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Abstract. For Intelligent Assistants (IA), user activity is often used as
a lag metric for user satisfaction or engagement. Conversely, predictive
leading metrics for engagement can be helpful with decision making and
evaluating changes in satisfaction caused by new features. In this paper,
we propose User Return Time (URT), a fine grain metric for gauging user
engagement. To compute URT, we model continuous inter-arrival times
between users’ use of service via a log Gaussian Cox process (LGCP),
a form of inhomogeneous Poisson process which captures the irregular
variations in user usage rate and personal preferences typical of an IA.
We show the effectiveness of the proposed approaches on predicting the
return time of users on real-world data collected from an IA. Experi-
mental results demonstrate that our model is able to predict user return
times reasonably well and considerably better than strong baselines that
make the prediction based on past utterance frequency.
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1 Introduction

Intelligent Assistants (IAs) are software agents that interact with users to com-
plete a specific task. The success of an IA is directly linked to long-term user
engagement which can be measured by observing when users return to reuse the
IA. Indeed, the repeating usage of service is a typical characteristic for IAs, thus,
monitoring a user’s usage pattern is a necessary measure of engagement.

Predicting when usage will next occur is therefore a useful indicator of
whether a user will continue to be engaged and can serve as a reference to com-
pare against when introducing new features, as well as a method for managing
churn for business purposes. For example, predicted return times of customers
can be utilized for clustering customers according to their activity and narrow
their interest to investigate a specific groups of users with a short or long inter-
arrival time for target marketing [12, 2]. Furthermore, it helps the service to
prepare content for the customers in advance to better serve them in engage-
ment utterance. For example, a target marketing and advertising program can
be planned for the next engagement of the user.
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Modeling the inter-arrival time of user engagement events is a challenging
task due to the complex temporal patterns exhibited. Users typically engage
with IA systems in an ad hoc fashion, starting tasks at different time points with
irregular frequency. For example, Figure 1 shows the inter-arrival times (denoted
by black crosses) of two users in one week. Notice the existence of regions of both
high and low density of inter-arrival times over a one week interval. Users do not
arrive in evenly spaced intervals but instead they usually arrive in times that
are clustered due to completing several tasks in bursts. This may be attributed
to a user’s personal preferences and their tasks’ priorities. Retrospective studies
in modeling inter-arrival times between events treat events as independent and
exponentially distributed over time with constant rate [1]. They hence fail to
perform accurate predictions when there exists time-varying patterns between
events [14].

Fig. 1. Intensity functions (dotted lines) and corresponding predicted user inter-arrival
times for different users(black crosses). Light regions depict the uncertainty of estima-
tions.

To this purpose, we define User Return Time (URT) as the predicted inter-
arrival time until next user activity, allowing us to predict user engagement to
aid in creating an optimal IA system. To do so, we propose to model inter-
arrival times between a user usage sessions with a doubly stochastic process.
More specifically, we leverage the log-Gaussian Cox process (LGCP), an in-
homogeneous Poisson process (IPP), to model the inter-arrival times between
events. LGCP models return times that are generated by an intensity function
which varies across time. It assumes a non-parametric form for the intensity
function allowing the model complexity to depend on the data set. We evaluate
the proposed model using a real-world dataset from an IA, and demonstrate that
it provides good predictions for inter-arrival return times, improving upon the
baselines. Even though the main application is return time estimation for an IA,
one could apply the proposed approach to other events in e-commerce systems
such as the arrival times of requests, return time of customers, etc.

The contribution of this paper can be summarized as,

– We propose User Return Time as a measure to predict user engagement with
an IA.

– We leverage a doubly-stochastic process, i.e. Log-Gaussian Cox processes, to
predict URT for an IA, and show that it effectively captures the time-varying
patterns of usage between events.
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– We verified the effectiveness of the proposed method on a real-world dataset
and found that Gaussian and Periodic kernels can make accurate estimations.

2 Problem Statement

Let U = {u1, u2, . . . , un} denote a set of n different users who used the IA to
assist with different tasks. Let Hi = {ti,j}ni

j=1 denote the task history of the i-th
user, where ti,j represents the start time of the j-th task performed by the i-th
user and ni is the number of tasks performed by user i. Our aim is to estimate
a user’s next start time from their past interactions with the IA, i.e., predict
ti,k+1 based on the start times of the previous sessions, i.e. {ti,j}kj=1.

Based on the above discussion, we formally define the problem of Predicting
User Return Time as: Given a user history of session start times Hi, predict
the next times that the user will use the IA.

