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ABSTRACT
A method based on the wide spacing approximation is applied to the wave scattering problem in multiple polynyas. An ice sheet is modeled
as an elastic plate, and fluid flow is described by the velocity potential theory. The solution procedure is constructed based on the assumption
that the ice sheet length is much larger than the wavelength. For each polynya, of free surface with an ice sheet on each side, the problem
is solved exactly within the framework of the linearized velocity potential theory. This is then matched with the solution from neighboring
polynyas at their interfaces below the ice sheet on each side, and only the traveling waves are included in the matching. Numerical results are
provided to show that the method is very accurate and highly efficient. Extensive simulations are then carried out to investigate the effects of
the ice sheet number, ice sheet length, distribution of ice sheets, as well as polynya width. The features of wave reflection and transmission are
analyzed, and the physical mechanism is discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5098877

I. INTRODUCTION

The research over the last decades has significantly advanced
our understanding of wave physics and the mechanism of its inter-
action with sea ices. When the wave propagates into a region cov-
ered with an ice sheet, there will be wave reflection and trans-
mission. In such a way, the process of wave propagation in icy
water is expected to be much more complex than that in open
waters. Reviews on this subject have been given by Squire et al.1
and Squire.2,3 For open water, it is common to consider the ocean
surface as infinitely large and treated as a free surface, on which
the pressure is assumed to be atmospheric or constant. In an icy
water region, one form of ice, an ice sheet, has a horizontal dimen-
sion of much larger scale than its vertical dimension. In such a
case, the ice sheet could be considered as an elastic plate,4 and this
model has been widely used in the simulations of wave propaga-
tion in the polar region. A semi-infinite ice sheet floating on the
free-surface was investigated based on the thin plate model5 and
the thick plate model by Fox and Squire,6 by adopting the matched
eigenfunction expansion method. The work was extended by Fox
and Squire7 for wave propagations from open water into a semi-
infinite ice sheet covered region obliquely. They showed that beyond

a critical incident wave angle, the wave would be totally reflected.
For some similar physical problems, an inner product of orthogo-
nality was introduced to solve the unknowns in the eigenfunction
expansions, e.g., Sahoo, Yip, and Chwang,8 in which the ice sheets
with various edge conditions were discussed. Meylan and Squire9

adopted the Green function method due to its flexibility and a much
wider range of applications. Other methods have also been used,
for instance, the Wiener-Hopf method.10 Chung and Fox11 used the
method for oblique reflection and transmission of ocean waves into
the semi-infinite ice sheet. Other notable work using the Wiener-
Hopf method includes those by Balmforth and Craster,12 and by
Tkacheva.13 Chung and Linton14 constructed the solution of wave
propagating across a polynya between two semi-infinite ice sheets,
where the problem was solved with the residue calculus technique.
They found that the reflection coefficients could be zero at discrete
frequencies. Williams and Squire15 solved a more general problem
of wave interaction with three connected plates of different thick-
nesses, in which the Wiener-Hopf method and the residue calculus
method were both used. When the thickness of the middle one is
taken as zero, it becomes a free surface. Thus, polynya can be classi-
fied as a special case of this problem. While the thicknesses of two
side ice sheets are equal to zero, it becomes an ice floe problem.
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Further experimental study on wave interaction with a sea ice floe
was conducted by Meylan et al.16

There has also been work on ice sheets with imperfections, such
as cracks. Based on the matched eigenfunction expansions, Barrett
and Squire17 solved the wave propagation through an ice sheet with
a crack for finite water depth, where full transmission was observed
at a specific period. By adopting the Green function of an infinite
homogeneous ice sheet, Squire and Dixon18 derived an analytical
solution for infinite water depth. Following a similar procedure, the
work was extended by Squire and Dixon19 to an ice sheet with mul-
tiple cracks, in which the full transmissions occurred at discrete
periods. Evans and Porter20 obtained an analytical solution of the
single crack in a series form by dividing the problem into the sym-
metric and antisymmetric parts, for finite water depth and oblique
incident waves. Porter and Evans21 investigated the wave propaga-
tion through multiple cracks, and stopping bands were observed in a
semi-infinite array of cracks, where the transmission coefficient was
zero. They also obtained the solution for ice sheet with finite length
cracks.22 When there was a body present, Li, Wu, and Ji23 used the
multipole method and obtained solution for a circular cylinder sub-
merged below the ice sheet with a crack. The three dimensional
diffraction problem by a circular crack was considered by Li, Wu,
and Shi.24

A submerged or floating body in a polynya between two semi-
infinite ice sheets has also been investigated. Sturova25 considered a
circular cylinder submerged by a polynya. Ren, Wu, and Thomas26

obtained solution for a rectangular box floating in a polynya between
two semi-infinite ice sheets based on a matched eigenfunction
expansion. Li, Shi, and Wu27 considered a more general problem
of a two dimensional arbitrarily shaped body based on a hybrid
method. Later, a method based on the wide space approximation was
adopted for the interaction of waves with a body in a single and wide
polynya.28

The present work attempts to construct a fast and accurate
method for wave ice interaction in multiple polynyas. Based on the
wide space approximation, the solution can be constructed from
that for a single polynya, which is already available. The merit of
the method is that the effort required for solution is minimal as the
number of polynyas increases, while the accuracy can be maintained
for a high degree. The results may have a wide range of applica-
tions in polar engineering. In Sec. II, formulation based on the wide
space method is explicitly derived. The numerical validation is first
given in Sec. III, which is followed by in-depth investigation on
the wave reflection and transmission process through the polynyas.

