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We propose a novel methodology to define, analyse and forecast market states. In our approach market
states are identified by a reference sparse precision matrix and a vector of expectation values. In our
procedure each multivariate observation is associated to a given market state accordingly to a minimisa-
tion of a penalized Mahalanobis distance. The procedure is made computationally very efficient and can
be used with a large number of assets. We demonstrate that this procedure is successfull at clustering
different states of the markets in an unsupervised manner. In particular, we describe an experiment with
one hundred log-returns and two states in which the methodology automatically associates states preva-
lently to per-and post crisis periods with one state gathering periods with average positive returns and
the other state periods with average negative returns, therefore discovering spontaneously the common
classification of ‘bull’ and ‘bear’ markets. In another experiment, with again one hundred log-returns and
two states, we demonstrate that this procedure can be efficiently used to forecast off-sample future market
states with significant prediction accuracy. This methodology opens the way to a range of applications
in risk management and trading strategies in the context where the correlation structure plays a central
role.
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1. Introduction

Markets do not always behave in the same way. In common terminology, there are periods of ‘bull’
market in which prices are more likely to rise and periods of ‘bear’ market in which prices are
more likely to fall. These different ‘states’ of markets are commonly attributed in literature to un-
observable, or latent, regimes representing a set of macroeconomic, market and sentiment variables.

Many time series models presented in literature tried to capture this phenomenon. Among the
most popular methods, it is worth mentioning the TAR models (Tong 1978), trying to estimate
‘structural breaks’ in the time series process, and the Markov Switching models (Hamilton 1989),
where the change in regimes are parametrized by means of an unobserved state variable typi-
cally modelled as Markov chain. However, the application of TAR models in finance is frequently
criticized since it cannot be established with certainty when a structural break has occurred in
economic time series and the prior knowledge of major economic events could lead to bias in in-
ference (Campbell et al. 1997). Markov switching models, on the other hand, are highly affected
by the curse of dimensionality. In particular, for slightly more complex dynamics than the original
proposal (Hamilton 1989), we need to rely on variational inference techniques or MCMC methods
(Tsay 2005, Kim and Nelson 1999). This implies that, in a multivariate context and particularly if



May 12, 2019

ForecastingMarketStates'v3.0

we aim to extract information on the switching from the correlation structure, estimation becomes
difficult to perform.

Other approaches focus on clustering of observations into groups: ‘similar’ data objects are
discovered on the basis of some criteria for comparisons. Most works related to clustering of time
series are classified into two categories: subsequence time series clustering and point clustering.
Subsequence clustering involves the clustering of sliding windows of data points and usually aim
at discover repeated patterns. Example are Dynamic Time Warping (Liao 2005), Hierarchical
methods (Nevill-Manning and Witten 1997) or pattern discovery (Ren et al. 2017). In point
clustering methods, instead, each multivariate observation at each time instance ¢ is assigned to a
cluster. In most popular approaches, however, this is done based on a distance metric (Grabarnik
and Sarkka 2001, Focardi and Fabozzi 2004, Zolhavarieh et al. 2014, Hendricks et al. 2016, Hallac
et al. 2016).

In a multivariate context, different ‘states’ of markets are not only reflected in the gains and