3 Model

Poisson processes have been widely adopted for estimating the cross-interval
times between different events such as failure of devices, social media events and
purchase in e-commerce sites [11]. The Homogeneous Poisson process (HPP) is a
class of point processes that assumes the events are generating with a constant in-
tensity rate, i.e. λ, (with respect to the time and the product features). However,
in an IA scenario, user engagement incidence often occurs with a varying-rate
over time where there are several spikes of usage in a short period and a long-
period of absence (when the user performs other tasks). Thus, we exploit the
Inhomogeneous Poisson process (IPP) [6] that can model events happening at a
variable rate by considering the intensity to be a function of time, i.e. λ(t). For
example, Figure 1 shows intensity functions learned from two different IPP mod-
els. Notice how the generated inter-event times vary according to the intensity
function values.

To model inter-arrival times, we employed a log-Gaussian Cox process which
models the intensity function of point processes as a stochastic function [7].
LGCP learns the intensity function, λ(t), non-parametrically via a latent func-
tion sampled from Gaussian processes [9]. Here, to impose non-negativity to
the intensity function (as an interval cannot be negative), we assume an ex-
ponential form for the intensity function, i.e., λ(t) = exp (f(t)). We adopted a
non-parametric approach to model the intensity function which utilizes Bayesian
inference to train a model, where the complexity of the model is learned from
the training data available. In the next section, we explain the details of the
proposed model and how to learn model parameters from training data.

3.1 Modeling inter-arrival time

An inhomogeneous Poisson process (unlike HPP) uses a time varying intensity
function and hence, the distribution of inter-arrival times is not independent and
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identically distributed [10]. In IPP, the number of tasks y (signals of a returning
user to the IA) occurring in an interval [p, q] is Poisson distributed with rate∫ q

p
λ(t)dt,

p(y|λ(t), [p, q]) = Poisson

(
y|
∫ q

p

λ(t)dt

)
=

(∫ q

p
λ(t)dt

)y
exp

(
−
∫ q

p
λ(t)dt

)
y!

(1)

Assume that the k-th event occurred at time tk = p and we are interested
in the inter-arrival time δk = tk+1 − tk of the next event. The arrival time of
next event tk+1 can be obtained as tk+1 = tk + δk. The cumulative distribution
for δk, which provides the probability that an event occurs by time p+ q can be
obtained as,

p(δk ≤ q) = 1− p(δk > q|λ(t), tk = p)

= 1− exp

(
−
∫ p+q

p

λ(t)dt

)
= 1− exp

(
−
∫ q

0

λ(p+ t)dt

)
.

(2)

The derivation is obtained by considering a Poisson probability for zero
counts with rate parameter given by

∫ p+q

p
λ(t)dt and applying integration by

substitution to obtain Eq.(2). The probability density function of the random
variable Tn is obtained by taking the derivative of Eq.(2) with respect to q,

p(δk = q) = λ(p+ q)exp

(
−
∫ q

0

λ(p+ t)dt

)
. (3)

We associate a distinct intensity function λi(t) = exp (fi(t)) to each user ui as
they have different temporal preferences. The latent function fi(t) is modeled to
come from a zero mean Gaussian process (GP)[9] prior. The Squared Exponential
(SE) kernel is a common choice for GPs where the kernel is defined as,

k(ti, tj) = σexp

(
− (ti − tj)2

l

)
. (4)

Eq(4) imposes smoothness over time on the intensity function. We also exper-
iment with periodic kernels which allow the modelling of functions that repeat
themselves exactly. Periodic kernels can model complex periodic structure relat-
ing to the working week by finding a proper periodicity hyperparameter in the
kernel. The periodic kernel is defined as,

kperiodic(ti, tj) = σ2exp

(
−2 sin2 π|ti − tj |/r

l2

)
, (5)

where σ and l are the output variance and length-scale, respectively, and r is
the periodicity hyperparameter.

3.2 Inference

We learn the model parameters by maximizing the marginal likelihood over all
users in the dataset. The likelihood of the return times over the dataset is then
obtained by taking the product of return times over all users.
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4 Experiments

4.1 Dataset

We conducted an empirical study in which we used the access log of a commercial
web IA to construct our dataset. The IA has been developed as an extension
for the Chrome Web browser that assists recruiters to automatically find and
segregate job candidate information such as skills and contact details, based on
the information found on popular social networking platforms such as LinkedIn.

