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SUMMARY

The plasma membrane (PM) is composed of a
complex lipid mixture that forms heterogeneous
membrane environments. Yet, how small-scale lipid
organization controls physiological events at the
PM remains largely unknown. Here, we show that
ORP-related Osh lipid exchange proteins are critical
for the synthesis of phosphatidylinositol (4,5)-bi-
sphosphate [PI(4,5)P2], a key regulator of dynamic
events at the PM. In real-time assays, we find that un-
saturated phosphatidylserine (PS) and sterols, both
Osh protein ligands, synergistically stimulate phos-
phatidylinositol 4-phosphate 5-kinase (PIP5K) activ-
ity. Biophysical FRET analyses suggest an uncon-
ventional co-distribution of unsaturated PS and
phosphatidylinositol 4-phosphate (PI4P) species in
sterol-containing membrane bilayers. Moreover,
using in vivo imaging approaches and molecular
dynamics simulations, we show that Osh protein-
mediated unsaturated PI4P and PS membrane lipid
organization is sensed by the PIP5K specificity
loop. Thus, ORP family members create a nanoscale
membrane lipid environment that drives PIP5K activ-
ity and PI(4,5)P2 synthesis that ultimately controls
global PM organization and dynamics.

INTRODUCTION

Distinctions in membrane lipid composition establish organelle

identity in eukaryotic cells (Bigay and Antonny, 2012). For

example, the endoplasmic reticulum (ER) and plasmamembrane

(PM) have notably different lipid compositions (Schneiter et al.,

1999). The cytoplasmic leaflet of the ER membrane is defined
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by low sterol content and is high in unsaturated phospholipids.

In contrast, the cytoplasmic leaflet of the PM is enriched in

distinct lipids that serve as hallmarks for its identity, including

sterols and the anionic phospholipid phosphatidylserine (PS).

Among the phospholipids, phosphatidylinositol (4,5)-bisphos-

phate [PI(4,5)P2] is another key determinant for PM identity and

function (Balla, 2013; Di Paolo and De Camilli, 2006). PI(4,5)P2

has vital roles in many events at the PM, including exocytosis,

endocytosis, cytoskeletal dynamics, cytokinesis, ion channel

regulation, and the generation of second messenger molecules

(Balla, 2013; Di Paolo and De Camilli, 2006). Yet, although

physiological roles for PI(4,5)P2 at the PM have been intensely

studied, less is known about the regulation of PI(4,5)P2

metabolism.

Heterogeneous lipid distribution must also be considered in

understanding PM organization (Harayama and Riezman,

2018). Biological membranes are not homogeneous, and

lipids are not uniformly distributed within a membrane. Differ-

ences in the physical properties of lipids are proposed to

induce membrane lipid segregation and the formation of lipid

nanodomains (Fujimoto and Parmryd, 2017; Lingwood and Si-

mons, 2010). Accordingly, although lipid composition per se is

not fully conserved across organisms, the biophysical princi-

ples that govern membrane organization are universally

applied (Kaiser et al., 2011; van Meer et al., 2008). As such,

it is apparent that lipid heterogeneity contributes to sub-

compartmental organization and that lipid organizing princi-

ples have advantages in vital functions of the PM (Fujimoto

and Parmryd, 2017).

Selective lipid transport tends to increase lipid heterogeneity

and, thus, distinct membrane environments (Antonny et al.,

2018; Bigay and Antonny, 2012). A conserved family of lipid ex-

change proteins, the oxysterol-binding protein related proteins

(ORPs), is thought to transfer lipids, including PS and sterols

from the ER to the PM or to late Golgi and secretory compart-

ments in exchange for phosphatidylinositol 4-phosphate

(PI4P) (Chung et al., 2015; de Saint-Jean et al., 2011; Mesmin
tember 5, 2019 ª 2019 The Author(s). Published by Elsevier Inc. 1
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et al., 2013; Moser von Filseck et al., 2015a). ORP function is

critical for cell growth and survival (Charman et al., 2014).

Accordingly, deletion of all four ORP genes in C. elegans is em-

bryonic lethal upon cholesterol restriction (Kobuna et al., 2010).

Likewise, yeast cells lacking the ORP-related Osh proteins

(oxysterol-binding protein homology) are inviable and are

impaired in endocytosis (Beh and Rine, 2004), polarized secre-

tion (Alfaro et al., 2011), PI4P metabolism (Stefan et al., 2011)

and sterol organization in the PM (Georgiev et al., 2011). How-

ever, ORP/Osh protein function is controversial (Menon, 2018)

and the essential role for ORP-mediated lipid exchange re-

mains unknown.

We find that the Osh proteins are critical for PI(4,5)P2 synthe-

sis. Quantitative lipidomics and microscopy show that PI(4,5)P2

and PS levels are severely reduced upon Osh protein inactiva-

tion. PI4P 5-kinase (PIP5K) shows increased activity against

PI4P in the presence of unsaturated PS and this effect is mark-

edly enhanced by sterols. Accordingly, FRET analyses imply

that unsaturated PS and PI4P co-distribute in the presence of

sterols. Finally, in vivo imaging and molecular dynamics (MD)

simulations suggest that the specificity loop of PIP5K is a lipid

sensor that ensures high PIP5K activity at the PM. Thus, Osh

protein-mediated lipid exchange results in nanoscale membrane

lipid environments necessary for PIP5K activity that controls

global PM domain organization and dynamic PM events

including exocytosis and endocytosis.

RESULTS

Osh Proteins and ER-PM Contacts Control PI(4,5)P2

Synthesis
PM identity is defined by its specialized lipid composition. In

particular, PI4P and PI(4,5)P2 are important phosphoinositide

lipid species in the PM and both regulate essential processes

at the PM (Balla, 2013). Because the ORP/Osh proteins share

conserved functions in PI4P binding and metabolism (de Saint-

Jean et al., 2011; Im et al., 2005; Moser von Filseck et al.,

2015a; Stefan et al., 2011), we reasoned they may control PI4P

use (i.e., in lipid exchange reactions and PI(4,5)P2 synthesis)

and, thus, PM organization. To test this, we used osh1-7D/osh4ts

mutant yeast cells that lack the OSH1–OSH7 genes and carry a

temperature-sensitive osh4-1 allele (Beh and Rine, 2004). We

first examined whether Osh proteins maintain PM integrity by us-

ing propidium iodide that does not penetrate membranes and

enters cells only upon loss of PM integrity. Upon brief PM stress

conditions, more than 40% of osh1-7D/osh4ts cells scored as
Figure 1. Osh Proteins Maintain PI(4,5)P2 and PS Levels at the PM

(A) PM integrity of wild-type and osh1-7D/osh4ts cells. Cells incubated at 26�C
cytometry. Data represent the mean ± SEM (n = 3).

(B) Pil1-GFP localization in wild-type and osh1-7D/osh4ts cells.

(C) PI(4,5)P2 (GFP-2xPHPLCd) and PS (GFP-C2Lact) FLARE localization in wild-typ

(B and C) Cells were shifted to 38�C for 2 h. Scale bars, 4 mm.

(D and E) Quantitation of GFP-2xPHPLCd (D) and GFP-C2Lact (E) signals in th

STAR Methods. Data represent mean ± SD (n R 20 cells).

(F–H) Lipidomic analysis of PIP (F), PIP2 (G), and PS (H) in cells cultured at 26�C
(I–K) Measurements of inositol incorporation and PI synthesis (I), synthesis of the

and PI4P (K) as monitored by 3H-inositol labeling and HPLC analysis of cells cul

**p < 0.01, ***p < 0.001. See also Figure S1.
propidium iodide positive, whereas wild-type cells exhibited

negligible staining (Figure 1A). We also examined PM domain

organization by monitoring the PI(4,5)P2-binding protein Pil1, a

major component of PM structures termed eisosomes (Karotki

et al., 2011). Pil1-GFP was observed at cortical sites in wild-

type cells but accumulated in intracellular puncta in osh1-7D/

osh4ts cells (Figure 1B). Thus, both PM integrity and organization

are significantly affected in osh1-7D/osh4ts cells. Based on the

observation that similar defects have been observed in cells

with impaired PIP5K activity (Karotki et al., 2011; Omnus et al.,

2016), we wondered if Osh proteins might regulate PI(4,5)P2

synthesis.

We investigated whether the Osh proteins control PI(4,5)P2

localization and levels. PM localization of the PI(4,5)P2 FLARE

(fluorescent lipid-associated reporter) GFP-2xPHPLCd was

significantly reduced in osh1-7D/osh4ts cells at the restrictive

temperature (Figures 1C and 1D). We also measured phosphoi-

nositide levels by liquid chromatography-electrospray ioniza-

tion-tandem mass spectrometry (LC-ESI-MS/MS) analysis

(Clark et al., 2011). Mono-phosphorylated phosphatidylinositol

(PIP) was significantly increased in osh1-7D/osh4ts cells at the

restrictive temperature (38�C; Figure 1F). In contrast, the level

of phosphatidylinositol bis-phosphate (PIP2) was drastically

reduced (Figure 1G), consistent with the microscopy results

(Figures 1C and 1D). To further define changes in phosphoino-

sitide metabolic flux, we performed 3H-inositol labeling for 1 h

and high-performance liquid chromatography (HPLC) analysis.

This showed a major reduction in PI(4,5)P2 synthesis in osh1-

7D/osh4ts cells at the restrictive temperature (Figure S1B), but

inositol uptake and phosphatidylinositol (PI) synthesis were

not dramatically impaired (Figure S1A). Consistent with intact

PI production, PI4P synthesis increased by more than an order

of magnitude in the mutant cells (Figure S1C), as previously

published (Stefan et al., 2011). In rescue experiments, PI(4,5)

P2 synthesis was restored by expression of wild-type Osh4

from a plasmid (Figure S1E). In contrast, mutant forms of

Osh4 impaired in PI4P binding (Osh4HH143,144AA and

Osh4D29) (de Saint-Jean et al., 2011; Moser von Filseck

et al., 2015b) did not rescue PI(4,5)P2 synthesis (Figure S1E).

Likewise, expression of wild-type, but not mutant, Osh4

decreased PI4P in osh1-7D/osh4ts cells (Figure S1F). Notably,

the labeling experiments also indicated that PI4P synthesis ex-

ceeds PI(4,5)P2 synthesis (compare the scales in Figures S1B

and S1C). This suggests that PI4P may be consumed during

Osh-mediated lipid exchange reactions to promote PIP5K

activity and PI(4,5)P2 production.
or 42�C for 15 min were stained with propidium iodide and analyzed by flow

e and osh1-7D/osh4ts cells.

e PM. Relative PM and cytosolic signals were measured as described in

or 38�C for 2 h. Data represent mean ± SEM (n = 5).

