS.  6 

All geospatial information for the buildings within the selected university campus 7 

has been imported into the ArcGIS. After filtering collected data for heating 8 

consumption, hourly electricity consumption for space heating all campus buildings 9 

were imported and stored into the ArcGIS as well. In Fig. 2, the original hourly data 10 

measured from October 2016 to March 2017 for the electric load of space heating 11 

were stored in the table and were then analyzed by ‘summary statistics’. Therefore, 12 

the electric load of space heating in any hour during the measurement period could be 13 

spatially displayed for all buildings in the ArcGIS. What is more, the indices discussed 14 

in Part 2.1 were also calculated by either built-in functions or simple programming in 15 

the ArcGIS based on the corrected data measured from the buildings. In this situation, 16 

both spatial distribution and dynamic variation of the electric loads of space heating 17 

for all campus buildings under investigation could be visualized, combined with the 18 

developed index system and GIS technic.  19 

 20 
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 1 

Fig. 2. The storage and analysis interface of original data in the ArcGIS. 2 

 3 

5. Analysis of Spatial-temporal Characteristics of Space Heating Electric Load 4 

for all Campus Buildings 5 

The GIS system stored all corrected raw hourly data of electricity consumption by 6 

individual buildings, for the whole winter period under investigation. As a case study 7 

to demonstrate the spatial-temporal characteristics of electric load of space heating in 8 

campus buildings, typical-day data were selected for the index analysis in this part. 9 

The date with maximum hourly electric load in the heating season was selected as a 10 

typical day, and the week with the typical day was defined as a typical week to 11 

represent the building’s maximum load level in the entire heating season. To exclude 12 

extreme values caused by extreme weather conditions and accidental factors, The slip 13 

averaging method is used to calculate the maximum load in the heating season, which 14 
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was defined as the maximum of the rolling average of three-hourly loads [24]. 1 

The slip averaging method considers n data and uses the mean value of adjacent 2 

m data (m=2n+1), namely 𝑓𝑛, to replace the original data of 𝑦𝑛, and compose a new 3 

dataset noted as 𝑁𝑓 , so as to effectively eliminate errors in the data, as shown in 4 

Equations (4) - (6) [24].  5 

                             N =｛yn｝                                          (4) 6 

                                   𝑓𝑛 =
1

2𝑛+1
∑ 𝑦𝑖

𝑖+𝑛
𝑖−𝑛                                       (5) 7 

                      Nf =｛fn｝                             8 

(6) 9 

 10 

5.1. Characteristics of electric load levels for space heating 11 

The index system detailed in Section 2 was used to analyze the electric load 12 

characteristics of space heating for campus buildings, and results were visualized 13 

using the GIS technology, as shown in Fig. 3 to Fig. 5.  14 

Fig. 3 depicts the campus buildings’ daily peak electric load for heating in the 15 

winter typical day. The daily peak electric loads of academic buildings were much 16 

higher than other building types, and for Buildings H, C, F, and B the values were 17 

418.7kW, 265.38kW, 259.85kW, and 254.44kW respectively; the Office Building G 18 

reached 209.41kW; The Teaching Buildings E and D had values lower than those of 19 

the first two types of buildings, with 154.79kW and 79.27kW respectively; the daily 20 

peak loads of dormitories were the lowest, with values between 98.19kW and 21 

53.19kW.  22 

Fig. 4 analyzes the campus buildings’ daily average electric load for heating in the 23 

winter typical day. It seems like that the average daily loads of different types of 24 
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buildings differed significantly. Academic Buildings had a mean value of 164 kW; 1 

