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ABSTRACT

Image denoising has recently witnessed substantial progress.
However, many existing methods remain suboptimal for tex-
ture restoration due to treating different image regions and
channels indiscriminately. Also they need to specify the noise
level in advance, which largely hinders their use in blind
denoising. Therefore, we introduce both attention mecha-
nism and automatic noise level estimation into image de-
noising. Specifically, we propose a new, effective end-to-
end attention-embedded neural network for image denoising,
named as Residual Dilated Attention Network(RDAN). Our
RDAN is composed of a series of tailored blocks includ-
ing Residual Dilated Attention Blocks(RDAB) and Residual
Conv Attention Blocks(RCAB). The RDAB and RCAB in-
corporates both non-local and local operations, which enable
a comprehensive capture of structural information. In ad-
dition, we incorporate a Gaussian-based noise level estima-
tion into RDAN to accomplish blind denoising. Experimental
results have demonstrated that our RDAN can substantially
outperforms the state-of-the-art denoising methods as well as
promisingly preserve image texture.

Index Terms— Attention mechanism, image blind de-
noising, non-local operation

1. INTRODUCTION

As a basic low-level vision task, image denoising plays a vital
role in a larger number of various high-level vision tasks, and
has attracted wide attention in academic research and indus-
try. As the process of image contamination by noise is irre-
versible, image denoising is a typical ill-posed problem [1].
The current image denoising methods can be mainly di-
vided into two categories, model-based optimization meth-
ods and discriminative learning-based methods. The former
includes image non-local self-similarity (NSS) model [2—4],
sparse model [5] and gradient-based model [6], etc. How-
ever, the performance these methods is subject to the choice
of model. Because of the powerful representation of image
structure by deep learning, discriminant-based methods have
gradually become the mainstream method for image denois-
ing in recent years. Zhang et al. proposed DnCNN [7] using
residual learning to solve the training difficulty of deeper net-
works. Mao et al. proposed a very deep full convolutional
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encoding-decoding framework [8]. Zhang et al. introduced a
denoiser prior in IRCNN [9] for fast image restoration. Zhang
et al. recently proposed a fast and flexible denoising network,
namely FFDNet [10], capable of handling different levels of
noise by a single FFDNet. Also, reference learning, residual
learning, non-local and other ideas have been applied in the
field of image denoising [11-13].

However, these denoising algorithms still have some is-
sues for further improvement. First, they treat different image
regions and channels equally, hence there is no focus in the
network processing. Secondly, the size of the network recep-
tive field is limited, hence only local information can be used
for image denoising. Finally, most of these algorithms still
have to know the noise level in advance, which hinders their
use in blind denoising. To alleviate the above problems, we
propose a new attention-embedded network called RDAN for
blind denoising.

The proposed network framework is shown in Fig. 1 and
will be presented in detail in Section 3. The main contribu-
tions are summarized as follows.

e We introduce the attention mechanism into image de-
noising, allowing the network to adaptively set different
weights for different regions and channels of the image,
hence to improve the restoration of texture details.

e We introduce the idea of fusing both local and non-
local operations, dense layer, convolution layer, and di-
lated convolution operation into the attention structure,
hence to increase the network’s receptive field and cap-
ture comprehensively the structural information for the
attention mechanism.

e We incorporate Gaussian-based noise level estimation
into the proposed network, hence no need to know the
noise level in advance.

2. RELATED WORK

Recently, the attention mechanism has achieved good results
in high-level vision tasks [14, 15]. It can selectively focus
on salient parts in images to capture effective visual struc-
ture better [16], which is consistent with the perception of the
human visual system. However, attention remains to fully ex-
ploit in image denoising.
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Fig. 1. The framework of our residual dilated attention network (RDAN). RDAB and RCAB denote residual dilated attention

block and residual conv attention block, respectively.

At present, most image denoising algorithms are based on
the known magnitude of the noise variance. To make the algo-
rithm truly adaptive, noise estimation is very important. Noise
estimation methods can be broadly classified into three cate-
gories: block-based methods, filter-based methods, and their
fusion methods [2, 17]. However, the current noise estima-
tion algorithms only use the internal information of a single
image, and the estimation is not accurate enough.

Deep neural networks recently have been prevalent for
image denoising. Chen et al. proposed a trainable nonlinear
reaction diffusion (TNRD) model [18]. The boosting strat-
egy has also been introduced to improve denoising perfor-
mance [19]. Similarly, CNN-based methods have been de-
veloped for image denoising [7-11]. Besides CNNs, RNNs
have also been applied for image restoration [12,20].

3. RESIDUAL DILATED ATTENTION NETWORK
(RDAN)

We proposed a residual dilated attention network (RDAN) for
image blind denoising. The overall framework of RDAN is
illustrated in Fig. 1. The framework contains convolutional
layes and two types of blocks, RDAB (Residual Dilated At-
tention Block) and RCAB (Residual Conv Attention Block).
Each of these blocks is an attention block consisting of a trunk
branch and a mask branch. The difference between RDAB
and RCAB is the choice of the first part of the mask branch.
In the following sections, we introduce each component of
the proposed framework in more details.

