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Abstract 41 

Several remote-sensing missions will soon produce carbon maps over all terrestrial ecosystems. 42 

These missions are critically dependent on accurate and representative in situ datasets for the 43 

training of their algorithms and product validation. Long-term ground-based forest monitoring 44 

systems are limited, especially in the tropics. Ground-based observation systems are critical for 45 

the remote-sensing missions, and they need to be maintained at least over the lifetime of the 46 

planned missions. Here we propose a strategy for a coordinated and global network of in situ 47 

data that would benefit biomass remote sensing missions. To produce accurate ground-based 48 

biomass estimates, strict data quality must be guaranteed to users and ground sites need to be 49 

regularly re-visited. It is more rewarding to invest ground resources at sites where there currently 50 

is a guarantee of a long-term commitment locally, and where a core set of data is already 51 

available. We call these ‘supersites’. Long-term funding for such an inter-agency endeavour 52 

remains a critical challenge, and we here provide costing estimates to facilitate dialogue among 53 

stakeholders. One critical requirement is to ensure in situ data availability over the lifetime 54 

of remote-sensing missions. To this end, principal investigators of the sites should be involved 55 

early on, and long-term funding should be assured. 56 

 57 
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1 Introduction 59 

 60 

The global carbon cycle is being altered by anthropogenic activities: carbon dioxide and other 61 

economy-related greenhouse gas emissions have steadily increased since the 1960s (Le Quéré et 62 

al. 2018). This has already had detectable consequences on the mean temperature of our planet 63 

(IPCC 2013). Land ecosystems hold a large potential for carbon storage.  For example, it has 64 

been estimated that allowing Neotropical secondary forests to regenerate, without further human 65 

intervention, may enable Latin America and the Caribbean to be carbon-neutral for decades 66 

(Chazdon et al. 2016). Also, protecting intact forests is essential to ensuring carbon storage and 67 

many other ecosystem services (Pan et al. 2011). Thus, conserving existing intact forests, in 68 

combination with restoring and managing sustainably degraded forests is almost certain to be a 69 

key action to help meet the Paris Accord targets. The idea of financially incentivizing local and 70 

national initiatives to spare forest land and favour reforestation has thus received further 71 

attention, as evidenced by the United Nations’ Reduced Emissions from Deforestation and forest 72 

Degradation (REDD+) program.   73 

 The REDD+ framework is predicated on the ability to measure the differential amount of 74 

carbon stored in land ecosystems as a result of a change in policy compared to a defined 75 

business-as-usual scenario. This presupposes that instruments and methods are in place for 76 

monitoring, reporting and verification of land carbon budgets, yet there remain great challenges 77 

in this area. In many temperate countries, which have largely built their political system around 78 

wood as a key commodity, elaborate systems of forest resource assessment and management 79 

were established early on, and they have been operated by national forest services. Thus, 80 

nationally determined carbon contributions are relatively reliable in the temperate zone, where 81 

forest biomass stocks are based on well-established sample-based forest inventories (Fridman et 82 

al. 2014). However, the political history of many tropical or subtropical countries has been such 83 

that national forest inventory systems are either young or absent, in spite of efforts by the FAO to 84 

set up such systems in several countries since the 1990s (Schimel et al. 2015). This situation is 85 

now changing, with national forest inventories being developed in Brazil and the Democratic 86 

Republic of Congo (Xu et al. 2017).  87 
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 Remotely sensed approaches to estimate carbon stocks have emerged as a solution to this 88 

problem, and several missions are planned in the 2018-2022 period, including BIOMASS (P-89 

band radar satellite by ESA), NISAR (L-band radar by NASA and ISRO), and GEDI (lidar 90 

onboard the ISS by NASA). These missions will not measure carbon stocks directly, but they 91 

will use proxies of forest structure, volume, and biomass components that correlate with the 92 

aboveground carbon stocks. Canopy height is measured by lidar and polarimetric interferometry, 93 

and tall forests tend to hold more carbon than shorter ones. The second physical quantity related 94 

to forest carbon store is the wood volume and water content which influence the backscattered 95 

electromagnetic energy measured at P-band (~70 cm) or L-band (~25 cm) wavelengths (LeToan 96 

et al. 2011, Saatchi et al. 2011, Shugart et al. 2010). Thus, these missions will collect data that 97 

can be empirically related to forest carbon content. 98 

Because forest carbon stores are indirectly inferred from satellite sensors, with 99 

questionable assumptions about their dependence on forest structure and water content, it is 100 

essential that the planned missions make use of accurate ground estimates of carbon stocks to 101 

train their inversion algorithms and validate their products. However, estimating biomass on the 102 

ground is a challenge in itself and ecologists and foresters have struggled with this problem for a 103 

long time. Inevitably, providing inaccurate carbon stock estimates to the Earth Observation (EO) 104 

community will result in uncertain (and potentially biased) carbon maps, and this would have 105 

serious downstream effects on the usefulness of these maps in policy. For instance, even though 106 

pantropical biomass maps inferred from remote sensing have been available for some time now 107 

