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ABSTRACT

It is crucial to extract retail clothes from images of man-
nequins when building a database of clothing images for vir-
tual try-on systems. However, clothes often have complex
texture and translucent material, such as holes and laces. It
is thus difficult to extract clothes as foreground by exist-
ing generic natural image matting methods. Hence in this
paper, we present a novel approach to automatic clothing
matting from mannequins, with auxiliary information from
a rough background image of the mannequin only. Experi-
ments show that we can achieve remarkable improvement on
the alpha matte near challenging regions of complex texture
and translucent material of clothes. Moreover, our approach
can automatically generate trimaps to facilitate the develop-
ment and evaluation of other image matting algorithms.

Index Terms— Clothing image matting, Virtual clothing
try-on

1. INTRODUCTION

Virtual clothing try-on systems [1] are now in more use by
a growing number of prominent retailers in their clothing re-
tail entity shops. A virtual fitting room enables shoppers to
try on clothes for checking one or more of size, fit and style,
virtually rather than physically. To construct a virtual cloth-
ing try-on system, a database with a large number of clothing
images is required. In order to build a quality database of
clothing images which can make the virtual try-on look real-
istic, clothes are preferred to be first worn and photographed
on mannequins and then automatically extracted from the im-
ages. Hence, automatic extraction of clothes as foreground
from the images of clothes on mannequins is an important
task to build a quality database for the success of a virtual
clothing try-on system.

Extracting the opacity information of foreground objects
from a natural image is known as natural image matting.
Mathematically, image matting assumes that the value of a
pixel in the transition regions from foreground to background
is a convex combination of its underlying foreground and
background values:
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Fig. 1. Comparison of the closed-form matting [2], the
information-flow matting [3] and our algorithm for clothing
matting.

where «; represents the pixel’s foreground opacity which can
take any value in [0, 1], and F; and B; are foreground and
background pixel values, respectively. If a; = 1 or 0, then
the pixel at location ¢ belongs to definite foreground or def-
inite background, respectively. Otherwise the pixel is called
a mixed pixel. Since neither the foreground color F; and the
background color B; nor the opacity «; is known, estimating
the opacity value is an ill-posed problem.

Image matting algorithms can be categorized into two ba-
sic groups, sampling-based methods and affinity-based meth-
ods, as well as their combinations. The sampling-based meth-
ods sample foreground and background colors from some def-
initely known regions to estimate alpha mattes within the un-
known region [4-7]. The affinity-based methods assume lo-



cal/nonlocal smoothness of alpha values and propagate the
alpha values from the known regions to the unknown re-
gions [2,8—11]. However, to generate the alpha matte from the
input image, most of these matting algorithms require prede-
termined trimap [4] or scribbles [12], which is not practicable
when our aim is to build a database with a huge number of
clothing images.

In the clothing image matting scenario, the foreground ob-
ject (i.e. clothes) often has complex textures and translucent
material, such as laces and holes, which is largely affected by
background (see Fig. 1(a)). This makes the matting even more
severely ill-posed than usual, on which the existing generic-
purpose natural image matting algorithms cannot work well
for the challenging regions (Fig. 1(b)). Fortunately, the back-
ground in images of clothes on mannequins is relatively sim-
pler than most outdoor natural images, and often rough back-
ground images with mannequins only can be readily obtained
under the same scenario as that of the input images.

Therefore in this paper, to facilitate building a database
of realistic clothing images, we propose a novel automatic
image matting approach, which will avoid the necessity of
manually providing a pre-determined trimap or scribbles, by
exploiting rough background images as auxiliary information
input. Such auxiliary information will render our approach a
better image matting solver while addressing the challenging
regions of holes and other translucent material on clothes (see
Fig. 1(c) for the case of holes).

The main contributions of this paper are twofold:

o Firstly, our system can improve the quality of mattes in
the regions with complex textures and translucent ma-
terial such as laces and holes in clothing matting.

e Secondly, as a by-product of exploiting rough but aux-
iliary background information, we can automatically
generate trimaps, which also in turn facilitate the de-
velopment and evaluation of various trimap-based im-
age matting algorithms for clothing matting.

The rest of the paper is organized as follows. In Sec-
tion 2 various relevant image matting algorithms are dis-
cussed along with their strengths and limitations. Section 3
describes our proposed algorithm. Section 4 gives the exper-
imental results and analysis of our approach and finally Sec-
tion 5 concludes the paper.

2. RELATED WORK

Natural image matting methods in the literature can be
roughly categorized as sampling-based methods, affinity-
based methods, or their combinations. In this section, we
briefly review the methods that are most relevant to our work.

