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Abstract

We demonstrate that future market correlation structure can be predicted with
high out-of-sample accuracy by a multiplex network approach that combines
information from social media and financial data. Market structure is mea-
sured by quantifying co-movement of asset prices returns while social structure
is measured as the co-movement of social media opinion on the same assets.
Prediction is obtained by a simple model that uses link persistence and link
formation by triadic closure across both financial and social media layers. Re-
sults show that proposed model can predict future market structure with up to
40% out-of-sample performance improvement compared to a benchmark model
that assumes a time-invariant financial correlation structure. Social media in-
formation leads to improved models for all settings tested, particularly in the
long-term prediction of financial market structure. Surprisingly, financial mar-
ket structure showed higher predictability than social opinion structure.

Keywords: Financial Networks; Network Link Prediction; Correlation
Structure Prediction; Information Filtering Networks; Correlation-Based
Networks; Social Media

1. Introduction

Financial markets can be regarded as a complex network in which nodes
represent di↵erent financial assets and edges represent one or many types of re-
lationships among those assets. Filtered correlation-based networks have been
successfully used in the literature to study financial markets structure par-
ticularly from observational data derived from empirical financial time series
[1, 2, 3, 4, 5]. The underlying principle is the use of correlations from empir-
ical financial time series to construct a sparse network representing the most
relevant connections. Analyses on filtered correlation-based networks for infor-
mation extraction [6, 7, 3] are widely used to explain market interconnectedness
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from high-dimensional data. Applications range from asset allocation [8] to mar-
ket stability assesments [9] and hierarchical structure analyses [2, 3, 4, 10, 11]
and the identification of lead-lag relationships [12].

Most of the literature so far have been focusing on the analysis of financial
time series. However, in recent years a large amount of information about
financial markets have become available from exogenous sources such as social
media. It is reasonable to conceive that changes in social media sentiment [13]
and changes in asset prices might be related. Some previous studies have indeed
shown the existence of relations including lead-lag relationships which in some
cases indicate that social media can be used to predict changes in asset prices
[14, 15, 16, 17, 18, 19]. When new information hits the markets investors may
react rationally or irrationally [20, 21] expressing opinions on social media that
can become market actions enabling opportunities to forecast future asset prices.
However, it has also been highlighted that not all assets behave in the same way
with some that are more influenced by social media sentiment and others that
are, on the contrary, more influential on the social media sentiment [22]. Beside
each single financial asset, the question that we address in this paper is whether
the entire financial market structure is related to the structure constructed from
social media sentiment and whether there exist lead-lag relationships that can
be used for forecasting one structure in terms of the other.

In this work, we use dynamical Kendall correlations computed over rolling
windows to investigate the temporal evolution of market structure represented
by filtered correlation-based networks constructed from stock market prices and
from Twitter-sentiment signals. We generate two networks: one from log-returns
of stock prices and the other from twitter-sentiment. The two networks are
treated as a multilayer problem with two layers of networks that share the
same nodes but have di↵erent edge sets. We investigate whether financial mar-
ket structure can be better predicted by combining past financial information
with past social media sentiment information. The market structure forecast-
ing problem is formulated as a link prediction problem where we estimate the
probability of addition or removal of a link in the future from the information
about the structure of the two financial and social networks from the past.

2. Methods

2.1. Financial and Social Networks

We selected N = 100 most capitalized companies that were part of the
S&P500 index during the period 09/05/2012 to 08/25/2017. The list of company
names is reported in the Appendix A.1. For each stock i the financial variable is
defined as the daily stock’s log-return R

i

(⌧) = logPrice(⌧)� logPrice(⌧ � 1),
where Price(⌧) designates closing price at time ⌧ . The social media variable is
defined as the the social media opinion O

i

over the stock i which is estimated as
the total number of bullish daily tweets related to the stock i at time ⌧ . Twitter
sentiment data were provided by PsychSignal.com [23]. A Twitter message is
defined to be related to a given stock if its ticker is mentioned. The dataset is
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based on English language content and it is agnostic to the country source of
the Twitter message.

