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Abstract. Graph theory is able to provide quantitative parameters that
describe structural and functional characteristics of human brain net-
works. Comparisons between subject populations have demonstrated topo-
logical disruptions in many neurological disorders; however interpreting
network parameters and assessing the extent of the damage is challeng-
ing. The abstraction of brain connectivity to a set of nodes and edges in a
graph is non-trivial, and factors from image acquisition, post-processing
and network construction can all influence derived network parameters.
We consider here the impact of edge weighting schemes in a comparative
analysis of structural brain networks, using healthy control and relapsing-
remitting multiple sclerosis subjects as test groups. We demonstrate that
the choice of edge property can substantially affect inferences of network
disruptions in disease, ranging from ‘primarily intact connectivity’ to
‘complete disruption’. Although study design should predominantly dic-
tate the choice of edge weight, it is important to consider how study
outcomes may be affected.
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1 Introduction

The brain is a complex network of grey matter nuclei densely interconnected by
axon bundles. Communication between these cortical regions is the foundation of
brain function, and damage to the connecting axon bundles is thought to cause
a range of neurological disorders [1, 2]; techniques for estimating axonal damage
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and characterising grey matter interactions could therefore offer considerable
opportunities in advancing our understanding of brain structure and function in
neurological diseases.

The application of graph theory to this network representation of the hu-
man brain is a valid step towards mapping connectivity: cortical regions and
their pairwise interactions can be considered as nodes (vertices) and edges, with
edge weights describing some structural or functional property of the connection
between regions. Graph theoretic analysis has consistently demonstrated non-
random features in human brain graphs, including small-world organisation and
modularity [3, 4], as well as network disruptions in a variety of neurological dis-
orders [5, 6]. Moreover, it is possible to characterise aspects of network topology
at different levels, for example at both local (nodal) and global (whole network)
levels.

The technique is not without its challenges, though. The choice of vertices
and edges inherently dictates the derived network properties, even to the extent
that parcellation strategy [7] and tractography algorithm [8] have a demonstrable
effect. Naturally, edge weights also influence derived network measures [9].

Appropriate edge weighting strategies are widely discussed [10, 11]. For the
structural connectome - defined as spatially distinct cortical regions connected by
axon bundles reconstructed using diffusion tensor imaging (DTI) - typical edge
weights include the number of streamlines (NSL) connecting pairwise regions,
the mean fractional anisotropy (FA) of the tract, and binary values. All are
valid weighting schemes: the NSL and FA offer some suggestion of connection
‘integrity’ or ‘efficiency’, while binary graphs provide analytic simplicity.

Network parameters are known to vary as a result of the chosen weighting
scheme [12]; however the extent to which this variability may affect a comparative
analysis of networks between groups is not obvious.

The purpose of this study was to evaluate the impact of the edge weight-
ing scheme on intergroup network differences in order to generalise results and
highlight possible confounding factors. We perform an analysis of global and
local network properties using healthy control (HC) and relapsing-remitting
multiple sclerosis (RRMS) subject groups as test sets, and implement a robust
permutation-based approach for statistical hypothesis testing that is novel in
this context.

2 Methods

2.1 Participants

Twenty seven healthy controls (HC) (16 female; mean age 37 ± 12 years) and
33 RRMS patients (24 female; mean age 40± 10 years; median EDSS score 2.0)
were recruited; written consent was obtained for all subjects. No significant age
or gender differences were observed between groups (p = 0.27 and p = 0.28
respectively).
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2.2 MRI Acquisition and Pre-Processing

Images were acquired using a 3T MRI system (Philips Healthcare, Best, Nether-
lands) with a 32-channel head coil. Diffusion-weighted image (DWI) volumes
were acquired with diffusion weighting along 61 directions and b = 1200 s/mm2,
plus 7 volumes with b = 0 s/mm2, with resolution 2× 2× 2 mm3, TR = 24000 s
and TE = 68 s. A 3D T1-weighted fast field echo with resolution 1× 1× 1 mm3,
TR = 6.9 s, TE = 3.1 s and inversion time TI = 824 s was also acquired on each
participant.