The effects of the ice sheet number and length, polynya width, and
distribution of ice sheets are discussed. Conclusions are then drawn
in Sec. IV.

II. MATHEMATICAL MODEL AND NUMERICAL
PROCEDURES
A. Mathematical model

We consider the wave propagation through n − 1 polynyas
formed by n ice sheets, as sketched in Fig. 1. A Cartesian coordi-
nate system x⃗ = (x, z) fixed in space is defined with the origin O at
the undisturbed mean water surface, x being the horizontal direction
and z being vertically upwards. The left and right edges of the jth
ice sheet are at xLj and xRj , respectively. The first and last ice sheets
are both semi-infinite or xL1 = −∞ and xRn = +∞, respectively, on
the basis that their edges are sufficiently away. The width of the jth
polynya is lF,j = xLj+1−xRj , j = 1, . . ., n− 1. The width of the jth ice sheet
is lI,j = xRj − xLj , j = 1, . . ., n, with lI ,1 and lI ,n being infinite. This work
is undertaken on the basis that the length of each ice sheet is much
larger than the wavelength l, i.e., lI ,j ≫ l. The fluid with density ρ
and constant depth H is assumed to be inviscid, incompressible, and
homogeneous, and its motion is assumed to be irrotational. Under
the assumption that the amplitude of wave motion is small com-
pared to its length, the linearized velocity potential theory can be
used to describe the fluid flow. When the motion is sinusoidal in
time with radian frequency ω, the total potential can be written as

Φ(x, y, z, t) = Re[α0φ(x, z)eiωt
] = Re{α0[φI(x, z) + φD(x, z)]eiωt

},
(1)

where φI is the potential due to the incident wave with unit ampli-
tude, φD is the diffracted potential, and α0 is the amplitude of the
incident wave. Mass conservation requires that the potential φD
satisfies Laplace’s equation

∇
2φD = 0, (2)

throughout the fluid. The combination of the linearized dynamic
and kinematic free surface boundary conditions yields

− ω2φD + g
∂φD

∂z
= 0, (xRj < x < xLj+1, j = 1, ...,n − 1, z = 0), (3)

in which g is the acceleration due to gravity. Each ice sheet is mod-
eled as a continuous elastic plate with uniform properties, or the
density ρj, Young’s modulus Ej, Poisson’s ratio νj, thickness hj, and

FIG. 1. Coordinate system and sketch of
the problem.
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draught dj are all taken to be constant. The boundary condition on
the ice sheets can be written as

(Lj
∂4

∂x4 −mjω2 + ρg)
∂φ

∂z
− ρω2φ = 0,

(xLj ≤ x ≤ xRj , j = 1, ...,n, z = −dj),
(4)

where Lj = Eh3
j /[12(1 − νj2)] and mj = hjρj denote, respectively,

the effective flexural rigidity of the jth ice sheet and its mass per
unit area. Without loss of generality, the two ends of each ice sheet
are assumed to be free. Therefore, zero bending moment and shear
force, respectively, give

∂2

∂x2 (
∂φ

∂z
) = 0 and

∂3

∂x3 (
∂φ

∂z
) = 0,

(xLj ,−dj) or (xRj−1,−dj), j = 2, ...,n.
(5)

On the vertical surface of the ice sheet edge, the impermeable
condition yields

∂φ

∂x
= 0, (xLj ,−dj) or (xRj−1,−dj), −dj ≤ z ≤ 0, j = 2, ...,n. (6)

On the flat seabed, the boundary condition can be written as

∂φD

∂z
= 0, (−∞ < x < +∞, z = −H). (7)

The radiation condition ensures the wave to propagate outwards,

lim
x→−∞(

∂φD

∂x
− κ(1)

0 φD) = 0, lim
x→+∞(

∂φD

∂x
+ κ(n)0 φD) = 0, (8)

where κ(j)0 are the purely positive imaginary roots of the dispersion
equations

− κ(j)0 tan[κ(j)0 (H − dj)] =
ρω2

Lj(κ(j)0 )
4

+ ρg −mjω2
, (j = 1, ...,n), (9)

below the jth ice sheet. For the problem considered below, when the
incoming wave is from x =∓∞, the corresponding incident potential
can be written as

φL
I = Ie−κ

(1)
0 xf (1)

(z) and φR
I = Ieκ

(n)
0 xf (n)(z), (10)

where I = g/iω, f (j)(z) = cos[κ(j)0 (z + H)]/cos[κ(j)0 (H − dj)].

B. Solution procedure
For each polynya, we assume that the lengths of the ice sheets

on both sides are much larger than its own length. In such a case, the
two ice sheets can be approximated as semi-infinite. We take the jth
polynya as an example, as sketched in Fig. 2, where the origin O is
the center of the polynya. This is effectively a single polynya prob-
lem, which has been considered extensively previously, for example,
in the work of Ren, Wu, and Thomas.26 Here, corresponding to
the incident wave potentials φL

I (X,Z) from X = −∞ and φR
I (X,Z)

from X = +∞ in the form of Eq. (10) with I being taken as unit, we
have diffraction potentials φL

D(X,Z) and φR
D(X,Z). In such a case,

the combined incident and diffracted wave potentials ψL and ψR at
infinity can be written as

ψ(j)
L = (e−κ

( j)
0 X + R(j)

L e+κ( j)0 X
)f (j)(Z) as X → −∞, (11)

ψ(j)
L = T(j)

L e−κ
( j+1)
0 X f (j+1)

(Z) as X → +∞, (12)

ψ(j)
R = T(j)

R e+κ( j)0 X f (j)(Z) as X → −∞, (13)

ψ(j)
R = (e+κ( j+1)

0 X + R(j)
R e−κ

( j+1)
0 X

)f (j+1)
(Z) as X → +∞, (14)

where R is the reflection coefficient, T denotes the transmission coef-
ficient, and their subscripts indicate whether the incident wave is
from the left hand side or from the right.

