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6Sorbonne Université, Institut Lagrange de Paris (ILP), 98 bis boulevard Arago, 75014 Paris, France
7Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540, USA

(Received 10 April 2019; published 18 July 2019)

Density-estimation likelihood-free inference (DELFI) has recently been proposed as an efficient method
for simulation-based cosmological parameter inference. Compared to the standard likelihood-based
Markov chain Monte Carlo (MCMC) approach, DELFI has several advantages: it is highly parallelizable,
there is no need to assume a possibly incorrect functional form for the likelihood, and complicated effects
(e.g., the mask and detector systematics) are easier to handle with forward models. In light of this, we
present two DELFI pipelines to perform weak lensing parameter inference with log-normal realizations of
the tomographic shear field—using the Cl summary statistic. The first pipeline accounts for the non-
Gaussianities of the shear field, intrinsic alignments, and photometric-redshift error. We validate that it is
accurate enough for Stage III experiments and estimate that Oð1000Þ simulations are needed to perform
inference on Stage IV data. By comparing the second DELFI pipeline, which makes no assumption about
the functional form of the likelihood, with the standard MCMC approach, which assumes a Gaussian
likelihood, we test the impact of the Gaussian likelihood approximation in the MCMC analysis. We find it
has a negligible impact on Stage IV parameter constraints. Our pipeline is a step towards seamlessly
propagating all data-processing, instrumental, theoretical, and astrophysical systematics through to the
final parameter constraints.

DOI: 10.1103/PhysRevD.100.023519

I. INTRODUCTION

Weak lensing by large scale structure offers some of the
tightest constraints on cosmological parameters. Over the
next decade, data from Stage IV experiments including
Euclid1 [1], WFIRST2 [2], and LSST3 [3] will begin taking
data. Extracting as much information from these ground-
breaking datasets, in an unbiased way, presents a formi-
dable challenge.
The majority of cosmic shear studies to date focuses on

extracting information from two-point statistics and in
particular the correlation function, ξðθÞ, in configuration
space and the lensing power spectrum, Cl, in spherical

harmonic space [4–8]. While the non-Gaussian information
in the shear field is accessed with higher-order statistics
[9,10], peak counts [11,12] or machine learning [13], the
impact of systematics on the two-point functions have been
extensively studied [14]. For this reason we will focus on
these statistics and leave the higher-order information to a
future study. In particular, we focus on the Cl statistic
because computing correlation functions from catalogues
with billions of galaxies—even using an efficient code
such as TREECORR [15]—is extremely computationally
demanding.
Apart fromRefs. [16,17], existing studies of the shear two-

point statistics [4–8] use a Gaussian likelihood analysis to
infer the cosmological parameters. This approach has draw-
backs. For example, with the improved statistical precision
of next generation data, we will need to propagate compli-
cated “theoretical systematics” (e.g., reduced shear [18]) and
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detector effects [14] into the final cosmological constraints.
It is difficult to derive the expected impact of these effects as
is required for a likelihood analysis. It is much easier to
produce forward model realizations.
It has also recently been claimed that because the true

lensing likelihood is left skewed, not Gaussian, parameter
constraints from correlation functions are biased low in the
σ8 −Ωm plane [19,20]. The same argument given in these
papers applies to the Cl statistic. More will be said about
this in Sec. III.
To overcome these issues, a new method called density-

estimation likelihood-free inference (DELFI) [21–27]
offers a way forward. DELFI is a “likelihood-free” method
similar to approximate Bayesian computation [28], but
much more computationally efficient. Using summary
statistics (the Cl statistic, in this case) generated from full
forward models of the data at different points in cosmo-
logical parameter space, DELFI is used to estimate the
posterior distribution.
Performing inference on realizations of the data may

seem computationally challenging, but using efficient data
compression [25,29], most applications require only
Oð1000Þ simulations [27]. This is less than the number
of simulations already required to produce a valid estimate
of the inverse covariance matrix in a Stage IV likelihood
analysis. DELFI is also highly parallelizable.
Two additional likelihood-free methods are introduced in

Refs. [30,31]. The aims of these methods respectively are to
optimally choose points in parameter space, reducing the
number of simulations, and to infer a larger number of
parameters. Nevertheless, we choose to work with DELFI
because cosmic shear simulations are expensive, so we
want to take advantage of parallelism, and we only need to
infer a small number of cosmological parameters. Methods
to deal with a large number of nuisance parameters in
DELFI are discussed in Ref. [32].
The goals of this paper are threefold:
(i) To develop a more realistic forward model of the

shear field than the one presented in Ref. [27],

including the impact of intrinsic alignments and non-
Gaussinities of the field, and determine whether this
changes the number of simulations needed to per-
form inference with DELFI.

(ii) To test the impact of the Gaussian-likelihood
assumption used in nearly all cosmic shear studies
and in so doing test whether the data compression of
the Cl summary statistic used in DELFI is lossless.

(iii) To validate that the forward model presented in this
paper will be accurate enough to perform inference
on today’s Stage III datasets.