losses, but also in the relative dynamics of prices. Indeed, the correlation structure changes between
bull and bear periods indicating that there are structural differences in these market states. Most
common approaches in the industry assume -for convenience- a stationary correlation structure
(Duffie and Pan 1997, Black and Litterman 1992). However, it is well established that correlations
among stocks are not constant over time (Lin et al. 1994, Ang and Bekaert 2002, Musmeci
et al. 2016) and increase substantially in periods of high market volatility, with, asymmetrically,
larger increases for downward moves (see, for example, (Ang and Chen 2002, Cizeau et al. 2010,
Schmitt et al. 2013)). Indeed, various approaches have been proposed in literature to model
and predict time-varying correlations. Examples are, for instance, the generalized autoregressive
conditional heteroskedasticity (GARCH) models by (Bollerslev 1990) or the Dynamic Conditional
Correlation (DCC) model by (Engle 2002). However, most of these models are not able to cope
with more than a few assets due to the curse of dimensionality having numbers of parameters
that increases super-linearly with the number of variables (Danielsson 2011). Other approaches
have been focusing on the study of changes in a time-varying correlation matrix computed from
a rolling window. This is, for instance, the case of estimators like the RiskMetrics (Longerstaey
and Spencer 1996) or (Lee and Stevenson 2003). However, since these approaches use only a small
part of the data, these estimators have large variances and, in case of high dimensionality, may
lead to inconclusive estimates (Laloux et al. 1999).
Hallac et al. (2017) introduced a clustering algorithm called TICC (Toeplitz Inverse Covariance
Clustering), originally proposed for electric vehicles, where classification into states is constructed
from a likelihood measure associate with a referential sparse precision matrix (inverse covariance
matrix). Instead of considering each observation in isolation, however, in their approach they
cluster short subsequences of observations so that the covariance matrix constructed on the
subsequences provides a representation of the cross-time partial correlations. In this setting, then,
by imposing a Toeplitz constraint to the precision matrix of each regime, the cross-time partial
correlations are constrained to be constant and, hence, covariance-stationarity is enforced. This
method has a number of appealing features from a financial perspective, although the structure
of data considered by the authors is significantly different from noisy data in finance.

In this paper we build on (Hallac et al. 2017) and propose a similar Covariance based
Clustering. However, we consider single observations and do not enforce Toeplitz structure on
the precision matrix. We, therefore, call this methodology ICC - Inverse Covariance Clustering.
Analogously to (Hallac et al. 2017), we also enforce temporal coherence by penalizing frequent
switches between market states and favouring temporal consistency. Another difference is that we
do not directly maximise likelihood but rather we assign states to clusters accordingly to their
Mahalanobis distance (De Maesschalck et al. 2000). We experiment with this methodology in the
context of financial time series and provide a detailed analysis of the role played by sparsity and
temporal consistency, while assessing the significance of the clusters. Finally, we show that the
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cluster classification can be used for one step ahead off-sample prediction.

Our approach simplify and clarify the definition of ‘market state’ by identifying each state with
a sparse precision matrix and a vector of expectation values which are associated to a set of
multivariate observations clustered together accordingly with a given procedure. In the following,
the precision matrix of market state ‘k’ is denoted with J; and it represents the structure of
partial correlations between the system’s variables. In the multivariate normal case, two nodes
are conditionally independent if and only if the corresponding element of Ji is equal to zero. A
sparse precision matrix provides an easily interpretable and intuitive structure of the market state
with all the most relevant dependencies directly interconnected in a sparse network. Furthermore,
sparsity reduces the number of parameters from order n? (with n the number of variables) to
order n preventing overfitting (Lauritzen 1996) and filtering out noisy correlations (Barfuss et al.
2016, Musmeci et al. 2017).

The segmentation procedure uses a redesigned version of the Expectation Maximization (EM)
algorithm (Dempster et al. 1977, McLachlan and Krishnan 1997). It starts by setting the number
of clusters K (in the present paper we limit to K = 2) and assigns multivariate observations to
clusters randomly. From these K sets of data we compute the sample means gy and the precision
matrices Ji and we then iteratively re-assign points to the cluster with smallest

Mg = diy + 1K1 # K} (1)

where X = [241, %2, ..., Ttn) s the n-stocks multivariate observation at time ¢ (= 1,...,T"); pg
is the vector of the means for cluster k; Ji is the (sparse) precision matrix for cluster k; d?,k =

(X¢ — pp)TJy (Xy — pg) is the the square Mahalanobis distance of observation X; in cluster
k with respect to the cluster centroid uy; v is a parameter penalizing state switching; K;—1 is
the cluster assignment of the observation at time t — 1. We considered as well clustering with
respect to maximum likelihood and minimum Euclidean distance, however we report only about
the procedure with Mahalanobis distance which is the one that provides best results. Specifically,
Euclidean distance is very efficient in distinguishing positive and negative returns but does not
distinguish well between pre- and post-crysisis periods. The maximum likelihood instead identify
very well the crisis period but then it is much less clean in classifying the ‘bull’ and ‘bear’ market
states. Let us note that the used Mahalanobis distance clustering is producing high likelihood
although not maximal.