Office Building went up to 114.96kW; Teaching Buildings and Dormitories had lower 2 

mean values, which were 65 kW and 36 kW respectively. Both daily average electric 3 

load and peak load for heating are mainly related to the installed capacity, the hourly 4 

usage rate and the types of space heating systems, with the installed capacity also 5 

related to the floor area of the buildings. Larger floor area normally needs larger 6 

installed capacity. The centralized heat pump system includes both water and air 7 

systems, besides heating sources, and hence the electric load was higher than that of 8 

split heat pumps. The investigated academic buildings usually have larger floor area 9 

and centralized heat pump system, and these resulted in their higher daily average 10 

electric load and higher peak load. On site investigations also found that the internal 11 

heat gain in winter in teaching buildings was high, due to their high occupancy density; 12 

and the students were also used to wear much clothes in winter; the two reasons led 13 

to the lower hourly usage rate in teaching buildings, and hence the two indices were 14 

found to be relatively lower for teaching buildings. Dormitories also had low values 15 

due to their smaller floor area and installed split heat pump systems. 16 

Fig. 5 depicts the seasonal electricity consumption intensity of campus buildings 17 

in winter. Academic buildings had the highest electricity use intensity in winter, with 18 

the mean value ranging between 28.91 and 16.96 (kW·h)/m2, followed by office 19 

buildings. The electricity consumption intensity of dormitories had values between 20 

19.17 and 13.88 (kW·h)/m2, lower than the first two types. The lowest value was 21 

found for teaching buildings, with electricity use intensity of 6.87 (kW·h)/m2 and 3.55 22 
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(kW·h)/m2 for Buildings E and D, respectively. The difference in the electricity use 1 

intensity was obvious among different building types, but was relatively smaller 2 

among the same type of buildings. Reasons behind may be academic buildings had 3 

the longest operational time and high comfort level, controlled by occupants 4 

themselves, leading to their highest energy consumption. Electricity consumption 5 

from dormitories was low because students paid their electricity bills by themselves, 6 

which may lead to a more economical use of energy. Teaching buildings had the 7 

lowest energy consumption, which may because of their limited use of heat pumps 8 

and shorter usage in winter due to the winter holiday. Additionally, some departments, 9 

such as the logistics department, have installed central management systems for 10 

heating their teaching buildings, and this measure effectively helped to avoid energy 11 

waste. 12 

In summary, according to the above three indices, the level of electric load of space 13 

heating was the highest for academic buildings, followed by office buildings. The 14 

electricity consumption intensity of teaching buildings was lower than that of 15 

dormitories, but its daily peak load and daily average load were higher than those of 16 

dormitories. This reflects that although the peak load of teaching building was high 17 

when being used, the electric consumption intensity for the entire space heating season 18 

was the lowest among all building types, due to the limited use in the winter vacation. 19 

Therefore, analysis based on electric consumption intensity only cannot effectively 20 

determine the building’s load level. The identification work should consider other 21 

indices as well. 22 
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 1 

 2 

Fig. 3. Daily peak load of space heating in campus buildings in winter. 3 

 4 

Fig. 4. Daily average load of space heating in campus buildings in winter. 5 

 6 

 7 
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Fig. 5. Seasonal electricity consumption intensity of space heating in campus 1 

buildings in winter. 2 

 3 

5.2. Characteristics of space heating electric load fluctuation of campus buildings 4 

The characteristics of electric load fluctuation of space heating for campus 5 

buildings are shown in Fig. 6 to Fig. 9. 6 

The daily peak-to-valley difference rate was used to reflect the daily load 7 

fluctuation, with a bigger value for a greater load fluctuation. Fig. 6 analyzes the daily 8 

peak-to-valley difference ratio of electric load of space heating for the investigated 9 

campus buildings. Ranked according to the index of daily peak-to-valley difference 10 

ratio, a descending order of the buildings in winter was obtained, i.e. domitories, 11 

teaching buildings, office buildings and academic buildings. The daily peak-to-valley 12 

difference rate of dormitories was close to 1.00, and Dormitories L, K, J, and I had 13 

values of 1.00, 1.00, 0.99 and 0.93, respectively. This is mainly because students 14 

would reduce the use of heat pumps by wearing more clothes in winter to reduce 15 

energy consumption and save money, leading to a winter peak-to-valley difference of 16 

nearly 1.00. The values for Teaching Buildings D and A were 0.88 and 0.85; Office 17 

Building G was 0.80; Academic Buildings F, E, H, C and B were 0.83, 0.79, 0.77, 18 