(Saatchi et al. 2011, Baccini et al. 2012), the IPCC has been reluctant to recommend their 108 

widespread use over national inventories because of possible calibration issues. Here, we offer a 109 

perspective from the ground up, and propose a strategy for gathering reliable ground-based 110 

measurements and biomass estimates that will be useful to the various Earth Observation 111 

missions aimed at quantifying forest structure and carbon stock at a global scale.  112 

 Overarching principles are summarized here, and echo meetings jointly held on ground 113 

data and upcoming land Earth Observation missions (NASA-ESA-Smithsonian Workshop, 2016; 114 

ISSI ESA meeting, Bern, 2017). First, the focus of all of these missions is primarily tropical. 115 

Many forested extra-tropical countries already have a forest inventory assessment in operation. 116 

In contrast, ground-based monitoring systems are sorely lacking in the tropics (Schimel et al. 117 

2015). Forest extent in the tropics is still very substantial, by far the most living biomass is 118 
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located in the tropics (63% of carbon in intact tropical forests, against 15% in boreal forests and 119 

13% in temperate forests, according to a comprehensive estimate, Pan et al. 2011). Second, in 120 

order to map change in forest ecosystems, ground sites need to be regularly re-visited (Frolking 121 

et al. 2009). It is impossible financially and logistically to maintain thousands of sites without 122 

long-lasting governmental or international support. These observation systems need to be 123 

maintained at least over the lifetime of the planned missions, but it is likely that they will find 124 

even greater value if made permanent through binding agreements – here we provide costing 125 

estimates to facilitate the discussion of this question, while acknowledging that informed 126 

recommendations for the calibration and validation of the missions  are dependent on the nature 127 

of the algorithm, on the resolution of the data, and on the mission duration, and are therefore 128 

beyond the scope of the present study. Third, estimating biomass correctly in situ remains a 129 

delicate business, and strict data quality control must be guaranteed to users.   130 

 131 

2 Principles of ground-based biomass estimation  132 

  133 

Aboveground biomass (AGB) is the total amount of dry matter of live trees held aboveground in 134 

a plot. It is a crucial parameter for a range of applications, including greenhouse gas accounting, 135 

forest fire assessment, management of the timber industry, monitoring of land-use change, and 136 

ecosystem science. Currently, accurate AGB estimates can be obtained only by labour-intensive 137 

fieldwork (plot inventories) conducted by trained operators. The AGB of each tree is estimated 138 

from measured variables using an allometric model AGB=f(,D,H), where  is the stem wood 139 

density of the focal tree, D its trunk diameter, and H its total height. Trunk diameter is usually 140 

measured at breast height (130 cm aboveground) in forests, but in non-forest habitats, trees tend 141 

to branch low, and standard measurements are lower, e.g. at 10 cm aboveground in Australia 142 

(Paul et al. 2016). For the largest trees, diameter needs to be measured above buttresses (Sillett et 143 

al. 2019).  Such allometric models are constructed from destructively harvested trees in which 144 

AGB and the other variables are all measured directly. Oven-dry biomass is approximately 47% 145 

carbon, the conversion from AGB to aboveground carbon stores is easy, and the two notions 146 

often used interchangeably. Importantly, a thorough and recent analysis of wood carbon content 147 

showed that carbon content varies predictably among plant functional types, and ranges from 148 
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41% to 51%, and this source of variation should be carefully considered (Martin et al. 2018). 149 

Since measuring wood density for each tree would be too labour-intensive, recent studies have 150 

used species-mean wood density values, taken from publicly available lookup tables. It follows 151 

that the reliable taxonomic identification of each tree is essential for an accurate estimate of its 152 

AGB.  153 

The tree-level AGB estimates are then summed across trees and over the plot, to produce 154 

an aboveground biomass value at the plot level, usually expressed in Mg/ha of dry matter. AGB 155 

is not measured in forests, but estimated (Clark and Kellner 2012), and errors due to the 156 

estimation of height, wood density, and choice of the allometric model usually result in a plot-157 

based AGB uncertainty that is non-negligible. AGB is estimated to within 50% absolute error for 158 

a single tree (Chave et al. 2014). This absolute error, when propagated at stand level, is around 159 