The clustering assignment procedure is made computationally efficient by using the Viterbi al-
gorithm (Viterbi 1967, Bishop 2006) that transforms an otherwise O(K*) procedure into O(KT)
(Appendix A). Further, the sparse precision matrix Jj is computed efficiently from the observa-
tions in each cluster by means of the TMFG-LoGo network filtering approach (Massara et al. 2015,
Barfuss et al. 2016). TMFG-LoGo approach has proven to be more efficient and better perform-
ing, particularly when few data are available (Barfuss et al. 2016, Aste and Di Matteo 2017), with
respect to other techniques such as GLASSO (Friedman et al. 2008). Implementation has been per-
formed with and in-house built-for-purpose python package. This is the first time this methodology
is introduced and applied to financial data and market states analytics.

In this paper we report results for two experiments performed over a dataset of daily closing
prices of n = 2490 US stocks entering among the constituents of the Russel 1000 index (RIY index)
traded between 02/01/1995 and 31/12/2015. For each asset ¢ = 1,...,n, we calculated the corre-
sponding daily log-returns 7;(t) = log(P;(t)) — log(P;(t — 1)), where P;(t) is the closing price of
stock ¢ at time ¢.
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2. Clustering

As mentioned in the introduction, our primary goal is to efficiently cluster noisy, multivariate time
series into meaningful regimes, while controlling for temporal consistency. In this first experiment,
we considered the entire dataset between 02/01/1995 and 31/12/2015 and estimated two referential
market states. In order to explore the role of each building block of our algorithm and to compare
it to a traditional baseline method, we investigate five models:

a) ICC Model - Sparse precision matrix and temporal consistency
b) ICC Model - Full precision matrix and temporal consistency
c¢) ICC Model - Sparse precision matrix

d) ICC Model - Full precision matrix

e) Gaussian Mixture Model - Full Covariance

Model (a) is the present proposed ICC methodology. Model (b) considers full precision matrices
J instead of sparse ones. Model (c) relaxes temporal consistency allowing for v = 0 in Eq. 1.
Model (d) has v = 0 full precision matrices. Finally, Model (e) is a conventional Gaussian Mixture
Model (Bishop 2006) that has been chosen as a baseline method given the similarities with the
ICC approach. We analysed and compared the resulting clusters both in terms of market properties
to which the two clusters are associated and in terms of temporal consistency. First, we focused
on a subset of 100 stocks chosen at random among those that have been continuously traded
throughout the observed period. Random choice of the basket is to avoid selection bias. We then
consider random resamplings to assess the robustness when different stocks are considered.
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of each stock for each temporal cluster

(a) Time series segmentation results

Figure 1.: Clustering segmentation for experiment 1 over the whole dataset. Panel
(a) reports the cumulative average return at each time ¢ across the 100 stocks; in this
picture, the blue background corresponds to time instances assigned to Cluster 1 and
the orange background correspond instead to time instances assigned to Cluster 2.
Panel (b) reports mean and standard deviation of each of the 100 stocks respectively
computed using the returns assigned to each of the 2 clusters. We observe that
Cluster 1 exhibits positive mean returns ( ‘bull’” state) and lower levels of volatility
for all the considered stocks, while for cluster 2 all the stocks present negative mean
returns (‘bear’ state) and higher levels of volatility.

We optimized the temporal consistency parameter by grid-searching as described in Appendix
A and used v = 1.313 for ICC Sparse (a) and v = 0.88 for ICC Full (b) in both the experiments
presented in this paper. The two referential precision matrices, J; and Js, obtained with this
experiment had 344 non-zero entries (dependency network edges) of which 181 were common to
both states showing a good level of differentiation, but also significant overlaps between the two
market states. The number of points assigned to each cluster were respectively 2895 for cluster 1
and 1904 for cluster 2. Figure 1 reports with colored background the points’ assignment for the
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Figure 2.: Estimated Sharpe Ratio (SR) for each of the 100 stocks in the sample.
The blue bars report the SR computed from log-returns in Cluster 1, whereas the
red bars report the SR computed from log-returns in Cluster 2.

two clusters. We can observe there is a good spatial consistency. For instance, the average number
of consecutive days in cluster 1 is 27.8 days. We also note that cluster 1 (blue background) tend to
be associated with periods of rising market prices whereas cluster 2 (orange background) appears
more present during crisis and market downturns. We indeed discovered that -automatically- the
methodology assigns ‘bull” market periods (positive mean returns) to cluster 1 and ‘bear’ market
periods (negative mean returns) to cluster 2. We can for instance observe in Figure 1(a) that 82
consecutive observations during the 2001-2002 .com bubble crisis and 126 consecutive observations
during the 2007-2008 global financial crisis have been assigned to the bear cluster 2. From Fig.1(b)
we observe that the bull cluster 1 has, indeed, average positive returns for all stocks whereas the
bear cluster 2 has average negative returns. Furthermore, also the standard deviations are different
between the two cluster assignments.