Sampling-based image matting methods [4—6] propose
strategies to gather samples from the background and fore-
ground regions defined by the trimap, and select the best fit-
ting background-foreground pair according to certain criteria

for representing an observed mixed pixel as a mixture of fore-
ground and background. Chuang et al. proposed Bayesian
matting [4], which formulates the problem in a well-defined
Bayesian framework and solves it using the MAP estimation.
The method of shared matting [5] collects samples by shoot-
ing rays in different directions: the samples selected are the
nearest foreground and background pixels on every ray, and
each unknown pixel shares samples with neighboring pixels.
Global sampling [6] uses all samples available in the image;
in order to handle the ambiguity, the global sampling method
defines a simple but effective cost function for sample selec-
tion.

Affinity-based image matting methods [2, 3, 8, 9] mainly
make use of some pixel similarity metrics dependent on the
color similarity or the spatial proximity, and propagate the
alpha values from regions with known opacity. The Pois-
son matting algorithm [8] observes that if the foreground
and background colors are locally smooth, the gradient of
the matte can be estimated from the gradient of the image.
The random Walk matting method [9] defines the affinity
matrix via a Gaussian function. The closed-form matting
approach [2] assumes that there is a smooth transition be-
tween foreground and background layers, and solve the mat-
ting problem by identifying these transitions.

Most of these state-of-the-art image matting algorithms
require predetermined trimaps [4] or scribbles [12]. How-
ever, this is not practicable for building a database with a
huge number of clothing images. Our approach is thus dis-
tinct from them in the sense that we do not need to input
trimaps or scribbles; instead we input a rough background
image, which is ready to obtain in our scenario of building
virtual clothing try-on systems.

Technically, as with the closed-form matting method, our
approach can be regarded as an affinity-based method. How-
ever, besides the difference in input, our approach differs from
the closed-form matting in that our pixel affinity is not the
pixel similarity metric that relies on the color similarity or
the spatial proximity, as we shall discuss further in Section 3.
To summarize, we propose a novel automatic affinity-based
matting algorithm to generates high-quality alpha mattes with
rough background images given as auxiliary information.

3. OUR METHOD

The framework of our proposed method is illustrated in Fig. 2.

First, we use the input image and a rough background im-
age to generate the trimap. Then we divide the image into
small patches in case of prohibitively high memory consump-
tion when it comes to solve high-resolution image matting
problem. Finally we solve the alpha mattes of every patch by
utilizing information from the image, and merge these results.



Trimap
2\ = Binarization —| generation —|
) \ by GMM

Input image
=

Trimap

h.

Patch Solving f Generation
division and |—» oving for L) of global
alpha matte
merge alpha matte

) Background
x" \m > image
\ calibration

\
)

Background
image

Matte

Fig. 2. Framework of our proposed image matting approach. To generate a trimap, we calibrate the background image,
binarize the difference image between the input image and the rough background image to initialize the mask, and generate the
trimap by using Gaussian mixture models (Section 3.1). Then, we divide the image into appropriate patches to reduce memory
consumption in computation (Section 3.2). Finally, we solve for the alpha matte (Section 3.3).

3.1. Trimap generation

As mentioned before, in our scenario a rough background im-
age with mannequin only can be obtained as auxiliary infor-
mation. We can use this rough background image and the
actual input image of clothes on the mannequin to automat-
ically generate a trimap. However, this background image
is not the true “background” because the background image
is taken at another time with mannequin only. There can be
some differences between these two images: for example, the
movement of the mannequin, the camera position, and the re-
flection of light produced by the clothing on the mannequin.
These differences will make it impractical to take the rough
background image directly as the background of the original
image.

Therefore, we develop the following algorithm to generate
a trimap: First, we calibrate the background image to match
it with the input original image. Then, we binarize the dif-
ference image between these two matched images, by using
Otsu’s thresholding method [13] to generate a mask of rough
area of clothing. This mask is used then for image segmenta-
tion algorithm GrabCut [14] to establish a Gaussian mixture
model (GMM). The segmentation map is finally eroded and
dilated to attain a trimap.

3.2. Patch division and merge

Most existing image matting algorithms employ global opti-
mization over the whole set of image pixels to recover alpha
matte. However, clothing images are usually of high resolu-
tion (e.g. 4480 x 6720), which results in a prohibitively high
memory consumption. Inspired by [15], we propose a patch
division and merge strategy for developing the matting algo-
rithm at the patch level, so as to reduce memory consumption
of the clothing image matting algorithm. Our strategy is de-
scribed as follows.

