
ADAPTIVE BOUNDARY ELEMENT METHODS FOR THE
COMPUTATION OF THE ELECTROSTATIC CAPACITY ON

COMPLEX POLYHEDRA

TIMO BETCKE, ALEXANDER HABERL, AND DIRK PRAETORIUS

Abstract. The accurate computation of the electrostatic capacity of three dimensional
objects is a fascinating benchmark problem with a long and rich history. In particu-
lar, the capacity of the unit cube has widely been studied, and recent advances allow
to compute its capacity to more than ten digits of accuracy. However, the accurate
computation of the capacity for general three dimensional polyhedra is still an open
problem. In this paper, we propose a new algorithm based on a combination of ZZ-type
a posteriori error estimation and effective operator preconditioned boundary integral
formulations to easily compute the capacity of complex three dimensional polyhedra to
5 digits and more. While this paper focuses on the capacity as a benchmark problem,
it also discusses implementational issues of adaptive boundary element solvers, and we
provide codes based on the boundary element package Bempp to make the underlying
techniques accessible to a wide range of practical problems.

1. Introduction

1.1. The capacity problem. The capacity Cap(Ω) of an isolated conductor Ω ⊂
R3 measures its ability to store charges. It is defined as the ratio of the total surface
equilibrium charge relative to its surface potential value [Kel67]. To compute the capacity,
we therefore need to solve the following exterior Laplace problem for the equilibrium
potential u with unit surface value:

−∆u = 0 in R3\Ω, (1a)

u = 1 on Γ := ∂Ω, (1b)

|u(x)| = O
(
|x|−1

)
as |x| → ∞. (1c)

The total surface charge of an isolated conductor is then given by Gauss’ law as

Cap∗(Ω) = −ε0
∫

Γ

∂u

∂ν
(x) dΓ(x). (2)

Here, ν(x) is the outward pointing normal vector for x ∈ Γ, and ε0 is the electric constant
with value ε0 ≈ 8.854× 10−12 F/m. In the rest of the paper, we will use the normalized
capacity Cap(Ω) = − 1

4π

∫
Γ
∂u/∂ν dΓ, which is commonly used in the literature.

1.2. State of the art. Analytic expressions of the capacity in 3D are only known for
very few simple domains, such as a sphere with radius r, for which Cap(Ω) = r. More-
over, computing the capacity to high accuracy even for simple shapes such as the unit
cube is exceedingly difficult as it involves the solution of the exterior Laplace problem (1)

Date: July 17, 2019.
Key words and phrases. electrostatic capacity, boundary integral equations, adaptivity, operator

preconditioning.
Acknowledgement. The research of AH and DP is funded by the Austrian Science Fund (FWF)

by the research project Optimal adaptivity for BEM and FEM-BEM coupling (grant P27005) and the
special research program Taming complexity in PDE systems (grant SFB F65).

1

for (possibly) non-smooth domains. This is very different from the 2D case, where tech-
niques such as fast Schwarz-Christoffel maps [DT02, BT03] allow the computation of the
logarithmic capacity to many digits of accuracy even on complex domains.

Nevertheless, there have been a range of interesting developments over the years to
compute the capacity in three dimensions. A frequently used benchmark example is the
capacity of the unit cube, which we will also use in this paper to compare our results to
existing methods. An early bound for the normalized capacity C of the unit cube was
published by Pólya already in 1947 [Pól47] who estimated that

0.62033 < C < 0.71055.

Over the years, several improvements have been made, some of which are summarized
in [HMW10]. In that paper, techniques based on random walks are used to compute
the capacity as 0.66067813 with an error believed to be in the order of ±1.01 × 10−7.
In 2013, [HP13] improved the existing computations by using Nyström methods and
multilevel solvers to 0.66067815409957 with an error in the order of 10−13.

Adaptive boundary element computations for the capacity are not completely new.
For example, in [Rea97] a pre-chosen anisotropic refinement towards the edges is used
together with an extrapolation technique to compute the capacity of the unit cube to
around six digits of accuracy. However, the computations in that paper are simplified by
exploiting the special symmetry of the cube and do not generalize to arbitrary polyhedra.
Moreover, [Rea97] briefly mentions also an adaptive refinement strategy that is based on
refining elements with large charge contributions.

1.3. Contributions of the present work. In this paper, we present a black-box
method for capacity computations of polyhedra in three dimensions, which achieves a
similar accuracy of order 10−6 for the unit cube. Our method is based on an adaptive
boundary element computation, which uses a ZZ-type a posteriori error estimator to
steer the mesh-refinement in combination with a suitable operator preconditioning. Our
ansatz is completely generic in that the adaptive refinement strategy works for any type
of polyhedron and quickly generates meshes that compute the capacity for a given shape
to several digits of accuracy.

1.4. Main results in a nutshell. A boundary integral formulation for the compu-
tation of the capacity can be derived by considering Green’s representation theorem and
noting that the exterior Laplace double-layer potential is zero for constant densities. We
hence obtain a representation of the solution u of (1) as

u(x) =

∫
Γ

G(x, y)φ(y) dΓ(y) for all x ∈ R3\Ω, (3)

where φ := −∂u/∂ν is the (negative) normal derivative of the exterior solution u and
G(x, y) := 1

4π|x−y| is the Green’s function of the 3D Laplacian. Taking boundary traces,

the right-hand side of (3) gives rise to the Laplace single-layer integral operator V , and
we arrive at the boundary integral equation of the first kind

1 =

∫
Γ

G(x, y)φ(y) dΓ(y) =: [V φ](x) for all x ∈ Γ. (4)

Then,

Cap(Ω) =
1

4π

∫
Γ

φ dΓ. (5)

2

The challenge is to accurately compute the solution φ of (4) close to edges and corners of a
polyhedron. High-order collocation or Nyström methods work well for smooth obstacles,
but are difficult to apply to surfaces with corners or edges. Therefore, we propose to use
a Galerkin boundary element method (BEM) combined with a posteriori error estimation
and adaptive mesh-refinement. The proposed algorithm is of the common type

solve −→ estimate −→ mark −→ refine

and generates a sequence of successively refined triangulations T` and corresponding
Galerkin approximations Φ` ≈ φ such that Cap`(Ω) := 1

4π

∫
Γ

Φ` dΓ converges to Cap(Ω)
at the optimal algebraic rate. The mathematical foundation of such algorithms for BEM
has recently been derived in [FKMP13, Gan13, FFK+14, FFK+15]. One novelty in the
present paper is that we combine adaptivity with an effective preconditioning strategy.

We assume that T` is a triangulation of Γ into plane surface triangles. Let T dual
` be the

induced dual grid; see Figure 1. Let S1(T`) be the T`-piecewise affine globally continuous
functions and P0(T dual

`) be the T dual
` -piecewise constant functions on Γ. It is known

[SW98, Hip06] that one can use the (regularized) discrete hypersingular integral operator
Dreg
` on S1(T`) to effectively precondition the discrete weakly-singular integral operator

V dual
` on P0(T dual

`). The Galerkin approximation Φdual
` ∈ P0(T dual

`) is obtained as

Φdual
` = Dreg

` Φ̃`, where Φ̃` solves the preconditioned system (V`D
reg
` Φ̃`) = 1. (6)

Having computed Φdual
` , we use that each vertex z of T` corresponds to precisely one dual

cell T dual
z ∈ T dual

` . To steer the mesh-refinement, we compute the ZZ-type error indicators

η`(T) := diam(T)1/2 ‖Φdual
` − I`Φdual

` ‖L2(T) for all T ∈ T`, (7)

where I`Φ
dual
` ∈ S1(T`) is the unique function with I`Φ

dual
` (z) = Φdual

` |Tdual
z

for all vertices z
of T`. We refer to [ZZ87, Rod94, BC02] for ZZ-type estimators for FEM and to [FFKP14,
FFH+15] for BEM. The local contributions η`(T) are then used to mark elements for
refinement. An improved triangulation T`+1 is obtained from T` by refining (essentially)
these marked elements.

The mentioned results on adaptive BEM [FKMP13, Gan13, FFK+14, FFK+15] con-
sider residual error estimators, which provide more mathematical structure than the
heuristical ZZ-error estimator (7). However, we note that the evaluation and integration
of the BEM residual is usually more costly than the computation of the BEM solution (
see Remark 3 below), while the ZZ-error estimator comes essentially at no cost.