PIP2 variants PI(3,5)P2 and PI(4,5)P2 (J), and synthesis of the PIP variants PI3P

tured at 38�C for 1 h. Data represent the mean ± SEM (n = 3).
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Figure 2. PS Activates PIP5K In Vitro

(A) Scheme for the real-time PIP5K assay. NBD-PHPLCd

fluorescence increases upon binding PI(4,5)P2 gener-

ated by PIP5K on liposomes.

(B) Liposomes containing the indicated amount of brain

PI4P (bPI4P), brain PS (bPS), and egg PC were mixed

with 60 nM zebrafish PIP5K (zPIP5K) and 400 nM

NBD-PHPLCd. After addition of ATP, NBD fluorescence

was recorded by fluorescence spectroscopy. Data

represent mean values (n = 3; SEM < 1.123 103).

(C) zPIP5K activity against various PI4P concentrations

in the absence and presence of 10 mol% bPS. Initial

velocities (Vi) were determined from PIP5K reaction

progress curves (shown in Figures S2E and S2F). Data

represent the mean ± SEM (n R 3).

(D) Measurement of PIP5K activity by the ADP-Glo

kinase assay. The formation of ADP produced by PIP5K

reactions was detected using bioluminescence.

(E) Measurement of PIP5K activity by the ADP-Glo

kinase assay (time = 2min) on liposomes containing the

indicated amount of bPI4P, bPS, and egg PC. Data

represent mean ± SEM (n = 3).

*p < 0.05, ***p < 0.001. See also Figure S2.
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The PM contains high concentrations of sterols, and its cyto-

plasmic leaflet is enriched in certain lipids, including phosphati-

dylethanolamine (PE) and PS (Bigay and Antonny, 2012). Osh6

and Osh7 are proposed to serve as PI4P and PS exchange pro-

teins that transfer newly synthesized PS from the ER to the PM

(Moser von Filseck et al., 2015a). Accordingly, the PM intensity

of the PS FLARE GFP-C2Lact was significantly reduced in

osh1-7D/osh4ts cells (Figures 1C and 1E) even at the permissive

temperature of 26�C. Moreover, MS lipid analysis indicated that

the amount of PS was significantly reduced in osh1-7D/osh4ts

cells (by >50% and >80% at the permissive and restrictive tem-

peratures, respectively; Figure 1H). The reduction in PS levels

may be due to a negative feedback mechanism in the ER mem-

brane reported for both mammalian and yeast PS synthases

(Kannan et al., 2017; Sousa et al., 2014). Independent quantita-

tive lipidomics experiments confirmed that PS levels were

significantly reduced in osh1-7D/osh4ts cells (Supplemental

Information). Interestingly, expression of wild-type Osh6 from a

plasmid restored PI, PI4P, and PI(4,5)P2 homeostasis (Figures

1I–1K). In contrast, a mutant form of Osh6 impaired in PI4P bind-

ing did not rescue PI(4,5)P2 synthesis (Figure 1J) or PI4P homeo-

stasis (Figure 1K).

We also examined mutant cells (named Dtether cells) lacking

six ER-PM ‘‘tether’’ proteins that accumulate PI4P at the PM

(Manford et al., 2012). Similar to osh1-7D/osh4ts cells, PM

localization of the PI(4,5)P2 FLARE mCherry-2xPHPLCd was

reduced in Dtether cells (Figure S1G). Thus, although PI4P ac-

cumulates in osh1-7D/osh4ts and Dtether cells, it is not an

efficient substrate for PIP5K. In addition, the PM fluorescence
4 Molecular Cell 75, 1–15, September 5, 2019
intensity of the PS FLARE GFP-C2Lact and

PS levels were reduced in the Dtether cells

compared to wild type (Figure S1H and

Supplemental Information). Based on these

initial findings, we next considered whether

PIP5K selectively uses PI4P in a sterol- and
PS-enriched environment formed by Osh proteins and ER-PM

contacts.

PS Enhances PIP5K Activity In Vitro

To study the lipid requirements for PIP5K activity, we developed

a real-time PIP5K assay by using a PI(4,5)P2 sensor, NBD-

PHPLCd, to monitor PI(4,5)P2 levels on liposomes by fluorescence

spectroscopy. As nitrobenzoxadiazole (NBD) displays enhanced

fluorescence at 530 nm in a hydrophobic environment, increases

in NBD fluorescence intensity (DEm530) indicate recruitment of

NBD-PHPLCd to liposomes (Figure 2A). We confirmed linear in-

creases in NBD-PHPLCd fluorescence intensity in response to

PI(4,5)P2 across a dynamic range (0.125–1 mol%; Figure S2A).

Recombinant zebrafish PIP5K1A (zPIP5K amino acid [aa] 49–

431) (Hu et al., 2015) was used for PIP5K assays. Expression

of zPIP5K restored the growth defect of yeast PIP5K mutant

mss4ts cells, suggesting zPIP5K recognizes yeast and metazoan

lipid species (Figure S2B). In control PIP5K assays, liposomes

containing 5 mol% brain-derived PI4P (bPI4P) were mixed with

zPIP5K, and NBD-PHPLCd signal intensity wasmeasured by fluo-

rescence spectroscopy prior to (time = 0 s) and after addition of

ATP. The NBD fluorescence intensity rapidly increased in an

ATP, Mg2+, and zPIP5K dose-dependent manner (Figure S2C).

Liposome size did not significantly affect zPIP5K activity in the

presence of 5 mol% bPI4P (Figure S2D). We observed zPIP5K

activity only at concentrations of bPI4P (3.3 mol% and higher;

Figure S2E) that are well above concentrations reported in the

PM (<0.2mol%of total PM lipids) (Yoshida et al., 2016). This sug-

gests additional factors promote robust PIP5K activity in vivo.



Please cite this article in press as: Nishimura et al., Osh Proteins Control Nanoscale Lipid Organization Necessary for PI(4,5)P2 Synthesis, Molecular
Cell (2019), https://doi.org/10.1016/j.molcel.2019.06.037
We, therefore, examined whether PS stimulates PIP5K activity

in the real-time PIP5K assay. Interestingly, when liposomes also

contained 10 mol% or 20 mol% of brain-derived phosphatidyl-

serine (bPS), PIP5K activity was clearly detected against 2 mol

% bPI4P (Figures 2B and S2F). For comparison, PS makes up

>30% of phospholipids in the PM of yeast cells (Zinser et al.,

1991). Consistent with previous work (Shulga et al., 2012), phos-

phatidic acid (PA) also stimulated PIP5K activity, but other phos-

pholipids found in the PM, including PI and PE, did not (Fig-

ure S2G). Kinetic analyses confirmed that bPS activates PIP5K

(Figure 2C). The apparent Km value of zPIP5K for PI4P was effec-

tively reduced from 6.2mol% to 1.5mol% in the presence of bPS

without obvious changes in Vmax (Figure 2C). The sensitivity of

the PI(4,5)P2 sensor also increased in the presence of PS by

nearly 2-fold (Figure S2A), but this does not fully account for

the 4-fold increase in zPIP5K activity (Figures 2C, S2E, and

S2F). To confirm the positive effect of bPS on zPIP5K activity,

we used an ADP-Glo kinase assay that detects ADP produced

by the PIP5K kinase reaction (Figure 2D). ADP formation by

PIP5K was significantly increased in the presence of bPS (Fig-

ure 2E). Collectively, these results suggest that PS efficiently

enhances PIP5K activity in vitro.

Sterol and Unsaturated PS Synergistically Enhance
PIP5K Activity
We also investigated the effect of sterol lipids shown to bind Osh

proteins in vitro (de Saint-Jean et al., 2011; Im et al., 2005; Manik

et al., 2017; Moser von Filseck et al., 2015b). Cholesterol

enhanced zPIP5K activity in the real-time PIP5K assay (Fig-

ure 3A) without influencing the sensitivity of the PI(4,5)P2 sensor

NBD-PHPLCd (Figure S3A). The apparent Km value of PIP5K for

PI4P was reduced from 6.2 mol% to 3.0 mol% in the presence

of cholesterol (Figure 3A). We then analyzed the simultaneous ef-

fect of bPS and cholesterol on zPIP5K activity. When the amount

of bPI4P in liposomes was reduced to 1 mol%, a positive effect

on zPIP5K activity by either bPS or cholesterol alone was weak

or not clearly observed (Figure 3B). In contrast, zPIP5K activity

increased dramatically in the presence of both bPS and choles-

terol (Figure 3B). These results suggest that cholesterol and bPS

synergistically stimulate PIP5K activity.

We next investigated whether the fatty acid composition of

PS and PI4P affects PIP5K stimulation, as bPS and bPI4P

are composed of multiple species including polyunsaturated

forms. Compared to saturated di-palmitoyl-phosphatidylserine

(16:0/16:0 DPPS), cholesterol was effective in stimulating

PIP5K in the presence of mono-unsaturated 1-palmitoyl-2-

oleyl-phosphatidylserine (16:0/18:1 POPS) and di-unsaturated

di-oleoyl-phosphatidylserine (18:1/18:1 DOPS) (Figures 3C and

3G). zPIP5K showed the highest activity against bPI4P in the

presence of DOPS and cholesterol (Figure 3C). Cholesterol did

not enhance PI(4,5)P2 probe sensitivity in the presence of

DOPS, and the PI(4,5)P2 probe displayed only slight differences

in sensitivity under the various conditions (Figure S3B). We also

examined the effect of lipid composition on PIP5Kmembrane af-

finity and found, in contrast to the PI(4,5)P2 probe, that PIP5K

binding to 1 mol% bPI4P liposomes increased upon addition

of both DOPS and cholesterol (Figure 3D). In line with the real-

time assays, zPIP5K showed the highest activity against bPI4P
in the presence of both DOPS and cholesterol in the ADP-Glo ki-

nase assay (Figure S3C). Time course experiments using the

ADP-Glo assay confirmed that PIP5K activity occurred rapidly

in the presence of DOPS and cholesterol (reaching completion

by 120 s; Figure S3G). In contrast, changes in free phosphate

levels were negligible and did not increase over the course of

the experiment (Figure S3H), confirming that the ADP-Glo as-

says measured ADP produced by PIP5K-dependent PI(4,5)P2

synthesis rather than non-specific ATP hydrolysis. Altogether,

these results indicate that PIP5K demonstrates high activity in

the presence of DOPS and cholesterol.

Yeast cells do not synthesize polyunsaturated phospholipids

or cholesterol (see the Supplemental Information and Figure 4).

However, similar trends were observed with the yeast lipid spe-

cies 1-palmitoyl-2-oleyl PI4P (16:0/18:1 PO-PI4P) and ergos-

terol. Ergosterol enhanced PIP5K enzymatic activity and mem-

brane binding against 1 mol% PO-PI4P in the presence of

unsaturated PS (DOPS again was most effective; Figures 3E–

3G). Likewise, ergosterol stimulated zPIP5K activity against 1

mol% PO-PI4P liposomes containing unsaturated PS in the

ADP-Glo kinase assay (DOPS and ergosterol resulted in the

highest activity; Figure S3G). Thus, PIP5K displays high activity

in a membrane environment containing sterol and unsaturated

PS species. Moreover, the unsaturated PI4P species bPI4P

(18:0/20:4) and PO-PI4P (16:0/18:1) were better substrates

than saturated di-palmitoyl PI4P (16:0/16:0 DP-PI4P) (Fig-

ure S3E), consistent with a previous study (Shulga et al., 2012).