To achieve these aims, we develop two cosmic shear
forward model pipelines for DELFI, using the publicly
available PYDELFI

4 implementation, summarized in Fig. 1.
Pipeline I takes full advantage of the benefits of forward
modeling and is intended for application to real datasets,
while Pipeline II is intended only for comparison with the
standard likelihood analysis. We also consider three differ-
ent analyses summarized in Table I. DA1 is a DELFI
analysis using shear Pipeline I. Meanwhile, we compare the
DELFI analysis, DA2, to the likelihood analysis (LA) to
test the impact of the Gaussian likelihood approximation. It
is useful for the reader to refer back to Table I and Fig. 1
throughout the text.
The structure of this paper is as follows. The formalism

of cosmic shear and cosmological parameter inference is
reviewed in Secs. II and III. While DELFI has already been
applied to cosmic shear in a simple Gaussian field setting
[27], in Sec. IV, we go beyond this and present a more
realistic forward model (Pipeline I) which includes the
impact of intrinsic alignments and non-Gaussianities of the
shear field. We also estimate the number of simulations
required for a Stage IV experiment and check to confirm
that we recover the input cosmology from a DA1 analysis
on mock data. Next, we discuss the feasibility of the DA1
analysis for Stage III data in Sec. V. In Sec. VI, we test the

TABLE I. The three analyses in this paper. InDA1,we useDELFI to infer the cosmological parameters. Sincewe perform inferencewith
forward models, there is no need to deconvolve the pixel window function, deconvolve the mask, or subtract off the shot noise. This
analysis is applied tomock Stage IV data in Sec. IV.Meanwhile, by comparing theDELFI analysis, DA2,with the likelihood analysis, LA,
we test the impact of the Gaussian likelihood approximation. In DA2, our modeling choices are governed by the constraint that we must
match the Gaussian likelihood analysis as closely as possible. Some of the map-level choices are not applicable to the likelihood analysis.

DA1 DA2 LA

Inference DELFI DELFI Gaussian likelihood
Pipeline Pipeline I Pipeline II NA
Number of galaxies 1.56 × 109 1.56 × 109 1.56 × 109

Number of tomographic bins 6 2 2
Number of l-bins 15 with l ∈ ½10; 1000� 15 with l ∈ ½10; 1000� 15 with l ∈ ½10; 1000�
Field type Log normal Gaussian NA
Deconvolve pixel window No Yes NA
Mask Yes No NA
Subtract shot noise No Yes NA

4https://github.com/justinalsing/pydelfi/commits/master.
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impact of the Gaussian likelihood approximation by
comparing the DA2 analysis to the LA analysis. In
Sec. VII, we discuss future prospects for DELFI in cosmic
shear studies, before concluding in Sec. IX.

II. COSMIC SHEAR FORMALISM AND THE
LOGNORMAL FIELD APPROXIMATION

A. Lensing spectrum

Assuming the Limber [33,34], spatially flat Universe
[35], flat sky [34], and equal-time correlator approxima-
tions [36], the lensing spectrum, Cij

l;GG, is given by [4]

Cij
l;GG ¼

Z
rH

0

dr
qiðrÞqjðrÞ

r2
P

�
l
r
; r

�
; ð1Þ

where Pðk; rÞ is the matter power spectrum and the lensing
efficiency kernel, qi, is defined as

qiðrÞ ¼
3H2

0Ωm

2c2
r

aðrÞ
Z

rH

r
dr0niðr0Þ

r0 − r
r0

; ð2Þ

and we generate the Ntomo tomographic bins, niðr0Þ, by
dividing the radial distribution function,

nðzpÞ ∝
a1
c1

e
−ðz−0.7Þ2

b2
1 þ e

−ðz−1.2Þ2
d2
1 ; ð3Þ

with ða1=c1; b1; d1Þ ¼ ð1.5=0.2; 0.32; 0.46Þ [37] into bins
with an equal number of galaxies per bin. To account for
photometric redshift error, each bin is smoothed by the
Gaussian kernel,

pðzjzpÞ≡ 1

2πσzðzpÞ
e
−ðz−ccalzpþzbiasÞ2

2σzp ; ð4Þ

with ccal ¼ 1, zbias ¼ 0 and σzp ¼ Að1þ zpÞ with A ¼
0.05 [38].

B. Intrinsic alignments

The tidal alignment of galaxies around massive halos
adds two additional terms to the lensing spectrum. A
“II term” accounts for the intrinsic tidal alignment of
galaxies around massive dark matter halos, while a “GI
term” accounts for the anticorrelation between tidally
aligned galaxies at low redshifts and weakly lensed
galaxies at high redshift.
We model this effect using the nonlinear alignment

model [4,39]. We also allow the intrinsic amplitude,
AðzÞ, to vary as a function of redshift so that AðzÞ ¼
½ð1þ z0Þ=ð1þ zÞ�η [40], where z0 is the mean redshift of
the survey. This is z0 ¼ 0.76 for the nðzÞ given in Eq. (3).