Stock returns R
i

and social media opinion scores O
i

each amounts to time
series of length equal to 1024 trading days. The series are divided time-wise into
M = 224 windows t = 1, 2, . . . ,M of width T = 126 trading days. A window
step length parameter �T = 5 defines the displacement of the window, i.e.,
the number of trading days between two consecutive windows. The choice of
window width T and window step �T is arbitrary and it is a trade-o↵ between
too dynamic and too smooth in the analysis taken. The smaller the window
width and the larger the window steps the more dynamic the data are.

In order to characterize the synchronous time evolution of assets, we use the
equal time Kendall’s rank coe�cients between assets i and j defined as

⇢
i,j

(t) =
X

t

0
<⌧

sgn(V
i

(t0)� V
i

(⌧))sgn(V
j

(t0)� V
j

(⌧)), (1)

where t0 and ⌧ are time indexes within the window t and V
i

2 {R
i

, O
i

}.
Kendall’s rank coe�cients fulfill the condition�1  ⇢

i,j

 1 and form anN⇥
N correlation matrix C(t), which serves as the basis for the networks constructed
in this paper. For the purpose of constructing the asset-based financial and
social networks we define a distance between a pair of stocks. This distance
is associated with the edge connecting the stocks and it reflects the level at
which the stocks are correlated. We use a simple non-linear transformation
d
i,j

(t) =
p
2(1� ⇢

i,j

(t)) to obtain distances with the property 2 � d
i,j

� 0,
forming a N ⇥N symmetric distance matrix D(t).

We extract the N(N � 1)/2 distinct distance elements from the upper tri-
angular part of the distance matrix D(t) which are then sorted in an ascending
order and form an ordered sequence d1(t), d2(t), . . . , d

N(N�1)/2(t). Since we re-
quire the graph to be representative of the market, it is natural to build the
network by including only the strongest connections in it. The number of edges
to include is, of course, arbitrary. Here we include the edges in the bottom quar-
tile, i.e., the 25% shortest edges in the graph (largest correlations), thus giving
E(t) = {d1(t), d2(t), . . . , dbN/4c(t)}. The presented mechanism for construct-
ing networks defines them uniquely and, consequently, no additional hypothesis
about graph topology is required.

Let us denote EF (t) and ES(t) as the set of edges constructed from the
distance matrices derived from stock returns R(t) and social media opinion O(t),
respectively. Two networks are considered as two layers of a duplex structure
G = {GF , GS} where GF = (V,EF ) and GS = (V,ES) with V the vertex set of
stocks which is common to both layers.

2.2. Persistence

The state of an edge between vertices u and v in the financial layer at time t is
represented with the corresponding adjacency matrix element EF

u,v

(t): a binary
variable with EF

u,v

(t) = 1 indicating the existence of the edge and EF

u,v

(t) = 0 its
absence. Analogously the variable ES

u,v

(t) accounts for the presence or absence
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of edge (u, v) in the social (S) layer. The variable E
u,v

(t) = EF

u,v

(t)_ES

u,v

(t) = 1
indicates instead the presence of at least one edge between u and v in the two
layers; E

u,v

(t) = 0 indicates that no edges are present between u and v in any
layer.

2.3. Triadic Closure

Let N
uv

be the set of nodes that are common neighbors to vertices u and v.
We define the triadic closure TF

u,v

(t) of an edge (u, v) at layer F and time t as
the mean of the clustering coe�cients of vertices in N

uv

:

TF

u,v

(t) =
1

|N
uv

|
X

i2Nuv

CF

i

(t), (2)

where term CF

i

is the clustering coe�cient of node i which accounts for the
fraction of triads in the neighbors of i that are closed in triangles

CF

i

= 2
Number of triangles with a vertex on i

k
i

(k
i

� 1)
=

P
j,k2Ni

EF

j,k

k
i

(k
i

� 1)
(3)

with k
i

the degree of vertex i and N
i

the neighborhood of i.
In the multiplex case, we keep the same definition but in this case triangles

can be formed across several layers [24, 25]. For the multiplex case we shall use
the symbol T

u,v

(t).