0.71 and 0.56, respectively. The operational mode and outdoor air temperature had 19 

important influences on the peak-to-valley difference in buildings. Out-of-usage 20 

during the nighttime for teaching buildings caused sudden decrease in space heating 21 

electric load to nearly zero, hence resulting in a significant peak-to-valley difference. 22 

In dormitories the difference between the daily peaks and valleys in winter was high 23 
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as well, and the electric load fluctuations of space heating in dormitories was varying 1 

with the time. 2 

The daily load rate reflects the uniformity of the daily load, with a larger value for 3 

a more uniform hourly load distribution within a day. Fig. 7 analyzes the daily electric 4 

load rate of heating systems in the campus buildings in winter. In all types of buildings, 5 

the daily electric load rate of academic buildings in winter was highest, with values 6 

between 0.74 and 0.57, whereas the fluctuation of electric load was smallest. The 7 

value of Office Building G was 0.55; teaching buildings and dormitories were low as 8 

well, ranging between 0.53 and 0.42. Academic buildings showed high values, and 9 

teaching buildings and dormitories showed low daily load rates, and the reason is 10 

similar to that for the peak-to-valley difference rate. 11 

The weekly imbalance rate reflects the volatility of the maximum load for each 12 

day of the week. The greater the value is, the smaller the daily peak load fluctuation 13 

in this week is. Fig. 8 analyzes the weekly imbalance rate of electric load for space 14 

heating in the investigated campus buildings. The imbalance rate for research 15 

buildings was the highest, ranging from 0.85 to 0.71; Office Building G reached 0.78; 16 

dormitories and teaching buildings were slightly lower, i.e. between 0.76-0.64 and 17 

0.74-0.65, respectively. The variance of daily loads in one week is related to the 18 

operation schedules in different days, and the load difference between weekdays and 19 

weekends has become an important factor affecting this index. Various types of 20 

campus buildings had different operational schedules. Academic buildings were 21 

always occupied with researchers and graduate students, and many of them had 22 
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additional work during the weekends, so the load difference between weekdays and 1 

weekends was smaller than other building types, hence with small load fluctuation but 2 

high weekly imbalance rate. The load of teaching buildings was high in weekdays, 3 

but reduced significantly during weekends. Therefore, teaching buildings had lower 4 

weekly imbalance rate. 5 

The seasonal load rate reflects the electric load fluctuation for the entire space 6 

heating season. The larger the value is, the smaller the volatility is. Fig. 9 analyzes the 7 

seasonal load rate of electric load for space heating in the investigated campus buildings. 8 

Office buildings and academic buildings had high seasonal load rates and small 9 

fluctuations in electric load of space heating. Among them, Office Building G had 10 

maximum seasonal load rate, which was 0.84, and Academic Buildings A, H, B, F and 11 

C had seasonal load rates of 0.83, 0.82, 0.82, 0.78 and 0.72, respectively. The winter 12 

load rates for Teaching Buildings E and D were 0.73 and 0.67, respectively, and the 13 

values for dormitories were between 0.62 and 0.54. The difference in seasonal load 14 

rates for the same type of buildings was not significant in winter. The seasonal load rate 15 

is related to the operation of space heating systems in the heating season, affected by 16 

both duration of usage and hourly load. Comparing to the other two types of buildings, 17 

both hourly usage rate and usage period of heat pumps in research buildings and office 18 

buildings were higher in winter. Researchers and students, especially postgraduates, 19 

often had shifts at night and long-time work even in the winter holiday period, with a 20 

requirement of using heat pumps to provide comfortable indoor environment. Some 21 

scientific research studies needed to be conducted 24 hours a day, resulting in long-time 22 
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usage for space heating. All of these led to the relatively smaller fluctuations in hourly 1 

load of the space heating. Teaching buildings and dormitories had either low usage rate 2 

or short usage period or both during the winter vacation, resulting in a low seasonal 3 

load rate. 4 

Based on the above analyses, it can be found that the fluctuation of electric load for 5 

space heating is highly correlated with the operational modes of the building and its 6 

heating systems. Among the four types of campus buildings investigated, academic 7 

buildings and office buildings had smaller daily, weekly and seasonal electric load 8 

fluctuations, comparing to teaching buildings and dormitories.                 9 

  10 

 11 

Fig. 6. Daily peak-to-valley difference ratio of space heating in campus buildings in 12 

winter. 13 
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 1 

Fig. 7. Daily load rate of space heating in campus buildings in winter. 2 

 3 

Fig. 8. Weekly imbalance rate of space heating in campus buildings in winter. 4 

 5 

 6 

Fig. 9. Seasonal load ratio of space heating in campus buildings in winter. 7 
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 1 