FIG. 1. A schematic of the two forward model pipelines used in
this work given model parameters p. In Pipeline I, we develop a
forward model of cosmic shear data for inference with DELFI,
which takes advantage of the forward model approach. There is
no need to deconvolve the mask or pixel window function, for
example. In Pipeline II, we use a Gaussian field, do not use a
mask, subtract off the shot noise, or deconvolve the pixel window
function. These choices allow us to make a direct comparison
between DELFI and a Gaussian likelihood analysis to test the
Gaussian likelihood assumption.
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This model was used in the joint KiDS-450+2dFLenS [41]
analysis and was one of the models considered in the Dark
Energy Survey Year 1 cosmic shear analysis (hereafter
DESY1) [5].
In this case, the II spectrum, Cij

l;II, is given by

Cij
l;II ¼

Z
rH

0

dr
niðrÞnjðrÞ

r2
PII

�
l
r
; r

�
; ð5Þ

where the II matter power spectrum is

PIIðk; zÞ ¼ F2ðzÞPðk; zÞ ð6Þ

and

FðzÞ ¼ −AIC1ρcrit
Ωm

DðzÞ
�
1þ zðrÞ
1þ z0

�
η

; ð7Þ

where ρcrit is the critical density of the Universe,DðzÞ is the
growth factor, and C1 ¼ 5 × 10−14h−2 M−1

⊙ Mpc3.
The GI power spectrum is

Cij
l;GI ¼

Z
rH

0

dr
qiðrÞnjðrÞ þ niðrÞqjðrÞ

r2
PGI

�
l
r
; r

�
; ð8Þ

and the GI matter power spectrum is

PGIðk; zÞ ¼ FðzÞPðk; zÞ: ð9Þ

Altogether, the theoretical lensing spectrum, CT;ij
l , is given

by the sum of the three contributions:

CT
l ¼ Cij

l;GG þ Cij
l;GI þ Cij

l;II: ð10Þ

Henceforth, we will routinely drop the tomographic bin
labels for convenience, as we have done here, on the left-
hand side.
All lensing spectra are generated inside the COSMOSIS

framework [42]. The linear power spectrum and expansion
history are computed with CAMB [43], and the nonlinear
corrections are computed with HALOFIT [44].

C. Log-normal field approximation

Generating log-normal convergence fields [45] is compu-
tationally inexpensive and captures the impact of nonlinear
structure growth more accurately than Gaussian realizations.
This approximation was recently used in DESY1 [5] to
compute the covariance matrix from noisy realizations of the
data. No differences in parameter constraints were found
when the covariance was computed using log-normal fields
compared to the halo model approach [46].
In the log-normal field approximation, the convergence,

κiðθÞ, inside each tomographic bin, i, is generated by
exponentiating and shifting a Gaussian realization, giðθÞ,
according to

κiðθÞ ¼ exp ½giðθÞ� − κi0; ð11Þ

where κi0 is a constant shift parameter.
We use FLASK [47] to generate consistent log-normal

realizations [45] of the convergence and shear fields—
correlated between redshift slices. The procedure is dis-
cussed in detail in Sec. 5.2 of Ref. [47] (see also Ref. [48]).
FLASK takes just two inputs:

(i) FLASK takes the theoretical lensing spectrum, CT
l ,

defined in Secs. II A and II B. Formally, FLASK uses
the convergence spectrum to generate a convergence
field, κ, from which it computes a consistent shear
field, γ. In the flat sky approximation—which we
assume throughout—the shear and convergence
spectrum are the same, but care would be needed
to correctly rescale the input convergence spectrum
by the appropriate l-factor if the flat sky approxi-
mation were dropped [34,49].

(ii) FLASK requires the shift parameter, κi0, for each
tomographic bin i. We compute this by taking a
weighted average of the shift parameter at each
redshift,

κi0 ¼
Z

dzniðzÞκi0ðzÞ; ð12Þ

using the fitting formula

κi0ðzÞ ¼ 0.008zþ 0.029z2 − 0.0079z3 þ 0.0065z4

ð13Þ

derived from simulations [45].
While the fitting formula will have some cosmological

dependence, the shift parameter does not affect the power
spectrum of the field—only impacting cosmological con-
straints through the covariance. Non-Gaussian corrections
to the covariance already have a subdominant impact
[50,51]; hence, the dependence of these corrections on
the cosmology is further subdominant. For this reason, we
ignore the cosmological dependence of the shift parameter.
A valid covariance matrix between data must be positive

definite, but this is not guaranteed for correlations between
tomographic log-normal fields [47]. FLASK overcomes this
issue by perturbing the log-normal fields following the
regularization procedure outlined in Sec. 3.1 of Ref. [47].
Provided that the regularization is applied to a small
number of tomographic bins, it is found in Ref. [47] that
Creg
l =Cln

l ≪ 1 × 10−5, where Creg
l is the recovered regular-

ized spectrum and Cln
l is the spectrum recovered from the

unregularized map [47]. In Sec. V, we verify that this will
not impact Stage III parameter constraints.
In Fig. 2, we plot a single log-normal realization

generated with Pipeline I. We show the masked conver-
gence and components of the shear field in the lowest
redshift bin. This is where the non-Gaussianities are most
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pronounced and clearly visible. In the convergence map,
the majority of the pixels takes small negative values.
However, there are rare incidences of large positive con-
vergence. This physically corresponds to collapsed high-
density structures along the line of sight.