The striking advantage of the proposed strategy is that both discrete integral operators
Dreg
` as well as V dual

` can effectively be treated as follows: Let T bary
` be the barycentric

refinement of T`. We then build the discrete weakly-singular integral operator V bary
`

with respect to P0(T bary
`). Both operators Dreg

` and V dual
` can be obtained by (sparse)

projection operators applied to V bary
` ; see Section 2.6. Since the computation (6) of

Φdual
` by iterative solvers relies only on matrix-vector products, we altogether assemble

and store only V bary
` . Finally, since the number of elements satisfies #T bary

` = 6 #T`,
preconditioning and adaptivity do not lead to any significant overhead of the overall
method.

2. Preconditioned adaptive BEM for Laplace problems

In this section, we describe the numerical implementation of the preconditioned boundary
integral equation (6) and the corresponding ZZ-type error estimator. This forms the basis
for our adaptive capacity algorithm described in Section 2.7.

3

Figure 1. Construction of the dual mesh T dual
` (left) and the barycentric

refinement T bary
` (right) for a given mesh T` indicated by the thick edges

(left and right). Each (polygonal) dual element T dual ∈ T dual
` (left, gray)

corresponds to one node of T`. Each (triangular) element T bary ∈ T bary
`

belongs to precisely one triangle T ∈ T`.

10 2 10 1

h

10 2

10 1

100

L2
er

ro
r

10 2 10 1

h

10 2

10 1

100

L2
er

ro
r

Figure 2. Approximation error of the BEM for a Laplace–Dirichlet prob-
lem on the unit cube with continuous, piecewise linear basis functions on
the primal mesh (left) and piecewise constant basis functions on the dual
grid (right).

The standard way of approximating Neumann data on polyhedral boundaries is the
approximation through piecewise constant basis functions on the primal grid, given the
discontinuity of Neumann data cross edges. Here, we choose a different approximation
space, namely the space of piecewise constant functions on the dual grid. The advantage is
that this space admits a stable duality pairing with continuous, piecewise affine functions
on the primal grid, allowing us to use efficient operator preconditioning techniques based
on the duality of the single-layer and hypersingular boundary operator, while at the same
time making it possible to apply a ZZ-type error estimator as shown below.

Moreover, even though the piecewise constant basis on the dual grid is locally con-
tinuous across edges, it recovers optimal h-uniform convergence to solutions of Laplace–
Dirichlet problems. An example is given in Figure 2, which demonstrates the h-conver-
gence in the dual basis to the Neumann data of a Laplace–Dirichlet problem on the unit
cube with analytically known solution. The shown error is the relative L2-error for the
piecewise smooth Neumann data. The convergence is linear.

4

PSfrag

Figure 3. For each triangle T ∈ T`, there is one fixed reference edge,
indicated by the double line (left, top). Refinement of T is done by bisecting
the reference edge, where its midpoint becomes a new vertex of the refined
triangulation T`+1. The reference edges of the son triangles are opposite to
this newest vertex (left, bottom). To avoid hanging nodes, one proceeds as
follows: We assume that certain edges of T , but at least the reference edge,
are marked for refinement (top). Using iterated newest vertex bisection,
the element is then split into 2, 3, or 4 son triangles (bottom).

While a complete convergence analysis in the dual basis is beyond the merit of this
paper, a simple heuristic argument is the following: The dual basis is continuous in a
radius of diameter h across an edge, and discontinuous globally. Hence, locally around
an edge we have an error contribution that decreases with order h, while not propagating
beyond due to the discontinuity of the basis. We therefore expect to recover the optimal
convergence order h for the L2-error.

2.1. Triangulations. Throughout, let Ω ⊂ R3 be a bounded polyhedral domain with
closed boundary Γ. We consider conforming triangulations T` = {T`,1, . . . , T`,N`

} of Γ into
N` = #T` plane (closed) surface triangles T`,j ∈ T`. Let N` = {z`,1, . . . , z`,M`

} be the set
of vertices of T`, which contains the M` = #N` vertices.

To obtain the dual mesh T dual
` , we connect the center of gravity of each element T`,j ∈ T`

with the midpoints of its edges. These lines define M` non-degenerate closed polygons
T dual
`,j , which are collected in the dual mesh T dual

` = {T dual
`,1 , . . . , T dual

`,M`
}, where #T dual

` =

M` = #N`. Note that each cell T dual
`,j ∈ T dual

` contains precisely one node z`,j ∈ N` in its

interior, and we use the according numbering of T dual
` and N`, i.e., z`,j ∈ interior(T dual

`,j)
for all j = 1, . . . ,M`; see Figure 1 (left).

Finally, we refine each element T`,j ∈ T` into six triangles by connecting the center of
gravity of T`,j with the midpoints of its edges as well as its vertices. This gives rise to the

barycentric refinement T bary
` = {T bary

`,1 , . . . T bary
`,6N`
}. We note that #T bary

` = 6 #T` = 6N`.

Moreover, each element T`,j ∈ T` and T dual
`,j ∈ T dual

` is the union of elements in T bary
` , i.e.,

T =
⋃{

T bary ∈ T bary
` : T bary ⊂ T

}
for all T ∈ T` ∪ T dual

` ;

see Figure 1 (right). In other words, T bary
` is the coarsest common refinement of T` and

T dual
` into plane surface triangles.

2.2. Discrete function spaces. In this section, we collect the discrete spaces of
functions Γ→ R, which are employed below.

On T dual
` , we consider the space P0(T dual

`) of T dual
` -piecewise constant functions. We

choose the basis {χdual
`,1 , . . . , χdual

`,M`
} consisting of characteristic functions, i.e., χdual

`,j (x) = 1

on T dual
`,j and zero otherwise.

On T`, we consider the space S1(T`) of T`-piecewise affine functions, which are globally
continuous. We choose the usual nodal basis {ϕ`,1, . . . , ϕ`,M`

}, which consists of the hat
functions characterized by ϕ`,i(z`,i) = 1 and ϕ`,i(z`,j) = 0 for i 6= j.

5

On T bary
` , we consider the space P0(T bary

`) of T bary
` -piecewise constant functions. Again,

we choose the basis {χbary
`,1 , . . . , χbary

`,6N`
} consisting of characteristic functions, i.e., χbary

`,j (x) =

1 on T bary
`,j and zero otherwise.

2.3. Galerkin discretization of the Laplace integral equation. For general f ∈
H1/2(Γ) (and f = 1 for the capacity problem), we consider the weakly-singular boundary
integral equation

V φ(x) :=
1

4π

∫
Γ

φ(y)

|x− y|
dΓ(y) = f(x) for all x ∈ Γ, (8)

where V : H−1/2(Γ)→ H1/2(Γ) is the Laplace single-layer integral operator.
We refer, e.g., to the monographs [McL00, HW08, Ste08, SS11, GS18] for the following

facts on the functional analytic framework:
Let 〈g , ψ〉Γ :=

∫
Γ
g(x)ψ(x) dΓ(x) be the L2(Γ)-based duality pairing between functions

g ∈ H1/2(Γ) and ψ ∈ H−1/2(Γ). We can reformulate (8) as variational problem in the
form

〈V φ , ψ〉Γ = 〈f , ψ〉Γ for all ψ ∈ H−1/2(Γ). (9)

From the ellipticity of V in H−1/2(Γ) with respect to 〈· , ·〉Γ, the unique solvability of (9)

follows by the Lax–Milgram lemma. In particular, we note that |||ψ ||| := 〈V ψ , ψ〉1/2Γ '
‖ψ‖H−1/2(Γ) defines the equivalent energy norm on H−1/2(Γ). Here and throughout, .
abbreviates ≤ up to some generic multiplicative constant, and ' abbreviates that both
estimates . and & hold.

