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Longitudinal spinal cord atrophy in multiple sclerosis using the 

generalised boundary shift integral 

 

ABSTRACT 

Objectives. Spinal cord atrophy is a clinically relevant feature of multiple sclerosis (MS), but 

longitudinal assessments on MRI using segmentation-based methods suffer from measurement 

variability, especially in multicentre studies. We compared the generalised boundary shift integral 

(GBSI), a registration-based method, with standard segmentation-based method. 

Methods. Baseline and 1-year spinal cord 3DT1-weighted images (1mm isotropic) were obtained 

from 282 patients (52 clinically isolated syndrome (CIS), 196 relapsing-remitting MS (RRMS), 34 

progressive MS (PMS)), and 82 controls from eight MAGNIMS sites, on multi-manufacturer and 

multi-field strength scans. Spinal Cord Toolbox was used for C2-5 segmentation and cross-sectional 

area (CSA) calculation. After cord straightening and registration, GBSI measured atrophy based on 

the probabilistic boundary-shift region-of-interest. CSA and GBSI percent annual volume change was 

calculated. 

Results. GBSI provided similar rates of atrophy, but reduced measurement variability than CSA in all 

MS subtypes (CIS: -0.95±2.11% vs. -1.19±3.67%; RRMS: -1.74±2.57% vs. -1.74±4.02%; PMS: -

2.29±2.40% vs. -1.29±3.20%), and healthy controls (0.02±2.39% vs. -0.56 ±3.77%). GBSI performed 

better than CSA in differentiating healthy controls from CIS (AUC=0.66 vs. 0.53; p=0.03), RRMS 

(AUC=0.73 vs. 0.59; p<0.001), PMS (AUC=0.77 vs. 0.53; p<0.001), and patients with disability 

progression from patients without progression (AUC=0.59 versus 0.50; p=0.04). Sample size to 

detect 60% treatment effect on spinal cord atrophy over one year was lower for GBSI than CSA (CIS: 

106 vs. 830; RRMS: 95 vs. 335; PMS: 44 vs. 215) (power=80%; alpha=5%). 



Interpretation. The registration-based method (GBSI) allowed better separation between MS 

patients and healthy controls and improved statistical power, when compared with conventional 

segmentation-based method (CSA), though still far from perfect.  

 

  



INTRODUCTION 

 

Spinal cord atrophy on MRI is a marker of neurodegeneration in multiple sclerosis (MS),1,2 and is 

one of the main substrates of long-term disease progression.3–11 Spinal cord atrophy progresses 

faster than brain atrophy (1.7%/year vs 0.4-0.6%/year), is greater in progressive MS than in the 

relapsing forms of MS, and predicts disability.5,12,13 It is crucial to obtain an accurate and precise 

longitudinal measurement of spinal cord atrophy, because it could be used to monitor disease 

progression and become a primary outcome measure in phase 2 clinical trials with neuroprotective 

therapies, not only in MS, but also in other neurodegenerative disorders.14–17 

 

Spinal cord atrophy is conventionally estimated with segmentation-based methods (e.g., cervical 

cord cross-sectional area (CSA)), applied to volumetric spinal cord images,18 that measure cord 

characteristics at each time point; indirect longitudinal atrophy measurements are obtained by 

numerical subtraction, with relatively-low reproducibility and responsiveness to change.6,19 On the 

contrary, longitudinal brain atrophy measurements are nowadays based on registration-based 

techniques that significantly reduce measurement noise.20 

 

Based on this, we evaluated a registration-based method used for brain atrophy, to measure 

longitudinal spinal cord atrophy; in this method, named generalised boundary shift integral (GBSI), 

atrophy is directly measured from the probabilistic boundary-shift region-of-interest, adaptively 

estimated between two time points.21–23 Therefore, in the present multicentre, multi-manufacturer 

and multi-field strength scan study, we aimed to: (1) compare measurements of spinal cord atrophy 

obtained using GBSI with those obtained with conventional CSA (automatic segmentation with the 

Spinal Cord Toolbox); (2) explore associations between GBSI- and CSA-derived spinal cord 



measurements and MS clinical features; and (3) estimate the sample size needed to detect changes 

in spinal cord atrophy over one year using GBSI and CSA.  