D. Band-limit bias from the log-normal field

Unlike Gaussian fields, log-normal realizations are not
band limited in l (see Sec. 5.2.2 in [47]). In particular,
Taylor expanding the log-normal convergence field, κiðθÞ,
in terms of the Gaussian field, giðθÞ, yields quadratic and
higher-order terms in gi. In harmonic space, this mixes
different l-modes. When a band limit is imposed, this
biases the lensing spectrum recovered from the map.

III. COSMOLOGICAL PARAMETER INFERENCE

A. Gaussian likelihood analysis

In the standard two-point cosmic shear likelihood
analysis, we assume a Gaussian likelihood,

lnLðpÞ ¼ −
1

2

X
a;b

½Da − TaðpÞ�C−1
ab ½Db − TbðpÞ�; ð14Þ

where Da and TaðpÞ are the data and theory vectors
respectively composed of the Cl estimated from data
and the theoretical expectation of Cl given cosmological
parameters p.
Meanwhile, C−1

ab is the inverse of the covariance matrix.
Since we generate the covariance matrix from noisy
simulations of the data, we make the Anderson-Hartlap
[52,53] correction, to avoid bias from inverting the covari-
ance matrix, for the remainder of the paper.

B. Potential insufficiency of the Gaussian likelihood
approximation in cosmic shear

To see why the Gaussian likelihood assumptions can
lead to bias, we summarize the argument given in Ref. [20].
Inside a single bin, the unmasked lensing spectrum is

Cl ¼ 1

2lþ 1

Xl
m¼−l

jγlmj2: ð15Þ

Since the harmonic coefficients, γlm, are computed as a
summation over a large number of pixels, they are Gaussian
distributed by the central limit theorem. Squaring a
Gaussian random variable gives a gamma distribution—
which is left skewed. This is illustrated in the top two rows
of Fig. 3.
Taking a Gaussian rather than a gamma distribution for

the likelihood could bias parameter constraints. Since S28 ¼
σ28ðΩm=0.3Þ and Ωm enter into the shear spectrum ampli-
tude, we would expect these parameters to be ones which
are most affected—and biased low. Only in the limit of
large l—as the Cl itself becomes the sum over a large
number of m-modes—does the central limit theorem kick
in and the likelihood become Gaussian. This is illustrated in
Fig. 3 and can be seen by comparing the second and
third rows.

FIG. 2. A single masked data realization of the convergence
field, κ, and the two observable shear components: γ1 and γ2
(including shape noise) for a typical Stage IV experiment. This is
the lowest redshift bin of six, where the effect of non-Gaussianity
is largest. The non-Gaussianity is clearly visible in the κ-map (the
color scale runs between the minimum and maximum value of
the κ-field to make the non-Gaussianity more visible), where the
majority of pixels is very slightly negative with a small number of
pixels taking very large (positive) κ-values. The mask cuts all
pixels lying within 22.5 deg of the galactic and ecliptic planes.
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C. Density-estimation likelihood-free compression

Since density-estimation likelihood-free inference meth-
ods are most effective in low dimensions [25], we compress
the Cl summary statistic. As suggested in Ref. [29], the
lensing spectra are compressed into a new vector, t,
according to

Cl → t ¼ ∇pL�; ð16Þ

where p is the set of cosmological parameters that we
are inferring; L� is a proposal Gaussian likelihood
centered at a fiducial set of parameters, which we take
to be ðΩm;h0;Ωb;ns;S8;A;ηÞ¼ð0.3;0.72;0.96;0.79;1.;2.8Þ
throughout, where S8 ¼ σ8ðΩm=0.3Þ0.5; A and η are the
intrinsic alignment parameters defined in Sec. II B; and the
other parameters take their standard cosmological defini-
tions. As the assumption of a Gaussian likelihood here is
only for compression purposes, it does not bias the final
parameter constraints, and the Fisher information is pre-
served provided the true likelihood is Gaussian [29]. If the
true likelihood is not exactly Gaussian, some information
will be lost. This is investigated in Sec. VI. For more
advanced compression techniques using neural networks,
see Ref. [54].

D. Density-estimation likelihood-free inference

We use PYDELFI [27] to learn the conditional density
PðtjpÞ (this software comes with many different run-mode
options, but we restrict our attention to the methods used in
this work). The likelihood is then given by Pðt ¼ tdatajpÞ,
where tdata is the mock data generated from either Pipeline I
or II. Multiplying by the prior, which we take to be flat in
all parameters, yields the posterior.
Using the default setting in PYDELFI, we train five neural

density estimators (NDEs) [four mixture density networks
and one masked autoregressive flow, see Ref. [27] for more
details] with the default network architectures described in
Sec. 4 of Ref. [27], parametrized in terms of a set of neural
network weights, w. Training multiple networks allows
DELFI to avoid overfitting and increases robustness.
We use sequential learning to learn the weights, w,