All DWI were corrected for eddy current [13], motion and susceptibility dis-
tortions [14] in native space. The T1-weighted images were registered [14] to the
corrected DWI and parcellated [15] into structurally-defined sub-regions.

Estimates of fibre orientation were obtained from a fit of the ball-and-sticks
model to the DWI [16]; a maximum of 3 fibres were modelled per voxel. Prob-
abilistic tractography [17] was performed using 1000 streamline seeds in each
white matter voxel. The DTI-derived average FA for each reconstructed tract
was also calculated [17].

2.3 Network Reconstruction

Network vertices were defined as the 98 cortical regions identified by the anatom-
ical parcellation. For brevity, each vertex was assigned a number from 1-98 such
that the set of vertices was given by V = {v1, v2, ..., vn}, with n = 98. Corre-
spondences with anatomical regions are given in Table 1.

Association matrices were generated [17] for each subject and masked to re-
move any edges absent in more than N subjects, where N = max (NHC, NRRMS)+
2 and NHC, NRRMS denote HC and RRMS group sizes respectively. Masking in
this way ensured that any given edge was present in at least two subjects within
a group and aided the statistical analysis. All vertices remained connected for
all subjects.

Edges were weighted using four different metrics commonly reported: the
NSL, the NSL corrected for tract length (NSLcor), the mean tract FA, and a
simple binary weight. The correction for tract length was implemented as the
product of the NSL connecting two regions and the average length of those
streamlines. An example of each association matrix generated for a single subject
is provided in Fig. 1.

2.4 Statistical Analysis

Global and local network properties were calculated [17] for each subject and
edge weighting scheme. The global metrics evaluated were efficiency, mean short-
est path and modularity; the local properties were efficiency, clustering coeffi-
cient, node strength and betweenness centrality.

Significant differences in global network properties between HC and RRMS
groups were identified using a t-test (p < 0.05).
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a Binary network b FA-weighted network

c NSL-weighted network d NSLcor-weighted network

Fig. 1 Example network types generated for a single subject. a Binary network,
b Network weighted using average tract FA, c Network weighted using the NSL,
d Network weighted using the NSL corrected for tract length
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Table 1 Correspondences between anatomical regions and vertex number
Right Left Anatomical region 49 50 middle temporal gyrus

1 2 anterior cingulate gyrus 51 52 occipital pole
3 4 anterior insula 53 54 occipital fusiform gyrus
5 6 anterior orbitofrontal cortex 55 56 pars opercularis
7 8 angular gyrus 57 58 pars orbitalis
9 10 calcarine cortex 59 60 posterior cingulate gyrus
11 12 central operculum 61 62 precuneus
13 14 cuneus 63 64 parahippocampal gyrus
15 16 entorhinal cortex 65 66 posterior insula
17 18 frontal operculum 67 68 parietal operculum
19 20 frontal pole 69 70 postcentral gyrus
21 22 fusiform gyrus 71 72 posterior orbitofrontal cortex
23 24 gyrus rectus 73 74 planum polare
25 26 inferior occipital gyrus 75 76 precentral gyrus
27 28 inferior temporal gyrus 77 78 planum temporale
29 30 lingual gyrus 79 80 subcallosal area
31 32 lateral orbitofrontal cortex 81 82 superior frontal gyrus
33 34 middle cingulate gyrus 83 84 supplementary motor cortex
35 36 medial frontal cortex 85 86 supramarginal gyrus
37 38 middle frontal gyrus 87 88 superior occipital gyrus
39 40 middle occipital gyrus 89 90 superior parietal lobule
41 42 medial orbitofrontal gyrus 91 92 superior temporal gyrus
43 44 medial postcentral gyrus 93 94 temporal pole
45 46 medial precentral gyrus 95 96 pars triangularis
47 48 medial superior frontal gyrus 97 98 transverse temporal gyrus

Significant intergroup differences in local network properties were determined
using a permutation-based approach. This strategy enabled the null distribution
of p values to be empirically derived whilst taking multiple comparisons into
consideration, from which a corrected p value could be estimated. Separate null
distributions of p values were generated for each network type and property.