When the single polynya in Fig. 2 is put back into the origi-
nal problem in Fig. 1, the incident waves are originated from the
two neighboring polynyas. Their amplitudes ε and γ are generally
unknown. The velocity potential φ(j) in Ωj may be written as

φ(j)
(x, z) = ε(j)ψ(j)

L (x−xj, z)+γ(j)ψ(j)
R (x−xj, z), (j = 1, ...,n−1),

(15)
where xj = (xRj +xLj+1)/2, which is used due to the fact that Eqs. (11)–
(14) are based on that the origin of XZ is at the center of the polynya.
At the interface of Ωj and Ωj+1, or x = xCj+1 shown in Fig. 1, pressure
and velocity continuity conditions yield

φ(j)
(xCj+1, z) = φ(j+1)

(xCj+1, z),
∂φ(j)

(xCj+1, z)
∂x

=
∂φ(j+1)

(xCj+1, z)
∂x

,

(j = 1, ...,n − 2). (16)

We notice that xCj+1 may be treated as X →∞ for Ωj and as X → −∞

for Ωj+1. This allows Eqs. (12) and (14) to be substituted into the left
hand side of Eq. (16) and Eqs. (11) and (13) into the right hand side.

FIG. 2. Sketch of a single polynya.
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Together with Eq. (15), we have

ε(j)T(j)
L e−κ

( j+1)
0 (xCj+1−xj) + γ(j)(e+κ( j+1)

0 (xCj+1−xj) + R(j)
R e−κ

( j+1)
0 (xCj+1−xj))

= ε(j+1)
(e−κ

( j+1)
0 (xCj+1−xj+1) + R(j+1)

L e+κ( j+1)
0 (xCj+1−xj+1))

+ γ(j+1)T(j+1)
R e+κ( j+1)

0 (xCj+1−xj+1), (17)

− ε(j)T(j)
L e−κ

( j+1)
0 (xCj+1−xj) + γ(j)(e+κ( j+1)

0 (xCj+1−xj) − R(j)
R e−κ

( j+1)
0 (xCj+1−xj))

= ε(j+1)
(−e−κ

( j+1)
0 (xCj+1−xj+1) + R(j+1)

L e+κ( j+1)
0 (xCj+1−xj+1))

+ γ(j+1)T(j+1)
R e+κ( j+1)

0 (xCj+1−xj+1) (18)

for j = 1, . . ., n − 2. Subtraction and summation of Eqs. (17) and (18),
respectively, yield

T(j)
L ε(j) + R(j)

R γ(j) − S(j+1)ε(j+1)
= 0, (19)

− S(j+1)γ(j) + R(j+1)
L ε(j+1) + T(j+1)

R γ(j+1) = 0, (20)

where

S(j+1)
= eκ

( j+1)
0 (xj+1−xj) = eκ

( j+1)
0 [(lF,j+lF,j+1)/2+lI,j+1]. (21)

If we assume that the wave in Fig. 1 is from x = −∞, then ε(1) = 1 and
γ(n−1) = 0. Since R(j)

L , R(j)
R , T(j)

L , and T(j)
R can be obtained from the

solution of a single polynya,26 Eqs. (19) and (20) form (2n − 4) linear
algebraic equations with (2n − 4) unknown coefficients. In matrix
form, these equations can be written as

QX = D, (22)

where

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1 c1

a2 b2 c2

a3 ⋱ ⋱

⋱ ⋱ c2n−5

a2n−4 b2n−4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (23)

Q is a tridiagonal matrix, where

⎧⎪⎪
⎨
⎪⎪⎩

a2j = −S(j+1), j = 1, ...,n − 2

a2j+1 = T(j+1)
L , j = 1, ...,n − 3

,

⎧⎪⎪
⎨
⎪⎪⎩

b2j−1 = R(j)
R , j = 1, ...,n − 2

b2j = R(j+1)
L , j = 1, ...,n − 2

,

⎧⎪⎪
⎨
⎪⎪⎩

c2j−1 = −S(j+1), j = 1, ...,n − 2

c2j = T(j+1)
R , , j = 1, ...,n − 3

,

(24)

and

X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ(1)

ε(2)

γ(2)

⋮

ε(n−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,D =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d1

d2

⋮

⋮

d2n−4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (25)

with

dj =
⎧⎪⎪
⎨
⎪⎪⎩

−T(j)
L , j = 1

0, j = 2, ..., 2n − 4
. (26)

Here, R(j)
L , R(j)

R , T(j)
L , and T(j)

R are obtained from the exact solution
of each subdomain in Fig. 2 and then they are subsequently used
in the problem in Fig. 1. The fact is that the problem in Fig. 2 can
also be obtained using the wide spacing approximation when the
width of the polynya is much larger than the wavelength. In fact,
Li et al.28 have found that the approximation provides very accurate
results over an almost entire wavelength range. This will be further
discussed when results are provided.