A)

Financial Layer F

B)

Financial Layer F

Social Layer S

Figure 1: Triads on a single layered network (Panel A) and on a multiplex network (Panel B).
The clustering coe�cient of node i accounts for the fraction of triads in the neighborhood of
i that are closed in triangles. The triadic closure of an edge (u, v) at layer F is a function of
the clustering coe�cients of the common neighbors of the vertices u and v. Triangles can be
formed in a single layer or across layers.
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2.4. Link Prediction

We aim to predict the probability that an edge is inserted or removed in the
financial network, GF (t + h), at a future time t + h by using the information
about the past structures of the financial and social networks at previous times
t0  t. For this purpose we consider two mechanisms:

1) the tendency of an edge present at a previous time to persist in the future
(edge persistence);

2) the propensity to close triangles within a layer or across layers (triadic
closure).

Persistence quantifies the tendency for an edge, present in the graph at time t to
be present also in the graph at a later time t+h, whereas triadic closure quanti-
fies the propensity to close a triangle by adding a given edge. The mechanism of
growth by triadic closure is based on a principle of transitivity largely observed
in real-world networks where there is a tendency to form triangles. Under that
principle, two nodes tend to be connected if they share common neighbors with
high transitivity, i.e., propensity to close triangles.

The probability to insert an edge in the future is then computed by means
of a logistic regression of the edge persistence and the triadic closure coe�-
cients. Regression coe�cients are estimated by best fitting on a training set
which is composed of rolling windows of 126 trading days initially ranging from
09/05/2012 and 09/10/2014. Prediction concerns the presence of edges in the
financial network at h = 1 to h = 20 weeks ahead the end of the training set.
The test set originally ranges from 09/17/2014 to 08/25/2017. The procedure
is repeated by moving forward the training window in 1-week steps.

The probability p
u,v

(t+ h) to observe vertices u, v connected by an edge at
t+ h can be inferred in terms of the set of previous triadic closure coe�cients,
T
u,v

(t), and edge persistence scores E
u,v

(t). We first consider a restricted model
that uses financial information only which is given by the following logistic model

log
pF
u,v

(t+ h)

1� pF
u,v

(t+ h)
= �̃h

0 + �̃hTF

u,v

(t) + �̃hEF

u,v

(t), (4)

where we perform a 1-step ahead prediction for h 2 (1, 2, . . . , 19, 20) weeks.
In order to calibrate the parameters in Eq. 4, we consider a training window

of W = 126 days which ends at time t. The log-likelihood function over the
training window for the logistic model from Eq. 4 is given by [26]

LF (t) =
tX

t

0=t�W+1

X

uv2E

F (t0+h)

� log (1 + e�̃
h
0 +�̃

h
T

F
u,v(t

0)+�̃

h
E

F
u,v(t

0))+

tX

t

0=t�W+1

X

uv2E

F (t0+h)

1� EF

uv

(t0 + h)(�̃h

0 + �̃hTF

u,v

(t0) + �̃hEF

u,v

(t0)).

(5)
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We di↵erentiate the log-likelihood function given by Eq. 5 in order to find
maximum log-likelihood estimates for the coe�cients of Eq. 4.

In order to verify whether the multiplex information is relevant in predicting
links in the financial network compared to past financial network alone, we
consider a full regression model that takes the set of previous triadic closure
coe�cients and edge persistence from the financial layer (TF

u,v

(t), EF

u,v

(t)), social
layer (TS

u,v

(t), ES

u,v

(t)) and the multiplex network (TF

u,v

(t), EF

u,v

(t)). The full
model is

log
p
u,v

(t+ h)

1� p
u,v

(t+ h)
=�h

0 + �h

1T
F

u,v

(t) + �h

2E
F

u,v

(t)+

�h

1 T
S

u,v

(t) + �h

2E
S

u,v

(t) + ✓h1Tu,v

(t) + ✓h2Eu,v

(t).

(6)

The log-likelihood function L(t) of the full model in Eq. 6 and the model
fitting can be obtained analogously to the previous procedure performed for the
restricted model from Eq. 4.

The likelihood ratio statistic

�(t) = �2(L
max

(t)� LF

max

(t)) (7)

where L
max

(t) and LF

max

(t) are the maxima of the log-likelihood functions for
the full and restricted models, respectively. Under some not too restrictive
assumptions [26], �(t) can be assumed to follow a �2 distribution with 4 degrees
of freedom where a value of � > 18.47 is assumed to be statistically significant at
p = 0.001, In that case, there is evidence to accept the full model that considers
social and financial information compared to the restricted model that considers
financial information only.