At each permutation, then, group labels were randomly reallocated to create
new ‘HC’ and ‘RRMS’ groups; original group sizes were preserved in each of
the 1000 samples generated. At each node the mean local network properties
were compared between sample groups using a t-test. The minimum p value
obtained across all node comparisons at each permutation was added to the null
distribution for a given weighting scheme and network property; the procedure
was then that of a step-down ‘minimum p’ approach [18]. The family-wise Type
I error rate was subsequently controlled for in the strong sense.
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Table 2 Global network differences between HC and RRMS subject groups
Edge weight Global efficiency Mean shortest path Modularity

FA HC > MS, p < 0.001 HC < MS, p = 0.002 -
NSLcor HC > MS, p < 0.001 HC < MS, p = 0.008 -
NSL HC > MS, p = 0.022 HC < MS, p = 0.017 -
Binary - - HC > MS, p = 0.047

3 Results

3.1 Intergroup Differences in Global Network Properties

Global efficiency was significantly lower (p < 0.05) in RRMS patients relative to
HC subjects in networks weighted using FA, NSLcor and NSL edge properties;
the mean shortest path was correspondingly greater (p < 0.05) in the RRMS
population across the same networks. Binary networks exhibited no intergroup
differences in global efficiency and mean shortest path; however modularity was
significantly greater in the HC group (p < 0.05).

These results are consistent with published findings [19, 20]. Of note here
is that inferences of intergroup differences in global network properties were
unaffected by the choice of edge property for weighted networks, but were sub-
stantially different between weighted and binary networks.

3.2 Intergroup Differences in Local Network Properties

Local Efficiency. Lower nodal efficiencies were observed in the RRMS cohort
across all weighted networks, which is consistent with published reports [19]; no
alterations were detected in binary networks (Fig. 2a). However, the set of ver-
tices with different efficiency properties between groups was highly inconsistent
across the weighted network types. FA-weighted networks exhibited the greatest
intergroup differences, with lower efficiency in 97 out of 98 nodes in the RRMS
cohort (p < 0.05, corrected). In NSLcor-weighted networks only 78 nodes demon-
strated alterations between groups (p < 0.05, corrected), while in NSL-weighted
networks the proportion was lower still at just 12 nodes (p < 0.05, corrected).

The variation in findings between the NSLcor- and NSL-weighted networks
was particularly striking. It is possible here that additional uncertainties in NSL-
weighted networks, resulting from inherent biases in probabilistic tractography
towards tract length [21], could be driving the discrepancies.

Clustering Coefficient. Lower clustering coefficients were observed in the
RRMS group in all weighted networks (Fig. 2b), in line with previous studies
[19]. The extent of the alterations was again highly variable between the weighted
network types: substantially more intergroup differences were identified in FA-
weighted networks (54 out of 98 nodes; p < 0.05, corrected) than in NSLcor- and
NSL-weighted networks (5 and 4 nodes respectively; p < 0.05, corrected). No
differences were observed in binary networks.
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Nodal Strength. Lower nodal strengths were found in the RRMS group in
FA-weighted, NSLcor-weighted and binary networks (Fig. 2c), consistent with
published findings [19] . The proportion of nodes exhibiting different strength
properties between the HC and RRMS groups once more varied across the net-
work types, with 14 out of 98 nodes (p < 0.05, corrected) identified in FA-
weighted networks, 4 nodes (p < 0.05, corrected) in NSLcor-weighted networks
and 1 node (p < 0.05, corrected) in binary networks. No intergroup differences
were observed in NSL-weighted networks.

Betweenness Centrality. Minimal intergroup differences were observed in
betweenness centrality: only 2 nodes in FA-weighted networks displayed signifi-
cantly greater (p < 0.05, corrected) betweenness centrality in the RRMS group
(Fig. 2d). No other networks indicated any differences.

4 Discussion

We have explicitly demonstrated the impact of the edge weighting scheme on a
comparative analysis of network properties using HC subjects and RRMS pa-
tients with very mild disease severity as example data sets. While graph theoretic
analyses performed over different network types will be naturally incongruent to
a degree, the disparities presented here are striking. Given any one of the net-
work types in isolation, as is common in connectivity studies, the assessment of
damage to the structural connectome of these RRMS patients would be substan-
tially different, with potential conclusions ranging from ‘intact connectivity’ to
‘complete disruption despite the mild disability’.