METHODS 

Study design and population 

This is a multicentre, retrospective study, conducted on prospectively collected data from Queen 

Square MS Centre (Magnetic Resonance Imaging in Multiple Sclerosis (MAGNIMS) Collaboration 

(www.magnims.eu) centres. Overall, we included 327 MS patients and 96 healthy controls. The 

London and MAGNIMS cohorts have been reported in previous publications.3,18,24–26 

 

Eligibility criteria were: (i) diagnosis of clinically isolated syndrome or MS according to the 2010 

McDonald Criteria;27 (ii) healthy controls without history of neurological or psychiatric disorders; 

(iii) the presence of at least two volumetric MRI scans (interval between scans was collected), 

acquired with isotropic voxel of 1x1x1mm3; (iv) information on: Expanded Disability Status Scale 

(EDSS) score at each time point,28 subtype of MS (CIS, RRMS and PMS (including both primary and 

secondary progressive MS)),27 age, gender and disease duration (time from clinical onset to baseline 

MRI). 

 

Each participant had provided a written consent for research within each centre. The final protocol 

for the analysis of pseudo-anonymized scans, acquired independently and prospectively in each 

centre, was approved by the European MAGNIMS collaboration and by the local ethics committees. 

 

MRI acquisition and processing 

Dedicated cervical spinal cord 3DT1-weighted images (1x1x1mm3) were analysed. Images were 

acquired in 8 MAGNIMS sites on 1.5 T and 3 T scanners, from different manufacturers and with 

different MRI parameters (Supplementary Material 1). 

 



For calculating CSA and GBSI, masks of C2-5 spinal cord level were obtained for images acquired at 

each time point with Spinal Cord Toolbox, using the routine method known as PropSeg (version 

3.1.1) (FIG 1).29 C2-5 CSA was obtained by averaging all cord cross-sectional areas. For GBSI, we 

followed the previously described steps.22,23,30 Briefly, after straightening the cord at both time 

points, a 3D symmetric and inverse-consistent rigid-only (9 DOF) registration to the half-way space 

between baseline and follow-up images was performed; masks were resampled to the same space 

using linear interpolation and registered to the halfway space. This method does not generate any 

bias between the baseline and follow-up images as the exact same image processing pipeline is 

applied to both time points. The probabilistic boundary-shift region-of-interest was then adaptively 

estimated from baseline and follow-up cord segmentations. The GBSI integral was finally computed 

(FIG 1). 

 

Percent CSA annual change between time points was calculated using the following formula: 

100*[(CSA at follow-up – CSA at baseline)/CSA at baseline)/years between baseline and follow-up 

scans]. Similarly, percent GBSI annual change was calculated using the following formula: GBSI/ 

years between baseline and follow-up scans. Of note, spinal cord atrophy based on CSA is measured 

as the average of the slice-wise 2D edge detection over a fixed cord section/length, hence effectively 

it is a 3D volume divided by its height; whilst GBSI measures the voxel-by-voxel difference in 

intensities between the baseline and the follow-up images, as a 3D volume change. We segmented 

the spinal cord over a fixed cord length (C2-5), and we used the same masks to compute CSA and 

GBSI, thus making the atrophy measurement effectively computed over the same boundary/region 

for both measurements.19 

 



To determine measurement precision, we analysed test-retest data from 9 healthy controls and 9 

MS patients that were re-scanned after having been removed from the scanner and repositioned 

between the scans during the same visit at the Queen Square MS Centre, .31 Images were acquired 

and processed as described above (FIG 1). Measurement error between scans was quantified by the 

coefficient of variation and the median absolute deviation. 

