
Supplementary Methods and Results 

Simulated Trees for Figure 1 

For comparison with the observed EDt1~EDt0 relationship, simulated trees were generated representing 

various scenarios of evolutionary distinctness biased evolution. Simulated tree-growth models and 

scenarios were based on methods of [3]. Four scenarios were simulated: 

 Null: Evolutionary Distinctness has no impact on birth and death rates. 

 Panchronic (Pan.): Evolutionary distinct tips have lower rates of speciation and extinction. 

 Evolutionary Relict (Rel.): Evolutionary distinct tips have higher rates of extinction and lower 

rates of speciation. 

 Phylogenetic Fuse (P.F.): Evolutionary distinct tips have higher rates of speciation and lower 

rates of extinction. 



For each scenario 100 trees were simulated containing both extinct and extant tips. A random tree of 10 

tips was used as a seed from which to simulate. Initially, the birth-death rate was 3-1 but after a burn-in 

period of 10 iterations the birth rate was reduced to 1. Speciation and extinction probabilities were 

determined directly from the ED values of the species in a tree for each iteration. For example, in a tree 

of four species each with ED values of 1, 1, 1 and 2 then the latter species, under a panchronic scenario 

where high ED leads to lower speciation and extinction, will have probabilities of speciating and going 

extinct as its relative ED value: 
2

5
 or 0.4. Under an evolutionary relict scenario the same species would 

have the same probability of speciation but a higher probability of extinction, its inverse relative ED: 

1 − 
2

5
 or 0.6. Trees were then simulated until a total 1000 tips (both representing extinct and extant) 

were represented in the tree. Simulations were restarted for tree where all tips went extinct before 1000 

tips had been reached. Each simulated tree was then sliced into 10 equally spaced time units 

representing the complete root-to-tip distance. To avoid any influence of the simulation seed tree and 

burn-in period the first 5 time units were excluded from subsequent analysis. Using the same methods 

as described in the main methods, log(EDt1) and log(EDt0) for all simulated clades were calculated 

from these time slices (figure S9). 

The branch lengths of all the trees were rescaled by changing the age of the simulated trees from 1 to 

164 to produce values equivalent the mammalian tree of life. Linear models were then estimated from 

these datasets for each scenario using R’s “lm” function. A process similar to that described in the main 

methods was then used to identify linear polynomial models that best described the log(EDt1) ~ 

log(EDt0) relationship of each scenario.  

All of the scripts for the analysis described in this section are available at the main author’s GitHub 

repository (https://github.com/DomBennett/Project-karenina) under the folder “additional_analysis”. 

 

https://github.com/DomBennett/Project-karenina


Mixed-Effects Models 

Linear mixed-effects models (LMEMs) [36, 37] are an extension of generalised linear models and were 

originally developed to model relationships in experimental situations where important factors that 

influence the response variable are outside of the experimenter’s control. In LMEM terminology the 

variables outside of control are referred to as “random-effects” whereas the variables to be modelled 

are termed “fixed-effects”. In our case, the response variable is EDt1 and the main factor outside of 

control is epoch. The epoch transitions are outside of our control, as they do not represent the same 

length of time-step, they have different number of taxa and have different tree ages (i.e. the age of the 

Mammalian tree in the Jurassic was younger than it is today). By specifying epoch in a model, we are 

able to model future ED as a function of past ED (EDt1~EDt0) while estimating the intercepts and 

slopes separately for each epoch. Functionally, this is equivalent to modelling each epoch separately 

but with the added benefits that the overall relationship between past and future ED can be estimated; 

issues of multiple significance tests are avoided; more than just epoch can be considered as a random-

effect; and the influence of the random-effects can be better controlled. On this latter point, the LMEM 

approach allows us to control whether or how we estimate the intercepts and slopes of the random 

effects. For example, in our schematic, the model formula EDt1~EDt0+(1|epoch) indicates modelling 

EDt1 as a function of EDt0 while considering epochs separately, in which case an independent intercept 

will be estimated for each epoch. Overall, however, the slope of the model will be estimated across all 

epochs. To also control for the influence of the random-effect in trend, not just scale, we can estimate 

random slopes for each epoch by changing the previous formula’s random-effects structure to 

EDt1~EDt0+(EDt0|epoch). 