In FA-weighted networks, for example, reductions were observed in the local
efficiency of almost every node and in the clustering coefficient of more than
half the nodes. Further, regions of the default mode network (DMN) - which
is important for high level function and prone to impairment in MS [22] - such
as the precuneus and posterior cingulate gyrus displayed significantly reduced
nodal strength. From these findings it may be inferred that the networks of these
RRMS patients were substantially damaged despite the relatively mild disability
levels (the median EDSS was just 2.0, indicating no major motor, visual, sensory
or cognitive disabilities), and that the graph properties were in fact sensitive to
subtle MS pathology.

In NSLcor-weighted networks, on the other hand, the clustering coefficient,
node strength and betweenness centrality were unaffected in the majority of
nodes, and core DMN nodes in particular showed no changes; only local effi-
ciency appeared to indicate any alterations. It may be concluded here, then,
that networks in this RRMS cohort were only moderately disrupted, and poten-
tially reflected their relative lack of clinical disability.

Evidently, interpretations of network analyses must be made with caution:
graph theoretic metrics may be sensitive to subtle alterations between groups but
they lack biological specificity. Factors known to systematically bias estimates of
structural connectivity range from head motion [23] and low signal-to-noise ratio
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a Local efficiency b Clustering coefficient

c Node strength d Betweenness centrality

Fig. 2 Significant intergroup differences (p < 0.05, corrected) in local network
properties. a Local efficiency, b Clustering coefficient, c Node strength, d Be-
tweenness centrality. Each numbered segment corresponds to a node, as specified
in Table 1. In each sub-figure the concentric rings correspond to specific network
types: the outermost ring (ring 1) corresponds FA-weighted graphs; ring 2 to
NSLcor-weighted networks; ring 3 to NSL-weighted networks; ring 4 (innermost
ring) to binary networks. The colour indicates whether the network property is
significantly greater in HC subjects (blue) or RRMS patients (red)
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[24] during acquisition to the parcellation strategy and tractography algorithm
adopted during image processing. This study highlights for the first time how
outcomes in intergroup comparative studies across different network types may
be affected by the combined influence of biological alterations and factors un-
related to inter-regional connectivity. Specifically, comparisons of local network
properties between groups may be particularly prone to variations across net-
work types. The global metrics evaluated here were comparatively less sensitive
to weighting scheme; however the utility of global properties is limited by a lack
of specificity to potentially more meaningful local alterations.

The relative absence of intergroup differences both locally and globally in
binary networks is likely to reflect the similarity in edge set between groups, and
the applied edge threshold is likely to be influential here. A complete analysis of
individual edges was beyond the scope of this work, but could be considered in
future studies.

The specificity of local network properties to biological alterations may be im-
proved to a degree by including appropriate confounding variables, such as esti-
mates of head motion, as covariates in the statistical analysis [23]. This study was
designed to reflect conventional connectivity papers and so did not incorporate
such covariates in the analysis; however the permutation testing implemented
here can be easily extended to include covariates. Moreover, it is a powerful and
robust approach for controlling multiple correlated comparisons that is novel in
this context, and would be beneficial in comparative studies of the same na-
ture. In particular, it could be interesting to compare local network properties
in alternative subject populations, such as those with more severe pathology:
substantial microstructural changes may then outweigh confounding factors and
result in more consistent outcomes.

Ultimately, the choice of edge weight is largely dependent on the study de-
sign in question. It is important to consider, though, that the nuances of each
weighting scheme influence derived network parameters, which may in turn sub-
stantially impact outcomes in intergroup comparative studies.

5 Conclusions

Network-based approaches offer important contributions towards analysing the
connections that form the basis of brain structure and function; however the in-
terpretation of graph theoretic properties remains challenging. We demonstrate,
using HC and RRMS subjects as test populations, that the choice of edge weight
in intergroup comparisons is non-trivial and can substantially affect inferences of
network disruptions in disease. Study design should primarily drive the choice of
weighting scheme, but potential confounding factors and interpretation pitfalls
must be considered.
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[24] Jones, D.K., Knösche, T.R., Turner, R.: White matter integrity, fiber count,
and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 73
(2013) 239–254