 

Statistical analyses 

Means, medians and proportions of demographics, clinical features and MRI measures (percentage 

spinal cord changes obtained with GBSI and CSA) were calculated for patients (and their subgroups) 

and healthy controls. Differences were evaluated with t-test, Mann–Whitney test, χ2 test or Fisher's 

exact test, as appropriate. GBSI and CSA atrophy progression measurements were compared using 

a paired t-test. 

 

Linear regression models were employed to estimate spinal cord atrophy changes (with GBSI and 

CSA) in different disease phenotypes, when compared with healthy controls (used as reference 

group); age, sex, site of acquisition and disease duration were included as covariates (results are 

presented as adjusted coefficients (Coeff), 95% confidence intervals (95%CI), and p-values). Then, 

we used different disease phenotypes as reference group in the linear regression models, to 

perform direct comparisons between different disease phenotypes (e.g., CIS, RRMS, PMS). 

 

To compare GBSI and CSA in their ability to predict different clinical variables, we employed logistic 

regression models to estimate associations between percentage spinal cord atrophy change 

obtained using GBSI and CSA (independent continuous variable), and different binary clinical 

variables (dependent variable) (e.g., disease subtypes/healthy controls, EDSS progression (which 



was defined as 1 point change if baseline EDSS≤5.5, and 0.5 point if ≥6.0); age, sex, site of acquisition 

and disease duration were included as covariates. Results are presented as odds ratios (OR), 95%CI 

and p-values. Based on this, we obtained areas-under-the-curve (AUC), using GBSI and CSA, in turn, 

as the main explanatory variables; we used bootstrap resampling (1000 repetitions) to calculate 

pointwise confidence intervals for the ROC curve. 

 

Sample sizes required for a hypothetical clinical trial evaluating a neuroprotective medication over 

one year were estimated using CSA and GBSI. Sample size was computed using the formula 𝑛 =

#(%&'%()*),-,

.,
, where n is the required sample size per treatment arm in 1:1 controlled trials, Zα and 

Z1-β are constant (set at 5% alpha-error and 80% power, respectively), σ is the standard deviation 

(from each disease phenotype), and Δ is the estimated effect size.15,20 Effect size was derived from 

adjusted beta-coefficients at linear regression models, estimating spinal cord loss in MS patients, 

when compared with physiologic loss in controls. As such, we assumed that 100% treatment effect 

is theoretically reached when the spinal cord atrophy change in patients is equal to that observed 

in healthy controls. From there, with a conservative approach, we hypothesized a number of effect 

sizes (e.g., 30%, 60% and 90%), that were smaller than the observed difference between MS cases 

and physiologic spinal cord loss in controls.  

 

Stata 15.0 was used for data processing and analysis. Results were considered statistically significant 

when associated with p values <0.05. 

 

  



RESULTS 

Measurement error 

Among healthy controls and MS patients scanned twice during the same session, spinal cord atrophy 

would be expected to be zero. Both GBSI and CSA indeed had overall atrophy rates tending towards 

zero (0.28±3.62% and -0.17±5.39%, respectively), indicating no systematic bias. However, GBSI 

presented with lower random measurement error, when compared with CSA, reflected by a clearly 

lower coefficient of variation (12.92% and 31.70%) and slightly lower median absolute deviation 

(0.21% and 0.25%). 

 

Study population 

Longitudinal spinal cord scans from 327 MS patients and 96 healthy controls were collected. Forthy-

five patients’ scans and 14 healthy controls’ scans were excluded because of either Spinal Cord 

Toolbox failure, likely as a consequence of poor contrast (n=13), wrong voxel size (n=26), wrong 

acquisition parameters (n=10), and artifacts (n=8), or GBSI failure (n=2), mostly from the eldest 

cohorts acquired using 1.5 T scanner (e.g., CIS cohort) (see FIG 2 for the study flow diagram). 