Since P0(T dual
`) ⊂ H−1/2(Γ), we can discretize (9) by a Galerkin discretization [Ste08,

SS11]: Find Φdual
` ∈ P0(T dual

`) such that

〈V Φdual
` , Ψdual

` 〉Γ = 〈f , Ψdual
` 〉Γ for all Ψdual

` ∈ P0(T dual
`). (10)

Again, unique solvability of (10) follows by the Lax–Milgram lemma. Moreover, the latter
is equivalent to the linear system of equations

Vdual
` x` = fdual

` (11)

with the symmetric and positive definite matrix Vdual
` ∈ RM`×M`

sym and given right-hand side

f`
dual ∈ RM` defined as Vdual

` [i, j] = 〈V χdual
`,j , χdual

`,i 〉Γ and fdual
` [i] = 〈f , χdual

`,i 〉Γ. Then, the

unique solution Φdual
` ∈ P0(T dual

`) of (10) satisfies Φdual
` =

∑
j x`[j]χ

dual
`,j , where x` ∈ RM`

is the unique solution to the linear system (11).

2.4. ZZ-type a posteriori error estimation. Having computed the Galerkin solu-
tion Φdual

` ∈ P0(T dual
`), we define I`Φ

dual
` :=

∑
j x`[j]ϕ`,j ∈ S1(T`) as well as the ZZ-type

error indicators (7) for all T ∈ T`. For model problems with known solution, our numerical
experiments led to the evidence that∑

T∈T`

η`(T)2 = ‖h1/2
` (1− I`)Φdual

` ‖2
L2(Γ) ' |||φ− Φdual

` |||2 ' ‖φ− Φdual
` ‖2

H−1/2(Γ), (12)

where h` : Γ → R is the T`-piecewise mesh-size function h`|T = diam(T). A thorough
mathematical proof goes beyond of the scope of the present work. We note that the
efficiency estimate . can be obtained with the scaling techniques from [FFKP14], while
the more important reliability estimate & remains open.

6

2.5. A generic adaptive strategy. With the ZZ-type error estimator at hand, we
consider the following generic adaptive algorithm, which locally adapts the primal mesh
T`, while the Galerkin approximations Φdual

` are computed on the corresponding dual mesh
T dual
` . For the local mesh-refinement, we employ 2D newest vertex bisection (NVB); see,

e.g., [KPP13, Ste07] and Figure 3 for some illustration. We note that NVB provides
rich mathematical structure and, in particular, guarantees that all adaptive meshes are
conforming and uniformly shape regular (i.e., generated triangles T cannot deteriorate).

Algorithm 1. Input: Initial conforming triangulation T0 of Γ into plane surface trian-
gles, adaptivity parameters 0 < θ ≤ 1 and Cmark ≥ 1.
Adaptive loop. Iterate the following steps (i)–(iv) for all ` = 0, 1, 2, . . . :

(i) Build the dual mesh T dual
` and compute the solution Φdual

` ∈ P0(T dual
`) of (10).

(ii) Compute the local contributions η`(T) from (7) for all T ∈ T`.
(iii) Determine a set of, up to the multiplicative constant Cmark, minimal cardinality,

which satisfies the Dörfler marking criterion [Dör96]

θ
∑
T∈T`

η`(T)2 ≤
∑
T∈M`

η`(T)2, (13)

i.e., the local contributions associated with M` control a fixed percentage of η2
` .

(vi) Use NVB to create the coarsest conforming triangulation T`+1 := refine(T`,M`),
where all marked elements T ∈M` have been bisected.

Output: Sequence of successively refined triangulations T` as well as corresponding
Galerkin solutions Φdual

` ∈ P0(T dual
`) and ZZ-type error estimators η`. �

The code of a Python implementation of Algorithm 1 based o the Bempp library is
given in Appendix B. Similar algorithms driven by computationally expensive residual
error estimators have been mathematically analyzed in recent years [Gan13, FKMP13,
FFK+14, FFK+15, FHPS19]. We refer to the appendix for details on available results.

Remark 2. (i) In practice, the linear system (11) is solved iteratively. In our imple-
mentation, (the preconditioned) GMRES solver is stopped, if the iterates Φdual

`,k ≈
Φdual
` satisfy that |||Φdual

`,k−1 − Φdual
`,k ||| ≤ λη`(Φ

dual
`,k) where λ ≈ 10−3. Here, η`(Φ

dual
`,k)

denotes the ZZ-error estimator (7) evaluated at the inexact solution Φdual
`,k instead

of the exact Galerkin solution Φdual
` . We refer to the recent work [FHPS19] for a

thorough mathematical analysis of the stopping criterion.
(ii) Since the BEM matrix V dual

` is symmetric, it would be possible to employ a
preconditioned CG algorithm (PCG) for the iterative solution of (11). How-
ever, generic implementations of PCG are restricted to symmetric precondition-
ers. Since we employ an operator preconditioning with unsymmetric mass matrix
(see Section 2.6 below) and since the BEM++ library [SBA+15] also treats non-
symmetric BEM formulations, our implementation uses a generic implementation
of precondioned GMRES.

Remark 3. In the numerical experiments below, we compare our adaptive algorithm
(with BEM solution Φdual

` ∈ P0(T dual
`) with a standard adaptive algorithm (with BEM

solution Φ` ∈ P0(T`) on the primal mesh) driven by a residual error estimator. In order
to compute the weighted-residual error estimator for lowest order BEM, one can do the
following: Instead of assembling up the discrete single-layer operator VP

0

` on P0(T`) , we

assemble the operator VP
1

` on P1(T`). By applying sparse projection operators onto VP
1

` ,

we obtain the matrix VP
0

` as well as the evaluation the residual in P1(T`) to compute
the residual error estimator. Since the change of discrete spaces from P1(T`) to S1(T`)

7

increases the degrees of freedom by a factor 3, the computational costs grow at least by
the same factor.

On the other hand, the proposed Algorithm 1 with the ZZ-type error estimator requires
to assemble the discrete single-layer operator Vbary

` on P0(T bary
`), which increases the

degrees of freedom by a factor 6, but already includes the operator preconditioning; see
Section 2.6 for further details. Hence, using a suitable implementation with FMM or
H-Matrices, Algorithm 1 with an built-in operator preconditioning just leads to double
assembling costs compared to a non-preconditioned adaptive scheme based on the residual
error estimator.

2.6. Operator preconditioning with the hypersingular operator. While the
integral equation (11) can be solved via dense LU decomposition for smaller system sizes,
larger problems require iterative methods, in particular, if BEM acceleration techniques
such as H-matrices [Beb08, Bör10, Hac15] or FMM [GR97, OSW06, GGMR09] are used.
An efficient preconditioning strategy is based on operator preconditioning with the hyper-
singular operator. We recall from the literature [McL00, HW08] that the hypersingular
operator D : H1/2(Γ) → H−1/2(Γ) is the negative normal derivative of the double-layer
boundary operator, i.e.,

[Dv] (x) := − ∂

∂ν(x)

∫
Γ

〈ν(y), x− y〉
4π |x− y|3

v(y) dΓ(y).

For v, w ∈ H1/2(Γ), it follows from integration by parts that [Ste08, SS11, GS18]

〈Dv,w〉 =
1

4π

∫
Γ

∫
Γ

〈curlΓv(y), curlΓw(x)〉
|x− y|

dΓ(y).

In case of the Laplace equation and Γ being connected, the hypersingular operator has a
one-dimensional nullspace consisting of the constant functions on Γ. In order to obtain
a suitable preconditioner, we therefore introduce the regularized operator

[Dregv] (x) := [Dv] (x) +

∫
Γ

v(x) dΓ(x).

This operator shifts the zero eigenvalue for constant functions to the value |Γ| and oth-
erwise does not change the spectrum. In [SW98], it was shown that the regularized
hypersingular operator is an effective preconditioner for the single-layer boundary opera-
tor. We use the regularized hypersingular operator as a right preconditioner in (11) and
in addition, an inverse mass matrix as a left preconditioner to arrive at

M−>
` Vdual

` M−1
` Dreg

` x̃` = M−>
` fdual

` (14)

with x` = M−1
` Dreg

` x̃`, D
reg
` [i, j] = 〈Dreg

` φ`,j , φ`,i〉, M`[i, j]
> = 〈φ`,j , χdual

`,i 〉, and the other
quantities defined as before. The implementation of (14) only requires the assembly of

the matrix Vbary
` ∈ R6N`×6N` associated with the single-layer boundary operator on the

space P0(T bary
`), i.e., Vbary

` [i, j] = 〈V χbary
`,j , χbary

`,i 〉Γ. The matrices Vdual
` and Dreg

` can

then be obtained through simple sparse projection operators. To obtain Vdual
` , we notice

that the basis functions χdual
`,j in P0(T dual

`) can be written as a linear combinations of the

basis χbary
`,j in P0(T bary

`). Let P` ∈ R6N`×M` be the sparse matrix that maps coefficients

of basis functions in P0(T dual
`) to a vector of coefficients of the associated basis functions

in P0(T bary
`). Then,

Vdual
` = P>` V

bary
` P`.