3.1. Network Framework

As shown in Fig. 1, the proposed RDAN is constructed by
convolutional layers, RDAB and RCAB. The RDAN takes
noisy image as input and outputs its noise version, and after
the subtraction operation, RDAN attains the clean image.

The first convolutional layer is used to extract the shal-
low features in the noisy image, and the last convolutional
layer is used for image restoration as the decoding process.
As shown in Fig. 1, by using the long-range skip-connections
which bypass intermediate layers, we link the shallow fea-
tures with the layers that are close to the output of the whole
network. The benefits of using such skip-connections here are
twofold: providing the long-range information compensation
and facilitating the gradient back-propagation and the pixel-
wise prediction. The main part of the network is made up of
two RDABs and five RCABs, which will be elaborated in the
following section.

3.2. RDAB & RCAB

The structures of RDAB and RCAB are shown in Fig. 2. Each
block consists of two branches, a trunk branch and a mask
branch. The trunk branch performs feature processing, which
consists of two Res-blocks and outputs 7'(x) for input x. The
mask branch uses two Res-blocks in RCAB or the Dilated-
block + Res-block structure in RDAB to learn mask M (x),
which softly weights output features T'(). The output of At-
tention Module H is then defined as

H; o(7) =T o(w) * Ms o(z), (D

where s ranges over all spatial positions and ¢ €
{1,2,---,C} is the index of a channel. The whole structure
can be trained in an end-to-end way.

Wang et al. [15] considered that naive stacking Attention
Modules leads to the obvious performance drop, so they pro-
posed attention residual learning to ease this problems, by
modifying output H of the Attention Module as:

Hs,C(x) = Ts,C(x) * (14 M870(x))~ 2)

Inspired by this idea, we link the input z to the output H ()
via skip connection, and get a new output of the block as

H o (x) =Ts o(x) * Ms o(z) + 2. 3)
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Fig. 2. Left: RDAB (Residual Dilated Attention Block). Right: RCAB (Residual Conv Attention Block).
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Fig. 3. Left: Res-block. Right: Dilated-block.

In RDAB and RCAB, the mask branch can not only serve
as a feature selector during forward inference, but also as a
gradient update filter during back propagation. This attention
residual learning can retain more low-level image features and
is conducive to subsequent denoising.

The difference between RDAB and RCAB is the choice
of the first block in the mask branch (i.e. using Dilated-block
or Res-block). The structures of Dilated-block and Res-block
are shown in Fig. 3. We use two convolutional layers with
small 3 x 3 kernels and 64 feature maps followed by batch-
normalization layers and ReLU as the activation function to
form the Res-block. The Dilated-block concatenates Convl
(convolution 1 x 1), Conv3 (convolution 3 x 3) and Dconv3
(dilated convolution 3 x 3 (dilated=2)) by dense connection.
Convl can perform non-local processing on images. The
Conv3-Dconv3 and Dconv3-Conv3 branches can learn differ-
ent feature representations. The Dilated-block can widen the
receptive field while extracting local and non-local features.
Experimental results demonstrate that the denoising perfor-
mance can be improved in this way (see Section 4.3).

3.3. Noise Level Estimation

Most of the existing methods have to know the noise level
in advance for testing, but in practices the noise level is un-
known, so we design a simple method to firstly estimate the

noise level of the test image and then incorporate it into the
network when testing.

Noise and texture are both high-frequency information in
the image, but noise is much more sensitive to the Laplacian
operators, so the Laplacian operator can be used for noise
level estimation. A reasonable way to achieve this is to fil-
ter the noise image with two different Laplacian filters, and
then calculate the difference between two result images ob-
tained by the two filters. Since the image texture information
is not sensitive to the Laplacian operators, only the noise is
left. Based on Gaussian assumption, the noise magnitude can
be estimated as

26(W—2)(H—1),Z iT«N &
imagel

where W and H are the width and height of the noise
image, I is the noisy image, and NNV is the difference of the
two Laplacian filterings. Due to interference by other in-
formation in the image, this noise estimation is not precise
and thus cannot be directly used for denoising. Hence we
roughly discretize the noise estimate into three levels, con-
sistent with [7, 12, 19], as shown in Table 3. In this way, we
can obtain the noise level automatically to realize image blind
denoising.



Table 1. Comparison for the Gaussian denoising (grey-level). Training and testing protocols are as in [7]. We evaluate the

mean PSNR (dB) on the “Set12” and “BSD68” datasets; the best performance is shown in bold.

Dataset | Noiselevel | BM3D | WNNM | TNRD | DnCNN | RED | FFDNet | DDFN | RDAN
15 3237 | 3270 | 3250 | 32.86 | 3290 3275 | 3298 | 33.04
Set12 25 2997 | 3026 | 30.06 | 3044 | 3048 | 3043 | 30.60 | 30.70
50 2672 | 27.05 | 2681 | 2718 | 2733 | 2732 | 2746 | 21.56
15 3107 | 3137 | 3142 | 3173 [31.76 | 31.63 | 31.83 | 31.85
BSD68 25 2857 | 28.83 | 2892 | 2923 | 2927 | 29.19 | 2935 | 2941
50 2562 | 2587 | 2597 | 2623 | 2632 | 2629 | 2642 | 26.46

Table 2. Comparison for the Gaussian denoising (color-level). We evaluate the mean PSNR(dB) on the “BSD68C” dataset; the

best performance is shown in bold.