 The random effects formula structure can be used to add additional random effects. In addition 

to controlling for epoch transitions, we used LMEMs to also control for non-independence of 

taxonomic groups as we expect closely related clades to have similar EDs, e.g. multiple genera of 

Rodents may have low average ED values while multiple genera of Afrotheria may have high average 



ED values. The additional taxonomic information can be specified in the random effects structure by 

sub-setting by orders, e.g. EDt1~EDt0+(1|epoch)+(1|order), or species/clade IDs, e.g. 

EDt1~EDt0+(1|epoch)+(1|id). The random effects structure can also allow hierarchical categories with 

which taxonomic ranks can be specified, e.g. EDt1~ EDt0+(1|epoch)+(1|order/genus/id). For each extra 

level in the hierarchy, however, there is a non-linear gain in computation time, limiting the maximum 

number of levels that can be run. 

Our modelling approach was not to include all these terms into a single model from the start. 

Instead we began with the most basic model that consisted of only the response variable and the 

explanatory variable and then added these extra terms and random-effects structures to create 

increasingly complex models in order identify the simplest model that can explain the most observed 

variance. In tables 1 to 3 in the main text, each successive row shows a more complex model. We 

tested for significant differences in explained variance between these models using ANOVA and the 

Akaike Information Criterion (AIC) [38]. AIC is a measure of a model’s likelihood weighted by the 

number of estimated parameters, the lower its value the better the model fit. 

 

Comparing the Real and the Random 

Before modelling the relationship of EDt0 and EDt1, we first tested whether the real distribution of trees 

(where fossils are added to trees based on fossil age and taxonomy) and their ED values differed 

significantly from the random distribution (where fossils are added randomly). For the random 

placement, a mean 19,027 ± 1 fossil tips were added to the original 4,510 tipped mammalian supertree 

for each iteration. Initially, we determined whether the estimates of ED of the real and random had 

different distributions by comparing the mean and variance of the estimated values using the t-test and 

F-test, respectively. Secondly, we tested whether ED estimates of shared nodes was greater or smaller 

for the real and random distributions. Shared nodes are the nodes, which appear multiple times across 

the iterations. Because fossil placement in the random is not informed by taxonomy, shared nodes in 



the random are either due to their existing already within the tree or chance. If taxonomic information 

informs the stochastic adding process, we should expect ED estimates of shared nodes across the 

iterations of the real to vary less than those in the random. To test this, we calculated the standard 

deviation of ED values estimated for shared nodes across the iterations, and tested whether the real had 

a lower variance using a t-test. 

The random dataset was much bigger (213,427) than the real (115,810) and the distribution of 

shared nodes was more even (1 - 0%, 5 - 25%, 23 - 50%, 49 - 75%, 100 - 100%). Like the real, the 

random distribution also showed a positive non-linear relationship between EDt0 and EDt1 and 

differences between the epoch-to-epoch transitions were great, particularly at low ED values (figure 

S4). As for the real, we removed JU-CL and CL-CU transitions from all subsequent analysis. 

 The estimated ED values of t1 and t0 (ΔED, calculated as EDt0-EDt1) for all nodes across all 

iterations differed significantly between the real and random. The mean ΔED for the real was lower (-

0.47) than that of the random (-0.41) (t-test, t = -58.268, p < 0.001). The spread also differed 

significantly. The variance of the real ΔED distribution (0.125) was significantly greater than the 

random (0.042) (F-test, F= 0.3385, variance ratio = 0.340, p < 0.001). Additionally, the standard 

deviation of the mean ΔED for shared nodes across the iterations was much greater for the random 

(0.401) than the real (0.327) (t-test, t=100.11, p < 0.001). (See figure S5.) 

 

Comparing Model Outcomes between the Real and Random 

Due to the possibility that the non-linear observed relationship, as described in the main text, is a 

consequence of the random placement of fossils in the iterated trees, we modelled the same relationship 

as for the real with the random. Although we found a similar relationship for the random iterated tree 

distribution using an equivalent model to obs2, we found the predicted values for EDt1 at high EDt0 

were not as extreme (figure S7). Additionally, we compared the trend between EDt0 and EDt1 using a 



General Additive Model for species/clades that were shared 50 or fewer times across the real iterations 

to those shared more than 50 times. The species/clades shared more than 50 times showed a stronger 

nonlinear relationship (figure S8). Therefore the points of which we can be more confident indicate a 

stronger nonlinear relationship indicating that any error in the stochastic fossil-adding process is likely 

to have underestimated the nonlinear nature of the relationship rather than caused it. 