Therefore, scans from 282 patients and 82 healthy controls acquired in 8 MAGNIMS centres were 

included in the analysis (see Supplementary Material 1 for the number of patients per centre and 

acquisition parameters). The demographic and clinical features of patients and healthy controls are 

given in Table 1.  

 

Spinal cord atrophy obtained with CSA and GBSI  

On paired t-test, the percentage spinal cord changes obtained with CSA were similar to those 

obtained with GBSI (p=0.55). 

 



On linear regression models adjusted for age, sex, site of acquisition and disease duration, using CSA 

as main variable of interest, there was a significant decrease in the percentage spinal cord change 

over one year between RRMS (-1.74±4.02%) and healthy controls (-0.56±3.77%) (Coeff=-1.45; 

95%CI=-2.81, -0.10; p=0.03), but not between CIS (-1.19±3.67%) and healthy controls (Coeff=-0.84; 

95%CI=-2.49, 0.80; p=0.31), nor between PMS (-1.29±3.20%) and healthy controls (Coeff=-1.45; 

95%CI=-3.70, 0.80; p=0.21) (FIG 3A). There were no differences in percentage CSA change over one 

year between CIS and RRMS (Coeff=-0.61; 95%CI=-1.95, 0.72; p=0.37), nor between CIS and PMS 

(Coeff=-0.60; 95%CI=-2.73, 1.53; p=0.58), nor between RRMS and PMS (Coeff=-0.00; 95%CI=-1.75, 

1.73; p=0.99), when adjusted for the same covariates. 

 

When using GBSI, overall, the rates of spinal cord decline were similar (or even higher among PMS) 

to those obtained with CSA, but the standard deviations of the measurements were smaller. On 

linear regression models adjusted for age, sex, site of acquisition and disease duration, using GBSI 

as main variable of interest, there was a significant decrease in the percentage spinal cord change 

obtained with GBSI between healthy controls (0.02±2.39%) when compared to: CIS (-0.95±2.11%) 

(Coeff=-1.37; 95%CI=-2.40, -0.33; p=0.01), RRMS (-1.74±2.57%) (Coeff=-1.84; 95%CI=-2.70, -0.99; 

p<0.01), and PMS (-2.29±2.40%) (Coeff=-2.44; 95%CI=-3.87, -1.02; p<0.01) (FIG 3B). Similarly to the 

findings obtained with CSA, no differences were detected in GBSI percent annual reduction between 

CIS and RRMS (Coeff=-0.48; 95%CI=-1.32/0.37; p=0.27), nor between CIS and PMS (Coeff=-1.08; 

95%CI=-2.43, 0.27; p=0.12), nor between RRMS and PMS (Coeff=0.60; 95%CI=-0.60, 1.70; p=0.28), 

when adjusted for the same covariates. 

 

Clinical correlates of CSA and GBSI. 



On logistic regression models adjusted by age, sex, site of acquisition and disease duration, RRMS 

had higher probability of spinal cord atrophy progression on CSA, when compared with healthy 

controls. On GBSI, all MS subtypes (CIS, RRMS and PMS patients) had higher probability of spinal 

cord atrophy progression, when compared with controls. Also, on GBSI, MS patients with EDSS 

progression had higher probability of spinal cord atrophy progression, than those without (Table 2). 

 

CIS patients were better differentiated from controls using GBSI (AUC=0.66; 95%CI=0.57, 0.75), than 

CSA (AUC=0.53; 95%CI=0.43, 0.63) (p=0.03; FIG 4A). RRMS patients were better differentiated from 

controls using GBSI (AUC=0.73; 95%CI=0.66, 0.80), than CSA (AUC=0.59; 95%CI=0.52, 0.66) (p<0.01; 

FIG 4B). PMS patients were better differentiated from controls using GBSI (AUC=0.77; 95%CI=0.68, 

0.86), than CSA (AUC=0.53; 95%CI=0.45, 0.64) (p<0.01; FIG 4C). Patients with EDSS progression 

(n=76) were better differentiated from those without EDSS progression (n=206) using GBSI 

(AUC=0.59; 95%CI=0.52-0.66) than CSA (AUC=0.50; 95%CI=0.43-0.58) (p=0.04; FIG 4D). 