Noise level | CBM3D | CDnCNN | RED | IRCNN | FDDNet | CRDAN

15 33.52 33.89 33.74 | 33.86 33.87 33.92
25 30.71 31.23 31.11 | 31.16 31.21 31.29
50 27.38 27.92 27.89 | 27.86 27.96 28.11

Table 3. Noise level discretizing

Estimated Noise | Noise level
o <20 15
20 <0 <35 25
o> 35 50

4. EXPERIMENTAL STUDIES

4.1. Experiment Settings

We train the network on a popular dataset [21], which in-
cludes 400 images of size 180 x 180. We set the patch size
as 64 x 64 and the stride as 16. The test images were taken
from two widely-used datasets: one consists of 68 natural im-
ages from the Berkeley Split Data Set (BSD68) [22] and the
other is the Setl2 dataset. All of these images are not in-
cluded in the training dataset. For color image denoising, we
use the color version of the BSD68 dataset for testing and
the remaining 432 color images from [22] are adopted as the
training images. About 32 x 4739 patches of size 64 x 64 are
cropped to train the model.
We select the average squared error as the loss function:

N
10) = 5 S 1 fi©) ~ i~ ) [ )
i=1

To optimize the network parameters ©, the Adam solver is
adopted. The learning rate is initially set to 0.001, and the
batch-size is set to 32. We use the Keras platform to im-
plement our models with a Titan XP GPU.1 trained for 50
epochs. We evaluate the performance of the synthesized data
in terms of Peak Signal-to-Noise Ratio (PSNR).

4.2. Comparisons with State-of-the-Art Methods

We compared our proposed RDAN with several denoising
results of different methods on the “Setl12” and "BSD68”
datasets; the results are shown in Table 1. The proposed
RDAN can produce the highest PSNR: it achieves a gain of
about 0.2dB over DnCNN. Table 2 lists the color image de-
noising results: it can be seen that the proposed RDAN also
outperforms the state-of-the-art methods. An illustration of
visual comparison on two images is provided in Fig. 4, from
which we can observe the proposed RDAN is more effective
for restoration of texture.

4.3. Ablation Experiments

In order to validate the effectiveness and necessity of our pro-
posed attention mechanism in RDAB and RCAB, we design
extensive ablation experiments to evaluate them. we com-
pare RDAN with its five variants on the BSD68 dataset at
o = 25. R, is our RDAN; R; denotes one network stack-
ing 28 Res-block; R, indicates a network include 7 RCAB;
R4 is a network include 7 RDAB; R, (R ) means a network
include one RDAB (RCAB). The corresponding performance
changes in terms of PSNR are listed in Table 4. The R, shows
that our RDAN with the attention mechanism is more effec-
tive than others; and the RDAB is more valid than RCAB
by comparing R. and Ry. A visual comparison is provided
in Fig. 5. As can be seen, the attention mechanism and the
RDAB are effective for texture restoration.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new deep network called
RDAN which integrates the attention mechanism with deep



(b) BM3D/27.69dB

(a) Noisy

(c) DnCNN/32.41dB

(g2) Noisy (h) DnCNN/28.72dB

(i) RED/28.79dB
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Fig. 4. Visual comparison of ‘Lena’ denoising from “Setl12” at ¢ = 25 and one color image denoising from “Set68C ” at
o = 50. Our RDAN ((e) & (j)) performs the best in terms of PSNR/dB; moreover, it is effective for texture restoration.

Table 4. Ablation study on different components of our pro-
posed RDAN framework at “BSD68” dataset. R, and R4
performs the best in terms of PSNR/dB, but R4 spent more
time than R,. WA: the Net without attention; WRD: the Net
without RDAB; WRC: the Net without RCAB; SRD: the Net
with a single RDAB; and SRC: the Net with a single RCAB.

Model | R, | Ry | Ro | Ra || Re | Ry

WA v

WRD v

WRC 7

SRD v

SRC Vi

PSNR | 29.41 [ 29.40 [ 29.39 [ 29.41 [| 29.11 | 29.09

learning for image denoising for the first time. It is composed
of a series of tailored RDAB and RCAB. The RDAB is at the
beginning and end of the network, which incorporates non-
local operations for image denoising. The RCAB is then used
to extract finer local features. RDAB and RCAB enable a
comprehensive capture of structural information crucial for
the attention mechanism. In addition, we combine the noise
level estimation with image denoising to achieve the task of
blind denoising. Experimental results have demonstrated that
our proposed RDAN can effectively denoise while promis-

ingly preserve the image texture, which remarkably outper-
forms the state-of-the-art methods. In our future research,
we plan to extend the proposed algorithm to a wider range
of image restoration tasks beyond denoising, including but
not limited to image de-raining, image de-hazing and image
super-resolution.
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