5.3. Coupling characteristics of electric load of individual buildings to total district 2 

load 3 

The coincidental rate reflects the occurrence consistency of the peak electric load 4 

of space heating for individual buildings and the peak district electric load of space 5 

heating. The larger the value is, the more consistent occurrence of the peak load of 6 

individual buildings and the peak district load. As shown in Fig. 10, the coincidental 7 

rates of Academic Buildings A, F, B, C and H were 0.94, 0.87, 0.86, 0.75 and 0.67, 8 

respectively, in winter, and Office Building G reached 0.90. For Dormitories I, L, K 9 

and J, the values were 0.76, 0.60, 0.57 and 0.54, respectively. The lowest coefficients 10 

were found in Teaching Buildings E and D, which were 0.42 and 0.30. This shows 11 

that the peak loads of academic buildings and office buildings make great contribution 12 

to the district peak load. The load reduction of these two types of buildings would 13 

have larger effect on reducing the district load and installation capacity of power grid. 14 

On the contrary, dormitories and teaching buildings helped to shave the peak district 15 

heating load. 16 

During the winter period, the measured peak load on the campus was 1874kWh, 17 

while the sum of peak loads from each building was 2121kWh, with a diversity factor 18 

of 1.13 for winter. 19 
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  1 

Fig. 10. Coincidental rate of campus buildings in winter. 2 

 3 

6. Selection of Key Campus Buildings Using Principal Component Analysis 4 

6.1. Analysis method 5 

Based on the analyzed electric load characteristics of space heating from campus 6 

buildings, the principal component analysis method was used to identify key buildings 7 

with big influences on the district load, and these buildings would deserve more 8 

attentions for energy-saving renovation, optimization of operations and district power 9 

dispatch. 10 

In the principal component analysis method, it is assumed that there are n samples 11 

and j variables (j<n), and the original data matrix, X=[X1, X2, X3, ..., Xj], consists of j 12 

vectors [19]. The covariance matrix of X is noted as Σ, and the eigenvalues of the 13 

covariance matrix are named λ𝑖. Arrange the eigenvalues in a descending order, i.e. 14 

λ1≥λ2≥λ3……≥λj≥0, and their corresponding eigenvectors are 𝑒𝑖
`, i=1,2,…,j.  15 

Then a linear combination could be proposed, as defined in Equation (7), 16 

                        PCi=X𝑒𝑖
`     i=1,2,…,j            (7) 17 
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PCi is the i𝑡ℎ principal component, and its value is the score of the i𝑡ℎ principal 1 

component. 𝑒1𝑖 , 𝑒2𝑖 , 𝑒3𝑖 ..., 𝑒𝑗𝑖  are the loads of the i𝑡ℎ  principal components 2 

respectively, and these loads form the load vector 𝑒𝑖
` = (𝑒1𝑖, 𝑒2𝑖, 𝑒3𝑖. . . , 𝑒𝑗𝑖)𝑇 . The 3 

principal components are arranged in a descending order corresponding to the values 4 

of the eigenvalue of λ𝑖, namely the first principal component, the second principal 5 

component, and the i𝑡ℎ principal component. 6 

Basic principles of the main component analysis method are: 1) using the z-score 7 