To compare the two clusters on a risk-adjusted basis, we computed the Sharpe ratio (Sharpe
1966, 1994) for each stock in each cluster. We found for the bull cluster an average Sharpe ratio
equal to 0.28, with 5 and 95" percentiles respectively equal to 0.15 and 0.41, while the bear
cluster had average —0.38, with —0.6 and —0.15 as 5* and 95" percentiles. It is therefore clear
that the two clusters have very different risk-return profiles. In order to further quantify the
statistical significance of this difference, we considered the SR asymptotic distribution derived in
(Opdyke 2007) to test for the risk-adjusted structural difference of the two clusters. We found
that all of the 100 stocks in the sample had a Sharpe ratio significantly larger than 0 in the bull
cluster and significantly lower then 0 in the bear cluster at a significance level & = 0.01. Figure 2
reports the Sharpe ratios in the two clusters for the 100 stocks. In order to verify robustness and
generality of the results we computed the same quantities for 100 other randomly chosen baskets
of 100 stocks. For all resampled baskets of stocks we found a consistent clusterization in bull and
bear regimes with had Sharpe ratios for at least 95% of stocks significantly larger than zero for
the bull state and significantly smaller than zero for the bear state. Across the 100 resamplings,
the two clusters had average number of elements respectively equal to 3087 and 1585.

Sparsity and Temporal Consistency. In order to assess the role of sparsity and temporal
consistency, we performed the same analysis on the ‘alternative’ ICC Models (b)-(d) and the GMM
(e).

Table 1 summarizes the number of stocks having significant Sharpe ratio in both clusters over 100
resamplings. In the table, each couple refers to the number of significant stocks in bull (left) and
bear (right) states. We found that, in absence of temporal consistency constraints, both the ICC
models (¢, d) meaningfully classify clusters with and without sparsity. However, when temporal
consistency is considered, ICC Full (b) is significantly affected by the constraint while ICC Sparse
(a) provides robust results. GMM delivered the worst clusters in terms of risk/return significance.
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Median 5" percentile 95" percentile
GMM (-) () (»)

ICC Full, v =0 (77,78) (67,71) (92,98)
ICC Sparse, v =0 (85,87) (69,75) (96,95)
ICC Full, v =147 (73,74) (68,65) (78,80)
ICC Sparse, v =16 (75,81) (65,69) (86,90)

Table 1.: Sharpe ratio significance for (‘bull’‘bear’) states. Median, 5* and 95"
percentiles obtained from 100 random resamples of the stocks composing the dataset.

Focusing on temporal consistency, Table 2 reports the number of switches and the segment
length resulting from the cluster assignments of the five models. When no temporal consistency
is enforced (c,d), ICC provides the less temporal consistent results with small differences related
to sparsity. This also explains the good results obtained by the models in terms of risk/return
significance. When constrained to be temporal consistent, ICC Full (b) shows large variability in
temporal consistency across samples with some having only a few switches over the whole period
and others having several hundreds. ICC Sparse (a) is instead more consistent with a few hundred
switches over the whole period which are about 1/3 of the switches in GMM (e).

Number of Switches

Median 5t percentile 95" percentile
GMM 785 540 874
ICC Full, y=0 1203 992 2176
ICC Sparse, v =0 1157 727 1421
ICC Full, v =14.7 204 120 306
ICC Sparse, v =16 208 54 298

Segment length
Median 5 percentile 95" percentile

GMM 5.07 2.4 11.8
ICC Full, v =0 3.3 1.68 4.38
1CC Sparse, v =0 3.5 2.8 6.65
ICC Full, v =14.7 22.64 14.6 38.26
I1CC Sparse, v =16 23.6 18 55.27

Table 2.: Temporal consistency metrics. Number of switchings and Segment lengths
over 100 resampligs.