The model performance is estimated by counting the true positive (edges
predicted to be there and indeed present in the future network) and false pos-
itive (edges predicted to be there but not present in the future network) and
measuring of AUC (area under the receiver operating characteristic curve) in the
test set which originally ranges from 09/17/2014 to 08/25/2017. AUC ranges
from 0.50 to 1.00, with higher values indicating that the model discriminates
better between the two categories (edge-present, edge-absent).

3. Results

3.1. Market structure dynamics

We first investigate financial network persistence by comparing the financial
network GF (t) at time t with a future financial network, GF (t + h), h steps
ahead. In order to quantify the changes in the correlation network structure
we use two measures: A) the fraction of new edges in GF (t+ h) that were not
present in GF (t); B) the Jaccard Distance, defined as

Jaccard(GF (t0), GF (t)) =
kGF (t0) \GF (t)k
kGF (t0) [GF (t)k .
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Figure 2: Evidence that financial correlation structure changes considerably with
time. Panel A) shows the mean percentage of new edges in the financial network at time
t+h with respect to the edge set at time t (1  h  20 trading weeks). We observe that edges
change considerably in the financial network with almost 40% of edges in financial networks
changing after a period of h = 20 trading weeks. Panel B) shows the cross-similarity among
financial networks measured as the Jaccard Distance between GF (t0) and GF (t) with t and
t0 ranging from 09/05/2012 and 21/02/2017. We observe that edge changes (persistence) is
quite stable overtime, i.e., the amount of edges that change is similar throughout the period.
Network GF (t) are constructed at each time t from a correlation structure estimated from a
sliding window of 126 trading days starting at time t. The windows move with time step of 1
trading week. Error bars in Panel A) indicate standard error.

Results are reported in Fig. 2, panels A) and B), respectively.
Fig. 2 panel A) shows the mean percentage of new edges in the financial

network at time t+h with respect to the edge set at time t (1  h  20 trading
weeks). We observe that edges change considerably in the financial network with
almost 40% of edges in financial networks changing after a period of h = 20
trading weeks. Fig. 2 panel B) shows the cross-similarity among financial
networks measured as the Jaccard Distance between GF (t0) and GF (t) with t
and t0 ranging from 09/05/2012 to 21/02/2017. We observe that edge changes
(persistence) is quite stable overtime, i.e., the amount of edges that change
is similar throughout the period. Hence, results indicate that the financial
networks constructed are time-variant across the entire period studied with a
stable rate of edge changes over time.

3.2. Prediction of Stock Market Structure

We use Eq. 6 to predict a the financial network, GF (t+h), at a future time
t+h by using the information about the past structures of the financial and social
networks at previous times t0  t. Fig. 3 panel A) shows performance obtained
in the prediction of out-of-sample edges for h 2 (1, 5, 10, 15, 20) trading steps
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ahead. We observe that we achieve an overall high out-of-sample performance
in financial network link prediction with performances in the range from 73%
to 95% depending on time-lag and time-period with better prediction power for
smaller number of steps ahead.

Figure 3: Out-of-sample performance for financial network link prediction. Plots
show performance results (AUC), where each date (t) represents the performance obtained
with a model trained with information up to time t and predicts edges in a network at time
t+ h. Panel A) shows performance obtained in the prediction of out-of-sample edges for h 2
(1, 5, 10, 15, 20) trading weeks. Panel B) shows performance improvement compared to a naive
benchmark that assumes that correlation structure is time-invariant, i.e., GF (t+h) = GF (t).

We compare results against a benchmark model that assumes that correla-
tion structure is time-invariant, i.e., GF (t+ h) = GF (t). Performance improve-

ment against the benchmark is estimated as AUC⇤ = (AUC � 0.5)/([AUC �
0.5) � 1, where AUC represents the performance of the proposed model and
[AUC is the performance of the benchmark. From Fig. 3 panel B) we observe
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that the higher the number of steps ahead the higher the performance improve-
ment over benchmark. Let us note that performance improvement over naive
benchmark reached values as high as 40% for a long-term prediction with a lag
of 20 trading weeks.