8

Similarly, we recognize that we can write

Dreg
` =

3∑
m=1

Q>`,mV
bary
` Q`,m,

where Q`,m ∈ R6N`×M` maps coefficient vectors in S1(T`) to the piecewise constant m-th
component of the corresponding surface curl operator, which can be represented as a
linear combination of basis functions in P0(T bary

`).
Putting everything into (14), we obtain the discrete system

M−>
` P>` V

bary
` P`M

−1
`

3∑
m=1

Q>`,mV
bary
` Q`,mx̃` = M−>

` fdual
` .

Hence, we only require the assembly of the operator Vbary
` and four matrix-vector products

with this operator for each evaluation of the left-hand side. Assuming a fast method with
a linear or log-linear complexity for assembly and matrix-vector product, the total cost of
the assembly is therefore six times as high as that of the non-preconditioned system and
each matrix-vector product about 24 times as expensive as that for a non-preconditioned
system. However, we will see later that this preconditioner is very effective and only a
small number of matrix-vector products will be required in our numerical experiments.
Moreover, the error estimation essentially comes for free as part of this preconditioning
strategy; see Section 2.4.

The associated sparse matrix operations with P` and Q` are cheap and negligible
compared to the evaluation of the integral operators. Using a modern sparse direct solver,
also the cost of the LU decomposition of the sparse mass matrix M` and its application
is reasonably cheap.

We note that the analysis of [SW98] is restricted to quasi-uniform meshes. However,
we refer to [HJHUT14] for operator preconditioning for 2D BEM on graded meshes. The
extension of the latter result to 3D is beyond the scope of the present paper.

2.7. Numerical computation of electrostatic capacity. As outlined in the intro-
duction, the capacity of Ω can be computed by

Cap(Ω) =
1

4π
〈φ , 1〉Γ, where φ ∈ H−1/2(Γ) solves V φ = 1 on Γ = ∂Ω. (15)

This yields Cap(Ω) = 1
4π
〈V −11 , 1〉Γ, and ellipticity of V −1 guarantees Cap(Ω) > 0. Let

Φdual
` ∈ P0(T dual

`) be the Galerkin approximation (10) of φ = V −11, which is obtained by
Algorithm 1 for f = 1. Then, a natural approximation of the capacity (15) is

Cap`(Ω) :=
1

4π
〈Φdual

` , 1〉Γ. (16)

We note that this approximation is controlled by the energy error.

Proposition 4. There holds 0 < Cap`(Ω) ≤ Cap(Ω) as well as

4π (Cap(Ω)− Cap`(Ω)) = |||φ− Φdual
` |||2 ' ‖φ− Φdual

` ‖2
H−1/2(Γ). (17)

Proof. Define 1dual
` ∈ RM` by 1dual

` [j] = 〈1 , χdual
`,j 〉Γ = |T dual

`,j | > 0. Then, it holds that

Φdual
` =

M∑̀
j=1

x`[j]χ
dual
`,j , where x` := (Vdual

`)−11dual
` .

In particular, 4πCap`(Ω) = 1dual
` · x` = 1dual

` · (Vdual
`)−11dual

` . Since the matrix Vdual
`

is symmetric and positive definite (and thus also its inverse (Vdual
`)−1), it follows that

9

Cap`(Ω) > 0. To see (17), recall that the combination of (9)–(10) yields the Galerkin
orthogonality 〈V (φ− Φdual

`) , Ψdual
` 〉Γ = 0 for all Ψdual

` ∈ P0(T dual
`). This leads to

4π
(
Cap(Ω)− Cap`(Ω)

)
= 〈φ− Φdual

` , 1〉Γ = 〈φ− Φdual
` , V φ〉Γ

= 〈V (φ− Φdual
`) , φ− Φdual

` 〉Γ = |||φ− Φdual
` |||2 ≥ 0.

This proves (17) and, in particular, Cap`(Ω) ≤ Cap(Ω). �

3. Numerical computations

In this section, we present some numerical computations that underpin our theoretical
findings. In the experiments, we compare the performance of

• Algorithm 1 (with Galerkin solution Φdual
` ∈ P0(T dual

`) on the dual mesh and
driven by the proposed ZZ-type estimator η`),
• a standard adaptive algorithm (see Appendix A) from [FKMP13, FFK+14] with

Galerkin approximation Φ` ∈ P0(T`) on the primal mesh T` and driven by the
weighted-residual error estimator,

for different adaptivity parameters 0 < θ ≤ 1. One particular focus is on preconditioners,
where we compare

• Algorithm 1 with its built-in operator preconditioning vs. diagonal preconditioning
vs. non-preconditioning;
• Algorithm 5 with multilevel additive Schwarz preconditioning (MLAS) [FHPS19]

vs. diagonal preconditioning [GM06] vs. non-preconditioning;

We consider lowest-order BEM for different polyhedral domains Ω starting from simple
shapes, e.g., the unit cube (Section 3.1), and moving to more complicated shapes, e.g., a
star-shaped domain (Section 3.3). If not stated otherwise, we employ Algorithm 1 with
the Dörfler parameter θ = 1/2 and operator preconditioning.

We emphasize that due generic edge singularities, increasing the polynomial degree,
without using anisotropic refinement, does not lead to any improved order of convergence.
Usually one observes a slightly better constant, but the same overall algebraic rate; see,
e.g., [FGH+16].

The numerical computations were done with help of Bempp, which is an open-source
Galerkin boundary element library. We refer to [SBA+15, GBB+15, vtWGBA15] for
details on Bempp. A possible implementation of Algorithm 1 in Python with Bempp is
given in Appendix B.

3.1. Example (Unit cube). We consider the unit cube Ω = (0, 1)3, where a reference
value of the capacity Cap(Ω) is known; see Figure 4. To our knowledge, the approximation
Cap(Ω) ≈ 0.66067815409957 from [HP13, Table 1] with an error of order 10−13 is the
best approximation available. This value is used to compute the capacity error err` :=
|Cap− Cap`|.

Figure 5 shows the convergence rates of the estimator η2
` and the capacity error err`

plotted over the number of elements #T`. For both adaptive algorithms, the error as well
as the estimator converge with rate O(N−1). This underlines empirically that both error
estimators are reliable and efficient, i.e., up to multiplicative constants equivalent to the
error (i.e., η2

` ' err = |||φ − Φ` |||2). Although the empirical reliability constant err`/η
2
`

is slightly better for Algorithm 5 and the residual estimator, Algorithm 1 and ZZ-type
estimator lead to a smaller error for the capacity approximation. Figure 6 compares
different values of the Dörfler marking parameter θ ∈ {0.2, 0.4, 0.6, 0.8, 1} in Algorithm 1,
where θ = 1 coincides with uniform mesh-refinement. We see that Algorithm 1 is robust

10

00

00

0.6670.667

11

0.3330.333

00

0.250.25

0.50.5

0.750.75

11

0.250.25

0.50.5

0.750.75

11

Figure 4. Example 3.1: Initial mesh T0 with 12 elements.

and any choice of θ < 1 leads to the optimal convergence behavior. Only uniform mesh-
refinement (θ = 1) leads to a sub-optimal rate O(N−2/3). Table 1 displays some numerical
results for the sequence of solutions produced by Algorithm 1. It shows that, e.g., Step
13 with 930 elements and 12 iterations is sufficient to reach an accuracy of 5.520 · 10−4.
Such a computation can be done on a usual workstation within seconds.

` #T` Cap` η2
` err` = |Cap− Cap`| err`/η

2
` # iterations

0 12 0.6492810516 1.702 · 10−2 1.114 · 10−2 0.654 4
6 114 0.6579150471 1.133 · 10−1 2.763 · 10−3 0.024 12
13 930 0.6601261997 2.560 · 10−2 5.520 · 10−4 0.022 12
25 11132 0.6606358189 2.460 · 10−3 4.234 · 10−5 0.017 12
34 96216 0.6606746264 2.473 · 10−4 3.528 · 10−6 0.014 12
39 348152 0.6606774253 5.920 · 10−5 7.288 · 10−7 0.012

Table 1. Example 3.1: Numerical results of Algorithm 1 for θ = 1/2.