For the problem in Fig. 1, for wave from x = −∞, we have the
asymptotic form of the velocity potential at infinity

φ(x, z) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

e−κ
(1)
0 (x−x1) + Reκ

(1)
0 (x−x1)φ(1)

(z), x → −∞

Te−κ
(n)
0 (x−xn−1)φ(n)(z), x → +∞

, (27)

where R and T are overall reflection and transmission coefficients,
respectively. Based on Eqs. (11)–(14) and (15), we have

R = R(1)
L + γ(1)T(1)

R , T = ε(n−1)T(n−1)
L . (28)

FIG. 3. Sketch of alternative domain
decomposition.
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Alternative domain decomposition for approximation can also
be adopted, as shown in Fig. 3. In each subpolynya, the domain is
divided into two parts. In one part, the wave is from a semi-infinite
ice sheet to the semi-infinite free surface, while in the other part it
is the other way round. The problem in Fig. 1 is then divided into
2n − 2 subdomains. For the (2j − 1)-th subdomain, we have ice sheet
to free surface, and the potential can be written as

ψ(2j−1)
L = (e−κ

( j)
0 X + R(2j−1)

L e+κ( j)0 X
)f (j)(Z) as X → −∞, (29)

ψ(2j−1)
L = T(2j−1)

L e−λ0Xg(Z) as X → +∞, (30)

ψ(2j−1)
R = T(2j−1)

R e+κ( j)0 X f (j)(Z) as X → −∞, (31)

ψ(2j−1)
R = (e+λ0X + R(2j−1)

R e−λ0X)g(Z) as X → +∞, (32)

where g(Z) = cos[λ0(z + H)]/cos[λ0(H)], ω2
= λ0g tanhλ0H, and

X = 0 is at the edge of the ice sheet. It should be noted here that R(j)
L ,

T(j)
L , R(j)

R , and T(j)
R are obtained from the case of the wave from a

semi-infinite ice sheet to semi-infinite free surface. Similarly, for the
(2j)-th subdomain, we have

ψ(2j)
L = (e−λ0X + R(2j)

L e+λ0X)g(Z) as X → −∞, (33)

ψ(2j)
L = T(2j)

L e−κ
( j+1)
0 X f (j+1)

(Z) as X → +∞, (34)

ψ(2j)
R = T(2j)

R e+λ0Xg(Z) as X → −∞, (35)

ψ(2j)
R = (e+κ( j+1)

0 X + R(2j)
R e−κ

( j+1)
0 X

)f (j+1)
(Z) as X → +∞. (36)

Thus, the velocity potential φ(2j−1), φ(2j) in Γ2j−1 and Γ2j may be
written as
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

φ(2j−1)
(x, z) = ε(2j−1)ψ(2j−1)

L (x − x2j−1, z) + γ(2j−1)ψ(2j−1)
R (x − x2j−1, z)

φ(2j)
(x, z) = ε(2j)ψ(2j)

L (x − x2j, z) + γ(2j)ψ(2j)
R (x − x2j, z)

,

(37)

in which x2j−1 = xRj and x2j = xLj .
The interface of Γ2j−1 and Γ2j is below the free surface. The

pressure and velocity continuity conditions yield

φ(2j−1)
(xC2j, z) = φ

(2j)
(xC2j, z),

∂φ(2j−1)
(xC2j, z)

∂x
=
∂φ(2j)

(xC2j, z)
∂x

.
(38)

This leads to

T(2j−1)
L ε(2j−1) + R(2j−1)

R γ(2j−1)
− S(2j)ε(2j)

= 0, (39)

− S(2j)γ(2j−1) + R(2j)
L ε(2j) + T(2j)

R γ(2j)
= 0, (40)

where
S(2j)

= eλ0(x2j−x2j−1) = eλ0 lF,j+1 . (41)
The interface of Γ2j and Γ2j+1 is below the ice sheet. Similar to

(39), it is straightforward to have

T(2j)
L ε(2j) + R(2j)

R γ(2j)
− S(2j+1)ε(2j+1)

= 0, (42)

− S(2j+1)γ(2j) + R(2j+1)
L ε(2j+1) + T(2j+1)

R γ(2j+1) = 0, (43)

where
S2j+1

= eκ
( j+1)
0 (x2j+1−x2j) = eκ

( j+1)
0 lI,j+1 . (44)

Thus, for a system of n ice sheets with n − 1 polynyas, it will create
2n − 2 subdomains with 2n − 3 interfaces. This will generate 4n − 6
linear algebraic equations with 4n − 6 unknowns. It should be noted
that the coefficient matrix is also a tridiagonal one, similar to that in
Eq. (23), with Eq. (24) being replaced by

⎧⎪⎪
⎨
⎪⎪⎩

a2j = −S(j+1), j = 1, ..., 2n − 3

a2j+1 = T(j+1)
L , j = 1, ..., 2n − 4

⎧⎪⎪
⎨
⎪⎪⎩

b2j−1 = R(j)
R , j = 1, ..., 2n − 3

b2j = R(j+1)
L , j = 1, ..., 2n − 3

,

⎧⎪⎪
⎨
⎪⎪⎩

c2j−1 = −S(j+1), j = 1, ..., 2n − 3

c2j = T(j+1)
R , , j = 1, ..., 2n − 4

,

(45)

and correspondingly

dj =
⎧⎪⎪
⎨
⎪⎪⎩

−T(j)
L , j = 1

0, j = 2, ..., 4n − 6
. (46)