updating our knowledge of the conditional density distri-
bution Pðt ¼ tdatajpÞ. Specifically, we divide the inference
task into 20 training steps with 100 simulations per step.
Given a large enough computer, all the simulations in each
training step could be run in parallel, so that the total time
of the simulations would not exceed the time it took to
perform 20 simulations.
As an initial guess for the conditional distribution, we

take the multivariate Gaussian,

PðtjpÞ ¼ N ðtjp;F−1Þ; ð17Þ

where F−1 is the inverse of the Fisher matrix of the
cosmological parameters, F ¼ −h∇p∇Tr

p L�i. At each step

FIG. 3. The distribution of Cl drawn from 1000 Gaussian (blue)
and log-normal (orange) realizations. Each subplot corresponds to
different l-modes and binning strategies. In all cases, there is little
difference in the skewof the distributionwhenusingGaussian or log-
normal fields. This suggests the impact of the Gaussian likelihood
approximationcanbetestedunder theassumptionofaGaussian field,
as in thiswork.Top:Thel ¼ 3 case is clearly skewed,asexpected for
low l (see Sec. III B). Middle: The l ¼ 13 case is slightly less
skewed, as expected. Bottom: The binned case for l ∈ ½13; 15�. By
the central limit theorem, the distribution is Gaussianized when
drawingrandomly fromthedistributionofeach independentl-mode.
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thereafter, we train each neural density estimator on a set of
parameter realization pairs fpi; tig drawing samples from
the conditional density of the previous step to ensure that
the highest-density regions are the most finely sampled.
Meanwhile, 10% of the samples are retained as a validation
set to avoid overfitting.
At each step, each NDE learns the weights, w, by

minimizing the negative loss function,

− lnUðwÞ ¼ −
XNsamples

i¼1

lnPðtijp;wÞ; ð18Þ

which is an estimate of the Kullback-Leibler divergence
between the density estimator Pðt ¼ tdatajpÞ and the true
distribution [27] (the minus sign is pulled out ofUðwÞ on the
left-hand side following the convention in Ref. [27]). The
final estimate for the conditional distribution is given as a
weighted average over the estimates from the five networks,

Pðtjp;wÞ ¼
X

i∈networks
βiPiðtjp;wÞ; ð19Þ

where the weights are determined by the relative likelihood
of each NDE [27].

IV. FULL FORWARD MODEL

In this section, we use Pipeline I to generate mock Stage
IV data and then run analysis DA1 to recover the input
cosmology. This allows us to test our pipeline and estimate
the number of simulations needed for a Stage IV experi-
ment. We describe the model choices and results below.

A. Mask

We use a typical Stage IV survey mask shown in Fig. 2.
All pixels lying within 22.5 deg of either the galactic or
ecliptic planes are masked. This leaves 14; 490 deg2 of
unmasked pixels, which, as a fraction of the full sky,
is fsky ¼ 0.35.

B. Shot-noise model

The noise, γp, for each pixel, p, is drawn from a
Gaussian distribution [16],

γp ∼N
�
0;

σϵffiffiffiffiffiffiffi
N̂P

p
�
; ð20Þ

where N̂P is the number of galaxies in each pixel, the
orientation is angle is drawn from a uniform distribution,
we take the intrinsic shape dispersion as σϵ ¼ 0.3 [55], and
we use 30 galaxies per arc minute2 throughout. This is a
good approximation since in all our simulations there are a
large number of galaxies in each pixel, so the central limit
theorem applies.

C. Forward modeling the mask

One advantage of performing inference with full forward
models of the data is that we do not need to deconvolve the
mask. This is both computationally simpler and avoids the
risk of bias from inaccurate deconvolution, which is present
in the standard likelihood analysis.
Given two masked shear fields aðθÞ and bðθÞ, a naive

estimate of the lensing spectrum is the pixel pseudo-Cl
spectrum,

C̃pix;EE
l ¼ 1

2lþ 1

Xl
m¼−l

haElmbElmi; ð21Þ

where the tilde is used to denote the fact that we have not
corrected for the mask and the “pix” superscript reminds us
that we have not accounted for the pixel window function.
Analogous expressions are easily found for the EB and BB
spectra.
In an unmasked field, lensing by the large scale structure

will only induce power in the EE spectra, but to retain
information leaked into the EB and BB spectra due to the
presence of a mask, in Pipeline I, we use

C̃pix
l ¼ C̃pix;EE

l þ C̃pix;EB
l þ C̃pix;BE

l þ C̃pix;BB
l ; ð22Þ

as the estimator. This is computed using HEALPY [56,57].
In a future pipeline, it may still be desirable to use the

pseudo-Cl formalism to avoid mixing between E- and
B-modes, allowing us to immediately remove B-modes
induced by unknown systematics. As long as the data and
theory are treated in the same way, the pseudo-Cl formal-
ism will not introduce bias, as it could in the standard
likelihood analysis.