3. Role of sparsity

In previous works (Barfuss et al. 2016), the TMFG-LoGo approach has proven to perform better
than other filtering approaches including GLasso and Ridge providing the additional advantages of
efficiency and fixed sparsity level with no need to calibrate hyperparameters (Massara et al. 2015).
In this Section we motivate the choice of TMFG-LoGo filtering procedure in terms of statistical
significance by comparing the performances of the TMFG-LoGo to the cross-validated Ridge o
penalized inverse covariance (Ridge) on our dataset. We considered the widely used Ridge penaliza-
tion as robust estimate of the empirical inverse covariance matrix and compared it to TMFG-LoGo
and show that, when applied to our dataset, TMFG-LoGo produces more stable likelihood results
than Ridge. Coherently with our second experiment (Section 4), we used 40% of the data (from
31/12/2007 to 31/12/2015) as test set, and we considered as train sets the g observations preceding
the test set (until 30/12/2007). The penalization parameter of Ridge was defined by cross vali-
dating within the train set. To compare TMFG-LoGo and the cross-validated Ridge we computed
the log-likelihoods L = 1/2(log|Jx| — dik — plog(2m)) using the two covariance estimates and
compared them. Figure 3 shows the likelihood observation-wise computed in train and in test using
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the TMFG-LoGo and Ridge precision matrices estimated over ¢ = 500 observations. The TMFG-
LoGo likelihoods are much more stable over time suggesting that the procedure was successful
in filtering out noise. Table 3 reports details on mean, 5** and 95 percentiles of the likelihoods
computed in the train and test set. As previously mentioned, TMFG-LoGo likelihoods are much
more stable with 5 and 95" varying a few percent only for TMFG-LoGo and instead varying of
more than one order of magnitude in Ridge. We found similar results for TMFG-LoGo and Ridge
when different values of ¢ are considered. Note that Ridge log likelihoods have large differences
between train and test. This is a typical indication of overfitting. Conversely, TMFG presents small
differences indicating that the LoGo procedure acts as a topological penalize.
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Figure 3.: Train and test log likelihood observation-wise using TMFG (red line) and
Ridge (black line) precision matrices. The green vertical line divides train and test
set. Ridge peaks reach values outside the range up to 320.

Train set
Average 5"percentile 95"percentile
L Ridge 41.70 2.19 188.85
Lryvra 26.71 26.53 27.22
Test Set
Average 5'"percentile 95"'percentile
L Ridge 8.08 1.39 27.64
LTyvEa 26.55 26.44 26.73

Table 3.: TMFG and Ridge log likelihood metrics - means, 5% and 95" percentiles

- computed in train (top panel) and test (bottom panel) set. TMFG and Ridge
precision matrices are estimated using ¢ = 500 observations.

4. Forecasting

In the second experiment we used our methodology to forecast future states of the market form pre-
vious observations. To this end, we used the first 60% of the data (from 02/01/1995 to 31/12/2007)
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Figure 4.: Log likelihood ratio and mean returns across train and test sets. The log
likelihood ratio of the two states R; was computed using using the A = 28 days.
The green vertical bar indicates the end of the train set and the beginning of the
test set. We estimated J7 and J2 in train and held it fixed for the computation of
R: also in the test set. The black horizontal line identifies R; = 0 level, i.e. the level
above which the bull state is more likely. Coherently with previous findings, we can
identify persistent market states with a more frequent bull market and regions of
bear market.

as train set from which we extracted the two referential precision matrices and means (Ji, p1) and
(J2, p2) (note they are different form the ones of the first experiment in which we used the en-
tire dataset instead). We then forecasted the probability that, given an observation at time ¢, the
observation at a following time ¢ 4+ h would belong to state k. This is achieved by performing a
logistic regression using the log likelihood ratio of the two clusters (Neyman and Pearson 1933)
from a rolling window of length A:

t
Z ['5,1 - Es,? y

s=t—A+1

(2)

where L, = 1/2(log|Jx| — df ), — plog(2m)) is the log-likelihood of state .
considered A = 28 days, since this is the average length of segments obtained from ICC (a) in the
first experiment. Figure 4 provides a visual representation of the likelihood ratio computed for each
cluster and of its evolution as compared to market movements. The green vertical line divides the
train set form the test set. The logistic regression of market states K; against the log likelihood
ratio R; can be written as