10% at the 1-ha scale (Réjou-Méchain et al. 2014).  160 

In most current applications, live belowground biomass is usually inferred from AGB 161 

using standard root-shoot ratios (Mokany et al. 2006, Paul et al. 2019). Although this poses 162 

important and specific challenges, the issue of estimating biomass components other than AGB  163 

(belowground biomass, soil carbon, coarse woody debris) is not covered in this contribution.  164 

In the past few decades, estimation of carbon stocks and AGB in the tropics has been 165 

based on permanent forest plots with measurements of tree trunk diameters, and often tree 166 

mapping and species identification of the trees. AGB can then be estimated per tree, and then 167 

summed over all trees in a stand (Brown and Lugo 1982, Brown 1997). Permanent sampling 168 

forest plots thus are the basic unit of biomass measurement. Their size ranges from 0.01 ha 169 

(10x10 m) to almost 100 ha (1000 x 1000 m). Within these plots, all trees above a given trunk 170 

diameter threshold (usually 10 cm) are censused. These trees are mapped (usually to the nearest 171 

m, or ideally better – but unfortunately quite often much less accurately), they are marked 172 

permanently with a tag, and their trunk diameter is measured at a standard position on the trunk 173 

(usually 130 cm above ground, or 50 cm above buttresses or irregularities, if present). The point 174 

of measurement is noted by a permanent paint mark. A sample of trees may also have their 175 

height dimension measured, and as far as possible, all trees are identified taxonomically. The 176 

numbers of trees ≥ 10 cm in one hectare of mature moist forest varies from 300 to 1000. The 177 
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number of tree species per hectare is up to 30 in temperate forests, and up to 300 in the tropics 178 

(Gentry 1988). Thus, species identification can be a considerable challenge.  179 

Temperate and boreal forests present different challenges than tropical forests, and 180 

several temperate countries can rely on National Forest Inventories constructed using statistical 181 

sampling theory. These are designed to provide inferences of biomass and other commodity 182 

values at regional or jurisdictional levels using a large number of small plots (Smith 2002).  183 

These plots can be used to validate the Earth Observation biomass products, but their use for 184 

algorithm development and training is more limited due to plot size and potentially large plot-185 

level uncertainty of ground biomass.  The challenge of mobilizing temperate-country ground 186 

data is an important one, but because most of the world’s high biomass forests are in the tropics, 187 

we here emphasize the tropical zone. We also note that vast regions like extratropical Asia are 188 

missing NFIs, and it would be important to better account for in situ forest information in these 189 

regions. 190 

Aerial lidar scanning (ALS) has been intensively used for estimating tropical forest 191 

biomass (Drake et al. 2002, Asner et al. 2010), and the literature suggests that if ALS data can be 192 

calibrated locally with permanent sampling plots, the resulting biomass maps are unbiased and 193 

reliable (they have a relative uncertainty of less than 20% at the 1-ha scale). Establishing high-194 

resolution biomass maps at 1000-ha (10 km2) scale would result in a 100-fold increase over plot 195 

data, and the 1000-ha scale is typically the area surveyed around permanent field stations in the 196 

tropics: this means that the sites are within walking distance and the ALS-derived biomass map 197 

can be thoroughly ground-truthed. However, since forests are constantly changing, algorithm 198 

training and validation of ALS data is impossible without near-contemporaneous fieldwork. 199 

 200 

3 High-quality carbon estimates require long-term study sites  201 

 202 

3.1 Forest dynamics and tree inventories  203 

Collections of small plots offer a representative sample of the landscape-scale variability of 204 

biomass, but lack the temporal dimension that is also critically important for understanding the 205 

system. Forest changes include (i) secular changes in mature forests driven externally by climate 206 
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(e.g. increasing/declining growth rate), (ii) sudden, stochastic changes (e.g., drought-, flood-, 207 

wind-, pest-, fire-induced mortality), (iii) successional development (e.g., savanna thickening 208 

into forest, floodplain forests). Anthropogenic impacts on forests are equally important, complex, 209 

and ubiquitous. As a result, it is not enough to use forest biomass estimates at a given point in 210 

time, but forests should be measured repeatedly in situ. Most existing permanent census plots are 211 

recensused by trained teams of foresters and botanists every 4-5 years, funds permitting, a 212 

monitoring revisit frequency that is sufficient if tree turnover rates are around 1-3%/yr.  213 