 

Sample size estimates for a neuroprotective clinical trial using GBSI and CSA 

The minimum sample sizes per arm required to detect a 60% treatment effect in one year clinical 

trial (i.e., a 60% reduction in percentage spinal cord change in MS cases when compared with 

physiologic spinal cord loss in controls, adjusted for age, sex, site of acquisition and disease 

duration) were lower for GBSI compared with CSA (CIS: 106 vs. 830; RRMS: 95 vs. 335; PMS: 44 vs. 

215) (power=80%, alpha=5%). Similar results were obtained when estimating the sample size 

required to detect different treatment effects (FIG 5). 

  



DISCUSSION 

 

There have been few clinical trials and observational studies in MS that used spinal cord atrophy as 

an outcome measure, because of the large sample size required when using the available CSA 

method.16,19,32,33 In the present study we applied a standard semi-automatic pipeline for spinal cord 

segmentation using the Spinal Cord Toolbox, and, then, a fully automated registration-based 

technique (GBSI) for spinal cord atrophy to a large, multicentre, multi-manufacturer and multi-field 

strength scan cohort, derived from longitudinal observational studies. The rates of spinal cord loss 

over one year obtained with GBSI were similar to those obtained with CSA, but they were associated 

with lower variability, greater ability to distinguish between MS patients and controls, and more 

robust clinical correlates, thereby holding promise for future MS research on spinal cord imaging. 

Use of GBSI yielded increased statistical power to detect treatment changes, suggesting that future 

treatment trials –particularly those testing neuroprotective agents– could include spinal cord 

atrophy as a primary outcome measure.  

 

CSA and GBSI provided similar rates of spinal cord atrophy in each MS subtype, but CSA yielded a 

larger variability (standard deviation), when compared with GBSI (e.g., in RRMS ±4.02% vs. ±2.57%, 

respectively), implying that GBSI measurements are more precise. Similarly, when images were 

acquired with a scan-rescan fashion, GBSI presented with lower coefficient of variation, when 

compared with CSA, indicating higher precision; the median absolute deviation (0.21%) was similar 

to what has been previously described in the validation of a registration-based method for brain 

atrophy (0.15-0.20% for the Structural Image Evaluation using Normalisation of Atrophy (SIENA)).34 

Of note, a higher percentage of spinal cord decline (and a lower standard deviation) was found in 

PMS when using GBSI than when using CSA (-2.29±2.40% vs -1.29±3.20%), and this was probably 



due to the relatively small sample in this MS subtype, further highlighting the higher measurement 

precision of GBSI. The smaller variability in GBSI-derived measurements may be due to the ability of 

GBSI to deal with partial volume effects, which can lead to the inclusion of tissue outside of the area 

of interest with subsequent segmentation errors, and to the variability when calculating the 

absolute cross-sectional areas. These partial volume effects have less influence on GBSI boundary 

contours, with a consequent smaller variability of the measurements obtained with this 

technique.21,22,35 

 

We found that GBSI allowed a four-fold smaller (and therefore achievable) sample size than that 

obtained with CSA. In a recent review of previous clinical trials in MS,9 differences between treated 

and untreated patients ranged from 0.4% to 1.8%/year spinal cord loss on CSA, in line with a roughly 

60% treatment effect (corresponding to 0.7%/year spinal cord loss). Overall, the sample size 

estimates for spinal cord atrophy measurements with GBSI are of the same order of magnitude as 

those for brain atrophy obtained with registration-based methods.20,36–38 However, monitoring 

spinal cord atrophy could be more clinically relevant than brain atrophy, due to its robust clinical 

correlates.3–5 Spinal cord atrophy occurs since the early stages of MS (e.g., CIS), is more obvious in 

progressive patients than relapsing types of MS, and progresses faster than brain atrophy.3–5 The 

risk of disability progression increases with the rate of spinal cord atrophy,7 accounting for up to 