III. NUMERICAL RESULTS
For the numerical results to be presented in this section, the

typical physical parameters of the ice sheet together with water depth
are chosen as

E = 5 Gpa, υ = 0.3, ρj = 922.5 kg m−3, ρ = 1025 kg m−3, H = 100 m.
(47)

FIG. 4. The modulus of reflection R and transmission T
coefficients of an ice sheet with two cracks. (a) ∣R∣ and (b)
∣T ∣. Solid line: exact solution;29 dashed line: present result
(n = 3, hj = h = 0.01, mj = m = 0.9, Lj = L = 45 536, dj = d =
0, j = 1,2,3, lI ,2 = 0.5).
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FIG. 5. The modulus of reflection R and transmission T
coefficients of an ice sheet with two cracks. (a) ∣R∣ and (b)
∣T ∣. Solid line: exact solution;29 dashed line: present result
(n = 3, hj = h = 0.01, mj = m = 0.9, Lj = L = 45 536, dj = d =
0, j = 1,2,3, lI ,2 = 1).

The numerical results will be presented in the nondimensionalized
form, with basic parameters chosen as water depth H, water den-
sity ρ, and acceleration due to gravity g. The exact solution for the
problem of a single polynya in Fig. 2 is obtained based on the

procedure in the work of Ren, Wu, and Thomas.26 The results are
then used in Eqs. (19) and (20) for the multiple polynya problem.

Unless it is specified, the results below are obtained from a solu-
tion based on a single polynya in Fig. 2 as a subdomain. Results

FIG. 6. The modulus of reflection R and
transmission T coefficients against σ. (a)
∣R∣ for n = 2; (b) ∣T ∣ for n = 2; (c) ∣R∣
for n = 3; (d) ∣T ∣ for n = 3; (e) ∣R∣ for
n = 5; (f) ∣T ∣ for n = 5. Solid line: solu-
tion from ice-water-ice as a subdomain;
dashed line: solution from ice-water or
water-ice as a subdomain (hj = h = 0.01,
mj = m = 0.9, Lj = L = 45 536, dj = d = 0,
lI , j = lI = 4.0, j = 1, . . ., n, lF , j = lF = 1.0,
j = 1, . . ., n − 1).

Phys. Fluids 31, 067111 (2019); doi: 10.1063/1.5098877 31, 067111-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

from other approximations are presented in some cases, especially
for comparison and validation.

A. Verification of the methodology
and solution procedure

As demonstrated by Li, Wu, and Ji,29 when the width of a
polynya tends to zero, the result tends to that of a crack. The exact
solution for wave reflection and transmission by cracks has been
obtained in the work of Li, Wu, and Ji,29 where a Green function
satisfying all the boundary conditions including those at cracks was
first derived and then used for obtaining the solution explicitly. To
carry out the comparison, we take lF ,j = 0, j = 1, . . ., n − 1 and
consider an example of n = 3, with hj = h = 0.01, mj = m = 0.9,
Lj = L = 45 536, dj = d = 0, j = 1, 2, 3. The nondimensional length
of the middle ice sheet, or lI ,2, is taken as 0.5, 1.0. The reflection and
transmission coefficients defined in Eq. (27) are, respectively, shown
in Figs. 4(a) and 5(a) and Figs. 4(b) and 5(b), against nondimen-
sional frequency σ. For a smaller lI ,2 in Fig. 4, the present results
are close to the exact solution, but some visible discrepancy exists.
This discrepancy is not entirely unexpected, as the present method

is based on the assumption that the length of the ice sheet between
the two polynyas (or cracks) should be sufficiently long. For a larger
lI ,2 in Fig. 5, the discrepancy observed in Fig. 4 disappears. ∣R∣ and
∣T ∣ obtained from the present approximate method are in excellent
agreement with those from the exact solution.29 This verifies the
present approximate method and solution procedure.

B. Solution for n − 1 identical subdomains
We first consider the case in which the ice sheets have the same

physical properties and length, and polynyas have the same width,
mj = 0.9, Lj = 45 536, lF ,j = 1.0, lI ,j = 4.0, j = 1, 2, . . ., n. The lengths
of the first and the last ice sheets are obviously infinite. Even when
n is small, some trend is already forming. In Figs. 6(a)–6(f), results
for n = 2, n = 3, and n = 5, are, respectively, provided. It can be seen
that, different from an ice-water or water-ice system,5 the reflection
and transmission coefficients of polynyas (single and multiple one)
are very oscillatory against the nondimensional wave frequency.
The results from multiple polynyas (n > 2) become more complex,
and there are some local spikes within the calculated nondimen-
sional frequency range due to the mutual interactions between wave

FIG. 7. The modulus of reflection R and
transmission T coefficients against σ. (a)
∣R∣ for n = 33; (b) ∣T ∣ for n = 33; (c) ∣R∣
for n = 65; (d) ∣T ∣ for n = 65. Solid line:
solution for ice-water-ice as a subdo-
main; dashed line: solution for ice-water
or water-ice as a subdomain (hj = h
= 0.01, mj = m = 0.9, Lj = L = 45 536,
dj = d = 0, lI , j = lI = 4.0, j = 1, . . ., n, lF , j
= lF = 1.0, j = 1, . . ., n − 1).
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FIG. 8. The modulus of wave amplitudes
in polynyas. (a) ∣ε∣( j) and (b) ∣γ∣( j). In
(a), solid line: j = 2; dashed line: j = 32;
dashed-dotted line: j = 64. In (b), solid
line: j = 1; dashed line: j = 31; dashed-
dotted line: j = 63 (n = 65, hj = h = 0.01,
mj = m = 0.9, Lj = L = 45 536, dj = d = 0,
lI , j = lI = 4.0, j = 1, . . ., n, lF , j = lF = 1.0,
j = 1, . . ., n − 1).