 Another reason for measuring forest stands repeatedly is that some measurement errors 214 

may affect biomass estimates far more than others. A small number of large trees hold a large 215 

fraction of the biomass in a stand, and these are the most difficult to measure in the field. 216 

Assume a 100 x 100 m stand of tropical forest contains around 500 trees of trunk diameter 217 

greater than 10 cm, and the oven-dry aboveground biomass is 300 tons or more, a typical 218 

situation in moist tropical forests. Thus, on average, a tree weighs 0.6 ton. However, the 219 

distribution of tree weights is hugely skewed, since according to one study conducted in intact 220 

tropical forests, 41% of the aboveground biomass was held in trees above 60 cm in trunk 221 

diameter (Lutz et al. 2018). In tropical forests, historical permanent plots were often established 222 

by botanists to explore plant diversity. Initially, little attention may have been paid to carefully 223 

measuring the largest trees, and plots were often located based on convenience more than based 224 

on a sampling protocol. Clark and Clark (2000) provided the first comprehensive study 225 

comparing different carbon sampling strategies in the tropical forest of La Selva, Costa Rica. 226 

They showed that measuring trunk diameter above buttresses was key to a proper estimate of 227 

AGB (see also Condit 1998). 228 

 It is essential to realize that for many sites, the history of the plots is complex and data 229 

quality may have changed over time. Therefore, the issue is not only to process pre-existing data, 230 

but also to critically appraise the field collection protocols to ensure that legacy data are made 231 

available and associated with an uncertainty assessment that accounts for the history of data 232 

acquisition, that varies greatly from site to site and among groups of data collectors. 233 

In the tropics, a major contribution is required from developing country scientists and 234 

technicians. The ground data they produce are hard-won, and need to be repeated at regular 235 

intervals. The participants in our plot networks span hundreds of tropical forested localities 236 
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across up to 50 different nations. Such work involves obvious logistical complexities of 237 

organizing ground data collection, institutional collaborations, intellectual property, permits and 238 

health and safety protocols to allow remote fieldwork and plant collection across so many 239 

countries while complying with protected area regulations. In addition, a key challenge is to 240 

harmonize datasets and differing existing ground biomass protocols. Consequently, because of 241 

this major effort and the heavy dependence on often specialized human labour, local researchers 242 

in charge of ground-based measurements must be involved as scientific collaborators, and field 243 

teams adequately trained, equipped, insured, and paid.  244 

 245 

3.2 Calibration and validation strategies for Earth Observation missions 246 

Several biomass EO missions are currently in the process of developing their algorithms or 247 

preparing their validation plans. This includes the GEDI mission, launched in December 2018 248 

(NASA), the NISAR mission (NASA-ISRO, launch in 2021) and the BIOMASS mission (ESA, 249 

launch in 2022). The ground data already collected as part of these efforts are remarkably 250 

similar, even if the requirements differ slightly.  251 

 The major requirement is that ground biomass values be available, based on intensive tree 252 

inventories, and reliable biomass estimation methods. EO missions have included requirements 253 

about quality assessment of these plot-based biomass estimates, because improperly estimated 254 

ground biomass values are not rare, and failure to account for unreliable data will result in 255 

serious problems in the calibration and validation plan.  256 

 The three teams in charge of ground data management for GEDI, NISAR and BIOMASS 257 

have recently shared their metadata. The GEDI science team, the most advanced, has assembled 258 

a dataset of 105 sites. These data were contributed by a variety of projects, and are thus in-kind 259 

contributions. They span the major biomes, and represent almost 1400 ha of surveyed plots, of 260 

which 40% are in the Neotropics (557 ha), 12% in Africa (173 ha), and 7% in tropical Asia (108 261 

ha). The NISAR mission cal/val team has assembled data for 77 sites, with quite some overlap 262 

with that of the GEDI science team. BIOMASS is the least advanced, including 6 sites, two in 263 

French Guiana (Neotropics) and four in Gabon, Africa (Labrière et al. 2018), and a total sampled 264 

area of 227 ha. In addition to permanent plot data, all three missions include airborne lidar 265 

scanning (ALS) in their ground dataset. ALS has been shown to be a critically component to EO 266 
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missions, because it provides invaluable information on forest structure, in a carefully 267 

georeferenced format, and this can be used to upscale plot-based biomass estimates to landscape-268 

scale biomass maps.  269 

 In comparison with these datasets, forest plot networks include far more information 270 

(Table 1). For instance, the Smithsonian Institute’s ForestGEO coordinates 245 ha of forest 271 

across 4 sites in Africa, and over 250 ha in tropical Asia (Anderson-Teixeira et al. 2015). The 272 