In our experiment, we

1

P(/Ct+h:172|72t:$):m ’

(3)

where the parameters y and (31 are estimated through maximum likelihood (Bishop 2006). We
estimated all parameters (J1, Ja, @1, @2, v, fo and (1) in the train set and estimated a threshold
or cut-off point of 0.57 by cross-validation in the train set. We then used these parameters to
predict, in the test set, the next day state given the log-likelihood ratio R; = . Specifically, we
predict ICtH =1if P(Ki41 =1| Ry =x) > 0.57 and ICtH = 2 otherwise. For instance, for the day
30-Jan-2008 (test set) we predicted a bear state with probability P(Ks3o—jan = 2| R29—Jan) = 0.72,
where Rag— jan was computed using the observations from 02-Jan to 29-Jan-2008 (A = 28 days,
all in the test set) and the parameters py, Jx, v, So and 1 were the ones calibrated on the train
set with data until 31/12/2007.
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To assess the goodness of our approach we compared test set predictions with the classification
performed over the whole period in the first experiment (see Fig.1). We used three metrics (Hastie
et al. 2008) to assess the performance of our classification method: the True Positive Rate TPR
(number of elements correctly assigned to cluster 1 divided by total number of elements in cluster
1), the True Negative Rate TN R (number of elements correctly assigned to cluster 2 divided by
total number of elements in cluster 2) and Accuracy ACC' (number of correct predictions in cluster
1 or 2 divided by total number of elements). In order to test for the robustness of our method, we
randomly resampled the 100 stocks and performed the classification experiment considering the
new dataset. We repeated this process 100 times and stored the three performance metrics T PR,
TNR and ACC. Table 4 presents a summary of the results obtained. As we can see, ACC and
TPR are higher than 50% at the 5" percentile. TN R presents a good median result, but a low
5t percentile showing that it can be difficult to correctly forecast. This indicates that there is a
tendency to over-assign time-instances to cluster 1 (bull state) and conversely missing predictions
for the less frequent bear state. Nonetheless, we verified (by using the hypergeometric distribution
as reported in (Aste and Di Matteo 2017)) that these T'N R are statistically significant at 0.01 level
indicating that there is, indeed, significant prediction power also for the bear state. Let us stress
that the present forecasting exercise is not optimized and there are several ways these performances
can be improved. However, this is beyond the purpose of the present paper where we privileged
simplicity over performances.

Median 5% percentile 95" percentile

TPR 0.57 0.52 0.89
TNR 0.52 0.22 0.67
ACC 0.55 0.49 0.68

Table 4.: Out-of-sample performance metrics using the ICC log likelihood ratio as
independent variable. Median, 5 and 95" percentiles obtained from 100 random
resamples of the stocks composing the dataset.

To compare the previous results with a baseline method, we estimated the logistic regression in
Eq. 3 using the fraction of stocks that at time ¢ — 1 were presenting positive returns as independent
variable. Aim being to compare our ICC log-likelihood to a much simplified version of the the
information about the correlation structure. Same estimation scheme is used and a treshold of 0.61
is obtained by cross validation. Results are reported in Table 5. While this simplified informa-
tion still provides a median accuracy above 50%, the model has overall inferior performances with
respect to the ICC log likelihood ratio case reported in Table 4.

Median 5% percentile 95" percentile

TPR 0.39 0.41 0.63
TNR 0.55 0.35 0.77
ACC 0.51 0.42 0.59

Table 5.: Out-of-sample performance metrics using the fraction of positive strocks
as independent variable. Median, 5" and 95" percentiles obtained from 100 random
resamples of the stocks composing the dataset.