First, according to the distribution of unknown pixels

in the trimap, we divide the image into small overlapped
patches, with overlap between patches being considered to
maintain consistency over the whole image.

To develop a patch-level matting algorithm, we need each
match to contain enough information of known foreground or
background. However, some patches may be unfortunately
short of such information. For instance, it is possible that all
pixels in a patch are within the unknown area in the trimap.
In order to resolve this problem, we propose to merge sev-
eral adjacent patches which have enough known information
to the fully unknown patch, and then find an appropriate di-
rection to re-divide the merged region to ensure the new patch
size being invariant to the old one.

Through division and merge, we are able to generate
patches which contain enough information of known fore-
ground or background pixels. The pseudo-code of our patch
division and merge strategy is listed in Algorithm 1.

3.3. Solving for the alpha matte with background given
3.3.1. The color line assumption

As mentioned earlier, we assume that background B is
roughly known in this work. The matting problem, however,
is still massively ill-posed. Therefore, some assumptions on
the nature of F' are needed, one of which is the color line as-
sumption for the foreground colors in a local neighborhood in
many natural images [2, 16].

That is, we assume that within a small window (2; around
each pixel 7, the set of foreground colors is convex in the RGB
space:

F, =8:F1+ (1 - 5;) Fy, ()

where F; and F5 are two end points of a line in the RGB
space, and the foreground color F; lies on this straight line
with [3; representing relative similarity of F} to F; (or equiv-
alently the proportional distance from F5 to F;). The color



Algorithm 1 Patch division and merge

Inputs: image: I'; patch size: n; overlap width: m; thresh-
old: o
Outputs: output patch: ¢
1: Divide image I into patches of n x n pixels with m pixels
width of overlap:
Y «+ Initial Divide (T';n, m)
2: Calculate the proportion of foreground F', background B
and unknown U regions in each patch:
0 + CalculateFBU (T, 1))

3: for j = 0 to ¢.size do
4. if CurrentBlockIsGood Enough (I',1,0, j, o) then
5: continue
6: else
7: Find the directions of merge (Horizontal/Vertical):
k < FindDirections (T',,0, j,0)
8: Do the combination and get the merged patch:
rect < MergePatch (T, k, j,0)
9: Re-Divide the merged patch to ensure the new patch
size being invariant as before:
¢ < ReDivisionPatch (rect, k)
10:  endif
11: end for

line assumption is roughly valid locally in a small window, as
illustrated in Fig. 3.

3.3.2. Rewriting the alpha matte problem

Plugging the color line model (2) into the matting problem
(1), we can obtain

I = a; [BiFy + (1 = B;) Fo] + (1 — i) By, 3
and then rearrange the terms in (3) into
I;—Bi=[FI—F F— B i @)
[ [ 1 o .

We denote the matrix [Fy — Fy, F, — B;] by I';, and mul-
tiply both sides by (FJTF j) ! FJT with the two rows of which
denoted by row vectors r;; and rjo:

(K7T,) " I (1 - By) = [ﬁ] ,

o s
|:7'j1:| (I — B) = |:04iﬂi:| . ®
Tj2 Q;
Taking the second equation in (5), we see that:
a;=a) (I; — B;),Vi € Q, (6)

where (); is a small image window (e.g. 5 X 5) around pixel j
and contains pixel ¢, ; is a scalar, a; is a 3 X 1 column vector,
and the same af = 1,7 is applied to every pixel in the window

(a)

Fig. 3. (a) Color line model: in a small window, each color
lies on a straight line between two colors in the RGB space.
(b) Taking a small window in a given image. (c) Pixels in the
small window in the RGB space.

; as I'; can be regarded as constant in the window. That is,
we can compute opacity «; for each pixel ¢ in the window §;
as a linear combination of the RGB values of that pixel.

3.3.3. Optimization problem

As with [16], the relationship (6) between «; and colors I;
and B, inside a window leads to a natural cost function for
our image matting problem:

J(a)=Y 33 [ai—adl (L -B))" ¢, D

jel |ieQ;

where €); is a small window around pixel j, a =
(aq,...,an)T isan N x 1 vector that collects all the N pix-
els’ values in the image I, and a represents the collections of
coefficients a; for all windows. Our goal is thus to find the «
and a that minimize the cost function.

This cost function expresses the total squared error over
the image, under the linearity assumption in (6) for each win-
dow. We want to minimize J to find «; at each pixel as well
as the coefficients a; for every window €2; around pixel j.
Since we place a window around each pixel, the windows be-
tween adjacent pixels overlap. This enables the propagation
of information between neighboring pixels, and thus the as
estimated at pixels are not independent.