ForestPlots network (including Rainfor and AfriTRON, plus the Asian project T-Forces), 273 

managed by University of Leeds, coordinates no less than 400 ha of plots in Amazonia alone 274 

(Mitchard et al. 2014), and 315 ha in tropical Africa (Lewis et al. 2013). These two networks 275 

have almost no overlap, and they do not include independent large projects such as forest 276 

management experiments now coordinated by the Tropical managed Forest Observatory 277 

(TmFO), with almost 1200 ha of forests permanently monitored (Sist et al. 2015). Also, a 278 

network of secondary forest plots has been established in the Neotropics and coordinates effort 279 

on forest regeneration (Chazdon et al. 2016). Our estimate is that the area of tropical forests that 280 

are currently monitored globally is in excess of 2500 ha by these four networks, and not 281 

accounting for many more projects.  This however remains a minuscule fraction of the total area 282 

covered by forest worldwide, and the biomass estimation challenge is therefore one of upscaling.  283 

 284 

3.3 Super-sites  285 

Based on our knowledge of available data within the partners, it would be more cost-effective to 286 

prioritize a limited number of ecologically representative sites around the world. We call this the 287 

“supersites” concept. Such sites combine intensive and long-term fieldwork data, airborne 288 

vegetation monitoring, and ancillary information, such that reliable landscape-scale biomass 289 

estimation is possible (Figure 2). This idea of establishing long-term sampling sites with EO 290 

applications in mind is fundamentally the same as that of the US long-term ecological research 291 

sites (LTER) in place since the 1970s, and the International Biological Program (Golley 1993). 292 

The Committee on Earth Observing Satellites (CEOS) Working Group on Land Product 293 

Validation has officially endorsed a supersite concept not only for biomass, but to identify and 294 

promote the collection of validation data for the wide range of Essential Climate Variables 295 
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products that are currently available or expected in the coming years (see also Duncanson et al. 296 

this volume).  297 

 Meeting high data quality in the tropics is possible at or near research stations with 298 

existing infrastructure and resources, and with the potential to upgrade datasets, funds 299 

permitting. Based on previous experience with the TropiSAR campaign (French Guiana; Dubois-300 

Fernandez et al. 2012), and AfriSAR mission (Gabon), we propose that these supersites be 301 

selected based on the following specific requirements: (1) Availability of at least 10 already 302 

established 1-ha permanent sampling plots, ideally well-distributed across the landscape, 303 

capturing local gradients of biomass. The plots should be established according the best tropical 304 

forestry standards (see RAINFOR or CTFS protocols; e.g. Condit 1998); (2) Availability of tree 305 

height measurements at each of these plots (for all trees or at least a representative sample of 306 

trees); (3) Availability or potential future collection of ALS coverage over at least 1000 ha, 307 

flown over the permanent plots, with minimal quality requirements (ie such that 1-m canopy 308 

elevation models can be constructed); (4) Availability of a weather station and, optionally, 309 

automated soil moisture monitoring (ideally encompassing the landscape-scale variation of soil 310 

moisture). 311 

We also propose to implement terrestrial lidar scanning (TLS) surveys of the permanent 312 

plots. TLS surveys are no substitute for forest tree inventories, but they have the potential to 313 

complement them usefully: they provide an accurate measure of tree volume at tree scale, a 314 

reliable measure of total tree height, and an accurate correction of stem geolocation (relative, at 315 

stand scale). They also give access to the details of forest structure, that may be important in 316 

modelling canopy reflectance at these sites (Calders et al. 2018). This considerably increases the 317 

quality of the key plot data on which all of the other estimates rely. The resulting tree volume 318 

data can also be used to augment existing allometric relationships used to generate tree biomass 319 

estimates, particularly across a much larger range of tree size and including many more large 320 

trees (Disney et al. 2018). Tree volume and tree weight may differ significantly in the case of 321 

hollow trunks, and large trees tend to be more often hollow than small ones (Nogueira et al. 322 

2006, Réjou-Méchain et al. this volume). Recently, drone-based alternatives for terrestrial lidar 323 

scanning have been proposed and they present the additional advantages of scanning the canopy 324 

tops, and of producing already stitched point clouds, over large areas typically several hectares 325 
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(Brede et al. 2017). While this technology still requires development, it would be important to 326 

explore its applicability to the establishment and monitoring of forest supersites.  327 