D. Mimicking a Stage IV experiment

To estimate the number of simulations needed for a Stage
IV experiment and ensure that the pipeline recovers the
input cosmology, we produce mock data with Pipeline I.
We use six tomographic bins sampling 15 logarithmically
spaced l-bins in the range l ∈ ½10; 1000�. We then run
PYDELFI to estimate the posterior distribution of the
cosmological parameters for these data. The final parameter
constraints for a lambda cold dark matter cosmology with
two nuisance intrinsic alignment parameters are shown in
Fig. 4. This confirms that we recover the input parameters
within errors.
In Fig. 5, we plot the negative loss function defined in

Eq. (18) for the training and validation sets. Both have
converged within Oð1000Þ simulations. This is similar to
the number found in the simple Gaussian field pipeline
presented in Ref. [27], suggesting that the inclusion of
higher-order effects including intrinsic alignments and non-
Gaussian field corrections does not significantly increase
the required number of simulations.
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When working with real data, we may require a large
number of nuisance parameters. Nevertheless, we do not
expect this to dramatically increase the number of simu-
lations needed, since we can always tune the data com-
pression to maximize the information retention of the
parameters of interest, following the procedure in Ref. [32].
Each simulation takes approximately 33 min on a single

thread of a 1.8 GHz Intel Xeon (E5-2650Lv3) Processor.
Thus, if run on 100 threads in parallel, the total simulation

time of the DELFI inference step takes only 10 h. Many of
the individual modules in the pipeline are multithreaded
(e.g., FLASK), so running on even more threads would
further reduce the total run time.

V. PROSPECTS FOR STAGE III DATA

In this section, we discuss the viability of applying
analysis DA1 to existing Stage III data. For the remainder

FIG. 4. 68% and 95% credible region parameter constraints found with DELFI analysis DA1 after 1000 simulations, for a mock Stage
IVexperiment. We confirm that we recover the input cosmology within statistical errors. We plot the convergence in Fig. 5. In a realistic
situation, there may be a larger number of nuisance parameters. This would not dramatically slow convergence because we could
“nuisance harden” the data compression step, to only learn the posterior for the parameters of interest [32].
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of this section, we assume a circular mask of 4951 deg2,
similar to the final coverage of the Dark Energy Survey [58]
with ten galaxies per arc minute2 and use Pipeline I
throughout this section—except where modifications are
explicitly stated.

A. Validating the log-normal simulations

Log-normal fields were used to generate the covariance
matrix in the recent Dark Energy Survey Year 1 analysis
[5]. The authors found no difference in parameter con-
straints between this analysis and one which used a halo
model to generate the covariance matrix—but to verify that
our pipeline is ready for Stage III data, we must also ensure
that we recover an unbiased Cl from the maps.
Given an accurate input Cl, the only bias in Pipeline I

comes from regularizing the map (see Sec. II C). We would
not expect the band-limit bias of the log-normal field to be
problematic since imposing a band limit would affect the
data in the same way. However, this assumes that the true
field is exactly log normal. Nevertheless, we check to
ensure that the combined effect of regularization and
imposing a band limit is small. We quantify this statement
by finding the difference between the average recovered
pixelated Cl’s from 100 Gaussian simulations (where no
band-limit bias or regularization bias is present) and 100
log-normal simulations. Each 4-tomographic bin simula-
tion takes approximately 15 min on a single thread, and the
difference in the recovered spectra is shown in Fig. 6. The
bias is safely below 1% in all but three data points. This
confirms that once minor updates have been made (see the
next subsection) the pipeline will be ready for use on
today’s data.

B. Model improvements

Only a small number of adjustments must be made to
DA1 to apply this analysis to existing data. These are as
follows:

(i) We must accurately account for baryonic physics.
This can be handled using a halo model code [59],
potentially in combination with the k-cut cosmic
shear approach [60,61], optimally cutting scales
which cannot be accurately modeled.

(ii) We must introduce several nuisance parameters. As
well as allowing for free multiplicative and additive
shear biases, photo-z bias parameters will need to be
allowed to vary, as in the Dark Energy Year 1
analysis [5]. This will increase the number of
nuisance parameters. To avoid excessive computa-
tional costs, we must “nuisance harden” [32] the
data compression step.

VI. TESTING THE GAUSSIAN LIKELIHOOD
APPROXIMATION

In this section, we compare DELFI and the standard
Gaussian likelihood analysis by running the DA2 analysis
and the LA analysis, on the same mock Stage IV data. We
use Pipeline II to generate the mock data, produce the
covariance matrix, and generate the forward models in
DA2. Since DELFI does not assume any particular like-
lihood, differences in the resulting parameter constraints
are only due to the Gaussian likelihood assumption in LA.
Because we can not just forward model everything in LA,
care must be taken to ensure that the band-limit bias,
deconvolving the mask, deconvolving the pixel window

FIG. 6. The colored lines show the absolute value of the
difference between the average recovered cross- and intrabin
spectra from 100 log-normal and 100 Gaussian realizations (four
tomographic bins, Nside ¼ 512, and l ∈ ½10; 1535�). The differ-
ence is due to the band-limit bias in the log-normal field
discussed in Sec. II D. With these model choices, the band-limit
bias is safely below 1% for nearly all data points.