Fig. 4 reports an aggregate overview of the previous results for out-of-sample
prediction in terms of the number of weeks ahead. We observe that the higher
the lag the worst is the prediction performance (panel A), however the better
is the improvement over the naive benchmark (panel B).

Figure 4: E↵ect of time-lag in out-of-sample predictive performance. Panel A) shows
mean performance (AUC) in the prediction of out-of-sample edges of the full financial network
GF . Panel B) shows the performance improvement against a naive benchmark that assumes
that correlation structure is time-invariant, i.e., GF (t + h) = GF (t). Error bars indicate
standard error.

In Appendix A.2, we report results obtained by using an expanding window
instead of a rolling window as a training set. We observe that expanding the
training set does not necessarily lead to better performance. In fact, the rolling
window analysis yield better performance overall.

In order to verify whether the multiplex network is providing extra infor-
mation with respect to the information from the financial network only, we
re-computed the same out of sample edge prediction by using the financial net-
work only which we compared against the full model that considers both infor-
mation layers: financial and social. Comparison between the two models was
performed by comparing their respective likelihoods. We have also segregated
the prediction of insertion of new edges E+ and the prediction of edge deletions
E�. Results are reported in Table 1, where we show the likelihood values along
with AUC performance obtained for each fit model.

We observe that models that include both financial and social information
better fit the data compared to a model that considers financial data only,
particularly for the case of prediction of insertion of new edges. The likelihood
ratio increases with prediction lag indicating that full models (i.e. those that
consider both financial and social networks) are particularly important in long-
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Table 1: Financial Link Prediction Performance Results. High out-of-sample AUCs
obtained indicate that the model has high performance balancing both false positives and false
negatives predictions relative to true positive and negative values. Log-likelihood ratio (�)
increases with prediction lag indicating that social media features are particularly important
for long-term prediction. AUC⇤ indicates performance improvement compared to a naive
benchmark model that assumes that correlation structure is time-invariant, i.e., GF (t+ h) =
GF (t). Results show that proposed model can achieve up to 27% improvement compared to
the commonly-used assumption of stationarity in the correlation structure. Table show mean
values obtained over the test period with corresponding standard deviation in parentheses.
Models were trained in an rolling window with initial start and end dates of 09/05/2012 and
09/10/2014, respectively. Test period ranges from 09/17/2014 and 08/25/2017.

E+ E� GF

Lag New edges (%) AUC � AUC � AUC AUC⇤ (%)
1 7.6 (0.51) 87 (0.33) 21 (0.76) 93 (0.11) 34 (1.2) 97 (0.064) 4 (0.091)
2 11 (0.69) 87 (0.37) 33 (1.2) 93 (0.1) 45 (1.5) 95 (0.092) 6 (0.14)
3 14 (0.79) 86 (0.39) 48 (1.5) 93 (0.11) 60 (1.6) 94 (0.11) 8 (0.17)
4 16 (0.88) 86 (0.39) 65 (2) 93 (0.11) 65 (1.9) 93 (0.13) 10 (0.21)
5 18 (0.92) 85 (0.41) 85 (2.6) 93 (0.11) 66 (1.9) 92 (0.15) 11 (0.24)
6 20 (0.93) 85 (0.41) 100 (3.2) 93 (0.1) 74 (2) 91 (0.16) 12 (0.27)
7 22 (0.95) 84 (0.42) 120 (3.5) 93 (0.1) 70 (2.2) 90 (0.18) 13 (0.3)
8 24 (0.98) 84 (0.43) 150 (4.3) 93 (0.1) 72 (1.9) 89 (0.19) 15 (0.33)
9 25 (0.99) 83 (0.44) 180 (5.7) 93 (0.1) 74 (2.2) 88 (0.21) 16 (0.37)
10 27 (1) 83 (0.43) 220 (6.3) 93 (0.096) 79 (1.9) 87 (0.21) 17 (0.4)
11 28 (1) 82 (0.43) 260 (7.2) 93 (0.094) 78 (2) 87 (0.22) 18 (0.43)
12 30 (1) 82 (0.42) 300 (7.9) 93 (0.09) 86 (2.4) 86 (0.22) 19 (0.45)
13 31 (0.99) 82 (0.43) 330 (7.9) 93 (0.09) 95 (2.1) 85 (0.22) 20 (0.49)
14 32 (1) 81 (0.43) 360 (9.2) 93 (0.084) 100 (2.4) 84 (0.23) 21 (0.51)
15 34 (1) 81 (0.43) 390 (9.9) 93 (0.083) 110 (2.3) 84 (0.24) 22 (0.55)
16 35 (1) 81 (0.43) 410 (10) 93 (0.08) 120 (3) 83 (0.24) 23 (0.58)
17 36 (0.99) 80 (0.43) 440 (11) 94 (0.079) 130 (2.6) 82 (0.25) 24 (0.62)
18 37 (0.97) 80 (0.44) 470 (12) 94 (0.076) 150 (3) 82 (0.25) 25 (0.67)
19 38 (0.94) 80 (0.46) 500 (12) 94 (0.072) 160 (3.6) 81 (0.27) 26 (0.71)
20 39 (0.95) 80 (0.48) 510 (12) 94 (0.068) 170 (3.7) 80 (0.28) 27 (0.79)
*A likelihood ratio of � > 18.47 indicates statistical significance at p = 0.001.