The cost function is quadratic in o and a, with 2N un-
knowns for an image with N pixels. To reduce the number of
unknowns to NV, we follow a trick introduced in [16].

We can rewrite (7) as

(1} — BHT al
(2 - BT o
J(a,a) = Z ! ! a; — :J (®)
Jjel ([9«1 _'BQJ)T a'b_-!
J J J 2
= > lGia; — a7, )

Jjel



where w denotes the number of pixels in the win-

: 172 1 2
dow ;; {Ij,fj7~-~,[;’}, {Bj,Bj,“-,B;f’} and
{af,a3,---,a¥} represent the ordered list of image

colors, background colors and « values for all pixels inside
window €;; and G; and &; are compact representations of
corresponding terms in (8).

For each pixel j, when the matte &/; is known, a; can be
solved via least squares estimation:

* _ (AT~ "L AT~
aj = (G; G;) ~ Gia,. (10)

. . —~ T 71 T
This means that, if we denote G; = I — G (G’j Gj) G]- s
we can rewrite (9) as

J(a) =Y alGTG;d;, (11)

and some further algebra shows that the (i, j)-th entry of

G? G; may be expressed as

B (Ii = B)" (I = B;)
= .
Zkeﬂj (ng - ng) (ng o Bf)
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Then by defining the matting Laplacian L;_p = G?Gj,
we can rewrite J («) as

J (o) =aTL;_pa. (13)

3.3.4. Solving the alpha matte

To extract an alpha matte matching the trimap, the optimiza-
tion problem now becomes
min o7 L;_pa
[e%
st.a;=1ifieF (14
a;=01ifie B

We can rewrite (14) as
min oTLi_ga+Aa—ap)  D(a—ay), (15

where oy, is an N x 1 vector equal to 1 at known foreground
pixels and O everywhere else; D is a diagonal matrix whose
diagonal elements are equal to 1 when in the trimap the pixel
belongs to F' or B; and ) is set to be a large number (e.g.,
100) such that the solution is forced to agree closely with the
trimap. Setting the derivative of (15) to O results in

(Li—g + AD) a = Ay, (16)

which will solve the matte.
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Fig. 4. Comparison of the closed-form (CF) matting, the
information-flow (IF) matting and our algorithm.

4. EXPERIMENTAL STUDIES

4.1. Experimental setting

We usually define the matting Laplacian L;_p using small
windows of 3 x 3 or 5 x 5. When the foreground and back-
ground color distributions are not very complex, using big-
ger windows is helpful, although it will increase computation
time. We solve the matting system using C++’s solver for a
4480 x 6720 image on a 2.6GHz CPU. Because of the mem-
ory limitations, it is impossible to solve the alpha matte of the
whole image at one time. We propose a patch division and
merge strategy (see Section 3.2) for developing the matting
algorithm at the patch level.

4.2. Results and analysis

We compared our algorithm with the closed-form matting [2]
and the information-flow matting [3].

Fig. 1 shows a visual comparison for an image with com-
plex structure such as holes. In the two zoomed panels (for
the yellow and blue boxes in the original image, respectively),
the closed-form matting method wrongly fills in some holes,
while our method is able to preserve these details and produce
a cleaner matte than the information-flow matting method.

A more challenging image is shown in the Fig. 4 in
which the foreground object (lace) is translucent. In the three
zoomed panels, our method is able to preserve more complex
details and sharpness even around translucent areas than the
closed-form matting method and the information-flow mat-
ting method, while producing a clean matte.

These results indicate that taking into account some aux-
iliary knowledge of background can be more efficient and ac-
curate than the affinity-based optimization used in the closed-
form matting and the information-flow matting.
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Fig. 5. Examples of clothing image matting results. For a
given background image (a), we can get many alpha mattes
(b-e) efficiently.

4.3. Discussion

To further evaluate our approach, we constructed a test dataset
of four examples as shown in Fig 5, from which we can
see that only one background image with the mannequin is
needed to extract several alpha mattes efficiently. In fact,
when constructing a database of a large number of clothing
images for a virtual clothing try-on system, many clothes are
often worn by the same mannequin, and thus we do not need
to take a rough background image for each input image.

5. CONCLUSION

In this paper, we have presented a novel approach to automat-
ically generating high quality image mattes with auxiliary in-
formation from rough background images. As a by-product,
our approach can automatically generate trimaps. Also, ex-
periments have shown that with such auxiliary information
about background, our algorithm can improve the quality of
mattes in challenging regions with a significant portion of
complex texture and translucent material.
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