FIG. 5. The negative loss function defined in Eq. (18) for the
training and validation sets as a function of the number of
simulations. This suggests that Oð1000Þ simulations are needed
for a Stage IV experiment. This is similar to the number found in
Ref. [27], which only considered a simple Gaussian field forward
model with no intrinsic alignments, implying that the conver-
gence rate is fairly insensitive to the precise details of the model.
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function, and subtracting the shot noise do not lead to
additional bias between the two analyses. Controlling for
these effects is described in the first subsection.

A. Modeling choices in pipeline II

To avoid the band-limit bias, we use a Gaussian field,
rather than the log-normal field.
We do not apply a mask in DA2 as we have found that

using the pseudo-Cl method (with the public code
NAMASTER [62]) can bias parameter constraints, with
our choice of HEALPIX5 Nside and lmax by up to 1σ.
Instead, we adjust the galaxy number density so that total
number of galaxies and hence the signal to noise remains
unchanged.
In LA, we decide to take the Cl, with no shot-noise term

in the intrabin case as the data vector. Thus, we must
subtract off the expected value of the noise in DA2. This is
computed by running 500 noise-only simulations, as in the
analysis of Ref. [8].
We must also account for the fact that the shear spectra

are computed on pixelized maps—that is, we must decon-
volve the pixel window function, wl, which is defined in
Ref. [63] and computed using HEALPIX. This assumes that
the scale of the signal is large relative to the pixel scale and
that all pixels are the same shape. The window-corrected
spectrum, Cl, is given in terms of the spectrum computed
from a pixelized map, Cpix

l , by

Cl ¼ w−2
l Cpix

l : ð23Þ

By running 500 Gaussian field simulations, we have
confirmed that the combined bias from deconvolving the
pixel window function and subtracting the shot noise is
small, so that we can have fair comparison between the
DA2 analysis and the LA analysis. This is shown in Fig. 7.
The absolute value of the bias, jbj, is small relative to the
statistical error, σ, with jbj=σ < 0.1 for all data points.

B. Impact of the Gaussian likelihood approximation

To test the impact of the Gaussian likelihood approxi-
mation, we first generate 1000 mock data realizations using
Pipeline II. We take 15 logarithmically spaced l-bins in the
range [10, 1000] and restrict our attention to the S8 −Ωm
plane. To cut computation cost, we use only two tomo-
graphic bins. The parameters S8 and Ωm primarily impact
the amplitude of the shear spectrum, so we do not expect to
lose too much information with this choice [64,65].
It is known from analyses of cosmic microwave back-

ground temperature anisotropies that non-Gaussian like-
lihoods arise even for Gaussian fields [66], as the argument
given in Sec. III B holds for any field configuration.
Nevertheless, we generate 1000 log-normal realizations

in conjunction with the Gaussian fields to determine
whether the field configuration impacts the likelihood.
The results are plotted in Fig. 3. The skew in the likelihood
is indistinguishable between the Gaussian and log-normal
field configurations, justifying our choice to work with
Gaussian fields for the remainder of this section.
For three random data realizations, we run a DELFI and

a Gaussian likelihood analysis. The resulting posteriors are
shown in Fig. 8. Each subplot corresponds to one of the
three realizations.
In all three cases, the DELFI and Gaussian likelihood

contours are very similar. This suggests the Gaussian
likelihood assumption does not bias parameter constraints
in the S8 − Ωm plane and the compression defined in
Eq. (16) is lossless.
To confirm and quantify this statement, we sample the

maximum likelihood estimator (MLE) distribution assum-
ing a Gaussian likelihood, using the 1000 data realizations
generated earlier. For each realization, the MLE is found
using the Nelder-Mead algorithm built into SCIPY and
wrapped into COSMOSIS using the default settings. The
resulting MLE distribution is shown in Fig. 9. The input
cosmology lies almost exactly at the center of the 68%
credible region, which implies that there is no measurable
bias from the Gaussian likelihood approximation.
We stress that these conclusions only hold for the Cl

analysis presented in this work. In particular, the l-binning
strategy matters. By binning l-modes, we are taking a sum
over random variables, so by the central limit theorem,
broader bins correspond to more Gaussian data. This is
verified in Fig. 3 and can be seen by comparing the skew in
the second and third rows. The Gaussian likelihood
approximation could be important for much narrower bins.
While the Gaussian likelihood approximation may not be

FIG. 7. The absolute value of the bias, jbj, due to imperfect
pixel-window deconvolution and noise subtraction relative to the
statistical error, σ, from 500 Pipeline II simulations. This
confirms that the comparison between DELFI and the likelihood
analysis presented in Sec. VI B will be unaffected.

5https://sourceforge.net/projects/healpix/.
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valid for other weak lensing summary statistics, a recent
paper has shown it is also valid for two-point correlation
functions [67].