(zero-mean normalization) method, the values of X are normalized, so as to eliminate 8 

the influences of dimensions and magnitudes; 2) finding the dimensionless correlation 9 

coefficient matrix R; 3) obtaining the eigenvalues, eigenvectors and contribution rates 10 

of R; 4) determining the number of principal components based on the amount of 11 

information contained in each principal component. The variance of the linearized 12 

combination is considered as an index to evaluate the amount of information 13 

contained within it. The larger the variance is, the more information the principal 14 

component contains. Therefore, PC1, PC2, ..., PCi are sorted in the descending order 15 

of variances, and are referred to as the first principal component, the second principal 16 

component, and the i𝑡ℎ principal component. The x% criterion judges the required 17 

number of principal components according to the threshold accumulated by the 18 

interpretation ratio of the principal components’ variances [25]. According to 19 

empirical evidence, when the threshold is 80%-85%, the extracted principal 20 

component can retain enough information in the original variables. In this study, the 21 

number of principal components was determined when the threshold value reached 22 
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more than 80%; 5) explaining the meaning of the principal component factors, which 1 

are usually determined by indices with large weights; 6) calculating the score of each 2 

principal component, which is the main component score for each building. In the 3 

model used in this study, the samples were the buildings under investigation, and the 4 

variables were the indices, and the index values for each building formed the matrix 5 

X. For the overall evaluation of the building load characteristics, this study has 6 

adopted the Prcomp function in the R software to calculate the PC, which is a linear 7 

combination of evaluation indices. According to the x% criterion, the number of main 8 

components extracted in winter was 2, with a cumulative value of proportion higher 9 

than 80%.  10 

 11 

6.2. Analysis results  12 

The load of each principal component and the score of each building were 13 

calculated from the index values, and the biplot of the principal components in winter 14 

is shown in Fig. 11. In this figure, the bottom axis and the left axis are the first and 15 

the second principal component score axes, respectively, and the top axis and the right 16 

axis represent the load values of the first and the second principal components. Letters 17 

A-L represent individual buildings under investigation. Its projections on the top axis 18 

and the right axis indicate the scores of the building as the first and the second 19 

principal components. The red Roman letters and arrows represent each index. The 20 

projections of the arrow on the bottom axis and the left axis are the load values of the 21 

indices in the first and the second principal components. A positive load indicates that 22 
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the principal component is positively correlated with the index, and a negative value 1 

means the opposite. The influences of different indices on the principal components 2 

is measured by the absolute values of the load values of the indices, that is, the distance 3 

from the load value to the origin. The closer to the origin, the smaller the influence of 4 

the index value on the sample building’s score. 5 

 6 

Fig. 11. Biplot of principal components in winter. 7 

Fig. 11 shows the biplot of principal components to reveal the electric load 8 

characteristics of space heating for campus buildings in winter. It shows that the score 9 

of first principal component was positively correlated with the daily peak-to-valley 10 

difference rate, and was negatively correlated with other indices such as the seasonal 11 

load ratio and the weekly imbalance ratio. The greater the daily peak-to-valley 12 

difference rate was, the smaller the seasonal load ratio and the weekly imbalance rate 13 

were, the greater the load fluctuation was, and the greater the score of the first 14 

principal component was. Therefore, the first principal component could be used to 15 

-4 -2 0 2

-4
-2

0
2

PC1

P
C

2

A

B

C

DE

F

G

H

I

J K

L

-0.6 -0.4 -0.2 0.0 0.2 0.4

-0
.6

-0
.4

-0
.2

0
.0

0
.2

0
.4

III

III

IV

V

VI

VII

VIII



31 

 

reflect load fluctuations. Further analysis found that first principal component scores 1 

were also negatively correlated with daily peak load and daily average load. The larger 2 

the daily peak load and the daily average load were, the higher the load level was, and 3 

the smaller the score of the first principal component was. Considering the score of 4 

each building, Dormitories I, J, K, L and the Teaching Building D had large load 5 

fluctuations and low load levels in winter. Academic Buildings B and H had low 6 

winter load fluctuations and high load levels. 7 

There was a negative correlation between the second principal component and the 8 

indices of seasonal electricity consumption intensity of heating systems in winter, as 9 

well as for the coincidental rate. The absolute load values of the two indicators were 10 

greater than the other indicators, which had greater impact on the second principal 11 

component. The higher the seasonal electricity consumption intensity was, the greater 12 

the coincidental rate was; the larger the contribution of the single building to the 13 

district load was, and the smaller the score of the second principal component was. 14 