FIG. 9. Variation of coefficient ∣ε∣( j) with
j. (a) σ = 14.43; (b) σ = 36.7; (c) σ =
13.87; (d) σ = 15.51 (n = 65, hj = h =
0.01, mj = m = 0.9, Lj = L = 45 536, dj =
d = 0, lI , j = lI = 4.0, j = 1, . . ., n, lF , j = lF
= 1.0, j = 1, . . ., n−1).
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FIG. 10. Variation of coefficient ∣γ∣( j)
with j. (a) σ = 14.43; (b) σ = 36.7; (c) σ
= 13.87; (d) σ = 15.51 (n = 65, hj = h =
0.01, mj = m = 0.9, Lj = L = 45 536, dj =
d = 0, lI , j = lI = 4.0, j = 1, . . ., n, lF , j = lF
= 1.0, j = 1, . . ., n−1).

reflections and transmissions from multiple polynyas. To investi-
gate whether these spikes are due to numerical error, calculations
are also undertaken based on the subdomain of ice-water or water-
ice in Fig. 3. The obtained results are also plotted in Fig. 6. It can be
seen that the curves from different subdomains coincide very well
with each other, which confirms the observed behavior.

It has been shown in the work of Li, Shi, and Wu28 that for a
single polynya, or n = 2, at certain discrete frequencies, there is no
wave reflection or R = 0. In Fig. 6, it can be seen that at the same
frequency R = 0 at n = 3 and n = 5. Further calculations for cases
of large n are undertaken, and the results for n = 33 and n = 65 are
plotted in Fig. 7. It is interesting to see that these discrete frequencies
at which R = 0 are not affected by n. For a single polynya, the rea-
son for zero reflection was explained explicitly in the work of Li, Shi,
and Wu.28 Here, when the subdomain is identical and zero reflection

occurs, we have R(j)
R = R(j)

L = 0 and ∣T(j)
R ∣ = ∣T(j)

L ∣ = 1, j = 1, 2, . . ., n

− 1). From Eqs. (19) and (20), we have ∣ε(j)∣ = 1 and γ(j) = 0. From
Eq. (28), then ∣R∣ = 0 and ∣T ∣ = 1, which is independent of n. Phys-
ically, when the incident wave passes through the first polynya and
is fully transmitted without any reflection, it will enter the second
polynya in the exactly same form, which will be fully transmitted and
not be reflected. This will continue no matter how many polynyas
there are.

It can be observed in Fig. 7 that at large n, when R ≠ 0, or
when the wave is reflected, ∣R∣ is very close to 1 within some discrete
bands, or the wave is fully reflected in these bands. A similar phe-
nomenon has also been observed in equally spaced multiple cracks.29

In fact, in the case of infinite number of cracks, it has been shown21

that T = 0 at an infinite number of discrete bands and the band has

FIG. 11. Variation of coefficient against j.
(a) ∣ε∣( j) and (b) ∣γ∣( j) (n = 65, σ = 16,
hj = h = 0.01, mj = m = 0.9, Lj = L = 45
536, dj = d = 0, lI , j = lI = 4.0, j = 1, . . .,
n, lF , j = lF = 1.0, j = 1, . . ., n−1).
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FIG. 12. The modulus of reflection R
and transmission T coefficients against
lI . (a) ∣R∣ and (b) ∣T ∣. Solid line: σ =
14.43; dashed line: σ = 36.7; dashed-
dotted line: σ = 13.87; dotted line: σ =
15.51 (n = 65, hj = h = 0.01, mj = m =
0.9, Lj = L = 45 536, dj = d = 0, j = 1, . . .,
n, lF , j = lF = 1.0, j = 1, . . ., n−1).

FIG. 13. The modulus of reflection coeffi-
cient R against lI . (a) σ = 14.43; (b) σ =
36.7; (c) σ = 13.87; (d): σ = 15.51. Solid
line: n = 3; dashed line: n = 5; dashed-
dotted line: n = 9; dotted line: n = 65 (hj
= h = 0.01, mj = m = 0.9, Lj = L = 45 536,
dj = d = 0, j = 1, . . ., n, lF , j = lF = 1.0,
j = 1, . . ., n − 1).
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been named as the stopping band. To explain the phenomenon, we
can solve the problem successively by increasing n, and correspond-
ing reflection and transmissions are denoted by RL

(n) and T (n)
L ,

respectively. Assume the problem at n − 1 has been solved. Another
polynya is then added to the problem. The problem of n ice sheets is
divided into two subdomains: one with n − 1 ice sheets and the other
with two ice sheets. Through imposing the continuity condition at
their interface, as done previously, we have