5. Conclusions

In this paper we presented a novel methodology to define, identify, classify and forecast market
states. In addition to accuracy, intuitiveness and forecasting power, our procedure is numerically
very efficient and able to process high dimensional datasets. We reported two experiments to
illustrate that the method is efficient and reliable in identifying and predicting accurate and in-
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terpretable structures in multivariate, non-stationary financial datasets. These two examples use
two clusters and 100 variables, however we verified that analogous results hold for larger or smaller
numbers of variables and similarly interesting classifications emerge also when three or more clus-
ters are used. The choice of two clusters has been only motivated by simplicity. The fact that
they turned out to be respectively populated mostly with average positive and negative returns
associated with pre- and post-crisis periods was unexpected by us and opens potentials for com-
pletely novel ways to use multivariate analytics for the forecasting of stock market returns. This
also greatly simplified the interpretation of these states as ‘bull’ and ‘bear’ markets. Of course, in
reality, there are more than two market states and common definition of bull and bear markets
are often blurry. In this work we did not attempt to optimize results favouring, instead, simplic-
ity and interpretability and, therefore, there is a large open domain of exploration to refine the
methodology. We also adopted several methodological choices that can be modified in future works.
For instance, the segmentation with the Mahalanobis distance turned out o be a very powerful in
the reported experiments, however there is a broad range of possible metrics for clustering and
experiments with Euclidean distance or Likelihood also produce interesting results. Further, the
choice of TMFG network over other possible information filtering networks or other sparsification
methodologies can be investigated. Temporal consistency could had also being performed differ-
ently by using a hidden Markov model approach (see note in Appendix A). The choice of logistic
regression to forecast market state is just one simple possibility among many regression options
that might make better use of the information content of our regimes’ structures. All these and
other methodological choices has been motivated by simplicity and intuitiveness. Since one of the
main achievement of our methodology is computational efficiency allowing to apply the methodol-
ogy to high dimensional datasets, further work will include new sources of information (e.g. news,
economic indicators, sentiment).
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Appendix A: The Viterbi algorithm

Figure Al provides a visualization of the problem of assigning points to clusters. Based on the
parameters estimates (pg and Jy via TMFG-LoGo) from the E step of the Expectation Maximiza-
tion procedure, we compute the Mahalanobis distance of every multivariate observation obtaining,
for each cluster k£ and for each observation ¢, a value d?,k = ( Xy — )T T (Xt — pge)-

t—1 t T

Figure Al.: Example of two among the KT possible paths considering K = 3 clusters
and T observations. L; ; represents the log likelihood of the multivariate observation
at time ¢ if assigned to cluster j. If an observation is assigned to same cluster as the
previous one, no penalty is applied, otherwise a cost weighted by the parameter ~
is added.

We need to consider the best sequence of latent states which is not the set of best individual
states. In particular, if we introduce a cost parameter v that penalizes cluster switching, the
problem complexity becomes combinatorial, since we need to account for the whole sequence or
path of assignations. In particular, given K potential cluster assignment of 7' points (multivariate
observations), the number of potential paths grows exponentially with the length of the chain to
KT possible assignments of points to clusters. Based on a dynamic programming approach, the
Viterbi algorithm (Viterbi 1967) provides an efficient solution with complexity O(KT) (i.e., linear)
to this problem, searching the space of the paths and finding the most efficient path. The Viterbi
algorithm in the convenient formulation by (Hallac et al. 2017) is sketched in 1.

A more general formulation can be implemented by describing the paths as Markov chains and
introducing a transition probability between the states. However, under the Markov chain formalism
the expression in Eq.2 for the likelihood ratio is no longer consistent because it implies implicitly
iid multivariate observations.
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Algorithm 1 Viterbi algorithm

Input
dfk = square Mahalanobis distance of observation t if assigned to state k
v = time consistency parameter

Initialize
PreviousCost = array of K zeros
CurrentCost = array of K zeros
PreviousPath = array of K elements
CurrentPath = array of K elements

for each observation t =1,...,7 do
for each state k =1,..., K do
MinVal = index of minimum value of PreviousCost
if PreviousCost[MinVal] + v > PreviousCost[k] then
CurrentCost[k] = PreviousCost[k] — d7
CurrentPath[k] = PreviousPath|[k].append|[k]
else
CurrentCost[k] = PreviousCost[MinVal] 4+~ — d
CurrentPath[k] = PreviousPath[MinV al].append[k]
PreviousCost=CurrentCost
PreviousPath=CurrentPath
FinalMinVal=index of minimum value of CurrCost

FinalPath=CurrPath[FinalMinVal]
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