Finally, PIP5K showed robust activity against liposomes contain-

ing physiological levels of PO-PI4P (0.2 mol%) and additional

lipids resembling the composition of the cytoplasmic leaflet of

the yeast PM, dependent upon unsaturated PS and ergosterol

(Figure S3F). Collectively, our results indicate that PIP5K prefers

a membrane lipid environment containing unsaturated PI4P, un-

saturated PS, and sterol.

Fatty Acid Unsaturation of PS and PI4P Are Maintained
in osh1-7D/osh4ts Cells
Considering that PIP5K prefers unsaturated PI4P and is acti-

vated by unsaturated PS, we examined the fatty acid composi-

tion of PS, PI, and phosphoinositide species in wild-type and

osh1-7D/osh4ts cells. The major species of PS, PI, PIP, and

PIP2 in control cells were unsaturated (mono-unsaturated X:1

and di-unsaturated X:2 where X refers to total acyl chain length),

whereas saturated species (X:0) were rare (Figures 4A, 4B, S4A,

and S4B). The most abundant PS and PIP species in wild-type

control cells were mono-unsaturated POPS and PO-PI4P

(34:1; Figures 4A and 4B). In osh1-7D/osh4ts cells, POPS levels

decreased and PO-PI4P levels increased (Figures 4A and 4B),

consistent with the proposed role for Osh6/7 as PI4P and

POPS exchange proteins (Moser von Filseck et al., 2015a).

Intriguingly, mono-unsaturated PIP2 was slightly enriched in

comparison to mono-unsaturated PIP and PI in wild-type cells

(Figure S4C), suggesting yeast PIP5K may prefer mono-unsatu-

rated PI4P. Although overall PIP levels were increased in osh1-

7D/osh4ts cells (Figures 1F and 4B), major changes in acyl chain

profiles were not observed. A small portion of PIP shifted from

36:X acyl species (where X refers to any level of unsaturation)

to shorter PIP 32:X species in osh1-7D/osh4ts cells (Figure S4D).
Molecular Cell 75, 1–15, September 5, 2019 5
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Figure 3. PIP5K Stimulation by Unsaturated PS and Sterols In Vitro

(A) PI4P concentration dependence of zPIP5K activity in the absence and presence of 20 mol% cholesterol (Chol). Initial velocities (Vi) were determined from

PIP5K reaction progress curves from real-time assays. Data represent mean ± SEM (n = 3).

(B) The activity of zPIP5K toward 1 mol% bPI4P liposomes either lacking or containing bPS and/or cholesterol as indicated. Data represent mean values

(n = 3; SEM < 0.25 3 103).

(C) The activity of zPIP5K toward 1 mol% bPI4P liposomes containing the indicated PS species either lacking or containing cholesterol as indicated.

Data represent mean values (n R 6; SEM < 0.48 3 103).

(D) PIP5K sedimentation assays using liposomes containing bPI4P, DOPS, and cholesterol as indicated. Data represent mean ± SEM (n = 3).

(E) The activity of zPIP5K toward 1 mol% PO-PI4P liposomes containing the indicated PS species either lacking or containing ergosterol (Erg) as indicated.

Data represent mean values (n = 3; SEM < 1.20 3 103).

(F) PIP5K sedimentation assays using 1 mol% PO-PI4P liposomes either lacking or containing the indicated PS and/or Erg. Data represent mean ± SEM (n = 3).

(G) Phospholipids used in the PIP5K assays.

*p < 0.05. See also Figure S3.
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Figure 4. Fatty Acid Unsaturation of PIP and

PS Are Maintained in osh1-7D/osh4ts Cells

Lipidomic analysis of PS and PIP in wild-type and

osh1-7D/osh4ts cells cultured at 26�C or 38�C for

2 h. Data represent mean ± SEM (n = 5).

(A and B) Fatty acid compositions of PS (A) and

PIP (B).

(C and D) Fatty acid unsaturation degree of PIP (C)

and PS (D).

**p < 0.01, ***p < 0.001. See also Figure S4.
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However, the overall degree of PIP unsaturation was not signifi-

cantly affected in osh1-7D/osh4ts cells (Figure 4C). As such, the

distribution of PIP species did not shift toward saturated species

that are poor substrates for PIP5K (Figures 4B and 4C). Likewise,

the degree of PS saturation did not increase in osh1-7D/osh4ts

cells, but instead shifted toward unsaturated species (Figures

4A and 4D). In sum, these results suggest that Osh function

has a minor impact on acyl chain length and saturation of

PI4P. Rather, a major function for the Osh proteins may be to

create a PM lipid environment containing unsaturated PI4P

and PS that is suitable for PIP5K activity.

Unsaturated PS and PI4P May Co-distribute in the
Presence of Sterols
Sterols are thought to stably interact with saturated lipids but not

with unsaturated lipids (Simons and Gerl, 2010). To evaluate

whether sterol lipids affect the distribution of unsaturated PS

and PI4P, we designed an in vitro FRET (Förster resonance en-

ergy transfer) assay (Figures 5A and 5B). FRET is well suited to
Mo
evaluate proximity in the nanometer range

and can detect the co-assembly of lipids

within a membrane bilayer (Simons and

Gerl, 2010). The CFP-tagged PS sensor

(CFP-C2Lact) and Venus-tagged PI4P

sensor (Venus-P4C) were mixed with lipo-

somes of defined compositions, and the

FRET signal was measured (Figure 5B).

When liposomes contained either bPI4P

or bPS, FRET was not observed (Figures

5B and 5C). However, FRETwas observed

in the presence of both bPI4P and bPS,

and the FRET signal was further increased

by the addition of cholesterol (Figures 5B

and 5C), suggesting that bPS and bPI4P

are in close apposition to each other in

the presence of cholesterol. Similarly, the

co-distribution of unsaturated DOPS and

bPI4P was enhanced in the presence of

cholesterol (Figure 5D). Likewise, ergos-

terol increased the co-distribution of PO-

PI4P with unsaturated POPS and DOPS

(Figure 5E). Binding of the PI4P probe to li-

posomes was not significantly enhanced

by the presence of cholesterol and

DOPS (Figures S5A and 5B). Likewise,

membrane binding of the PS probe was
not significantly enhanced by the presence of cholesterol and

PI4P (Figures S5C), consistent with a previous study (Hirama

et al., 2017). Thus, the observed increases in FRET efficiencies

between the PI4P and PS probes (Figures 5B and 5E) are not

likely due to increasedmembrane recruitment of the lipid probes.

Sterols may cause and/or enhance the co-distribution of unsat-

urated PS and PI4P in vitro. However, these experiments do not

fully exclude sterol-induced effects on lipid probe binding affin-

ities or membrane fluidity on FRET efficiencies.

PM Targeting of the PIP5K Specificity Loop Depends on
PI4P, PS, and Sterol
The substrate specificity and membrane targeting of PIP5Ks are

determined by the specificity loop within their catalytic domains

(Figure 6A) (Fairn et al., 2009; Hu et al., 2015; Kunz et al., 2000).

The specificity loop of PIP5K (5Kloop) folds into an amphipathic

helix (AH) upon membrane binding (Figures 6B and 6C) (Liu

et al., 2016). We checked if an amphipathic property of the 5Kloop

is required for PIP5K function. The purified yPIP5K/Mss4 kinase
lecular Cell 75, 1–15, September 5, 2019 7
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Figure 5. Co-distribution of Unsaturated PS and PI4P in the Presence of Sterols In Vitro

(A) The in vitro FRET assay to detect PI4P and PS co-distribution on liposomes. Corrected FRET (cFRET) was calculated as described in STAR Methods.

(B) Emission spectrum of Venus-P4C (PI4P probe) and CFP-C2Lact (PS probe) in vitro, as described in STAR Methods. The x and y axis indicate wavelength and

intensity of emission fluorescence, respectively. Note that FRET signal was increased in the presence of both brain phosphatidylserine (bPS) and cholesterol

(Chol). Asterisks indicate positions of emission maximum of CFP at 476 nm (*) and FRET at 528 nm (**).

(C) FRET toward liposomes either lacking or containing 1 mol% bPI4P, bPS, and/or cholesterol (Chol) as indicated.

(D) FRET toward 1 mol% bPI4P liposomes containing the indicated PS species either lacking or containing Chol.

(E) FRET toward 1mol%PO-PI4P liposomes containing the indicated PS species either lacking or containing ergosterol (Erg). Data representmean ± SEM (n = 3).

***p < 0.001. See also Figure S5.
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domain showed PIP5K activity in the presence of both bPS and

cholesterol, whereas the L722K/L729K mutant protein bearing

mutations in the hydrophobic face showed low PIP5K activity

(Figure 6D). These results suggest that an amphipathic property

of the 5Kloop is critical for PIP5K activity. Moreover, basic

residues on the opposite face of the 5Kloop were required, as a

negatively charged mutant K720D/K721D did not display

PIP5K activity (Figure 6D). We also investigated requirements

for the amphipathic property of the 5Kloop in vivo. The L722K/

L729K and K720D/K721D mutant forms neither localized to the

PM (Figure S6A) nor restored the growth defect of mss4ts cells

(Figures S2B). On the other hand, a kinase dead mutant

(K571A) lacking PIP5K activity (Figure 6D) localized to the PM

(Figure S6A). Thus, an amphipathic property of the 5Kloop is

required not only for PIP5K activity in vitro but also for PIP5K

localization and function in vivo.

To further examine 5Kloop PM targeting, the specificity loop of

zPIP5K (zPIP5Kg aa 380–403) was fused to a GFP-tagged
8 Molecular Cell 75, 1–15, September 5, 2019
coiled-coil domain (5Kloop-GCC-GFP; Figure 6E) to enhance its

membrane affinity (Horchani et al., 2014). In wild-type yeast cells,

5Kloop-GCC-GFP localized to the PM (Figure 6F). In contrast, the

5Kloop-GCC-GFP mislocalized from the PM to intracellular

compartments in osh1-7D/osh4ts cells (Figures 6F and 6G).