γ(1)
=

T (n−1)
L R(2)

L

[S(n)]2
−R(n−1)

R R(2)
L

, ε(2)
=

T (n−1)
L [S(n)]

2

[S(n)]2
−R(n−1)

R R(2)
L

. (48)

Substituting Eq. (48) into Eq. (28), we have

RL
(n)

=R(n−1)
L +γ(1)T (n−1)

R =R(n−1)
L +

T (n−1)
L T (n−1)

R R(2)
L

[S(n)]2
−R(n−1)

R R(2)
L

,

TL(n) = ε(2)
n T(2)

L =αnαn−1αn−2...α3[T(2)
L ]

n−1
,

(49)

in which

αn =
[S(n)]

2

[S(n)]2
−R(n−1)

R R(2)
L

. (50)

Equation (49) shows that when RL
(2)

= 0, or when there is no reflec-
tion from a single polynya, then RL

(n)
= 0 and ∣T (n)

L ∣ = 1. This is
consistent with the previous analysis. In the region of relatively small

TL
(2), noticing ∣T(2)

L ∣ < 1, ∣T(2)
L ∣

n−1
will tend to zero as n increases,

leading to a stopping band. However, in other regions, it will depend
on the relative magnitudes of αn and TL

(2), leading to a highly oscil-
latory behavior of T (n)

L . This is reflected in Fig. 7 and is consistent
with Conclusion 5 of Li, Wu, and Ji.29

For each polynya j, the base solution ψ is the same and the dif-
ference is in ε(j) and in γ(j). Physically, ε(j) refers to the wave from the
left side, and γ(j) denotes the wave coming from the right side, which
are the magnitudes of the waves propagating in opposite directions
in each subpolynya. Figures 8(a) and 8(b), respectively, show the
coefficients ∣ε(j)∣, j = 2, 32, and 64 and ∣γ(j)∣, j = 1, 31, and 63 for the

FIG. 14. The modulus of reflection coef-
ficient R against lF . (a) σ = 13.87; (b) σ
= 14.43; (c) σ = 15.51; (d) σ = 36.7 (hj =
h = 0.01, mj = m = 0.9, Lj = L = 45 536,
dj = d = 0, lI , j = lI = 4.0, j = 1, . . ., n,
n = 65).

Phys. Fluids 31, 067111 (2019); doi: 10.1063/1.5098877 31, 067111-11

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 15. Sketch of the problem.

case of n = 65. At low frequencies (σ < 4), ∣ε(j)∣ are close to 1, and

∣γ(j)∣ tend to 0, which is consistent with the results in Fig. 7, indicat-
ing that the majority of the waves are transmitted to the right hand
side. At some discrete frequencies within the calculated range, ∣ε(j)∣

are equal to 1, ∣γ(j)∣ = 0, which are also consistent with ∣R∣ = 0 and
∣T ∣ = 1 in Fig. 7.

Figure 8 shows that at some frequencies, the magnitudes of
∣ε(j)∣ exceed 1 at j = 32, which does not imply that the overall reflec-

tion or transmission coefficient can be larger than one. Large ∣γ(j)∣

can also occur at j = 31. The peaks of ∣ε(j)∣ and ∣γ(j)∣ seem to appear

at the same frequencies. At some of these frequencies, ∣ε(j)∣ and ∣γ(j)∣
are plotted, respectively, in Figs. 9 and 10, in particular, at σ = 14.43,
36.7, 13.87, and 15.51. Through these two figures, we may see that
the coefficients are generally oscillatory with j. For σ = 14.43, only
one peak occurs at j = 32 for ∣ε(j)∣ and at j = 31 for ∣γ(j)∣, or the value
at the middle is much larger than those on the two sides. This seems
to be similar to the behavior of an arrangement of vertical cylinders
in the surface wave30 and in the hydroelastic wave.31

Within the frequency span where ∣R∣ is close to one in Fig. 7,
∣ε(j)∣ in Fig. 8 are near the troughs of the curves and are lower than
1, and it is generally lower at larger j than that at smaller j. An exam-
ple is shown in Fig. 11 at σ = 16. ∣ε(j)∣ and ∣γ(j)∣ tend to zero as j
increases, leading the overall zero transmission to tend to zero.

C. The effect of ice sheet length

Further study is undertaken for the effect of the ice sheet length
lI at a given ice sheet number n and wave frequency σ. Figure 12
provides the results for the modulus of reflection and transmission
coefficients at n = 65. It can be seen that at each σ, the results change
periodically with lI . In fact, the solution from the subdomain in
Fig. 2 is independent of lI . The solution of Eq. (22) will vary with
S only. Noting that S = eκ0(lF+lI) is a periodic function as κ0 is a
purely imaginary number, thus one can expect that the results will
be periodic with respect to lI . The exact period will be affected by
σ. We may also notice that within each period the results oscillate
rapidly with lI . This is a typical behavior at large n. In Fig. 13, the
same results of R for n = 3, n = 5, and n = 9 are plotted. It can be
seen that the results are less oscillatory within a period at smaller n.