Figure 7 displays the condition number of the arising linear systems (10). We emphasize
that the MLAS preconditioning is optimal in the sense that the condition number of the
arising systems remains bounded, independently of the number of elements; see [FHPS19].
This is confirmed for MLAS as well as empirically observed also for operator precondi-
tioning with the hypersingular operator in Algorithm 1. On the other hand, the condition
number of the non-preconditioned systems explodes with increasing number of elements
resp. mesh graduation. Moreover, Figure 7 shows that diagonal preconditioning does lead
to a slower growth of the condition number, but is not optimal. Figure 8 and Figure 9
show the distribution of the error estimator in some of the generated adaptive meshes.
Due to generic edge singularities, the adaptive algorithm leads to refinement along edges
and corners, while elements in the interior of the cube-facets stay relatively coarse.

3.2. Example 2: Fichera cube. As second example, we consider the Fichera cube
[−1, 1]3 \ [0, 1]3 with side length 2; see Figure 11 (left). In contrast to the unit cube, we
lack a highly accurate benchmark computation and approximate the capacity error by

err` := |Cap− Cap`| ≈ |Cap`max
− Cap`| for all 0 ≤ ` < `max.

Convergence behaviour of the estimator η2
` and of the error err` are displayed in Figure 10.

Both, Algorithm 1 as well as Algorithm 5, lead to the optimal rate of convergenceO(N−1).
11

101 102 103 104 105 106

10−6

10−5

10−4

10−3

10−2

10−1

100

O(N−1)

number of elements

er
ro

r
or

es
ti

m
at

or

err: residual estimator

η2
` : residual-estimator
err: ZZ-estimator

η2
` : ZZ-estimator

Figure 5. Example 3.1: Convergence of the error estimator η2
` and capac-

ity error err`. The estimator η2
` as well as the error converge with optimal

order O(N−1), if the a weighted-residual or the proposed ZZ-based error
estimator is used.

101 102 103 104 105
10−6

10−5

10−4

10−3

10−2

10−1

100

O(N−2/3)

O(N−1)

number of elements

er
ro

r
or

es
ti

m
at

or

θ = 0.2
θ = 0.4
θ = 0.6
θ = 0.8
uniform

Figure 6. Example 3.1: Convergence of the error estimator η2
` (circles)

and capacity error err` (squares) for different value of 0 < θ < 1 and
uniform refinement θ = 1. Uniform refinement leads to a reduced rate of
convergence.

Table 2 shows some numerical results produced by Algorithm 1. For the fichera cube
approximately 104 elements are sufficient to achieve an error of order 10−4. This can be
computed easily on a workstation within a couple of minutes. Figure 11 and Figure 12

12

101 102 103 104

100

101

102

103

104

105

106

107

number of elements

co
n
d
it

io
n

n
u
m

b
er

ZZ - precon
ZZ - diag
ZZ - non
Res - precon
Res - diag
Res - non

Figure 7. Example 3.1: Condition number for different preconditioning
strategies for the arising linear systems in Algorithm 1 (ZZ) with opera-
tor preconditioning with the hypersingular operators vs. Algorithm (Res)
with multilevel additive Schwarz preconditioning. Additionally, diagonal
preconditioning is employed in both cases.

4.23e-06 0.000346 0.000688 2.9e-07 2.63e-05 5.23e-05

Figure 8. Example 3.1: Mesh T` and distribution of the error estimator
η2
` for ` = 10 with 306 elements (left) and for ` = 15 with 1244 elements

(right).

show the distribution of the error estimator in some of the generated adaptive meshes.
Due to generic edge singularities, the adaptive algorithm leads to refinement along edges
and corners, while elements in the interior of the cube faces stay relatively coarse.

13

8.58e-08 2.68e-06 5.27e-06 3.58e-10 1.99e-08 3.95e-08

Figure 9. Example 3.1: Mesh T` and distribution of the error estimator
η2
` for ` = 20 with 3792 elements (left) and for ` = 30 with 46044 elements

(right).

step ` number of elements #T` Cap` η2
` |Cap`max

− Cap`|
0 48 1.2813985240 3.239 · 10−1 9.858 · 10−3

4 126 1.2853002501 2.776 · 10−1 5.957 · 10−3

9 986 1.2900557132 5.470 · 10−2 1.201 · 10−3

19 11992 1.2911689924 5.270 · 10−3 8.776 · 10−5

28 113484 1.2912534661 4.829 · 10−4 3.282 · 10−6

30 183762 1.2912567475 2.868 · 10−4

Table 2. Example 3.2: Numerical results of Algorithm 1 for θ = 1/2.

102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

O(N−1)

number of elements

er
ro

r
or

es
ti

m
at

or

err: residual estimator

η2
` : residual-estimator
err: ZZ-estimator

η2
` : ZZ-estimator

Figure 10. Example 3.2: Convergence of the error estimator η2
` and ca-

pacity error err`. The estimator η2
` as well as the error converge with

optimal order O(N−1), if the weighted-residual or the proposed ZZ-based
error estimator is used.

14

3.18e-06 0.000661 0.00132

Figure 11. Example 3.2: Initial triangulation T0 (left) consisting of 48
triangles. Mesh T` and distribution of the error estimator η2

` for ` = 5 with
410 elements (right).

5.86e-07 5.94e-05 0.000118 8.6e-08 5.13e-06 1.02e-05

Figure 12. Example 3.2: Mesh T` and distribution of the error estimator
η2
` for ` = 10 (left) with 1308 elements and ` = 15 (right) with 4226

elements.

3.3. Example 3: Star-shaped geometry. As third example, we consider a star-
shaped geometry shown in Figure 13. We use Algorithm 1 as black-box method. Fig-
ure 14 shows the convergence of the estimator η2

` and the capacity error err` := |Cap`max
−

Cap`| ≈ |Cap − Cap`|. We observe the optimal convergence order O(N−1) for the es-
timator as well as the error for Algorithm 1 and Algorithm 5. The rate of convergence
is robust with respect to the Dörfler marking parameter 0 < θ ≤ 1. Besides uniform
refinement (θ = 1), all tested parameters θ ∈ {0.2, 0.4, 0.6, 0.8} lead to the same rate of
O(N−1); see Figure 15.

Figure 16 shows the condition number of the arising linear systems (10). Operator
preconditioning with the hypersingular operator in Algorithm 1 as well as the multilevel
additive Schwarz preconditioner guarantee a bounded condition number. On the other
hand, diagonal- and non-preconditioning lead to an increasing condition number as the
number of elements grows. Similarly to previous examples, the Algorithm has to resolve
generic edge singularities. Figure 17 and Figure 18 show the distribution of η2

` on some
meshes generated by Algorithm 1.

Table 3 shows some numerical results for the star-example. Algorithm 1 takes 22 steps
and approximately 104 elements to reach an error of order 10−4.

15

-0.5 -0.25 0 0.25 0.5

-0.433

-0.217

-0.000

0.216

0.433

-0.5 -0.25 0 0.25 0.5

-0.433

-0.217

-0.000

0.216

0.433

-0.5-0.2500.250.5

-0.25

-0.0833

0.0833

0.25

-0.5-0.2500.250.5

-0.25

-0.0833

0.0833

0.25

Figure 13. Example 3.3: Geometry and initial mesh T0 with 24 elements
of the star example. The point of view is along the z-axis (left) and along
the y-axis (right).

step ` number of elements #T` Cap` η2
` |Cap`max

− Cap`| # iterations

0 24 0.2942967843 2.580 · 10−1 5.456 · 10−3 5
5 100 0.2978622929 7.092 · 10−2 5.456 · 10−3 5
14 1136 0.2995412185 1.384 · 10−2 1.686 · 10−3 20
22 9752 0.2998567063 2.402 · 10−3 3.223 · 10−4 20
31 91046 0.2998234547 2.540 · 10−4 2.869 · 10−5 22
34 194838 0.2998587081 1.110 · 10−4

Table 3. Example 3.3: Numerical results of Algorithm 1 with θ = 1/2.