Consistent with this, PM targeting of the yeast PIP5K Mss4

was significantly reduced in osh1-7D/osh4ts mutant cells at the

restrictive temperature (Figure S6B). We, therefore, examined

lipid requirements for 5Kloop PM targeting. We first confirmed if

the 5Kloop depended on PI4P by using pik1ts, stt4ts, and pik1ts/

stt4ts double mutant cells impaired in the major PI 4-kinase

activities in yeast (Audhya et al., 2000). The PM localization of

5Kloop-GCC-GFP was partially reduced in pik1ts and stt4ts single

mutants and nearly disappeared in pik1ts/stt4ts double mutant

cells (Figure S6C). In contrast, PM localization of 5Kloop-GCC-

GFP was not reduced in mss4ts mutant cells impaired in PI(4,5)

P2 synthesis (Figure S6D), indicating that 5Kloop-GCC-GFP mis-

localization is not caused by reductions in PI(4,5)P2. Importantly,



5Kloop

(380-403)

GFP GFP

5Kloop
(380-403)catalytic site

W393

W393

A B D

C

E F G

KJIH

Figure 6. The PIP5K Specificity Loop Requires Osh Proteins, PS, and Sterols for PM Targeting

(A) Crystal structure of zebrafish PIP5K (zPIP5K) (Hu et al., 2015). The specificity loop region (5Kloop: residues 380–403) was disordered in the crystal structure. The

catalytic site (residue K236 in zPIP5K corresponding to K571 in yeast PIP5K) is shown in magenta.

(B) The amphipathic properties of the specificity loop of zPIP5K and yeast PIP5K (yPIP5K). Helical wheel representations were drawn using HeliQuest.

Hydrophobic residues are shown in yellow, arginine and lysine in dark blue, histidine in light blue, serine in purple, and glutamate and aspartate in red. Sub-

stitutions disrupting charge and the amphipathic property of the specificity loop of yPIP5K are shown in the bottom row (K720D/K721D and L722K/L729K,

respectively). Z indicates net charge and arrows in helical wheels correspond to the hydrophobic moment.

(C) The amphipathic character of the specificity loop of zPIP5K (5Kloop) using PEP-FOLD 3 and PyMOL.

(D) Real-time PIP5K assays using 200 nMwild-type or mutant forms of the yeast PIP5K domain (yPIP5K). K571A is a kinase-dead form of yPIP5K. Data represent

mean values (n R 3; SEM < 0.61 3 103).

(E) Design of the 5Kloop-GCC-GFP FLARE.

(F) Localization of 5Kloop-GCC-GFP and GFP-P4C (PI4P FLARE) in wild-type and osh1-7D/osh4ts cells cultured at 38�C for 2 h.

(G) 5Kloop-GCC-GFP PM signal in wild-type and osh1-7D/osh4ts cells. Data represent mean ± SD (n R 46 cells).

(H) Localization of 5Kloop-GCC-GFP in the sterol auxotroph GL7 strain cultured with or without 10 mg/ml ergosterol (Erg).

(legend continued on next page)
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the PI4P FLARE GFP-P4C accumulated at the PM in osh1-7D/

osh4ts cells (Figure 6F). Thus, although PI4P is required for 5Kloop

PM targeting, PI4P alone is not sufficient. We then analyzed

whether sterol is required for 5Kloop-GCC-GFP PM localization

by using the auxotrophic sterol strain GL7 that also has been

shown to be impaired in PI(4,5)P2 synthesis (Dahl and Dahl,

1985). Localization of 5Kloop-GCC-GFP to the PM in GL7mutant

cells depended on exogenous ergosterol (Figures 6H and 6I). In

addition to sterol dependence, the PM targeting of 5Kloop-GCC-

GFP was significantly reduced in cho1Dmutant cells deficient in

PS synthesis (Figures 6J and 6K). Thus, PM localization of the

5Kloop depended on PI4P, PS, and sterol in vivo. Our in vitro as-

says indicated that unsaturated PI4P and PS promote PIP5K

membrane binding and activity (Figure 3). To investigate a

requirement for lipid unsaturation in 5Kloop PM targeting and

PI(4,5)P2 synthesis in vivo, we analyzed ole1Dmutant cells lack-

ing the major fatty acid desaturase activity in yeast (Ogasawara

et al., 2017). Upon removal of exogenous unsaturated fatty acid

from the medium, both GFP-2xPHPLCd and 5Kloop-GCC-GFP

displayed reduced PM localization in ole1Dmutant cells (Figures

S6E and S6F). Altogether, our results suggest that the 5Kloop rec-

ognizes unsaturated PI4P and PS membrane environments

stabilized by sterol in vivo.

PIP5K Specificity Loop Shows Specific Interactions in
Bilayers
To study themolecular interactions of the 5Kloop with bilayers, we

ran extensive MD simulations in atomistic resolution. We

modeled the zPIP5K peptide (zPIP5Kg aa 380–403) as an a-helix

and inserted it onto a bilayer composed of 69 mol% POPC,

10 mol% DOPS, 1 mol% bPI4P (18:0/20:4), and 20 mol%

cholesterol (the composition activating zPIP5K). After solvation

and equilibration, we simulated three replicas of the system for

a cumulative time of 24 ms in the atomistic CHARMM36m repre-

sentation (Huang et al., 2017). During all simulations the 5Kloop

remained stably inserted in the bilayer, displaying only a partial

unfolding of few residues at the C terminus (Figures 7A–7C).

The 5Kloop equilibrates relatively deep in the membrane, with

the residues of its hydrophobic interface inserted in the hydro-

phobic core of the bilayer (Figures 7A–7C).

To gain a systematic view on how the different lipid species

interact with the 5Kloop, we calculated their localization probabil-

ities over the cumulated simulation time. POPC does not form

specific contacts with the 5Kloop, and despite its abundance in

the model bilayer, its localization is marginally affected by the

presence of the helix (compare the two leaflets in Figure 7D).

By contrast, DOPS molecules form contacts with the 5Kloop by

electrostatic interactions (Figure 7E), and cholesterol transiently

associates with the 5Kloop (Figure 7F). Given the low molar con-

centration, only a few bPI4P molecules are present in the bilayer

we simulated. However, in all our simulations, a bPI4P quickly

associates to the 5Kloop forming a contact that remains stable

for the rest of the simulations, mostly due to its net charge.
(I) 5Kloop-GCC-GFP PM signal in GL7 cells. Data represent mean ± SD (n R 36 c

(J) Localization of 5Kloop-GCC-GFP in wild-type and cho1D mutant cells supplem

(K) 5Kloop-GCC-GFP PM signal in wild-type and cho1D cells. Data represent me

**p < 0.01, ***p < 0.001. See also Figure S6.
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This is reflected in the probability maps (Figure 7G) showing

that bPI4P strongly interacts with two sites along the 5Kloop.

Visual inspection of the trajectories reveals a rich set of inter-

actions between the 5Kloop and the different lipid species.

Cholesterol molecules reversibly associate to the 5Kloop, filling

the packing defect created by the insertion of the helix and inter-

acting with aromatic residues (e.g., W393; Figure 7B). Interest-

ingly, the cholesterol hydrocarbon chain also wedges between

the acyl chains of the polyunsaturated PI4P stably associated

with the 5Kloop (Figures 7B, 7H, and 7J). Electrostatic interac-

tions drive the formation of contacts between the charged head-

groups of DOPS and bPI4P, and the positively charged residues

located on the hydrophilic face of the 5Kloop. DOPS and bPI4P

can occupy distinct pockets along opposing sides of the 5Kloop

at the same time (Figures 7B, 7E, and 7G). It is important to note,

however, that PI4P and DOPS are almost never found on the

same side of the 5Kloop. This is due to the highly charged PI4P

headgroup occupying all electrostatic interactions on one side

of the 5Kloop. This observation is in line with the localization plots

of the densities of each lipid on opposing sides (Figures 7E and

G). PI4P is situated very close to the 5Kloop, whereas DOPS is

relatively far away. Nevertheless, DOPS interacts by its head-

group with residues K387 and K394 and also pushes its hydro-

phobic tails under the 5Kloop, where cholesterol is wedged in

(Figure 7B). bPI4P forms intimate interactions with the 5Kloop,

almost wrapping around it, maximizing the contact both with

its headgroup and its polyunsaturated acyl chain (Figures 7C,

7H, and 7J). Indeed, bPI4P can interact with the 5Kloop by its

glycerol backbone, the 1-phosphate moiety between the back-

bone and inositol, and the hydroxyl-groups and 4-phosphate

moiety on the inositol ring (Figures 7H–7J and S7A–S7F). The

latter enables the headgroup of bPI4P to bridge over several

lipids and interact with the 5Kloop even if the lipid tails are rela-

tively far away (Figures S7D–S7F). These observations suggest

that association of bPI4P and the 5Kloop should be described

in terms of a dynamic network of electrostatic interactions that

can be mediated by other lipid molecules.

DISCUSSION

Our findings show that Osh-mediated membrane lipid dynamics

and ER-PM contacts promote PIP5K activity at the PM (Fig-

ure S7G). Remarkably, our data indicate that only a small pool

of PI4P synthesized in the cell is used as a substrate for PI(4,5)

P2 synthesis. PI4P appears to be largely consumed during Osh-

mediated lipid exchange reactions (Figures 1, S1, and 4). In this

manner, newly synthesized PS and sterol lipids may be trans-

ported from the ER to the PM by Osh proteins in exchange for

PI4P (Figure S7G). The Osh proteins may then transfer PI4P to

the ER (Antonny et al., 2018) or directly present PI4P to the

Sac1 PI4P phosphatase at ER-PM contacts (Stefan et al., 2011).

Both modes of Sac1 activity (in cis and in trans) would promote

continued rounds of lipid transfer by the Osh proteins, as both
ells).

ented with 1 mM ethanolamine.

an ± SD (n R 69 cells). Scale bars, 4 mm.
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Figure 7. Molecular View of the PIP5K Specificity Loop Embedded in a Lipid Bilayer

(A–C) The specificity loop of PIP5K (5Kloop) embedded into amodel membrane bilayer in atomistic molecular dynamics simulations. The 5Kloop is shown as ribbon

(orange) with hydrophobic, polar, acidic, and basic amino acids represented as sticks in white, green, red, and blue, respectively. The surfaces of lipids and

sterols are shown for POPC (gray), DOPS (magenta), cholesterol (cyan), and bPI4P (yellow). The figure shows an area of the membrane leaflet of approximately

4 3 4 nm (A). Cross sectional views of the 5Kloop embedded in the model membrane bilayer (B and C). Water and ions outside the membrane are omitted for

clarity.

(D–G) Lipid localization. Time-averaged positions of the phosphate moieties of the phospholipids POPC (D), DOPS (E), and PI4P (G) or oxygen atoms in

cholesterol (Chol, F) from all-atommolecular dynamics simulations of amodel membrane bilayer. Colors indicate the localization probability of different lipids over

the course of the whole 10-ms trajectory. The membrane leaflet (cytoplasmic) with the 5Kloop embedded is shown in the left panels; the opposing leaflet

(extracellular) is shown on the right. Scale bars, 2.5 nm.

(H–J) Atomistic views of the bPI4P molecule interacting with pocket #1 of the 5Kloop with a cholesterol molecule on the other side as shown in Figure 7B (H); 90�

orientation (I); 180� orientation (J). The two phosphate moieties of bPI4P interact with four basic residues of the amphipathic helix (R384, K387, K388, and H391).