FIG. 16. The modulus of reflectionR and
transmission T coefficients of nonidenti-
cal subdomains. (a) ∣R∣ and (b) ∣T ∣ (h1
= h8 = 0.02, h2 = h3 = h6 = h7 = 0.01, h4
= h5 = 0.005, d1 = d8 = 0.018, d2 = d3 =
d6 = d7 = 0.009, d4 = d5 = 0.0045, lF ,1 =
lF ,7 = 2, lF ,2 = lF ,6 = 1, lF ,3 = lF ,5 = 0.5,
lF ,4 = 0.1, lI ,2 = lI ,7 = 16, lI ,3 = lI ,6 = 8, lI ,4
= lI ,5 = 4, H = 100, n = 8).
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It is interesting to see that the locations of the peaks are not affected
by n.

D. The effect of the polynya width
Further simulations are carried out to investigate the effect of

polynya width lF ,j = lF . Figure 14 provides results for the reflection

coefficients at n = 65. As in Fig. 12, the results are highly oscilla-
tory. However, here the results from the subdomain in Fig. 2 will
be different when lF changes. Thus, R and T are also dependent
on lF at a given frequency or not exactly periodic. On the other
hand, when lF increases and is very large, the solution from the
subdomain in Fig. 2 will tend to be periodic in terms of e2λ0 lF .28

In such a case, R in Fig. 14 will have two periodic components,

FIG. 17. Wave elevation in polynyas. (a)
Ω1; (b) Ω2;(c) Ω3; (d) Ω4; (e) Ω5; (f)
Ω6; (g) Ω7(h1 = h8 = 0.02, h2 = h3 = h6
= h7 = 0.01, h4 = h5 = 0.005, d1 = d8
= 0.018, d2 = d3 = d6 = d7 = 0.009, d4
= d5 = 0.0045, lF ,1 = lF ,7 = 2, lF ,2 = lF ,6
= 1, lF ,3 = lF ,5 = 0.5, lF ,4 = 0.1, lI ,2 = lI ,7
= 16, lI ,3 = lI ,6 = 8, lI ,4 = lI ,5 = 4, H = 100,
n = 8).
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e2λ0 lF and e2κ0(lF+lI), which makes its oscillatory behavior more
complex.

E. Nonuniform polynya width and different
ice sheets

We consider a case of nonuniform polynya width and different
ice sheets to reflect more general practical problems. We set n = 8, h1
= h8 = 0.02,h2 = h3 = h6 = h7 = 0.01, h4 = h5 = 0.005. The ice draught
is taken as d1 = d8 = 0.018,d2 = d3 = d6 = d7 = 0.009, d4 = d5 = 0.0045,
and the length is taken as lI ,2 = lI ,7 = 16, lI ,3 = lI ,6 = 8, lI ,4 = lI ,5 = 4.
The width of the subpolynya is lF ,1 = lF ,7 = 2, lF ,2 = lF ,6 = 1, lF ,3 = lF ,5
= 0.5, lF ,4 = 0.1. A sketch of this nonuniform case is shown in Fig. 15.

The results are given in Fig. 16. As we can see, the reflection
and transmission coefficients are very oscillatory with the dimen-
sionless frequency. This is similar to the previous cases. How-
ever, the difference is that the pattern is highly irregular. Further-
more, unlike the identical subdomains, when the individual reflec-
tion coefficient of a subdomain is equal to zero, the overall ∣R∣

may not be zero due to the fact that the reflection coefficient in
other polynyas may not be zero at this frequency. However, Fig. 16
shows that there are also a series of frequency spans within which
∣R∣ → 1 and ∣T ∣ → 0 still occur, although the pattern is not
regular.

The free surface wave elevation within each subpolynya is
shown in Fig. 17. It can be seen that at each polynya, the surface wave
has its own similar pattern. In fact, the surface wave at each polynya
is principally based on the solution in the each subdomain shown in
Fig. 2. The effects of other polynyas are through ε and γ. Therefore,
these effects are on the amplitudes, not on the pattern itself. For this
reason, because Ω1 is the same as Ω7, Ω2 as Ω6, and Ω3 as Ω5, their
oscillatory wave patterns are similar.

IV. CONCLUSIONS
The solution for wave propagation through multiple polynyas

has been presented. The procedure is based on a wide spacing
approximation. By using the solutions of single polynyas and match-
ing pressure and velocity at interfaces, a system of linear equations
with unknown coefficients is established. The model and solution
procedure has been verified though the comparison with results
from the existing work. Extensive results are provided for the effect
of the ice sheet number, ice sheet length, polynya width, and distri-
bution of ice sheets, from which main conclusions can be drawn as
follows:

(1) The wide spacing approximation model is accurate for wave
propagation through multiple polynyas.

(2) For a multiple polynya with identical ice sheets, the reflec-
tion and transmission coefficients are more oscillatory with
the wave frequencies when the number of ice sheets n is larger
and local spikes can occur around the peaks and troughs.

(3) The overall reflection coefficients can be zero at series of dis-
crete frequencies. For identical subdomains, or all individual
polynyas being the same, it has been found that when there is
no reflection at a single polynya, there will be no overall reflec-
tion. The overall transmission coefficient tends to zero at a
series of frequency bands while n increases, which is similar
to previously noted stopping band in the multicrack problem.

(4) For identical subpolynyas, at a given frequency, based on the
wide spacing approximation, the reflection and transmission
coefficients change periodically with the ice sheet length. They
may not change periodically exactly with the polynya length.
However, as the polynya width becomes large, the change
follows two periodic components.

(5) For nonidentical polynyas, the distribution of ice sheet has a
major effect on wave reflection and transmission. When there
is no reflection in a single polynya, there may be still overall
reflection.
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