The similarity of results between the real and random datasets may be attributable to their both 

sharing the same base tree and the same ranges of fossil taxonomies and age ranges. This latter reason 

may have constrained the random process to placing tips in similar positions to the real. Furthermore, 

despite the taxonomic constraint there were large numbers of species/clades that were effectively 

placed in the real distribution randomly, as their positions were unique (i.e. not repeated in any other 

iteration). This finding applies particularly to early fossils, which had few branches on which to be 

added, due to the paucity of closely related species in the Recent. Where there are few branches and 

many fossil records, new tree sections, unique to each iteration, are generated as fossil records combine 

in novel ways. This difference in the spread of shared nodes may be due to the taxonomic constraint 

causing the consistent placement of uncertain nodes in unique points while also mapping certain nodes 

to the same locations. Additionally, the finding that so large a proportion of the real dataset was 

essentially added randomly indicates that increasing the number of iterations beyond one hundred is 

unlikely to have changed these results. 

  



Supplementary Figures 

 
FIGURE S1. Fossil placement using treeman’s pinTips(). This example uses a phylogenetic tree of extant apes, and two fossil ape 

species. Comparing the taxonomy of the tree and the fossil records we can identify branches the fossils could potentially branch from; 

these windows of placement are then limited by the expected occurrence of the fossil. In the case of Homo erectus, its genus is Homo and 

there is only one extant member of the Homo genus in the tree. As such, a H. erectus branch can begin, within the HE hatched box, 

anywhere along the pending edge of H. sapiens and end at any point within the HE hatched box. In the case of Pongo hooijieri, the 

branch can begin, within the PH hatched box, anywhere along the parent branch of P. pygmaeus and P. abelii or either of the pendant 

edges of P. pygmaeus and P. abelii. 

 



 

FIGURE S2.1 Example output of taxonomically constrained stochastic fossil placement: extinct and extant apes (Hominoidea) from the 

Eocene to the present. 



 

FIGURE S2.2 Example output of taxonomically constrained stochastic fossil placement: a reconstructed tree of extant apes during the 

Miocene. The tree appears ultrametric as it is a time slice taken from the tree in figure S.1. 



 

 

FIGURE S2.3 Example output of taxonomically constrained stochastic fossil placement: reconstructed tree of extant apes during the 

Pleistocene. The tree appears ultrametric as it is a time slice taken from the tree in figure S.1. 

 

 

 



 

FIGURE S3. ED values of clades in an epoch (EDt0) against the following epoch (EDt1) for estimates generated from the real distribution 

of molecular-fossil trees. Left, points of all clade/species coloured by specific epoch-epoch transition. Right, for visual purposes, 

estimated General Additive Models by epoch. Colours indicate: Pleistocene to Recent (Pe-Re), Pliocene to Pleistocene (Pi-Pe), Miocene 

to Pliocene (Mi-Pi), Oligocene to Miocene (Oi-Mi), Eocene to Oligocene (Eo-Oi), Paleocene to Eocene (Pa-Eo), Cretaceous Upper to 

Paleocene (CU-Pa), Cretaceous Lower to Cretaceous Upper (CL-CU) and Jurassic Upper to Cretaceous Lower (JU-CL). 

 

 

 



 

FIGURE S4. ED values of clades in an epoch (EDt0) against the following epoch (EDt1) for estimates generated from the random 

distribution of molecular-fossil trees. Left, points of all clade/species coloured by specific epoch-epoch transition. Right, for visual 

purposes, estimated General Additive Models by epoch. Colours indicate: Pleistocene to Recent (Pe-Re), Pliocene to Pleistocene (Pi-Pe), 

Miocene to Pliocene (Mi-Pi), Oligocene to Miocene (Oi-Mi), Eocene to Oligocene (Eo-Oi), Paleocene to Eocene (Pa-Eo), Cretaceous 

Upper to Paleocene (CU-Pa), Cretaceous Lower to Cretaceous Upper (CL-CU) and Jurassic Upper to Cretaceous Lower (JU-CL).  