term link prediction. Results confirm that the multiplex network is distinctively
better than the single financial layer with all likelihood ratios with p-value <
0.001 for all configurations tested.

3.3. Prediction of Social Media Structure

We have so far established that social opinion structure can provide statistically-
significant information about future financial market structure. In this section,
we investigate whether financial market structure can also significantly improve
the prediction of future social opinion structure and whether this e↵ect is larger
or smaller than the previous.

The comparison between performance results is summarized in Fig. 5, where
the prediction of social opinion structure GS is plotted together with the results
for the prediction of financial market structureGF discussed previously. Surpris-
ingly, results suggest that financial market structure has higher predictability
than social opinion structure. We also observe that both the financial network
and social opinion network predictions lead to an improvement compared to the
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naive benchmark that considers time-invariance in social network structure. As
previously observed, relative performance improvement increases with time lag.
In this case, relative improvement is higher for the social media prediction than
for the financial network as observed in Fig. 5 panel B).

Figure 5: Evidence that financial market structure has higher predictability than
social media structure. Panel A) shows mean performance (AUC) in the prediction of out-
of-sample edges of the full financial network GF and social network GSM . Panel B) shows the
performance improvement against a naive benchmark that assumes that correlation structure
is time-invariant. Error bars indicate standard error.

One of the possible reasons why social opinion structure is less predictable
compared to financial network structure is the higher structural variability of
the former compared to the latter. Fig. 6 provides evidence that social media
structure is less stable than financial market structure in terms of number of
edge changes in time. More edges changed in the social opinion network than
in the financial network for all lags tested. We observe that more than 50% of
the edges in the social media structure changed over a time lag of 20 trading
weeks compared to a change of about 40% in the financial network.

4. Discussion and Conclusions

We investigated whether financial market structure can be better predicted
by combining past financial information with past social media sentiment in-
formation. We considered N = 100 most capitalized companies that were part
of the S&P500 index in the period between May 2012 and August 2017. We
generated two networks: A financial network constructed from log-returns of
equity prices and a social network constructed from twitter-sentiment analyt-
ics. We constructed filtered correlation-based networks by keeping the strongest
top quartile correlations only considering a rolling window of T = 126 trading
days. The two networks were treated as a multiplex problem with two layers of
networks that share the same nodes (stocks) but have di↵erent edge sets.
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Figure 6: Evidence that social media structure is less stable than financial market
structure in terms of number of edge changes in time. We observe that almost 40% of
edges in Financial Networks changed after a period of 20 trading weeks while the social media
structure changed more than 50% of its edges over the same time lag. A network at time t
is constructed from a correlation structure estimated from a sliding window of 126 trading
days starting at time t that moves with time step of 1 trading week. The financial network
measures co-movement of stock returns while the social network measures co-movement of
opinion over the same stocks. Error bars indicate standard error.

The financial market structure forecasting problem was formulated as a link
prediction problem to estimate the probability of addition or removal of a fi-
nancial link in the future from the information about the structure of the two
financial and social networks in the past.