For the purpose of this experiment the tool was altered to log the interactions
of users with the tool when they performed their tasks. Various interactions were
logged with a time stamp, based on which we constructed our dataset. Table 1
depicts a sample log record for a specific user from our dataset. Inspired by [4, 3],
we split action sequences into sessions based on a time gap of 15 minutes which
is commonly used in information retrieval and web search to identify dessions.
We collected all logs of a random set of users within a period of 3 months, from
the beginning of April 2018 until the end of June 2018. The dataset consists of
2, 999, 593 interaction events committed by 133 distinct users.

Table 1. Example log of a user’s interaction sequence. The first three interactions
occurred within a single task. The final interaction indicated the start of a new task.

User Action Time stamp

484 New web page 2018-07-01 17:35:25

484 Opened IA 2018-07-01 17:35:27

484 Clicked Contact Button 2018-07-01 17:35:51

484 New web page 2018-07-01 18:05:25

4.2 Baselines and Evaluation Metrics

Here the proposed model is compared against several methods to evaluate their
effectiveness in predicting URT. We discuss the advantages, assumptions and
limitations of each and provide empirical results on a real-world dataset. We
examine the following distinct models: (1) Linear Regression: a linear regres-
sion model which is trained on a historical window of URT. We used the last 20
(computed empirically) inter-arrival times as features. (2) HPP: we also used
a homogeneous Poisson process (HPP) [5] which models an exponentially dis-
tributed inter-arrival times with a fix rate λ. The rate parameter was learned
based on the maximum likelihood approach. (3) HP: we compare against the
Hawkes Process (HP) [13], a self exciting point process where an occurrence
of an event increases the probability of the event arriving soon afterwards. We
consider a univariate Hawkes process where the intensity function is modeled
as λ(t) = µ +

∑
ti<t k(ti, t). We apply Ogata’s thinning algorithm for generat-

ing arrival times using Hawkes process [8]. (4) GP: we also exploited GP as a
time-series baseline, where the inter-arrival time is modeled as a function of the
time of occurrence of last tweet. We examine two commonly used kernels, SE
and periodic, where kernel parameters are learned by maximizing the likelihood.
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(5) RNN: the final baseline was selected from deep learning approaches, where
we used an LSTM model with two Bi-LSTM layers and input length of 20 for
predicting URT (we used the same window size as with linear regression).

In order to evaluate the model, we use mean absolute error (MAE) and root
mean square error (RMSE) between the actual and the predicted times for each
user in hours. Since the data varies in size for each user, we take the micro
average of the errors to obtain the final result.

4.3 Results

Table 4.3 compares the predictive performance of LGCP against various base-
lines. We find that the standard kernel used in GP models, the SE kernel, per-
forms poorly as expected due to the complex temporal patterns exhibited by
users in their session start times. The SE kernel typically models smoothly vary-
ing functions and is not suitable to model this situation. The periodic kernel
could model the periodicity in the data (for instance, users tend to be more active
on weekends) and are found to perform better than SE in both GP and LGCP.
The LGCP models with periodic kernel outperforms the baseline approaches
such as HPP, linear regression, GP regression. RNN model can outperform all
baselines except LGCP which shows that deep models can capture complex user
behavior in using IA.

Table 2. Comparison of different approaches in terms of MAE and RMSE.

Method Kernel MAE RMSE

Linear Regression 53.27(±48.91) 86.10(±79.13)

HPP 43.44(±51.13) 63.70(±53.60)

HP 28.12(±28.47) 61.24(±51.22)

RNN 19.11(±28.01) 45.52(±34.20)

GPR
SE 35.52(±40.79) 42.51(±54.22)
Periodic 19.82(±21.04) 38.30(±48.71)

LGCP
SE 26.52(±29.79) 54.12(±58.37)
Periodic 15.52(±18.79) 32.54(±38.15)

5 Conclusions

In this paper we proposed to use User Return Time as a predictive measure of
engagement with an IA, for which the log-Gaussian Cox process was proposed
as an appropriate prediction model. Through our experiments, we demonstrated
that this model does indeed offer better predictive performance due to its ability
to capture the complex temporal behaviour typical of IA users.

This approach can be generalized to model problems other than URT pre-
diction for an IA, e.g. purchase time prediction, advertisement campaigns, and
disaster management. The effectiveness of using an RNN in this research also
shows that it is worth investigating the potential of deep sequence models for
prediction in these scenarios. In future, we plan to examine user and context
features to improve prediction performance.
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