Therefore, the second principal component could be used to reflect the contribution 15 

of each single building to the district power load. It can be seen that the Office 16 

Building G and Academic Buildings A and B contributed a lot to the district load in 17 

winter. The Dormitory I within the dormitory group contributed much to the electric 18 

load of space heating in winter, while Teaching Buildings D and E contributed less.   19 

Combining the first and second principal component scores, it could be found that 20 

the Teaching Building D had low power load in winter, large load fluctuation and little 21 

contribution to the district power load. Dormitories J, K and L had large load 22 
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fluctuations and low load levels. Hourly load variance of domotories and teaching 1 

buildings are greatly different from academic buildings and office buildings. The peak 2 

hour of domitories usually ocuurs at night, and teaching buildings still have the 3 

relatively high loads in the evening or even at night, while academic buildings and 4 

office buildings usually have large loads during the daytime. So domitories and 5 

teaching buildings play a role in load shift of the district. Comparing to other living 6 

quarters, the Dormitory I performed a large contribution to the electric load of district 7 

heating in winter, hence some regulations on electricity prices and student behavior 8 

management can be made to encourage the students in the Dormitory I to shift the 9 

energy use behaviors from daytime to the night. The Office Building G contributed 10 

greatly to the district electric load, as it had a high load level in both the whole winter 11 

period and every week, plus a significant daily load fluctuations. Energy-saving 12 

renovation in the building performance and space heating systems are the useful 13 

approaches to reduce the load level, while some energy storage technologies, such as 14 

phace change material, can be also used to to shift the large peak loads. For Academic 15 

Buildings B and H, their space heating load fluctuations were small, but the high load 16 

level had a large contribution to the district space heating electric load in winter. 17 

Hence, the improvement for both envelope performance and the efficiency of space 18 

heating system for the two buildings is meaningful for the reduction of district loads. 19 

Besides that, the operation of some experimental machines in these two buildings can 20 

be moved from the daytime to the night, to realize the effect of 21 

peak shaving and valley filling at a certain degree for the electric load of space heating, 22 
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if there is no need for the staffs to work during the operation period.  1 

 2 

7. Discussion and Conclusions 3 

An in-depth understanding on power load characteristics of space heating and 4 

cooling for various types of buildings has an important role in robust design of district 5 

power supply capacity and optimal operation of district energy supply systems. The 6 

Chinese government has paid a great amount of funding to construct energy use 7 

monitoring platforms for large commercial buildings and campus buildings. 8 

Unfortunately, the collected power load data have not been deeply analyzed yet, and 9 

therefore, the potential contributions from the installed monitoring platforms to both 10 

energy conservation management and energy efficiency retrofit have not been fully 11 

realized. In this study, an index system representing the characteristics of power loads 12 

of space heating and cooling has been developed, covering temporal dynamic 13 

characteristics of building loads, load fluctuation characteristics and load coupling 14 

relationships between individual buildings and the district load. An ArcGIS system 15 

has been used to store and visualize the spatial distribution characteristics of power 16 

loads of space heating and cooling. Using the principal component analysis method, 17 

buildings with significant contributions to the total district load were identified. Using 18 

this energy planning-oriented method, the spatial-temporal characteristics of loads for 19 

a district were revealed to help district power supply and dispatch of power grid. Key 20 

buildings with large loads or large load fluctuations were identified to implement 21 

further energy-saving measures or optimal operation strategies. Combined with this 22 
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method and the energy use monitoring platform in Chinese universities, energy 1 

efficiency management in university campuses could be implemented more 2 

effectively in China.  3 

As a case study, the spatial-temporal characteristics of power load of space heating 4 

for campus buildings in one Chinese university were analyzed. The results 5 

demonstrated that the method developed in this study was able to clearly and 6 

accurately reveal the spatial-temporal characteristics of electric loads of space heating 7 

for the campus buildings under investigation, and identify the contribution of each 8 