 328 

3.4 Drivers of biomass stocks and geographical coverage  329 

Forest structure varies at all spatial scales. Determining the optimal sampling strategy for Earth’s 330 

forests requires research into the drivers of biomass stocks, which in turn depends on spatially 331 

explicit maps of forest structure that will not be available until the new mission products come 332 

online. It is difficult to segment tropical forests worldwide into forest types that would both make 333 

ecological sense and would be optimal for the training of biomass retrieval algorithms. For 334 

instance, two forests may have a similar structure, yet display species with different wood 335 

densities, resulting in very different biomass estimates (Phillips et al., this volume). Also, the 336 

forest lower canopy may play a significant role in the radar backscattering properties, and, like 337 

wood density, this is not readily assessed remotely.  338 

We therefore provide ecologically-informed guiding principles for the selection of sites. 339 

Tropical forests vary in their structure and floristic composition, and this in turn impacts their 340 

biomass storage capacity (Malhi et al. 2004, Stegen et al. 2011). The four main driving factors of 341 

this variation are soil fertility, moisture supply, elevation, and disturbance regime. Thus, forests 342 

often hold less biomass on very infertile or very fertile soils (Castilho et al. 2006). Also, dry 343 

tropical forests have less biomass, but there is also potentially a hump-shaped distribution of 344 

biomass with respect to annual precipitation whereby ever-wet forests tend to have lower 345 

biomass stocks than moist forests (Brown and Lugo 1982). Elevation is another important factor, 346 

and biomass usually declines with increasing altitude, although some exceptions exist, for 347 

example when trees of the oak family are present (Phillips et al. 2016). Finally, disturbed forests 348 

have a lower biomass than undisturbed ones.  The foremost cause of disturbance in the tropics is 349 

anthropic, but other causes exist including wildfires, wind storms, insect predation or diseases, 350 

and the frequency and intensity of natural disturbance exerts a critical control on intact forest 351 

wood density and biomass (Keeling and Phillips 2007, Johnson et al. 2016).  352 

In addition, tropical forests have almost zero floristic overlap between the Neotropics 353 

(South America), Africa, Asia, and Oceania (including Papua New Guinea and Australia), with 354 

each biogeographic region having thousands of tree species whose architecture and unique 355 
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identity helps to determine forest structure and biomass in that region. Assuming that three 356 

conditions (low, medium, high) are selected for each of the four major gradients in each of the 357 

four continents, the number of possibilities is 4x34 = 324. 358 

Practically, when selecting sites for algorithm training or product validation, it is essential 359 

to include the full range of variability in biomass, i.e. high-biomass forests, typically moist 360 

tropical forests with biomass stocks more than 300-400 tons/ha, and up to 600 tons/ha, but also 361 

low-biomass forests, typically less than 100-200 tons/ha. For instance, a relatively young 362 

secondary forest of ca. 20 years regrowing from clear-cutting holds about 100 tons/ha in tropical 363 

areas (assuming an accumulation rate of 5 tons/ha/yr). Also, woodlands store 30-150 tons/ha. It 364 

would be important to include both secondary vegetation in the study landscapes, and to select 365 

dry vegetation types. These vegetation types are particularly important for the NISAR mission, 366 

which aims at estimating biomass up to 100 Mg/ha, above which L-band backscatter signals 367 

saturate with respect to biomass.  368 

 369 

4 Building on long-term forest plots  370 

 371 

4.1 The Forest Observation System  372 

Permanent plots provide the most accurate method for forest biomass estimation, which not only 373 

depends on biometric variables, but also on wood density (species-dependent). Many sites across 374 

the forested tropics have on the order of ten 1-ha plots, scattered around a landscape, because this 375 

sampling intensity is manageable. Much larger sampling intensities do exist but they are rare. 376 

Further, plots are often not established randomly in space.  377 

 The European Space Agency has funded the Forest Observation System (FOS) as an 378 

effort to coordinate in situ activities in relation with the BIOMASS mission. The FOS includes 379 

several large international consortia who are addressing the issues of ground data sharing and 380 

standardization: ForestPlots.net (including RAINFOR, AfriTRON, and T-FORCES; led from the 381 

University of Leeds), ForestGEO (including CTFS; Smithsonian Institution). These consortia 382 

both have a solid record in tackling key scientific questions, in engaging a community of 383 

collaborators and in standardizing forestry data. For up to 40 years now, they have been devoted 384 
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to coordinating long-term research with permanent sampling forest plots. They have (i) 385 

established permanent sampling plots in tropical and temperate forests, (ii) encouraged and 386 

carried out extensive plant collection and identification, (iii) proposed robust protocols for 387 

accurate tree mapping, and measurement, (iv) monitored existing plots repeatedly, and (v) 388 

established databases with a special emphasis on data quality control at the tree level, and have 389 

successfully incorporated historical databases.  390 

Two additional networks of permanent forest plots have now been invited to join the 391 