101 102 103 104 105

10−6

10−5

10−4

10−3

10−2

10−1

100

O(N−1)

number of elements

er
ro

r
or

es
ti

m
at

or

err: residual estimator

η2
` : residual-estimator
err: ZZ-estimator

η2
` : ZZ-estimator

Figure 14. Example 3.3: Convergence of the error estimator η2
` and ca-

pacity error err`. The estimator η2
` as well as the error converge with

optimal order O(N−1), if a weighted-residual or the proposed ZZ-based
error estimator is used.

16

102 103 104 105

10−4

10−3

10−2

10−1

100

O(N−2/3)

O(N−1)

number of elements

er
ro

r
or

es
ti

m
at

or

θ = 0.2
θ = 0.4
θ = 0.6
θ = 0.8
uniform

Figure 15. Example 3.3:Convergence of the error estimator η2
` for differ-

ent values of 0 < θ < 1 and uniform refinement θ = 1. Uniform refinement
leads to a reduced rate of convergence.

102 103 104

100

101

102

103

104

105

106

107

number of elements

co
n
d
it

io
n

n
u
m

b
er

ZZ - precon
ZZ - diag
ZZ - non
Res - precon
Res - diag
Res - non

Figure 16. Example 3.3: Condition number for different preconditioning
strategies for the arising linear systems in Algorithm 1 (ZZ) with opera-
tor preconditioning with the hypersingular operators vs. Algorithm (Res)
with multilevel additive Schwarz preconditioning. Additionally, diagonal
preconditioning is employed in both cases.

17

X

Y

Z0.000118 0.0002279.2e-06 1.2e-051.84e-07 2.38e-05 X

Y

Z

Figure 17. Example 3.3: Mesh T` and distribution of the error estimator
η2
` for ` = 10 (left) with 360 elements and ` = 15 (right) with 1524 elements.

XZ

Y

1.28e-06 2.55e-061.81e-08 XZ

Y

1.09e-07 2.16e-071.41e-09

Figure 18. Example 3.3: Mesh T` and distribution of the error estimator
η2
` for ` = 20 (left) with 5754 elements and ` = 25 (right) with 20304

elements.

Appendix A. Weighted-residual error estimator

In this section, we briefly sketch the state of the art for adaptive BEM driven by the
weighted-residual error estimator. We consider the model problem (8) with right-hand
side f ∈ H1(Γ). Note that the additional regularity of f (instead of only f ∈ H1/2(Γ))
is required for the well-posedness of the weighted-residual error estimator introduced
below. Here, T` is a conforming triangulation of Γ into plane (closed) surface triangles.
The Lax–Milgram lemma guarantees existence and uniqueness of Φ` ∈ P0(T`) such that

〈V Φ` , Ψ`〉Γ = 〈f , Ψ`〉Γ for all Ψ` ∈ P0(T`). (18)

Unlike above, we note that the discrete solution is now computed on the primal trian-
gulation instead of the dual triangulation. With ∇ being the surface gradient, the local
contributions of the weighted-residual error estimator read

µ`(T) := diam(T)1/2 ‖∇(f − V Φ`)‖L2(T) for all T ∈ T`, (19)

We note that reliability [CMS01] and efficiency [AFF+17] hold in the sense of

(C ′rel)
−1 ‖φ− Φ`‖H−1/2(Γ) ≤ µ` :=

(∑
T∈T`

µ`(T)2
)1/2

≤ C ′eff ‖h
1/2
` (φ− Φ`)‖L2(Γ), (20)

18

where the constants C ′rel, C
′
eff > 0 depend only on Γ and γ-shape regularity of T`. As

above, h` denotes the local mesh-size function h`|T := diam(T) for all T ∈ T`. Based on
µ`, the standard adaptive algorithm from [FKMP13, Gan13, FFK+14] reads as follows:

Algorithm 5. Input: Initial conforming triangulation T0 of Γ into plane surface trian-
gles, adaptivity parameters 0 < θ ≤ 1 and Cmark ≥ 1.
Adaptive loop. Iterate the following steps (i)–(iv) for all ` = 0, 1, 2, . . . :

(i) Compute the Galerkin solution Φ` ∈ P0(T`) from (18).
(ii) Compute the local contributions µ`(T) from (19) for all T ∈ T`.

(iii) Determine a set of, up to the multiplicative constant Cmark, minimal cardinality,
which satisfies the Dörfler marking criterion θ

∑
T∈M`

µ`(T)2 ≤ µ2
` .

(iv) Use NVB and refine all marked elements T ∈M` to obtain T`+1 := refine(T`,M`).

Output: Sequence of successively refined triangulations T` as well as corresponding
Galerkin solutions Φ` ∈ P0(T`) and weighted-residual error estimators µ`. �

The following theorem is the main result from [FKMP13, Gan13, FFK+14]:

Theorem 6. For all 0 < θ ≤ 1, there exist constants Clin > 0 and 0 < qlin < 1 such that
the output of Algorithm 1 is linearly convergent in the sense of

η`+n ≤ Clinq
n
lin η` for all `, n ∈ N0. (21)

Moreover, there exists a constant 0 < θopt < 1 such that for all 0 < θ < θopt, the output
of Algorithm 5 converges with the optimal algebraic rate in the following sense: For all
s > 0, define

As(φ) := sup
N≥#T0

min
Topt∈refine(T0)

#Topt≤N

N sµopt ∈ [0,∞] (22)

where refine(T0) denotes the set of all possible NVB refinements of T0 and Topt corre-
sponds to the estimator µopt. Then, there exists constants copt, Copt > 0 such that

c−1
opt As(φ) ≤ sup

`∈N0

(#T`)s µ` ≤ Copt As(φ),

i.e., Algorithm 5 asymptotically realizes (and even characterizes) each possible algebraic
convergence rate s > 0 and therefore converges with the optimal rate. The constants Clin

and qlin depend only on Γ, γ-shape regularity for T0, and θ. While copt is generic, Copt

depends only on T0, Clin, qlin, Cmark, and s. �

Remark 7. The recent work [FHPS19] proves that Theorem 6 remains valid, if (18) is
solved inexactly by PCG with optimal additive Schwarz preconditioner. With the PCG
iterates Φ`,k ≈ Φ`, the iterative solver is stopped if |||Φ`,k−1 − Φ`,k ||| ≤ λµ`(Φ`,k), where
the residual error estimator is evaluated at Φ`,k instead of the exact Galerkin solution.
Then, linear convergence (21) holds for any λ > 0, while optimal rates require λ� 1 to
be sufficiently small.

To empirically measure the performance of Algorithm 1 in the numerical experiments
of Section 3, we consider the output of Algorithm 5 for f = 1 as benchmark.

Corollary 8. Consider the output of Algorithm 5 for f = 1 and arbitrary 0 < θ ≤ 1 and
Cmark ≥ 1. Define the discrete capacity

Cap′`(Ω) :=
1

4π
〈Φ` , 1〉Γ. (23)

19

Then, there holds (17) as well as monotonicity 0 < Cap′`(Ω) ≤ Cap′`+1 ≤ Cap(Ω) for all
` ∈ N0 and, in particular, convergence

0 ≤ Cap(Ω)− Cap′`(Ω) ≤ Ccap µ
2
` → 0 as `→∞. (24)

Moreover, if 0 < θ < θopt is sufficiently small in the sense of Theorem 6, it follows that

0 ≤ Cap(Ω)− Cap′`(Ω) ≤ C ′cap As(φ)2 (#T`)−2s for all ` ∈ N0. (25)

The constant Ccap depends only on Γ and γ-shape regularity of T`, and C ′cap := CcapC
2
opt

with Copt from Theorem 6.

Proof. Arguing as in the proof of Proposition 4, we see that

0 < Cap′`(Ω) ≤ Cap(Ω) as well as 0 ≤ Cap(Ω)− Cap′`(Ω) ' ‖φ− Φ`‖2
H−1/2(Γ).