77% of motor disability, as measured by the EDSS.3–5 In line with this, the percentage spinal cord 

decline measured with GBSI was associated with EDSS progression and with disease subtype, and 

performed better than CSA-derived spinal cord atrophy in detecting more disabled patients. Of 

note, differentiation between healthy controls and MS patients (especially progressive MS) revealed 

better performance of GBSI when compared with CSA, whilst differentiation between patients with 

and without EDSS progression showed similar GBSI and CSA measurements, with CSA tending to 



random prediction of results (AUC=0.50) and GBSI presenting with statistically higher but not 

particularly better predictive value (AUC=0.59). The lack of separation in our study might be due to 

the limited proportion of patients presenting with 3-month confirmed disability progression over 1-

year observation time, and these findings should be confirmed with a longer follow-up in order to 

avoid false positive and negative results. 

 

Limitations of the present study include the short follow-up duration (1.6 years in MS patients), 

meaning that we could not assess the association between spinal cord atrophy and long-term 

disability progression. Previous studies have shown that spinal cord atrophy predicts disease 

progression and conversion from CIS to RRMS over a long follow-up period.39 However, we have a 

priori set our study duration at 1 year in order to obtain estimates for clinical trials and short-term 

observational studies; of note, we obtained annualized atrophy rates in line with pooled estimates 

from 94 studies (1.78%/year),13 and the number of participants per arm was consistent with that 

obtained by other similar studies.20,36,38 We segmented the spinal cord using PropSeg within the 

Spinal Cord Toolbox. The PropSeg tool has already been demonstrated as a robust, accurate and 

fast segmentation method of the spinal cord in both MS patients and controls, compared with other 

segmentation methods (e.g., semi-manual active surface method using JIM).31,40,41 Also, the 

possibility to derive spinal cord GBSI measurements from brain scans needs to be explored.7,19,25,42 

A possible caveat of our study is that good quality images (e.g., dedicated spinal cord 3DT1 images 

with 1mm isotropic voxel) are needed for spinal cord atrophy measurements. We were only able to 

use 86% of the patients whose scans were originally collected in eight experienced imaging centres, 

using slight variations in MRI protocols and field strength. However, there is an initiative to mitigate 

the problem of setting-up a standard high-quality image protocol for spinal cord MRI 

(http://www.spinalcordmri.org - Protocols). In this project, a consensus acquisition protocol has 



been developed and tested in about 30 different sites across the world, for different vendors (GE, 

Siemens and Philips). This protocol is easy to apply and facilitates the adoption curve of spinal cord 

MRI acquisitions. Also, latest software improvements, such as machine-learning based 

segmentation methods (e.g., DeepSeg within the Spinal Cord Toolbox), could further facilitate the 

spinal cord image processing. 

 

In conclusion, in the present longitudinal multicentre, multi-manufacturer and multi-field strength 

scan study, GBSI and CSA provided similar rates of spinal cord atrophy, but the registration-based 

method (GBSI) was associated with lower variability, providing smaller sample size estimates as well 

as a higher significance at differentiating between different MS subtypes and patients with disability 

progression, compared with segmentation-based method (CSA), though still far from perfect. This 

study provides evidence that GBSI should be considered as a precise and reliable tool for calculating 

MS-related spinal cord atrophy in clinical trials and in observational datasets.  
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TABLE 1. Demographic and clinical features. 

Table shows demographic and clinical features of MS and controls. P-values are shown from t-test, 

Mann–Whitney test, χ2 test or Fisher's exact test, as appropriate (*p<0.05). 

