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Abstract. Agent-based modelling (ABM) can be used as a computational tool to model human routing behaviour, and offers
particular promise when combined with insights from cognitive science. In this paper, we introduce typical errors into the encoding
of the agents mental representation of the environment. This method deviates from the classical computer science paradigm of
optimality to capture human behaviour more accurately. By incorporating common distance and direction estimation errors, our
model produces routes with fewer computational artefacts such as zigzagging (i.e., turning more often than the typical human) and
bottlenecks (i.e., routing through one particular node that maximises efficiency). We demonstrate our results in regular and irregular
environments and validate our model using a set of real-world footfall data from Westminster, London.

INTRODUCTION

A route is often considered to be a sequence of intermediate locations between a start location to a goal location [1].
In computer science, routing is formulated as the Shortest-Path problem [2] and classically solved with Dijkstra’s
Algorithm [3] and successors such as A* [4]. In cognitive science, routing is embedded in wayfinding and involves
acquiring, processing, and applying new spatial knowledge [5]. Unlike in computer science, wayfinding is generally
not least effort, shortest path or distance minimising [6]. The Shortest-Path Problem on a graph in computer science
and the production of a route as application of procedural rules in spatial cognition are indeed homologous. The
present approach is to use models from spatial cognition in order to adjust the cost function of the Shortest-Path
problem and mimic human behaviour.

According to the spatial cognition literature, human wayfinding involves objectively suboptimal, but subjectively
appropriate, decisions. For example, participants consistently underestimate the distance to goal locations [7] and
deviate when indicating the direction to goal locations [8]. Such errors are cumulative as more segments along the
same route are considered [9]. While human wayfinding is not optimal in the computational sense, it seems that
they minimise their effort with respect to a possibly distorted mental representation in order to produce a route [10].
Such a reduction of effort has been described as satisficing [11] or cognitive miserliness [12] and is characterized by
matching cognitive effort to the minimal requirements of a task, thus economically balancing cognitive costs with
outcome value.

Finding an optimal route between two points A and B is a well-known problem in computer science called the
Shortest-Path problem [2] in which the environment is abstracted into nodes (decision points) and edges (distances).
Formally, for a graph G = (V, E), a path is defined as a sequence of vertices P,,,, = (Vi,V2,....,v,) € VXV X .. XV
such that there is a connecting edge e;;+; = (v;,viy1) € E for 1 < i < n between vertices along the sequence. The
shortest path Pj, is defined between two vertices s, t € V such that under an edge weight functiond : E — R the sum
of weights along the path is minimal, see Eq. 1. For a more detailed discussion, see [13, p. 151].

n-1

Py, s.t. argmin Z d(eiir1) M

eiir1€Pg,; i=1
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The main improvements for the classical Shortest-Path solution [3] are grouped together as incremental heuristic
search algorithms [2, 14], e.g. A* algorithm [4]. The A* algorithm adds a heuristic containing “extra knowledge
about the problem domain” [15, p. 48] and as such is also a best-first search algorithm. Specifically, a cost function
¢; 'V — Ris added to Eq. 1 that approximates the remaining cost to reach the goal vertex ¢. If the heuristic cost
function c is consistent or monotone (i.e. it satisfies the inequality c(v;) < d(e;i+1) + c(viy1)) then A* does not need to
revisit nodes to converge. A typical monotone heuristic function is the Euclidean distance.

Although the A* algorithm does not always produce the best solution, it is the most prevalent in the literature
[16, 17]. Several other solutions to the Shortest-Path problem have been proposed, including variants of A* [18, 19,
20, 21, 22]), the D* algorithm family [23, 24], the Bellman-Ford algorithm and derivatives [25, 26, 27, 28], and
the Floyd-Warshall algorithm and derivatives [29, 30, 31, 32, 33, 34]. These algorithms are rarely applied to ABM
modelling due to their extended complexity.

For the present paper, we apply ABM to test theories of human spatial representation by transforming the graph
employed for routing according to common wayfinding errors. We demonstrate that our cognitive routing model (i.e.
C*) provides distinct routing behaviour compared to previous Shortest-Path solutions (e.g. A*).

METHODS

For this paper, we modify the heuristic of the A* Algorithm by replacing the objective criteria (i.e. Euclidean distance)
in order to capture cognitive encoding errors while maintaining a minimisation criteria [10]. These errors are based
on two key observations. First, the configurational knowledge encodes the relative positions and directions between
points to establish a layout [35]. Second, variations in memory are systematic in that experimental observations have
shown consistent properties of the error terms. We decompose the error into distance errors and direction errors.
Distance errors typically result from perceived distances being shorter than actual distances [36] (see Stevens [37]
and Eq. 2 for the formalisation). Empirical estimates of the coefficient are § = 0.95 + 0.2 [38, 39]. Direction error
has been studied previously (e.g. [40, 41]) but was only recently quantitatively formalised [8] as a circular normal
distribution (i.e., [42]). The probability of an agent remembering the correct direction is parametrised as a mean y = 0
and a concentration k. When « = 32 there is a standard error of 30 (cf. [40, 41]). The von Mises distribution is shown
in Eq. 3 with /j as the modified Bessel function [43].