Therefore, (24)–(25) are immediate consequences of Theorem 6 and reliability (20). Over-
all, it only remains to prove monotonicity Cap′`(Ω) ≤ Cap′`+1(Ω) for all ` ∈ N0: Note that
P0(T`) ⊆ P0(T`+1), which fails for the sequence of dual triangulations, i.e., P0(T dual

`) 6⊆
P0(T dual

`+1). With this additional nestedness, it holds that Φ`+1 − Φ` ∈ P0(T`+1). There-
fore, there holds the discrete Galerkin orthogonality 〈V (Φ`+1 − Φ`) , Ψ`+1〉Γ = 0 for all
Ψ`+1 ∈ P0(T`+1). This implies the Pythagoras theorem

|||φ− Φ` |||2 = |||φ− Φ`+1 |||2 + |||Φ`+1 − Φ` |||2

with respect to the energy norm. Arguing as for the proof of (17), we thus see that

4π
(
Cap`+1(Ω)− Cap`(Ω)

)
= |||Φ`+1 − Φ` |||2 ≥ 0.

This concludes the proof. �

Finally, we refer to [FFK+15] for the extension of Theorem 6 to the hypersingular
operator associated with the Laplace problem and to [BBHP19] for optimality in the
case of the Helmholtz equation. The work [FGH+16] gives a first mathematical proof of
optimal algebraic convergence rates for the point-wise approximation of the PDE-solution
via BEM and potential operators. Moreover, [FPvdZ16] generalizes the latter approach
to general goal-oriented adaptivity with linear goal functional.

Appendix B. Implementation with Bempp

The following code demonstrates a possible implementation of Algorithm 1 in Python
with the Bempp library. The demonstration code can also be downloaded from the Bempp
homepage https://bempp.com.

1 import bempp.api

2 import numpy as np

3

4 max_el = 600000 #max number elements

5 step_counter = 0

6 theta = 0.5 #marking parameter

7 grid = bempp.api.shapes.cube(h=0.1) #import initial grid

8 #initialize function for the right -hand side

9 def one_fun(x, n, domain_index , res):

10 res [0] = -1

11

12 ##Adaptive loop

13 while (grid.leaf_view.entity_count (0) <= max_el):

14 step_counter += 1

15 bary_grid = grid.barycentric_grid () #barycentric refinement

16

17 ##initialize function spaces

20

https://bempp.com

18 const_space = bempp.api.function_space(grid , ’DP’, 0)

19 lin_space = bempp.api.function_space(grid , ’P’ ,1)

20 bary_space = bempp.api.function_space(bary_grid , ’DP’, 0)

21 bary_lin_space = bempp.api.function_space(bary_grid , ’DP’ ,1)

22

23 ##initialize operators

24 base_slp = bempp.api.operators.boundary.laplace.single_layer(bary_space , bary_space , bary_space)

25 slp , hyp = bempp.api.operators.boundary.laplace.single_layer_and_hypersingular_pair(

26 grid , spaces=’dual’, base_slp=base_slp ,stabilization_factor =1)

27

28 rank_one_op = bempp.api.RankOneBoundaryOperator(hyp.domain , hyp.range , hyp.dual_to_range)

29 hyp_regularized = hyp + rank_one_op

30

31 ##initialize right -hand side

32 rhs_fun = bempp.api.GridFunction(slp.range , fun=one_fun)

33

34 ##initialize preconditioned lhs

35 lhs = slp * hyp_regularized

36 discrete_op = lhs.strong_form ()

37

38 ##solve via GMRES

39 from scipy.sparse.linalg import gmres

40 number_of_iterations = 0

41 def callback(x):

42 global number_of_iterations

43 number_of_iterations += 1

44

45 phi_vec , info = gmres(discrete_op , rhs_fun.coefficients ,tol=1e-10, callback=callback)

46 phi_fun = hyp_regularized * bempp.api.GridFunction(hyp.domain , coefficients=phi_vec)

47

48 print("Number of iterations: {0}".format(number_of_iterations))

49

50 ##compute the capacity

51 capacity=-phi_fun.integrate ()[0 ,0]

52 print("The capacity is {0}.".format(capacity))

53

54 ##compute the error estimator

55 bary_map = grid.barycentric_descendents_map ()

56 bary_index_set = bary_grid.leaf_view.index_set ()

57

58 #create sorted list of elements

59 index_set = grid.leaf_view.index_set ()

60 elements = grid.leaf_view.entity_count (0) * [None]

61 for element in grid.leaf_view.entity_iterator (0):

62 elements[index_set.entity_index(element)] = element

63

64 local_est_bary = np.zeros(bary_grid.leaf_view.entity_count (0), dtype=’float64 ’)

65 local_est = np.zeros(grid.leaf_view.entity_count (0), dtype=’float64 ’)

66 new_space = bempp.api.function_space(grid ,"B-P" ,1)

67

68 map_dual_to_bary = bempp.api.operators.boundary.sparse.identity(

69 phi_fun.space ,bary_lin_space ,bary_lin_space)

70 map_lin_to_bary_lin = bempp.api.operators.boundary.sparse.identity(

71 new_space ,bary_lin_space ,bary_lin_space)

72

73 #interpret function values on dual elements as node -values in S^1

74 Iphi_coefficients = phi_fun.coefficients

75 Iphi = bempp.api.GridFunction(new_space , coefficients=Iphi_coefficients)

76

77 #lift both functions to P^1(T_l^bary)

78 phi = map_dual_to_bary * phi_fun

79 Iphi_lin_bary = map_lin_to_bary_lin * Iphi

21

80

81 zz_diff = phi - Iphi_lin_bary

82

83 #compute the L^2-norm in each barycentric element

84 for element in bary_grid.leaf_view.entity_iterator (0):

85 index = bary_index_set.entity_index(element)

86 local_est_bary [index] = zz_diff.l2_norm(element)**2

87

88 #add up all barycentric contributions for each primal element

89 for m in range(bary_map.shape [0]):

90 element = grid.leaf_view.element_from_index(m)

91 mesh_size = element.geometry.volume

92 for n in range(bary_map.shape [1]):

93 local_est[m] += local_est_bary[bary_map[m, n]]

94

95 local_est[m] = local_est[m]* mesh_size **(1./2) #scale with primal mesh -size

96

97 total_est = np.sum(local_est)

98

99 print("Squared ZZ -Estimator: {0}".format(total_est))

100

101 ##Doerfler -Marking and refining

102 idx = np.argsort ((-1)* local_est)

103 ind_on_marked =0

104 counter = 0

105

106 while (ind_on_marked < theta * total_est):

107 ind_on_marked += local_est[idx[counter]]

108 grid.mark(elements[idx[counter]])

109 counter += 1

110

111 grid = grid.refine () # refine grid

112 print("New number of elements {0}".format(grid.leaf_view.entity_count (0)))

References

[AFF+17] Markus Aurada, Michael Feischl, Thomas Führer, Michael Karkulik, J. Markus Melenk,
and Dirk Praetorius. Local inverse estimates for non-local boundary integral operators.
Math. Comp., 86(308):2651–2686, 2017.

[BBHP19] Alex Bespalov, Timo Betcke, Alexander Haberl, and Dirk Praetorius. Adaptive BEM
with optimal convergence rates for the Helmholtz equation. Comput. Methods Appl. Mech.
Engrg., 346:260–287, 2019.

[BC02] Sören Bartels and Carsten Carstensen. Each averaging technique yields reliable a posteriori
error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and
mixed FEM. Math. Comp., 71(239):945–969, 2002.

[Beb08] Mario Bebendorf. Hierarchical matrices, volume 63 of Lecture Notes in Computational
Science and Engineering. Springer-Verlag, Berlin, 2008.

[Bör10] Steffen Börm. Efficient numerical methods for non-local operators: H2-matrix compression,
algorithms and analysis. European Mathematical Society (EMS), Zürich, 2010.

[BT03] Lehel Banjai and Lloyd N. Trefethen. A multipole method for Schwarz-Christoffel mapping
of polygons with thousands of sides. SIAM J. Sci. Comput., 25(3):1042–1065, 2003.

[CMS01] Carsten Carstensen, Matthias Maischak, and Ernst P. Stephan. A posteriori error esti-
mate and h-adaptive algorithm on surfaces for Symm’s integral equation. Numer. Math.,
90(2):197–213, 2001.

[Dör96] Willy Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer.
Anal., 33(3):1106–1124, 1996.