We proposed that financial network links were formed by a combination of
two mechanisms: (i) triadic closure and (ii) edge persistence. The first mecha-
nism assumes that two stocks have a propensity to be correlated if they share
common neighbors. The edge persistence mechanism assumes that two con-
nected stocks tend to remain connected in the future. A logistic model was
trained over a set of data between 09/05/2012 and 09/10/2014 and then results
were reported for the validation set over the following period from 09/17/2014
and 08/25/2017.

Results indicate that financial market structure is considerably time-variant
which invalidates the commonly-used assumption of time-invariance in the stocks
correlation structure. The proposed model showed high out-of-sample perfor-
mance in financial network link prediction particularly in the case of long-term
predictions achieving up to 40% performance improvement over a naive bench-
mark that assumed time-invariance in market structure. Likelihood ratio anal-
ysis demonstrated that models that considered both financial and social infor-
mation better fit the data when compared to a restricted model that considers
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financial information only. This provides evidence that supports the use of social
information in the prediction of financial market structure.

Finally, findings indicated that social opinion structure is less stable than
financial market structure. Surprisingly, the prediction of financial market struc-
ture using past social and financial information presented higher performance
compared to the problem of predicting social opinion structure using past social
and financial information.

Let us note that network link formation can occur due to mechanisms beyond
the ones here studied. For instance, networks can grow as a result of a growth
process that adds new nodes in the network, e.g., IPOs can generate growth in a
financial network. Among other possible mechanisms, link formation can occur
due to preferential attachment, a phenomenon widely observed in real networks
where new nodes tend to link to the more connected nodes [27].

In sum, this study indicates that social opinion structure is relevant to pre-
dict future financial correlation structure. This result has important conse-
quences because of the fundamental importance of financial correlation structure
in Modern Portfolio Theory (MPT) [28], Capital Asset Pricing Model (CAPM)
and Arbitrage Pricing Theory (APT) [29]. Future work will focus on the inves-
tigation of further mechanisms of financial link formation and on applications
in portfolio allocation strategies.
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Appendix

A.1. List of Selected Companies

AAPL, AMZN, NFLX, MSFT, GS, GOOGL, BAC, JPM, IBM, DIS, GILD,
INTC, YHOO, WMT, GE, XOM, SBUX, CSCO, WFC, NVDA, PCLN, JNJ,
MCD, NKE, BA, VZ, ES, PFE, KO, CVX, CAT, MU, MRK, CELG, EBAY,
MS, CRM, FCX, QCOM, TGT, HD, CHK, BMY, AMGN, PG, HPQ, ORCL,
FSLR, WFM, COST, BIIB, PEP, EA, AXP, WYNN, CMCSA, CL, AIG, DOW,
NEM, MA, BBY, COP, LOW, TWX, ADBE, HAL, LLY, UNH, LUV, MMM,
CVS, MO, FDX, DD, ED, KR, MON, UTX, ABT, SLB, YUM, MCO, AMAT,
EXPE, AET, DE, GPS, UPS, VLO, CBS, HAS, COH, ALL, WDC, JWN, TXN,
PM, UNP, EOG.

A.2. Prediction Results Using Expanding Window Training Set

In this section, we report results using models that were trained in an ex-
panding window, instead of a rolling window, with initial start and end dates of
09/05/2012 and 09/10/2014, respectively. Test period ranges from 09/17/2014
and 08/25/2017.
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Table AA: Financial Link Prediction Performance Results using an Expanding
Window Training Set. High out-of-sample AUCs obtained indicate that the model has
high performance balancing both false positives and false negatives predictions relative to
true positive and negative values. Likelihood ratios (� > 18.47) demonstrate that models
considering social media network fit the data significantly better than the restricted model that
considers financial features only at a significance level of p = 0.001. Likelihood ratio increases
with prediction lag indicating that social media features are particularly important for long-
term prediction. AUC⇤ indicates performance improvement compared to a naive benchmark
model that assumes that correlation structure is time-invariant, i.e., GF (t + h) = GF (t).
Results show that proposed model can achieve up to 27% improvement compared to the
commonly-used assumption of stationarity in the correlation structure. Table show mean
values obtained over the test period with corresponding standard deviation in parentheses.
Models were trained in an expanding window with initial start and end dates of 09/05/2012
and 09/10/2014, respectively. Test period ranges from 09/17/2014 and 08/25/2017.