Forest Observation System: TmFO (Tropical managed Forest Observatory; Sist et al. 2015) and 392 

AusCover (CSIRO). We are aware that many more groups of scientists and networks of plots 393 

have been established, but when examining inclusion of new sites into the FOS, it is essential to 394 

consider upstream quality assessment. It is preferable to build upon projects that have already 395 

established a data sharing policy, quality assessment procedures, and instruments for 396 

communication with principal investigators at each of the sites.  397 

NASA and ESA are also in the process of establishing a Multi-mission Analysis and 398 

Algorithm platform (MAAP), which will house field plot, airborne lidar, and spaceborne 399 

datasets, including data from NISAR, GEDI and BIOMASS (Albinet et al. this issue). This will 400 

be a virtual open and collaborative environment, bringing together data, cloud-based computing 401 

resources, and collaborative tools. It will establish a collaboration framework between ESA and 402 

NASA to share data, science algorithms and computing resources in order to foster and 403 

accelerate scientific research conducted by NASA and ESA scientists. We intend for the Forest 404 

Observation System to become an integral part of this multi-mission analysis platform, 405 

facilitating provision of field plot data such as from existing plots and new supersite data 406 

acquisitions.  407 

Gathering calibration and validation data relevant to biomass for the Earth Observation 408 

community faces a number of challenges, and the FOS aims to address the most important ones. 409 

We here list the priorities: (1) ensuring the respect of intellectual property rights, (2) providing 410 

site principal investigators with a knowledge of the scientific challenges undertaken with their 411 

data, and (3) ensuring that datasets included in FOS are of the highest possible quality and are 412 

representative of all forest ecosystems.   413 
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A key aspect of the collaboration is that the intellectual property of the primary data 414 

remains with the site’s principal investigator. This principle is upheld in the FOS data sharing 415 

policy (under preparation). Official data sharing policies are found, for instance for the 416 

Smithsonian Institute (white paper ‘Sharing Smithsonian Digital Scientific Research Data from 417 

Biology’, March 2011), for the RAINFOR project (white paper ‘Ethical Code, Data Sharing & 418 

Publication Policy for RAINFOR Participants’, June 2009) and in TmFO’s Memorandum of 419 

Understanding. Within the FOS, plot consortia are acting on behalf of the site principal 420 

investigators. Importantly, data providers are not asked to provide their primary (tree-by-tree) 421 

data.  The data shared in the FOS are stand-level descriptors, including aboveground biomass 422 

estimates, that are obtained from a standardized procedure.  423 

One of the most frequent complaints voiced by site principal investigators is that the data 424 

they are providing serve projects downstream that they are not made aware of. This is to a large 425 

extent a communication problem, and one that can be solved through constant interaction with 426 

site principal investigators through a mailing list.  427 

 428 

4.2 Plot data requirements  429 

Minimal data requirements are here discussed. These data should be produced by the partners 430 

and provided to the Forest Observation System database.  431 

A minimum set of site descriptors are included in the metadata. These include: (a) the name and 432 

contact (email) of the plot principal investigator(s); they should agree to be mentioned in the 433 

database (for privacy protection, this information is made available online in the password-434 

protected part of the database); (b) the name of the partner institution(s) and individual in charge 435 

of data management; (c) the names of the funding bodies; and (d) some characteristic 436 

photographs of the forest. 437 

The following plot information is important: (a) plot coordinates, which should be 438 

checked for the geodetic system and be provided in WGS84; GPS coordinates should be of high 439 

accuracy, typically to within 10 m (but ideally with surveying GPS to within cm), so as to 440 

facilitate co-registration with other data sets (ALS, TLS and EO); plot coordinates should ideally 441 

refer to the centre and the four corners of the plot; (b) collection date and periodicity; number 442 
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and date of censuses carried out should also be known; the census number for which AGB data 443 

are provided should be given; (c) the total sampled area, i.e. the horizontal projection of the on-444 

ground sampled area (i.e. topography effects are ignored), and plot geometry; most plots are 445 

squares or rectangular; (d) the dataset should also document the relief (slope, exposition); in 446 

situations where aerial LiDAR is available, this usually provides accurate measurements of 447 

ground relief; (e) forest type (i.e. wet, moist, dry forests) and successional status should be 448 

documented. Note that networks have already faced the issue of post-field data 449 

standardization/filtering. However, it is not established that they all have settled to a common 450 