individual building to the total district load. Under this condition, through a thorough 9 

use of data collected by the energy use monitoring platform within the campus, the 10 

newly proposed method was considered as a very useful tool to reveal the load 11 

characteristics, and then provide support for energy efficiency management of campus 12 

buildings. Based on the analysis results of load characteristics in the case study, 13 

academic buildings had the highest load level, plus high peak load and coupling of 14 

district peak load. In this type of buildings, some experimental machines would run 15 

continuously and staff/students might also work beyond normal working hours. 16 

Therefore, the electric load fluctuation of space heating in such type of buildings was 17 

smaller, comparing to other types of buildings. High load level was also found in 18 

office buildings. Additionally, as most office buildings investigated in this study were 19 

not running during the nighttime, large load fluctuations were observed. Their peak 20 

loads have shown high degree of coupling with the district peak load. Due to these 21 

characteristics, academic buildings and office buildings had greater impact than other 22 
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building types on both the total and peak electric loads of university campuses, and 1 

should be used as key candidates for implementing energy efficiency measures. High-2 

performance envelope is an effective measure to reduce the space heating energy 3 

consumption, and the use of efficient space heating systems are also suggested. Some 4 

other measures, such as phase change materials, are also helpful to shift the large peak 5 

loads in the two types of buildings above. Dormitories and teaching buildings were 6 

found to have smaller winter load levels but larger load fluctuations. Both types of 7 

buildings have obvious peak-regulating effect on the total district space heating 8 

electric load. Besides that, some regulations can be made from the administrative 9 

perspective to encourage the faculties and students to reduce the electric load of space 10 

heating at the peak time. 11 

To sum up, building types will importantly determine their level of power load, 12 

and the buildings’ operational mode and usage mode of heating systems have 13 

significant impact on their load fluctuations. Peak-shaving effect can be achieved by 14 

changing the energy usage modes of the buildings. Additionally, because the power 15 

load characteristics of space heating are different for various types of buildings, an 16 

appropriate building type ratio would be helpful on reducing the total load and load 17 

fluctuation of a district, hence very important for district energy planning. Fig. 12 18 

presents a comparative analysis of the hourly load of individual buildings and the 19 

hourly load of the total district on one winter day. It reflects the timely differences 20 

between individual buildings and the total district load. Between 7:00-10:00, the 21 

Dormitory J kept a very small space heating electric load with a slightly declining 22 
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trend. The Office Building G, the Teaching Building E and the Academic Building H 1 

had their loads rising, and the hourly district load maintained the same trend as those 2 

of the Academic Building H and the Teaching Building E. After 10:00, the hourly 3 

district load started to decline, but the load of the Academic Building H still kept rising. 4 

From 18:00-20:00, both Academic Building H and Dormitory J had loads with a 5 

slightly rising trend, while the load of both Teaching Building E and Office Building 6 

G decreased, hence keeping the district load steady. The daily load rate for the four 7 

Buildings H, G, E, and J were 0.51, 0.42, 0.46 and 0.30, respectively, with the daily 8 

district load rate of 0.52. It was found that the appearance moments of peak loads for 9 

various types of buildings were not the same, leading to a “filling valley” effect that 10 

can effectively reduce both district load fluctuations and peak load. The overall effect 11 

on the district load by individual buildings was related to both the load level and the 12 

load fluctuation of individual buildings. Additionally, analysis on district load 13 

characteristics should not be sorely based on simple cumulative analysis of data 14 

collected from single buildings, without considering temporal effect. If the district 15 

peak load is obtained by simple add up of peak load of individual buildings, the peak 16 

load estimation will be overestimated. 17 
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 1 

Fig. 12. Comparison of the hourly load of various types of buildings and the total 2 

hourly total load of the district in winter. 3 

 4 

Finally, using the GIS system, the spatial characteristics of district power load can 5 

be effectively stored and visualized. For regions with large load intensity and high 6 

peak load, effective scheduling is required when the power demand is large. Because 7 

the campus scale is still relatively small, this advantage will be more pronounced for 8 

larger administrative divisions or for cities. 9 
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