 



 

FIGURE S5. Comparing the real and random tree distributions; the real distribution has lower ED values and less variance. Top-left, the 

real molecular-fossil tree distribution has a greater range of mean ΔED values calculated across iterations than the random distribution. 

Top-right, proportion of times each node is shared across iterations for both real and random. Bottom-left, the real distribution shows less 

variance of ΔED for identifiable clades (shared nodes) across the distribution than does the random. 

 



 

FIGURE S6. Predicted log(EDt1) values generated from the observed non-linear model (m3b, solid red line) and the expected model (n1g, 

solid black line) for a representative dataset of a range of log(EDt0) values and a random subset of one hundred genera across the different 

epoch-to-epoch transitions. The dotted line indicates perfect linear relationship. For plotting, log(EDt1) estimates across the different 

genera were median averaged. Epochs: Pleistocene to Recent (Pe-Re), Pliocene to Pleistocene (Pi-Pe), Miocene to Pliocene (Mi-Pi), 

Oligocene to Miocene (Oi-Mi), Eocene to Oligocene (Eo-Oi), Paleocene to Eocene (Pa-Eo) and Cretaceous Upper to Paleocene (CU-Pa). 



 

FIGURE S7. Predicted EDt1 values generated from trinomial models with random effect structure of (1|genus), a comparable model to 

m3b but which can be generated for both real and random molecular-fossil distributions. Although both lines are similar, the real line has 

higher EDt1 estimates for high EDt0 and lower EDt1 estimates for low EDt0, indicating that the observed EDt1~EDt0 relationship may be 

more conservative than reality due to errors in the stochastic fossil-adding process. Values are generated for a representative dataset of a 

range of EDt0 values, a random subset of one hundred genera and all the epoch-to-epoch transitions. For plotting, EDt1 estimates across 

the different genera and epoch-to-epoch transitions were median averaged. 

 

 



 

FIGURE S8. Generative Additive Models to explore the EDt0 and EDt1 relationship using subsets of the real dataset. Blue/green line 

indicates clades/species points that were shared over 50 times across the iterations of the real (high confidence nodes). Red/orange line 

indicates clades/species points that were shared 50 or fewer times across the iterations of the real (low confidence nodes). Points in which 

we have higher confidence show a stronger nonlinear relationship, with higher estimates for EDt1 at high EDt0. 

 

  



 

 

Figure S9. Future ED as a function of past ED for four simulated scenarios: non-biased birth-death model (Null), evolutionary distinct tips 

have lower rates of extinction and speciation (Pan.), evolutionary distinct tips have higher rates of extinction and lower rates of speciation 

(Rel.) and evolutionary distinct tips have lower rates of extinction and higher rates of speciation (P.F.). Solid, coloured lines represent 

General Additive Models, solid black line represents log(EDt0) = log(EDt1). 

  



Supplementary Tables 

TABLE S1. Epoch-to-epoch mid-point estimates taken from the International Chronostratigraphic Chart (2013) used for estimating 

changes in evolutionary distinctnesses from the inferred molecular-fossil mammalian phylogenetic tree. 

Period Code Span (MYA) Time 

Pleistocene - Recent Pe-Re 1.30 - 0.00 1.30 

Pliocene - Pleistocene Pi-Pe 3.96 - 1.30 2.66 

Miocene - Plicoene Mi-Pi 14.18 - 3.96 10.22 

Oligocene - Miocene Ol-Mi 28.47 - 14.18 14.28 

Eocene - Oligocene Eo-Ol 44.95 - 28.47 16.49 

Paleocene - Eocene Pa-Eo 61.00 - 44.95 16.05 

Cretaceous Upper - Paleocene CU-Pa 83.25 - 61.00 22.25 

Cretaceous Lower - Cretaceous 

Upper 
CL-CU 122.75 - 83.25 39.50 

Jurrasic Upper - Cretaceous Lower JU-CL 154.25 - 122.75 31.50 

 

 

 

 

 