[DT02] Tobin A. Driscoll and Lloyd N. Trefethen. Schwarz-Christoffel mapping. Cambridge Uni-
versity Press, Cambridge, 2002.

22

[FFH+15] Michael Feischl, Thomas Führer, Norbert Heuer, Michael Karkulik, and Dirk Praetorius.
Adaptive boundary element methods. Archives of Computational Methods in Engineering,
22(3):309–389, Jul 2015.

[FFK+14] Michael Feischl, Thomas Führer, Michael Karkulik, Jens Markus Melenk, and Dirk Prae-
torius. Quasi-optimal convergence rates for adaptive boundary element methods with data
approximation, Part I: Weakly-singular integral equation. Calcolo, 51(4):531–562, 2014.

[FFK+15] Michael Feischl, Thomas Führer, Michael Karkulik, J. Markus Melenk, and Dirk Praeto-
rius. Quasi-optimal convergence rates for adaptive boundary element methods with data
approximation. Part II: Hyper-singular integral equation. Electron. Trans. Numer. Anal.,
44:153–176, 2015.

[FFKP14] Michael Feischl, Thomas Führer, Michael Karkulik, and Dirk Praetorius. ZZ-type a pos-
teriori error estimators for adaptive boundary element methods on a curve. Eng. Anal.
Bound. Elem., 38:49–60, 2014.

[FGH+16] Michael Feischl, Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Thomas Führer.
Adaptive boundary element methods for optimal convergence of point errors. Numer.
Math., 132(3):541–567, 2016.

[FHPS19] Thomas Führer, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko. Adaptive
BEM with inexact PCG solver yields almost optimal computational costs. Numer. Math.,
141:967–1008, 2019.

[FKMP13] Michael Feischl, Michael Karkulik, Jens Markus Melenk, and Dirk Praetorius. Quasi-
optimal convergence rate for an adaptive boundary element method. SIAM J. Numer.
Anal., 51(2):1327–1348, 2013.

[FPvdZ16] Michael Feischl, Dirk Praetorius, and Kristoffer G. van der Zee. An abstract analysis of
optimal goal-oriented adaptivity. SIAM J. Numer. Anal., 54(3):1423–1448, 2016.

[Gan13] Tsogtgerel Gantumur. Adaptive boundary element methods with convergence rates. Nu-
mer. Math., 124(3):471–516, 2013.

[GBB+15] Samuel P. Groth, Anthony J. Baran, Timo Betcke, Stephan Havemann, and Wojciech

Śmigaj. The boundary element method for light scattering by ice crystals and its imple-
mentation in bem++. J. Quant. Spectrosc. Radiat. Transf., 167(Supplement C):40 – 52,
2015.

[GGMR09] Leslie Greengard, Denis Gueyffier, Per-Gunnar Martinsson, and Vladimir Rokhlin. Fast
direct solvers for integral equations in complex three-dimensional domains. Acta Numer.,
18:243–275, 2009.

[GM06] Ivan G. Graham and William McLean. Anisotropic mesh refinement: the conditioning of
Galerkin boundary element matrices and simple preconditioners. SIAM J. Numer. Anal.,
44(4):1487–1513, 2006.

[GR97] Leslie Greengard and Vladimir Rokhlin. A new version of the fast multipole method for the
Laplace equation in three dimensions. In Acta numerica, 1997, volume 6 of Acta Numer.,
pages 229–269. Cambridge Univ. Press, Cambridge, 1997.

[GS18] Joachim Gwinner and Ernst Peter Stephan. Advanced boundary element methods. Springer,
Cham, 2018.

[Hac15] Wolfgang Hackbusch. Hierarchical matrices: algorithms and analysis. Springer, Heidelberg,
2015.

[Hip06] Ralf Hiptmair. Operator Preconditioning. Comput. Math. Appl., 52(5):699–706, 2006.
[HJHUT14] Ralf Hiptmair, Carlos Jerez-Hanckes, and Carolina Urzúa-Torres. Mesh-independent op-

erator preconditioning for boundary elements on open curves. SIAM J. Numer. Anal.,
52(5):2295–2314, 2014.

[HMW10] Chi-Ok Hwang, Michael Mascagni, and Taeyoung Won. Monte Carlo methods for comput-
ing the capacitance of the unit cube. Math. Comput. Simulation, 80(6):1089–1095, 2010.

[HP13] Johan Helsing and Karl-Mikael Perfekt. On the polarizability and capacitance of the cube.
Appl. Comput. Harmon. Anal., 34(3):445–468, 2013.

[HW08] George C. Hsiao and Wolfgang L. Wendland. Boundary integral equations. Springer, Berlin,
2008.

[Kel67] Oliver Dimon Kellogg. Foundations of potential theory. Reprint from the first edition of
1929. Springer, Berlin, 1967.

23

[KPP13] Michael Karkulik, David Pavlicek, and Dirk Praetorius. On 2D newest vertex bisection:
optimality of mesh-closure and H1-stability of L2-projection. Constr. Approx., 38(2):213–
234, 2013.

[McL00] William McLean. Strongly elliptic systems and boundary integral equations. Cambridge
University Press, Cambridge, 2000.

[OSW06] Günther Of, Olaf Steinbach, and Wolfgang L. Wendland. The fast multipole method for
the symmetric boundary integral formulation. IMA J. Numer. Anal., 26(2):272–296, 2006.

[Pól47] George Pólya. Estimating electrostatic capacity. Amer. Math. Monthly, 54(4):201–206,
1947.

[Rea97] Frank H. Read. Improved extrapolation technique in the boundary element method to find
the capacitances of the unit square and cube. J. Comp. Phys., 133(1):1 – 5, 1997.

[Rod94] Rodolfo Rodriguez. Some remarks on zienkiewicz–zhu estimator. Numer. Methods Partial
Differential Equations, 10(5):625–635, 1994.

[SBA+15] Wojciech Śmigaj, Timo Betcke, Simon Arridge, Joel Phillips, and Martin Schweiger. Solv-
ing boundary integral problems with BEM++. ACM Trans. Math. Software, 41(2):Art. 6,
40, 2015.

[SS11] Stefan A. Sauter and Christoph Schwab. Boundary element methods. Springer, Berlin,
2011.

[Ste07] Rob Stevenson. Optimality of a standard adaptive finite element method. Found. Comput.
Math., 7(2):245–269, 2007.

[Ste08] Olaf Steinbach. Numerical approximation methods for elliptic boundary value problems.
Springer, New York, 2008.

[SW98] Olaf Steinbach and Wolfgang L. Wendland. The construction of some efficient precondi-
tioners in the boundary element method. Adv. Comput. Math., 9(1-2):191–216, 1998.

[vtWGBA15] Elwin van ’t Wout, Pierre Glat, Timo Betcke, and Simon Arridge. A fast boundary element
method for the scattering analysis of high-intensity focused ultrasound. J. Acoust. Soc.
Am., 138(5):2726–2737, 2015.

[ZZ87] Oleg Zienkiewicz and Jian Z. Zhu. A simple error estimator and adaptive procedure for
practical engineering analysis. Int. J. Numer. Methods Eng., 24(2):337–357, 1987.

University College London, Department of Mathematics, Gower Street, London WC1E
6BT, UK

Email address: t.betcke@ucl.ac.uk

TU Wien, Institute for Analysis and Scientific Computing, Wiedner Hauptstr. 8-10 /
E101 / 4, 1040 Wien, Austria

Email address: {Dirk.Praetorius , Alexander.Haberl}@asc.tuwien.ac.at

24

	1. Introduction
	1.1. The capacity problem
	1.2. State of the art
	1.3. Contributions of the present work
	1.4. Main results in a nutshell

	2. Preconditioned adaptive BEM for Laplace problems
	2.1. Triangulations
	2.2. Discrete function spaces
	2.3. Galerkin discretization of the Laplace integral equation
	2.4. ZZ-type a posteriori error estimation
	2.5. A generic adaptive strategy
	2.6. Operator preconditioning with the hypersingular operator
	2.7. Numerical computation of electrostatic capacity

	3. Numerical computations
	3.1. Example (Unit cube)
	3.2. Example 2: Fichera cube
	3.3. Example 3: Star-shaped geometry

	Appendix A. Weighted-residual error estimator
	Appendix B. Implementation with Bempp
	References