 

 MS 

(n=282) 

Controls 

(n=82) 

p-values 

Age, years 38.2 ± 11.2 36.6 ± 12.5 0.339 

Sex, female 169 (59.8%) 46 (55.7%) 0.590 

Interval between scans, years 1.6 ± 1.1 1.2 ± 0.7 0.001* 

Disease duration, years 5.9±8.2   

Disease subtype CIS 52 (18.4%)   

 RRMS 196 (69.5%)   

 PMS 34 (12.1%)   

EDSS at baseline 1.5 (0-7.5)   

EDSS at follow-up 2.0 (0-8.0)   

Patients with EDSS progression 74 (26.2%)   

 
  



FIG 1. Spinal cord segmentation and GBSI. 

Spinal Cord Toolbox was used for spinal cord segmentation. C2-3, C3-4, and C4-5 reference points 

were set manually (A). Representative images of semi-automatic spinal cord segmentation output 

are shown (sagittal and, in the inset, axial views) (B). Afterwards, baseline (C/D) and follow-up (E/F) 

spinal cord images were straightened, and, ultimately, registered to the halfway space. Intensity 

changes in the vicinity of the cord boundaries were estimated for generalized boundary shift integral 

(GBSI) calculation (G/H). 

  



FIG 2. Study flow diagram. 

Figure shows MS cases and controls from MAGNIMS and UCL Queen Square Institute of Neurology 

cohorts; scanner filed strength is reported. Exclusion rate from the original cohort is shown, as a 

consequence of poor contrast, wrong voxel size, wrong acquisition parameters, and artifacts, mostly 

present in the eldest cohorts acquired using 1.5T scanners (e.g., CIS cohort). MAGNIMS: Magnetic 

Resonance Imaging in Multiple Sclerosis; QS: Queen Square; CIS: clinically isolated syndrome; SC: 

spinal cord; RRMS: relapsing-remitting multiple sclerosis; PMS: progressive multiple sclerosis; GBSI: 

generalized boundary shift integral. 

  



FIG 3. Box-and-Whisker plot of CSA and GBSI measurements 

Box-and-Whisker plot for 1-year percentage change with cross-sectional spinal cord area (CSA) (A) 

and generalized boundary shift integral (GBSI) (B) in healthy controls, clinically isolated syndrome 

(CIS), relapsing-remitting multiple sclerosis (RRMS) and progressive multiple sclerosis (PMS). 

Coefficients (Coeff) and p-values are reported from linear regression models using healthy controls 

as reference group (age, sex, disease duration and site of MRI acquisition were used as covariates). 

Standard deviation is also reported for each group. 

 

 

  



FIG 4. ROC curves for CSA and GBSI in relation to clinical variables. 

ROC curves for cross-sectional spinal cord area (CSA) (dashed line) and generalized boundary shift 

integral (GBSI) (solid line) in relation to differentiating healthy controls (n=82) from clinically isolated 

syndrome (CIS) (n=52) (A), relapsing-remitting multiple sclerosis  (RRMS) (n=196) (B), and 

progressive multiple sclerosis (PMS) (n=34) (C), and patients with expanded disability status scale 

(EDSS) progression (n=74), from those without EDSS progression (n=208) (D). Area under the curve 

(AUC) and p-value are reported. 

 

 

  



FIG 5. Sample size estimates for CSA and GBSI. 

Profile plot shows sample size estimates for cross-sectional spinal cord area (CSA) and generalized 

boundary shift integral (GBSI) in different disease phenotypes (clinically isolated syndrome (CIS), 

relapsing-remitting multiple sclerosis (RRMS), and progressive multiple sclerosis (PMS)). For sample 

size calculation, we included adjusted beta-coefficients from linear regression models, estimating 

spinal cord loss in MS patients, when compared with physiologic loss in controls, and standard 

deviation from each disease phenotype. Power was set at 80% and alpha at 5%. Different treatment 

effects were hypothesized (e.g., 30%, 60% and 90%), that were smaller than the observed difference 

between MS cases and physiologic spinal cord loss in controls. 

 