E+ E� GF

Lag AUC � AUC � AUC AUC⇤ (%)
1 87 (0.33) 21 (0.76) 93 (0.11) 34 (1.2) 97 (0.064) 4 (0.091)
2 87 (0.37) 33 (1.2) 93 (0.1) 45 (1.5) 95 (0.092) 6 (0.14)
3 86 (0.39) 48 (1.5) 93 (0.11) 60 (1.6) 94 (0.11) 8 (0.17)
4 86 (0.39) 65 (2) 93 (0.11) 65 (1.9) 93 (0.13) 10 (0.21)
5 85 (0.41) 85 (2.6) 93 (0.11) 66 (1.9) 92 (0.15) 11 (0.24)
6 85 (0.41) 100 (3.2) 93 (0.1) 74 (2) 91 (0.16) 12 (0.27)
7 84 (0.42) 120 (3.5) 93 (0.1) 70 (2.2) 90 (0.18) 13 (0.3)
8 84 (0.43) 150 (4.3) 93 (0.1) 72 (1.9) 89 (0.19) 15 (0.33)
9 83 (0.44) 180 (5.7) 93 (0.1) 74 (2.2) 88 (0.21) 16 (0.37)
10 83 (0.43) 220 (6.3) 93 (0.096) 79 (1.9) 87 (0.21) 17 (0.4)
11 82 (0.43) 260 (7.2) 93 (0.094) 78 (2) 87 (0.22) 18 (0.43)
12 82 (0.42) 300 (7.9) 93 (0.09) 86 (2.4) 86 (0.22) 19 (0.45)
13 82 (0.43) 330 (7.9) 93 (0.09) 95 (2.1) 85 (0.22) 20 (0.49)
14 81 (0.43) 360 (9.2) 93 (0.084) 100 (2.4) 84 (0.23) 21 (0.51)
15 81 (0.43) 390 (9.9) 93 (0.083) 110 (2.3) 84 (0.24) 22 (0.55)
16 81 (0.43) 410 (10) 93 (0.08) 120 (3) 83 (0.24) 23 (0.58)
17 80 (0.43) 440 (11) 94 (0.079) 130 (2.6) 82 (0.25) 24 (0.62)
18 80 (0.44) 470 (12) 94 (0.076) 150 (3) 82 (0.25) 25 (0.67)
19 80 (0.46) 500 (12) 94 (0.072) 160 (3.6) 81 (0.27) 26 (0.71)
20 80 (0.48) 510 (12) 94 (0.068) 170 (3.7) 80 (0.28) 27 (0.79)
*A likelihood ratio of � > 18.47 indicates statistical significance at p = 0.001.
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Figure 7: Link prediction results using an expanding window training set - Ev-
idence of high out-of-sample performance in financial network link prediction.
Models were trained in an expanding window with initial start and end dates 09/05/2012
and 09/10/2014, respectively. Test period ranges from 09/17/2014 and 08/25/2017. Plots
show performance results (AUC), where each date (t) represents the performance obtained
with a model trained with information up to time t and prediction of edges of a network
at time t + h. Panel A) shows performance obtained in the prediction of out-of-sample
edges for h 2 (1, 5, 10, 15, 20) trading weeks. Panel B) shows performance improvement com-
pared to a naive benchmark that assumes that correlation structure is time-invariant, i.e.,
GF (t+ h) = GF (t).
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Figure 8: Link prediction results using an expanding window training set - E↵ect
of time-lag in out-of-sample predictive performance. Plot shows mean performance
(AUC) over the testing period in the prediction of out-of-sample new (E+) and removed (E�)
edges as well as the prediction of the full financial network GF . Error bars indicate standard
error.

Figure 9: Link prediction results using an expanding window training set - Evi-
dence that financial market structure has higher predictability than social me-
dia structure. Models were trained in an expanding window with initial start and end
dates of 09/05/2012 and 09/10/2014, respectively. Test period ranges from 09/17/2014 and
08/25/2017. Panel A) shows mean performance (AUC) in the prediction of out-of-sample
edges of the full financial network GF and social network GS . Panel B) shows the perfor-
mance improvement against a naive benchmark that assumes that correlation structure is
time-invariant. Error bars indicate standard error.
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