(legend continued on next page)
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mechanisms would release PI4P bound to Osh proteins. Thus,

PI4P serves two vital functions in the cell. It is the substrate for

PIP5K and it is used as a ‘‘currency’’ for ORP/Osh-mediated lipid

exchange that stimulates PIP5K activity. Importantly, our data

indicate that PI4P alone is not sufficient for PIP5K activity.

However, once PS and sterol lipids reach sufficient levels, PI4P

metabolism switches from PI4P exchange and hydrolysis by the

Osh and Sac1 system to PI(4,5)P2 synthesis by PIP5K (Fig-

ure S7G). This has two significant implications. First, PI4P extrac-

tion by Osh proteins will decrease upon PS and sterol delivery

because of competition between PI4P and PS or sterol for the

Osh proteins (Moser von Filseck et al., 2015a). Second, PI4P,

PS, and sterol synergistically promote PIP5K targeting and activ-

ity. Thus, non-vesicular lipid dynamics takingplace at ER-PMcon-

tacts may promote the formation of PIP5K assemblies that ulti-

mately drive vesicular trafficking events in adjacent ER-free

PM zones.

ORP and Osh proteins may also exchange PI4P for PS and

sterol at late Golgi and secretory compartments (Antonny

et al., 2018) (Figure S7G). This may promote secretory vesicle

maturation and allow rapid conversion of PI4P to PI(4,5)P2 imme-

diately prior to or following vesicle fusion with the PM. Alterna-

tively, PI4P extracted from late Golgi compartments and other

organellesmay be directly transferred to the PMbyOsh proteins.

Both of these mechanisms could explain the involvement of

Golgi PI4P pools in 5Kloop PM targeting and PI(4,5)P2 synthesis

(Figure S6) (Audhya et al., 2000) and why cells depleted of ER-

PM contacts are viable (Manford et al., 2012). Osh proteins

also control sterol distribution within the PM (Georgiev et al.,

2011). Accordingly, ORP/Osh proteins might move lipids within

the PM resulting in PIP5K activation.

Our study confirms key roles for the ORP/Osh proteins and

ER-PM contacts in PM identity. Both are required for enrichment

of PS in the cytoplasmic leaflet of the PM (Figures 1 and S1),

consistent with previous reports (Chung et al., 2015; Moser

von Filseck et al., 2015a). Our findings unexpectedly suggest

that the ORP/Osh proteins also create heterogeneous PM envi-

ronments and, thus, transient unconventional lipid interactions at

the nanoscale level. Numerous studies have described physical

interactions between saturated lipids and sterols. Yet, less atten-

tion has been paid to the effect of sterols on unsaturated lipids, in

spite of the fact that PS and PI4P are key components of the in-

ner leaflet of the PM (Balla, 2013; Yeung et al., 2008) and most of

them have unsaturated fatty acids (Figure 4). Our analyses sug-

gest that unsaturated PI4P and PS co-distribution might be

modulated by sterols (Figure 5). Unsaturated fatty acids are

incorporated into the sn-2 position in most phosphoinositides

(PIPs) (Harayama and Riezman, 2018), but unsaturated lipids

are not efficiently incorporated into sterol-containing liquid-or-

dered domain. One possible explanation is that unsaturated

lipids are condensed by their repulsive interaction with sterols

(Krause and Regen, 2014). Alternatively, our MD simulations

indicate that cholesterol interacts with the acyl chains of
The cholesterol hydrocarbon chain wedges between the acyl chains of the polyu

acidic and basic residues as sticks in green. Positively charged nitrogen atoms a

red, respectively.

See also Figure S7.
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polyunsaturated PI4P stably associated with the PIP5K speci-

ficity loop and fills the packing defect created by insertion of

the peptide helix (Figure 7). Additional interactions may also pro-

vide important contributions. For example, PS retains choles-

terol in the inner leaflet of the PM and cholesterol, in turn, limits

electrostatic repulsion between anionic PS molecules (Hirama

et al., 2017; Maekawa and Fairn, 2015). This may explain why

inactivation of Osh4, shown to transfer sterol lipids in vitro, re-

sults in decreased PS levels at the PM (Figures 1 and 4). The ioni-

zation state of PIPs, dependent on neighboring lipids and

ionic strength, may also govern PIP segregation patterns

(Wen et al., 2018). Thus multiple factors likely account for the

complex behavior of unsaturated phospholipids and sterols in

membranes.

Our in vivo imaging, in vitro assays, and simulation analyses

suggest that the conserved PIP5K specificity loop forms an

AH that prefers a membrane environment containing unsatu-

rated anionic lipids and sterols. Given that another anionic lipid,

PA, also stimulates PIP5K (Shulga et al., 2012), PA might

interact with the PIP5K AH similarly to PS. Interestingly, the hy-

drophobic face of the PIP5K AH contains bulky aromatic resi-

dues, similar to other AH sensors that preferentially insert into

membrane regions with lipid packing-order defects formed by

acyl chain unsaturation. This design may allow PIP5K to recog-

nize unsaturated PI4P species that cluster in intermittent disor-

dered regions of the PM. Given that yeast PO-PI4P was an

effective substrate for PIP5K (Figure S3), yeast PI4P might

induce lipid-packing defects as much as mammalian PI4P. It

is remarkable that the PIP5K AH targets to the PM rather than

the highly disordered ER. Accordingly, PM targeting of the

PIP5K AH is specified by basic residues within the AH that

bind PI4P and PS (and PA) in the cytoplasmic leaflet of the PM

and is further stabilized by interactions with sterols (Figure 7).

Thus, the PIP5K AH is endowed with distinctive chemical and

physical properties, compared to previously described AH

membrane sensors (Bigay and Antonny, 2012; Covino et al.,

2018; Hofbauer et al., 2018), allowing it to detect a unique PM

environment containing PI4P, PS, and sterol. Although PIP5K

AH targeting to the PM depended on both PS and PI4P, our an-

alyses indicate increased binding affinity for PI4P over PS. This

suggests an order of events for PIP5K targeting and activity. The

ORP/Osh proteins may form a PM environment enriched in un-

saturated PS stabilized by sterols that initially recruits PIP5K

(Figure S7G).

The human ORP5 and ORP8 proteins transfer unsaturated PS

species (Chung et al., 2015), suggesting they may be involved in

PI(4,5)P2 regulation. In turn, PI(4,5)P2 controls ORP5 and ORP8

PM localization (Ghai et al., 2017; Sohn et al., 2018), indicating

cross-regulation of PS and PI(4,5)P2 homeostasis. Intriguingly,

ORP5 and ORP8 knock down results in increased PI(4,5)P2

levels (Ghai et al., 2017; Sohn et al., 2018). But PI4P is increased

and PS levels are maintained to some extent upon ORP5 and

ORP8 depletion, implying that other ORP isoforms or other lipid
nsaturated PI4P. The amphipathic helix is visualized as a ribbon (orange) and

nd negatively charged oxygen atoms are shown as spheres, colored blue and



Please cite this article in press as: Nishimura et al., Osh Proteins Control Nanoscale Lipid Organization Necessary for PI(4,5)P2 Synthesis, Molecular
Cell (2019), https://doi.org/10.1016/j.molcel.2019.06.037
transfer proteins may be induced under these conditions. As

such, future studies are likely to reveal key roles for additional

lipid transfer proteins in PM lipid heterogeneity and organization.
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Bacterial and Virus Strains

BL21 (DE3) New England BioLabs C2527I

Rosetta (DE3) pLysS Merck 70956

Chemicals, Peptides, and Recombinant Proteins

Ethanolamine ACROS Organics 149580010

Tween 80 SIGMA-ALDRICH P1754

(Trimethylsilyl)diazomethane solution 2.0 M in hexanes SIGMA-ALDRICH 362832

Formic acid eluent additive for LC-MS SIGMA-ALDRICH 56302

ACQUITY UPLC Protein BEH C4 Column, 300Å,

1.7 mm, 1 mm X 100 mm

Waters 186005590

Yeast nitrogen base without amino acids, ammonium

sulfate and inositol

FORMEDIUM CYN3810

Casamino Acids FORMEDIUM CAS01

Myo-[2-H3]-inositol PerkinElmer NET114A005MC

Perchloric acid ACROS Organics 223312500

Glass beads SIGMA G1277

40% methylamine SIGMA-ALDRICH 426466

1-Butanol ACROS Organics 107690025

Diethyl-ether ACROS Organics 176830010

Ethyl formate ACROS Organics 150675000

Partisphere 5 mm SAX column Hichrome 4621-1505

Ammonium phosphate, dibasic ACROS Organics 201820025

Phosphoric acid ACROS Organics 389020025

Ultima-Flo AP scintillation fluid PerkinElmer 6013599

Malachite Green SIGMA-ALDRICH 38800

Ammonium molybdate SIGMA-ALDRICH 277908

Sulfuric acid SIGMA-ALDRICH 339741

Complete EDTA-free protease inhibitor Thermo Fisher Scientific A32955

Dithiothreitol (DTT) Thermo Fisher Scientific R0861

AEBSF Protease Inhibitor Thermo Fisher Scientific 78431

Glutathione Sepharose 4B GE Healthcare 17-0756-01

PreScission protease GE Healthcare 270843

Ni-NTA Agarose QIAGEN 1018244

Imidazole SIGMA ALDRICH I202

IANBD-amide Invitrogen D2004

L-Cysteine Hydrochloride SIGMA C7477

NitroPureTM, Nitrocellulose Transfer

Membrane, 0.45 mm

GVS 1212602

SuperSignalTM West Pico

Chemiluminescent Substrate

Thermo Scientific 10481755

Purified Mouse Anti-6xHis BD Biosciences 552565

DP-PI4P (16:0/16:0) CellSignals 912

Ergosterol United States Biological 275432

Brain PI4P (L-a-phosphatidylinositol-4-phosphate) Avanti Polar Lipids 840045X
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Brain PI(4,5)P2 (L-a-phosphatidylinositol-4,5-bisphosphate) Avanti Polar Lipids 840046X

Egg PC (L-a-phosphatidylcholine) Avanti Polar Lipids 840051

Brain PS (L-a-phosphatidyserine) Avanti Polar Lipids 840032

POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) Avanti Polar Lipids 850457

Cholesterol Avanti Polar Lipids 700000P

Oleic acid Sigma-Aldrich O1008

Egg PA (L-a-phosphatidic acid) (Egg, Chicken) Avanti Polar Lipids 840101

Liver PI (L-a-phosphatidylinositol) (Liver, Bovine) Avanti Polar Lipids 840042

POPE (2-Oleoyl-1-palmitoyl-sn-glycero-3-

phosphoethanolamine)

Sigma O1991

18:1 Dansyl PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-

N-(5-dimethylamino-1-naphthalenesulfonyl)

Avanti Polar Lipids 810330

PO-PI4P (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-

(1’-myo-inositol-4’-phosphate))