These errors are modelled with a two-tiered representation [44] in which reality (facts regarding the environment)
is represented separately from the agent’s cognition (beliefs regarding the environment). If an agent’s beliefs were to
match the facts, C* equals A* in execution. C* typically differs from A* as it uses an adapted distance estimation
function to represent beliefs. The agent may have incorrect beliefs about the destination (routing towards a different
location) or intermediate nodes (routing inefficiently). The influence of these errors decreases as agents approach the
destination.

The C* algorithm is implemented with memory and routing components. The memory component maintains the
agents’ beliefs regarding known locations at a space cost O(|V|) per agent. For each known location, we shift the
coordinates along a polar coordinate system with the agent at its origin. Distance and direction errors are computed
based on Eq. 2 and Eq. 3. In Eq. 4, the rotation R represents a draw from the von Mises distribution. Based on
Huttenlocher, Hedges, and Duncan [45], each new draw only contributes at a rate of ¢ = 0.2 to the remembered
location, see Eq. 5. The exact values of all parameters were based on the literature but still chosen somewhat arbitrarily
as no empirical verification has yet been conducted.

d(x) = # 2)

P, k) = Sl 3)

X = MOIR - x )

x;pdate = 6xx +(1- 6)xz’1ld ®)
SIMULATION AND RESULTS

C* is embedded in the MomenTUM framework for pedestrian ABM [46] and is available at
https://github.com/jugdemon/MomenTUM. Agents in MomenTUM have a cognitive model called Spice
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FIGURE 1. Regular Environment — The layout of the environment (a). Heatmaps of the C* agents (b) and A* agents (c).

(i.e. Spatial sequential choice) that explicitly models perception, memory, and interaction with other agents [47]. Our
simulations ran for 60 minutes with 1 second time steps and were repeated 1000 times. We compared the routing
behaviour between A* and C* using regular and irregular layouts, see Figure 1. In addition, we used a layout based
on Westminster London to compare the results of A* and C* to aggregated footfall data.

The simulations were analysed with respect to 2D-histograms that were generated over each layout and summed
over a sample of runs. To evaluate the two-sample comparisons of multivariate data, we used kernel density estimates
(KDE) [48]. To test the null hypothesis Hy : f; = f>, a test statistic is derived from a discrepancy measure [49]
comparing the intrasample pairwise differences to the intersample pairwise differences [48]. Rather than relying on
overly large samples that increase the sensitivity of statistical tests to noise, Lee et al. [50] suggest to compute the
minimum sample size at which properties converge. We determined convergence by varying the number of summed
simulations required to robustly identify that two non-overlapping samples with the same routing algorithm belong to
the same distribution. We used the minimum sample size 750 to determine that C* and A* are not forming the same
distribution in all layouts (p <= 0.046).

The 2D-histogram over the traces of all agents, shown in Figure 1, reveals more diverse route choices with C*.
Instead of only moving along the shortest path (as with A*), the agents more often choose non-optimal routes, but
highly unlikely routes are still rarely chosen. In addition, A* exhibits computational artefacts such as zigzagging (i.e
agents turn more than humans) [51, 52]s and bottlenecks (i.e. all agents try to pass through the same minimising point
based on diagonal distance instead of a L1 distance (Manhattan Distance) [53]). In general, the C* agents prefer more
straight lines. The distortions in their mental representations are large enough to subdue zigzagging and bottlenecks as
C* agents do not account for the minimal improvement provided by the diagonal path. In contrast, A* agents consider
even minimal differences in the configuration space to decide for the optimal route.

We also compared both algorithms to real world data for validation and verification [54]. The data was drawn
from the Consumer Data Research Centre’s repository of footfall data, collected over a month by SmartStreetSensors.
By tracking individual (anonymised) mobile phones, we were able to recreate the flow of individuals between a series
of locations. Extracting the entrance and exit locations associated with our samples of individuals, we compared the
flow through various intermediate locations and exit locations with that of the real data (results not shown).

DISCUSSION AND FUTURE WORK

We have shown that C* agents and A* agents differ in their behaviour visually as well as statistically. Optimisation ar-
tefacts in A* such as zigzagging and bottlenecks is substantially reduced for C*. This can be ascribed to the difference
in memory for the two routing algorithms because C* is more “fuzzy” and allows agents to “change their mind” in the
process of navigating without changing strategy. This contrasts with previous models that only allowed for explicit
re-routing based on a general re-evaluation of goals and perception.

ABM is a useful tool to understand models in cognitive science. Assumptions regarding the mind can be ri-
gorously tested by comparing the behaviour of the model with empirical data [55]. For the present study, we applied
theories from cognitive science to propose a more adequate model for simulating human navigation behaviour. The

250005-3



work focuses on the process of routing itself and does not include other confounding variables such as learning. We
also successfully demonstrated that including an agent’s uncertainty in memory into the model produces a more varied
result and allows us to more effectively model real behaviour.

This paper suggests many opportunities for further research, both for cognitive science as well as computer
science. While the theoretical models used are widely established in cognitive science, implementing them in ABM
has exposed several gaps in the literature. ABM has stagnated with a set of classical models that may not hold upon
closer inspection, and there is much remaining potential to expand ABM to reflect human behaviour more accurately
using input from cognitive science.
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