VII. FUTURE PROSPECTS

We review the main known cosmic shear systematics,
which must eventually be included in the full forwardmodel.
To account for many of these effects, we must first take the
basemodel presented in this work to “catalog level.”This can
be done by first generating a consistent density field—either
with FLASK or by taking the difference between two neigh-
boring tomographic bins—and then populating the density
field with a realistic population of galaxies [68] assuming a
biased tracer model (e.g., Ref. [69]). Cosmic shear system-
atics break down into four broad categories: data-processing,
theoretical, astrophysical, and instrumental systematics.
On the data-processing side, accurately measuring the

shape and photometric redshift of galaxies is the primary
challenge. Both measurements are dependent on the galaxy
type [70], and this is in turn correlated with the density
through the morphology-density relation [71]. Rather than
using the best fit parameters for each galaxy, we can sample
the posterior on each galaxy as in a Bayesian hierarchical
model [16] to propagate the measurement uncertainty into
the final parameter constraints, as suggested in Ref. [27].
We can also account for image blending [70,72] more
easily with forward models.
Two important theoretical systematics are the reduced

shear correction [18,73] and magnification bias [74,75].

FIG. 8. The 68% and 95% credible region parameter constraints
for three random data realizations found using a MCMC
Gaussian likelihood analysis and DELFI, which makes no
assumption about the functional form of the likelihood. The
mock data input cosmology is labeled by black dotted lines. Only
in the first realization does the input cosmology lie outside the
68% credible region—but, statistically, this is to be expected for a
small number of realizations. The contours found using the two
different analyses are very similar for all three data realizations,
suggesting that the Gaussian likelihood approximation has
negligible impact, and the compression in Eq. (16) is lossless.
This former statement is confirmed in Fig. 9.

FIG. 9. The 68% and 95% credible region of the MLE
distribution, assuming a Gaussian likelihood. The value of the
input cosmology is indicated by the black dotted lines and lies at
the center of the contours. This implies that the Gaussian
likelihood approximation does not lead to any measurable bias
in our setup.
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The former correction accounts for the fact that we measure
the reduced shear γ=ð1 − κÞ with a weak lensing experi-
ment. In a likelihood analysis, this can be computed using a
perturbative expansion as in Refs. [18,76]. This is slow and
requires us to rely on potentially inaccurate fitting functions
for the lensing bispectrum. Meanwhile the magnification
bias accounts for the fact that galaxies of the same
luminosity can fall above (below) the detectability limit
in regions of high (low) lensing magnification. In both
cases, these systematics can be easily handled with full
forward models of consistent shear and convergence fields.
The two dominant instrumental systematics are the

telescope’s point spread function [14] and the effect of
charge transfer inefficiency in the charge-coupled devices
[14,77]. Efforts are underway to build pipelines which
characterize these effects in upcoming experiments (e.g.,
Refs. [78,79]. Integrating these pipelines into ours would
enable the propagation of instrumental errors through to the
final parameter constraints.
On the astrophysical side, the two dominant systematics

are the impact of baryons on the density field [9] and the
intrinsic alignment of galaxies [39,80]. For Stage IV data,
forward models will likely have to be based on high-
resolution N-body lensing simulations [81,82] to include
the effects of baryons. Even with today’s highest-resolution
simulations, the impact of baryons are still uncertain [83],
so it will likely be necessary to optimally cut [60] or
marginalize out uncertain scales [83]. Meanwhile, more
sophisticated intrinsic alignment models which account for
different alignment behavior by galaxy type [84] will need
to be included.
Eventually higher-order statistics such as peak counts

and the shear bispectrum can be added. Since DELFI
automatically handles multiple summary statistics in a
unified way, the constraints will be tighter than doing
the two-point and higher-order statistic analyses separately.
With a greater ability to handle systematics, DELFI may
also open up the possibility of performing inference with
weak lensing flux and size magnification [27,85–89].

VIII. CONCLUSION

By comparing a Gaussian likelihood analysis to a fully
likelihood-free DELFI analysis, we have found that the
Gaussian likelihood approximation will have a negligible
impact on Stage IV parameters constraints. Nevertheless,
we recommend the development of DELFI weak lensing
pipelines because they offer the possibility of performing
rapid parallel inference on full forward realizations of the

shear data. In the future, this will allow us to seamlessly
handle astrophysical and detector systematics—at a min-
imal computational cost. Since we have shown that apply-
ing the standard DELFI data compression [see Eq. (16)] to
the Cl summary statistic is lossless (see Fig. 8), this comes
at no cost in terms of constraining power.
We have taken the first steps towards developing a

pipeline to rapidly generate realistic non-Gaussian shear
data, including the impact of intrinsic alignments. These
effects are handled in the same way as the Dark Energy
Survey Year 1 analysis [5], and we have verified that the
regularization of the log-normal field will not lead to bias
using today’s data. Additionally, the pipeline is computa-
tionally inexpensive, so in the future, it will be useful for
quickly determining which systematics are important.
We confirm the result of Ref. [27] (which used a simple

Gaussian field model for the lensing field) that Oð1000Þ
would be required to perform inference on Stage IV data.
This suggests that this estimate is robust and largely
insensitive to precise details of the forward model.
We conclude that DELFI has a promising future in

cosmic shear studies. Developing fast simulations that fully
integrate all relevant astrophysical, detector, and modeling
effects is the primary hurdle. With so many clear advan-
tages over the traditional likelihood analysis, developing
these simulations should be a priority.
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