Avanti Polar Lipids 850157P

DPPS (1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine]) Avanti Polar Lipids 840037

POPS (1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-L-serine]) Avanti Polar Lipids 840034

DOPS (1,2-dioleoyl-sn-glycero-3-[phospho-L-serine]) Avanti Polar Lipids 840035

17:0-20:4 PI(4)P (1-heptadecanoyl-2-(5Z,8Z,11Z,14Z-

eicosatetraenoyl)-sn-glycero-3-phospho-

(1’-myo-inositol-4’-phosphate) (ammonium salt))

Avanti Polar Lipids LM1901

17:0-20:4 PI(4,5)P2 (1-heptadecanoyl-2-(5Z,8Z,11Z,14Z-

eicosatetraenoyl)-sn-glycero-3-phospho-

(1’-myo-inositol-4’,50-bisphosphate) (ammonium salt))

Avanti Polar Lipids LM1904

17:0-20:4 PI(3,4,5)P3 (1-heptadecanoyl-2-

(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phospho-

(1’-myo-inositol-30,4’,50-trisphosphate) (ammonium salt))

Avanti Polar Lipids LM1906

17:0-20:4 PI (1-heptadecanoyl-2-(5Z,8Z,11Z,14Z-

eicosatetraenoyl)-sn-glycero-3-phospho-(1’-myo-inositol)

(ammonium salt))

Avanti Polar Lipids LM1502

17:0-20:4 PS (1-heptadecanoyl-2-(5Z,8Z,11Z,14Z-

eicosatetraenoyl)-sn-glycero-3-phospho-L-serine

(ammonium salt))

Avanti Polar Lipids LM1302

Zirconia beads 5.0 mm TOMY ZB-50

Mini-extruder Set Avanti Polar Lipids 610000

PC Membranes 0.1 mm Avanti Polar Lipids 610005

PC Membranes 0.4 mm Avanti Polar Lipids 610007

PC Membranes 1.00 mm Avanti Polar Lipids 610010

Filter Supports Avanti Polar Lipids 610014

Slide-A-LyzerTM Dialysis Cassettes, 3.5K MWCO Thermo Fisher Scientific 66330

Propidium iodide Invitrogen P3566

Deposited Data

Raw imaging data This study Mendeley Data:

https://doi.org/10.17632/

x96sprmwrg.1

Critical Commercial Assays

ADP-GloTM Kinase Assay Promega V6930

Experimental Models: Organisms/Strains

SEY6210 [MATa leu2-3,112 ura3-52 his3D200

trp1-D901 lys2-801 suc2D9]

PMID: 3062374 N/A

SEY6210.1 [MATa leu2-3,112 ura3-52

his3D200 trp1-D901 lys2-801 suc2D9]

PMID: 3062374 N/A
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CBY886 (osh1-7D/osh4ts) [SEY6210 osh1D::kan-MX4

osh2D::kan-MX4 osh3D::LYS2 osh4D::HIS3

osh5D::LEU2 osh6D::LEU2 osh7D::HIS3 (osh4-1, URA3)]

Beh and Rine, 2004 N/A

ANDY198 (Dtether) [SEY6210.1 ist2D::HISMX6 scs2D::TRP1

scs22D::HISMX6 tcb1D::KANMX6 tcb2D::KANMX6

tcb3D::HISMX6]

Manford et al., 2012 N/A

AAY104 (pik1ts) [SEY6210 pik1D::HIS3 carrying

pRS314pik1-83 (TRP1 CEN6 pik1-83)]

Audhya et al., 2000 N/A

AAY102 (stt4ts) [SEY6210 stt4D::HIS3 carrying

pRS415stt4-4 (LEU2 CEN6 stt4-4)]

Audhya et al., 2000 N/A

AAY105 (pik1ts/stt4ts) [SEY6210 stt4D::HIS3

pik1D::HIS3 carrying pRS415stt4-4 (LEU2 CEN6 stt4-4)

and pRS314pik1-83 (TRP1 CEN6 pik1-83)]

Audhya et al., 2000 N/A

AAY202 (mss4ts) [SEY6210 mss4D::HIS3MX6 carrying

pYCplac111 mss4-102 (LEU2 CEN6 mss4-102)]

https://doi.org/10.1091/

mbc.01-10-0476

N/A

W303-1A [MATa leu2-3,112 trp1-1 can1-100 ura3-1

ade2-1 his3-11,15]

PMID: 2645056 N/A

cho1D [W303-1A cho1D::URA3] https://doi.org/10.1021/bi300086c N/A

YTN1 [W303-1A ADE2::URA3] This study N/A

YTN3 [W303-1A cho1D::URA3 ADE2::URA3] This study N/A

GL7 [X2180a gal2 erg12-1 hem3-6] PMID: 323256 N/A

YTN39 [X2180a gal2 erg12-1 hem3-6 ura3D:: KANMX6] This study N/A

ole1D [BY4741 ole1D::CgHIS3] https://doi.org/10.1242/bio.022053 N/A

Recombinant DNA

pRS424-PPRC1-GFP-2xPHPLCd This study N/A

pRS415-PGPD-mCherry-2xPHPLCd https://doi.org/10.1038/emboj.2012.127 N/A

pRS426-PPRC1-GFP-2xPHPLCd https://doi.org/10.1091/

mbc.01-10-0476

N/A

pRS314-PGPD-GFP-C2Lact Yeung et al., 2008 N/A

pRS416-PGPD-GFP-C2Lact Yeung et al., 2008 N/A

pRS414-PGPD-GFP-P4CSidC This study N/A

pRS416-PGPD-GFP-P4CSidC https://doi.org/10.1371/

journal.ppat.1004965

N/A

pEGFP-N1:GCCGMAP210(39-377aa) Horchani et al., 2014 N/A

pRS424-PGPD-5Kloop-GCCGMAP210-GFP This study N/A

pRS426-PGPD-5Kloop-GCCGMAP210-GFP This study N/A

pET21b+: zPIP5K1Aa(49-431aa) Hu et al., 2015 N/A

pRS416-PGPD-zPIP5K1Aa(49-431aa) This study N/A

pRS414-PMSS4-MSS4-GFP https://doi.org/10.1038/emboj.2012.127 N/A

pRS416-PMSS4-MSS4-GFP https://doi.org/10.1038/emboj.2012.127 N/A

pRS416-PMSS4-mss4 K571A-GFP This study N/A

pRS416-PMSS4-mss4 K720D/K721D-GFP This study N/A

pRS416-PMSS4-mss4 L722K/L729K-GFP This study N/A

pRS414-PPIL1-PIL1-GFP Karotki et al., 2011 N/A

pRS314-POSH4-OSH4 Beh and Rine, 2004 N/A

pRS314-POSH4-osh4 G183D (ts mutant) Beh and Rine, 2004 N/A

pRS314-POSH4-osh4 H143A/H144A This study N/A

pRS314-POSH4-osh4D29 This study N/A

pRS414-PGPD-OSH6 This study N/A

pRS414-PGPD-osh6 H157A/H158A This study N/A

pGEX6P-1:PHPLCd V58C This study N/A
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https://doi.org/10.1038/emboj.2012.127
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pGEX6P-1:CFP-C2Lact This study N/A

pGEX6P-1:Venus-C2Lact This study N/A

pGEX6P-1:Venus-P4CSidC This study N/A

pGEX6P-1:MSS4(347-779aa)-his6 This study N/A

pGEX6P-1:mss4(347-779aa) K571A-his6 This study N/A

pGEX6P-1: mss4(347-779aa) K720D/K721D-his6 This study N/A

pGEX6P-1: mss4(347-779aa) L722K/L729K-his6 This study N/A

Software and Algorithms

Fiji/ImageJ Fiji RRID: SCR_002285

Adobe Photoshop CS6 extended Adobe RRID: SCR_014199

GraphPad Prism 6 GraphPad Software RRID: SCR_002798

RStudio RStudio RRID: SCR_000432

HeliQuest CNRS http://heliquest.ipmc.cnrs.fr/

PyMOL Schrodinger RRID: SCR_000305

PEP-FOLD 3 RPBS http://bioserv.rpbs.univ-

paris-diderot.fr/

services/PEP-FOLD3/

VMD University of Illinois https://www.ks.uiuc.edu/

Research/vmd/https://doi.org/10.1016/0263-7855(96)

00018-5

GROMACS European Research Council RRID: SCR_014565

https://doi.org/10.1016/

j.softx.2015.06.001)

MDAnalysis https://doi.org/10.25080/

majora-629e541a-00e

https://www.mdanalysis.org/

https://doi.org/10.1002/jcc.21787

NumPy http://SciPy.org RRID: SCR_008633

https://doi.org/10.1109/MCSE.2011.37

SciPy http://SciPy.org RRID: SCR_008058

IPython http://ipython.org RRID: SCR_001658

https://doi.org/10.1109/MCSE.2007.53

Matplotlib http://SciPy.org RRID: SCR_008624

https://doi.org/10.1109/MCSE.2007.55

UCSF CHIMERA UCSF
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Yeast
Descriptions of Saccharomyces cerevisiae strains used in this study are in the Key Resources Table. Standard techniques were used

for yeast growth. For cho1D cells, the medium was supplemented with 1 mM ethanolamine. For the GL7 strain (provided by Dr. W.

David Nes, Texas Tech Univ.), 2 mg/ml ergosterol solubilized in a Tween 80/ethanol solution (1:4, w/w) was added to themedium as a

0.5% solution for a final concentration of 10 mg/ml. The URA3 gene in theGL7 strain was deleted by homologous recombination. For

ole1D cells (provided by Dr. Takeshi Noda, Osaka Univ.), 0.5% casamino acids were added to support growth of the ole1D mutant

cells in synthetic definedmedium. Oleic acid at a final concentration of 1mMand 1% (v/v) Triton X-100were also added to the culture

medium.

METHOD DETAILS

Plasmids
Descriptions of plasmids used in this study are in the Key Resources Table. DNA sequences encoding yPIP5K/Mss4 fragment (aa

347-779, NP_010494) were amplified by PCR and subcloned into pGEX-6P-1 vector together with His-Tag. yPIP5K K571A,

K720D/K721D, and L722K/L729K were generated by inverse PCR. C2Lact and P4C cDNAs were amplified by PCR and subcloned

into pGEX-6P-1 vector together with CFP and/or Venus. cDNA encoding zPIP5K (aa 49-431, NP_001018438) (provided by Dr. Ya

Ha, Yale School of Medicine) was subcloned into pRS416 plasmid. zPIP5K fragment (aa 380-403) fused to GMAP210 coiled-coil re-

gion (aa 39-377) (provided by Dr. Bruno Antonny, CNRS Université de Nice Sophia Antipolis) was cloned into pRS424 or pRS426

plasmid together with EGFP. Osh4 wild-type, G183D (ts mutant), D29, and H143A/H144A cDNAs were subcloned into pRS314

plasmid. Osh6 wild-type and H157A/H158A cDNAs (provided by Dr. Guillaume Drin, CNRS Université de Nice Sophia Antipolis)

were subcloned into the plasmid pRS414. GFP-P4C and 2xPHPLCd were subcloned into pRS414 or pRS424, respectively.

Fluorescence Microscopy
Imageswere obtainedwith a 1003CFI PlanApochromat VCoil-immersion objective lens (1.4 NA), using aPerkin-ElmerUltraviewVOX

spinning disk confocal microscope that consists of a Nikon TiE inverted stand attached to Yokogawa CSU-X1 spinning unit and a Ha-

mamatsu C9100-13 EMCCD camera with a pixel size of 16 mm. All images were collected as square images with 5123 512 pixels. For

the final output, images were processed using Fiji/ImageJ and Adobe Photoshop CS6 extended software. Plasma membrane (PM)

relative fluorescence (relative FPM) was quantified as described below. Briefly, single channel images were created by splitting chan-

nels. Single cell imageswere randomly chosen from the single channel images, duplicated and saved. Three lines (crossing over, inside

and outside a cell) were drawn on the single cell images, added to ROI manager, and analyzed by ‘Multi Plot’ module in Fiji/ImageJ to

obtain fluorescence intensity profiles. These values, related to the intensity values for each pixel, were imported into Excel. We then

calculated the average values of fluorescence intensity profiles on drawn lines inside and outside a cell, and expressed as Fin and Fout,

respectively. The specific cytosolic signal (Fcyto) was calculated by subtracting Fout from Fin. In order to obtain PM fluorescence inten-

sity (FPM), the two outer cellular intensity peaks were found on the line crossing over a cell. The average value of intensity of those two

peaks, one pixel in front and behind peaks was calculated (Fcross), and then subtracted Fout from Fcross. FPM was divided by Fcyto to

calculate relative FPM. Taken together, PM relative fluorescence was calculated by using this equation: relative FPM = FPM/Fcyto =

(Fcross-Fout)/(Fin-Fout). Finding peaks in intensity profiles and calculations were automatically processed with an Excel VBA macro.

Analysis of 3H-labeled Inositol Phosphates by HPLC
PIPs levels were analyzed as previously described (Stefan et al., 2011). Briefly, 5 OD600 units of cells cultured in YND media were

washed by media lacking inositol and pre-incubated at 26�C or 38�C for 15 min. The cells were labeled with 50 mCi of myo-[2-H3]-

inositol in media lacking inositol and further incubated for 1 hour. Then, the cells were lysed in 4.5% perchloric acid with glass

beads to generate extracts. After washed by 0.1 M EDTA, the extracts were mixed with methylamine reagent (methanol/40%

methylamine/water/1-butanol; 4.6:2.6:1.6:1.1 v/v) and incubated at 53�C for 1 h to deacylate phospholipids. Samples were dried

in a vacuum chamber, washed with water, dried again, and resuspended in 300 ml water. Extraction reagent (1-butanol/ethl-ether/

formic acid ethyl ester; 20:4:1 v/v) was added and [3H] glycerol-PIPs were separated into the aqueous phase by vortexing and

centrifugation at 14,000 x g for 5 min. The extraction was repeated twice and the final aqueous phase was collected and dried.

Dried pellets were resuspended in 260 ml water and separated on a Partisphere 5 mmSAX column attached to a PerkinElmer Series

200 HPLC system and a radiomatic 150TR detector using Ultima-Flo AP scintillation fluid. The HPLC and on-line detector were

controlled with Total Chrome Navigator software. The data were analyzed using Total Chrome Navigator software.

LC-MS/MS analysis of methylated PIPs and PS
20OD600 units of cells were precipitated andwashedwith cold 4.5%perchloric acid. For phosphoinositidemeasurements, cells were

resuspended in 500 mL 0.5 MHCl and disrupted with a 5.0 mm zirconia bead by vigorous shaking (1,500 rpm for 10 min) using Shake

Master Neo (BMS, Tokyo, Japan). The homogenates were transferred to new tubes and centrifuged at 15,000 3 g for 5 min.

The pellets were resuspended in 170 mL water and 750 mL of CHCl3/MeOH/1 M HCl (2:1:0.1, v/v) and incubated for 5 min at room
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temperature. To each sample 725 mL of CHCl3 and 170 mL of 2 M HCl were added, followed by vortexing. After centrifugation at

1,500 3 g for 5 min, the lower phase was collected and washed with 780 mL of pre-derivatization wash solution (the upper phase

of CHCl3/MeOH/0.01 MHCl (2:1:0.75 v/v)). The lipid extracts were derivatized by adding 50 mL of 2 M TMS-diazomethane in hexane.

The derivatization was carried out at room temperature for 10 min and was stopped by adding 6 mL of glacial acetic acid. The deriv-

atized samples werewashed twicewith 700 mL of post-derivatization wash solution (the upper phase of CHCl3/MeOH/water (2:1:0.75

v/v)). After adding 100 mL of MeOH/H2O (9:1, v/v), the samples were dried under a stream of N2, dissolved in 80 mL of MeOH and

sonicated briefly. After adding 20 mL of water, the samples were subjected to LC-ESI-MS/MS analysis. The LC-ESI-MS/MS analysis

was performed on a Shimadzu Nexera ultra high performance liquid chromatography system coupled with a QTRAP 4500 hybrid

triple quadrupole linear ion trap mass spectrometer. Chromatographic separation was performed on an Acquity UPLC C4 BEH col-

umn (100 mm3 1 mm, 1.7 mm;Waters) maintained at 40�C using mobile phase A (water containing 0.1% formate) and mobile phase

B (acetonitrile containing 0.1% formate) in a gradient program (0–5min: 45%B; 5–10min: 45%B/100%B; 10-15min: 100%B; 15–

16 min: 100% B/45% B; 16-20: 45% B) with a flow rate of 0.1 mL/min. The instrument parameters for positive ion mode were as

follows: curtain gas, 10 psi; collision gas, 7 arb. unit; ionspray voltage, 4500 V; temperature, 600�C; ion source gas 1, 30 psi; ion

source gas 2, 50 psi; declustering potential, 121 V; entrance potential, 10 V; collision energy, 39 V; collision cell exit potential, 10

V. Methylated phosphoinositides and phosphatidylserine were identified and quantified by multiple reaction monitoring. For these

measurements, an internal standard of 10 ng of 17:0-20:4 PIP was added to each sample.

Quantitative shotgun lipid MS data acquisition, analysis, and post-processing
The glycerolipid compositions of wild-type, osh1-7D/osh4ts and Dtether mutant cell extracts shown in the Supplemental Information

were determined by mass spectrometry-based quantitative, shotgun lipidomics by Lipotype GmbH (Dresden, Germany) as

described (Ejsing et al., 2009; Klose et al., 2012). Total yeast cell lysate samples were diluted to 0.2 OD units using 155 mM ammo-

nium bicarbonate in water to the total volume of 150 ml and were spiked with internal lipid standard mixture. Lipids were extracted

using a two-step chloroform/methanol procedure with 750 ml volume of each organic phase step (chloroform:methanol, 15:1 and 2:1

respectively for the 1st and the 2nd step)(Ejsing et al., 2009). After extraction, the organic phase was transferred to an infusion plate

and dried in a speed vacuum concentrator. 1st step dry extract was re-suspended in 100 ml 7.5 mMammonium acetate in chloroform/

methanol/propanol (1:2:4, V:V:V) and 2nd step dry extract in 100 ml 33% ethanol solution of methylamine in chloroform/methanol

(0.003:5:1; V:V:V). All liquid handling steps were performed using Hamilton Robotics STARlet robotic platform with the Anti Droplet

Control feature for organic solvents pipetting.

Samples were analyzed by direct infusion on a QExactive mass spectrometer (Thermo Scientific) equipped with a TriVersa

NanoMate ion source (Advion Biosciences). Samples were analyzed in both positive and negative ion modes with a resolution

of Rm/z = 200 = 280000 for MS and Rm/z = 200 = 17500 for MSMS experiments, in a single acquisition. MSMS was triggered by

an inclusion list encompassing corresponding MS mass ranges scanned in 1 Da increments (Surma et al., 2015). Both MS and

MSMS data were combined to monitor EE, DAG and TAG ions as ammonium adducts; PC as an acetate adduct; and PA, PE,

PG, PI and PS as deprotonated anions.

Data were analyzed with in-house developed lipid identification software based on LipidXplorer (Herzog et al., 2012; Herzog et al.,

2011). Data post-processing and normalization were performed using an in-house developed data management system. Only lipid

identifications with a signal-to-noise ratio > 5, and a signal intensity 5-fold higher than in corresponding blank samples were consid-

ered for further data analysis.

Protein purification
Eschericia coli strains BL21 or Rosetta pLysS were used as a host cell line. Expression of recombinant protein was induced with

0.1-1 mM IPTG at 22�C or 37�C. The cell pellets were collected and resuspended in ice-cold homogenization buffer (50 mM Tris-

HCl pH 6.8, 300 mM NaCl, 1 mM dithiothreitol (DTT), 0.1 mM AEBSF, and complete EDTA-free protease inhibitor). Cells were

then disrupted by sonication in ice-cold homogenization buffer. The homogenized cells were centrifuged at 20,800 3 g for

30 min to remove cell debris. GST recombinant proteins were purified with glutathione-Sepharose and cleaved from GST by using

0.1 U/ml PreScission protease. Untagged proteins were dialyzedwith dialysis buffer (50mMTris-HCl pH 6.8, 150mMNaCl, and 1mM

DTT) three times and then dialyzed with storage buffer (50 mM Tris-HCl pH 6.8, 150 mM NaCl, 2 mM DTT, and 50% glycerol) and

stored at �80�C before analysis. For purification of His-tagged zPIP5K1Aa (49-431aa), 10 mM imidazole was additionally added

to homogenization buffer to reduce non-specific binding. His-tagged recombinant proteins were purified with Ni-NTA Agarose,

eluted by 80 mM and 160 mM imidazole and dialyzed as shown above.

Preparation of NBD-PHPLCd Proteins
Rat PLCd (NP_058731, 11-140 aa) cDNA (1x PHPLCd) was amplified by PCR and subcloned into pGEX-6P-1. PHPLCd V58C/pGEX6P-1

was prepared by introducing point mutations for NBD labeling. GST-PHPLCd V58C protein was purified as described above. After

cleavage of GST tag, untagged PHPLCd V58C was dialyzed in TBS (50 mM Tris-HCl pH 6.8, and 150 mM NaCl) three times to remove

DTT, and then labeled with a 10-fold excess of IANBD-amide. After overnight incubation at 4�C, the reaction was stopped with 4 mM

cysteine and residual IANBD-amide was removed by dialysis (50 mM Tris-HCl pH 6.8, 150 mM NaCl, and 1 mM DTT). NBD-labeled

proteins were mixed with equal volume of glycerol and stored at �80�C before analysis.
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Liposome preparations
Lipids weremixed at the desiredmolar ratio and the organic solvent was removed in a rotary evaporator. The lipid filmswere hydrated

in buffer A (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT, 0.2 mM EDTA, and 1 mM EGTA) for 30 min at room temperature or at

65�C for liposomes containing saturated lipids. The suspensions were sonicated in a bath sonicator or extruded through polycarbon-

ate filters of the indicated pore size using a mini-extruder (Avanti Polar Lipids). Liposomes were used within 1 day.

Real-time PIP 5-kinase assay
PIP 5-kinase reactions were carried out in buffer A (50mMTris-HCl pH 7.5, 150mMNaCl, 1mMDTT, 0.2mMEDTA, and 1mMEGTA)

supplemented with 2mMMgCl2 and 80 mMATP andmeasured with a Fluoromax spectrometer (HORIBA Scientific). Briefly, the sam-

ple (150 ml) containing liposomes (400 mM total lipids) weremixedwith PIP5K (final conc. 60 nM except as indicated in Figure S2C and

S3G-H) and NBD-PHPLCd (final conc. 400 nM) in a 200 mL quartz cell. After 5 min, 15 mL of MgCl2 was added (final conc. 2 mM). At

2 min later, the reaction was initiated by adding 15 mL of ATP solution (final conc. 80 mM). NBD fluorescence (ex/em 468 nm/530 nm)

was recorded every second. The excitation and emission slits were set at 5 nm bandwidths. We calculated an increase in signal of

NBD fluorescence (DEm530, raw data) from thatmeasured before ATP addition. To subtract the contribution of liposomes alone, a back-

ground signal of NBD fluorescence (DEm530, BG) was measured with the NBD-PHPLCd in the presence of 0% PI4P liposomes. Finally,

an NBD signal increase dependently of PIP5K reaction was calculated by using this equation:DEm530 =DEm530, raw data -DEm530, BG.

Data were analyzed by using RStudio or an Excel VBA macro. To determine initial velocities of PIP5K reaction at different substrate

concentrations, DEm530 data were analyzed by using GraphPad Prism software and a slope of the initial portion of the regression

curve was used as an individual initial velocity. Then, initial velocities of PIP5K reaction were fitted to an allosteric sigmoidal kinetic

model to obtain the apparent Km and Vmax values by using Graphpad Prsim software.

ADP-Glo kinase assay
PIP 5-kinase reactions were carried out as in the real-time assays except with 8 mMATP. ADP-Glo assays were performed according

to themanufacturer’s instructions. Briefly, a part of reactionmixture (25 ml) wasmixedwith 25 mL of ADP-Glo reagent. After a 40min of

incubation, 50 mL of Kinase Detection Reagent was added and further incubated for 30min. Luminescence signal was recorded using

a Tecan infinite F200 microplate reader. Non-specific background signals independent of PIP5K activity were subtracted by using

liposomes lacking PI4P.

Malachite green phosphate assay
Amalachite-molybdate solution wasmade freshly by mixing amalachite green solution (0.03175%malachite green and 0.35%poly-

vinyl alcohol) andmolybdate solution (3.46% ammoniummolybdate and 11.2% (v/v) concentrated sulfuric acid) at a ratio of 64 to 86.

To measure free phosphate levels during the PIP5K reaction course, 100 mL of PIP5K reaction mixture wasmixed with 150 mL of mal-

achite-molybdate solution. Absorbance at 595 nm was measured using a Tecan infinite F200 microplate reader. Phosphate levels

were determined using a phosphate standard.

Liposome sedimentation assay
Sedimentation assays were carried out in buffer A (50mMTris-HCl pH 7.5, 150mMNaCl, 1 mMDTT, 0.2mMEDTA, and 1mMEGTA)

supplemented with 2 mMMgCl2. Briefly, liposomes of defined compositions (400 mM total lipids) weremixed with zPIP5K (final conc.

130 nM). After 15min at room temperature, themixture was centrifuged at 20,800 x g for 30min. The supernatant and pellet fractions

were solubilized with SDS-PAGE sample buffer and heated at 95�C for 5min. The supernatant and pellet fractions were separated by

SDS-PAGE and transferred to nitrocellulose membranes. Immunoblot analysis was performed with an anti-His antibody and visual-

ized with Super-Signal West Pico Chemiluminescent substrate to detect the zPIP5K-His protein. Signal intensities were analyzed

using the LAS-4000mini image analyzer and Fiji/ImageJ.

in vitro FRET assays
Liposomes (400 mM total lipids) were mixed with CFP-C2Lact (400 nM) and Venus-P4C (400 nM) in buffer A (50 mM Tris-HCl pH 7.5,

150 mMNaCl, 1 mMDTT, 0.2 mM EDTA, and 1 mM EGTA) supplemented with 2 mMMgCl2. After incubation for 5 min, fluorescence

spectra were recorded using a Fluoromax spectrometer. CFP signal (ex/em 433 nm/476 nm), Venus signal (ex/em 505 nm/ 528 nm),

and FRET signal (ex/em 433 nm/528 nm) were measured. The excitation and emission slits were set at 5 nm bandwidths. We

analyzed CFP or Venus proteins alone at several different concentrations and found that 42.38% of CFP signal and 3.206% of Venus

signal bled through into the FRET signal in our experimental conditions. Based on those results, corrected FRET values were calcu-

lated using the following equation: cFRET = FRET – 0.4238*CFP – 0.03206*Venus.

Quantitative membrane binding assay using Dansyl-PE liposomes
Liposomes (400 mM total lipids) containing 2mol%Dansyl-PEweremixedwith Venus-C2Lact (400 nM) or Venus-P4C (1 mM) in buffer A

(50mMTris-HCl pH 7.5, 150mMNaCl, 1 mMDTT, 0.2mMEDTA, and 1mMEGTA) supplemented with 2mMMgCl2. After incubation

for 5min, fluorescence spectra were recorded using a Fluoromax spectrometer. Tryptophan (Trp; ex/em 280 nm/350 nm), Dansyl (ex/

em 330 nm/ 510 nm), and FRET signals (ex/em 280 nm/500 nm) were measured. The excitation and emission slits were set at 5 nm
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bandwidths. We analyzed Venus-C2Lact, Venus-P4C or Dansyl-PE liposomes alone at several different concentrations and calcu-

lated a background signal and amount of bleed-through signals into the FRET signal in our experimental conditions. Based on those

results, corrected FRET values were calculated using the following equation: cFRET = FRET – 0.0678*Trp – 0.3316*Dansyl – 1674, for

Venus-C2Lact; cFRET = FRET – 0.2195*Trp – 0.3316*Dansyl – 1674, for Venus-P4C.

Plasma membrane integrity assays
Yeast strainswere grown tomidlog phase at 26�Cand shifted to 42�C for 15min as indicated. 1OD600 equivalent of cells was pelleted

and resuspended in PBS, and cells were stained with propidium iodide for 15 min. Cells were then washed twice with ddH2O and

analyzed by flow cytometry (BD Accuri C6). For each condition, 50,000 cells were counted in duplicate in three independent exper-

iments. Background was determined by analyzing each of the cell strains at the indicated temperatures prior to staining with propi-

dium iodide.

Atomistic simulations
We modeled a 24-mer peptide (LQSYRLVKKLEHSWKALLHDGDTV) from the phsophatidylinositol-4-phosphate 5 kinase (Q503I3)

into a a-helical conformation using the UCSF CHIMERA software package and aligned it along the x axis, centered at the origin.

We used CHARMM-GUI to set up the atomistic plasma membrane model systems with CHARMM36m (Huang et al., 2017). All sim-

ulations were run using the GROMACS 2018 software package. N- and C-termini were neutralized (residue types NNEU and CNEU,

respectively), whereas H391 and H398 were protonated. We embedded the peptide into the lipid headgroup region by translating it

by 16 Å along the z axis. Ionswere added to a total concentration of 150mMNaCl, after neutralizing the systemwith counter ions. The

resulting membrane containing cholesterol has the following molar composition (the number in brackets reports the number of mol-

ecules for each lipid species): 69%mol POPC [414], 20%mol cholesterol [120], 10%mol DOPS [60], 1%mol polyunsaturated bPI4P

(SA-PI4P) [6]. We energy minimized all systems with steepest descent and performed equilibration in subsequent steps. First the

system was equilibrated in a canonical (NVT) ensemble with an integration time step of 1 fs for 25 ps, maintaining a constant tem-

perature of 310 Kwith the Berendsen thermostat. In this phase, position restraints of 1000 kJmol-1nm-2 were applied to all lipid heavy

atoms, whereas restraints on protein backbone heavy atoms were lowered from 4000 to 2000 kJmol-1nm-2. The Berendsen barostat

was used to keep a constant pressure of 1 bar in the isothermal isobaric (NPT) equilibration for the first 25 ps with a time step of

1 fs (Berendsen et al., 1984). All subsequent equilibration steps were performed for 300 ps with a time step of 2 fs. Here, lipid position

restraints were decreased from 400 to 0 kJ mol-1nm-2 and protein position restraints were decreased from 1000 to 200 kJ mol-1nm-2.

No restraints were applied on the systems during the production simulations. The temperature and pressure were kept constant at

310 K and 1 bar using the Velocity Rescale thermostat (Bussi et al., 2007) and Parrinello-Rahman barostat (Parrinello and Rahman,

1980) with a semiisotropic pressure coupling, applying each on the protein, solvent and membrane with characteristic times of 1 and

5 ps, respectively. All non-bonded interactions were cutoff at 1.2 nm throughout simulations.

Analysis of lipid localization
We discretized the position of each lipid on a two-dimensional grid by using the x and y coordinates of phosphate moieties

(phospholipids) or oxygen atoms (cholesterol), using a bin width of 1 Å and sampling every 250 ps. We used an in-plane least-square

fit of the protein backbone C atoms of the 5Kloop helical peptide to a reference structure aligned along the x axis, to obtain a two-

dimensional in-place rotational angle for every frame. The two-dimensional grid was rotated by the calculated angle about the

axis orthogonal to the lipid bilayer plane and interpolated using a third order spline. The grid was extended and cropped after the

rotation in every frame, taking into account periodic boundary conditions, to keep the original dimensions. Finally, we obtained

the reported lipid localization densities by averaging all two-dimensional grids along the entire trajectory ignoring the first 100 ns.

Trajectory analysis
We used VMD, GROMACS, MDAnalysis, NumPy, SciPy, IPython, and Matplotlib for the analysis and visualization of trajectories.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was carried out using GraphPad Prism 6. To compare the mean of two groups, an unpaired two-tailed t test was

used. To compare the mean of multiple groups, we used one-way ANOVA followed by Tukey-Kramer multiple comparisons.

DATA AND CODE AVAILABILITY

The raw imaging data have been deposited in Mendeley Data and can be accessed: https://doi.org/10.17632/x96sprmwrg.1.
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