practice. 451 

We also report on metadata for the tree inventory itself: (a) the number of trees ≥10 cm in 452 

trunk diameter; note that trees < 10 cm and other life forms are usually excluded in AGB 453 

estimates in case their contribution to AGB is less than 5%; (b) a quality assessment index 454 

should be devised, reporting on whether points of measurement have been properly recorded for 455 

each tree; (c) an index reporting on the quality of taxonomic identification will also be needed; as 456 

a rough measure, the proportion of trees identified to species level, genus level, and family level, 457 

is reported. In tropical forests, identification of less than 50% of the trees to species level is far 458 

from unusual. Careful botanical identification by botany experts results in identification rates of 459 

> 90% of the trees, but may entail climbing trees to collect and significant down-stream 460 

identification effort with botanists and herbaria; (d) plot-averaged wood density is the basal-area 461 

weighted wood density of the trees in a plot. For plots with reliable taxonomic identifications, 462 

this may be deduced from census data and species-average wood density values; (e) mean 463 

canopy height of the plot, as inferred from direct tree height measurements or from airborne 464 

LiDAR measurements; if necessary, several canopy height metrics should be provided; quality-465 

control metric: height of the largest measured tree, trunk diameter of the largest measured tree. 466 

Finally, above ground biomass and confidence intervals are computed and provided at the 467 

plot scale, following an agreed single methodology across partners; the methodology will be 468 

made accessible for each database release, and partners should be prepared to adapt to changes in 469 

the methodology. An efficient strategy is to jointly develop a statistical routine such that several 470 

database formats can be accommodated, and that perform the tasks of calculating biomass and 471 

canopy height at each site. The R statistical software is recommended because it is free, already 472 

widely used in the ecological research community, and networks such as ForestGEO or 473 
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ForestPlots already have developed R routines for parsing the datasets and performing quality 474 

checks. We have established a package called BIOMASS that calculates biomass values and 475 

propagates uncertainty from tree measurement to stand-level estimates (Réjou-Méchain et al. 476 

2017). This package is flexible and makes it possible to use user-supplied conditions or 477 

allometric equations.  478 

4.3 Candidate supersites, and their coverage of environmental gradients 479 

There are around 50-100 supersites already potentially available worldwide, and here we discuss 480 

a list of 78 sites included as priority sites by the ESA-NASA cross-mission working group. All 481 

sites share a number of basic features including a long-term presence of scientists, existing forest 482 

monitoring programs, and willingness to collaborate in international scientific projects on the 483 

part of the principal investigators.  484 

Taken together, these sites encompass much of the variability in forest types, and within 485 

each 1000-ha region of interest, these sites display a large spectrum in biomass ranges and 486 

disturbance histories. Figure 3 illustrates the location of sites that could be prioritized as 487 

supersites. A majority of the supersites are located in the tropics, reflecting the more pressing 488 

need for data in tropical forest environments. However, several sites were also selected outside 489 

of the tropical belt.  490 

We also illustrate the coverage of these sites in terms of biomes and bioclimatic conditions 491 

(Figure 4). The 78 sites currently being considered for the network of supersites span broad 492 

bioclimatic conditions, and although they are mostly located below 1000 m in elevation, a few 493 

sites (n=6) are above this limit. As seen in Figure 4, the current list of supersites does not include 494 

many dry forests, semi-deciduous tropical forests, or boreal forests. Also, warm temperate forests 495 

are currently under-sampled in this dataset.  Finally, a large proportion of the sites are currently 496 

located in areas with less than 1% disturbance from 2000 to 2017 (28 out of 78) but some are in 497 

highly disturbed landscapes. One example is the STREK site in Indonesia (TmFO), in which 498 

over 60% of the surrounding landscape has been deforested since 2000, another example being 499 

the Pasoh plot (ForestGEO) with over 40% of deforestation since 2000.  500 

 501 
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5 Conclusion. Building a ground-based Earth Observation mission 502 

 503 

There has been a shift over the past few decades toward freely available Earth Observation data, 504 

and NASA and ESA have adopted open data policies with the aim of accelerating science and 505 

applications (Turner et al., 2015). Earth Observation data are typically delivered free at the point 506 

of use, using technology that has cost space agencies and their funding governments hundreds of 507 

millions of dollars or euros to develop and launch.  Once the sensors are installed in orbit they 508 

continue to supply data at, relatively, limited recurrent cost. Because nations have provided the 509 

core investment, they can rightly insist that Earth Observation data are provided for free to the 510 

entire scientific community (although conditions of use may vary among space agencies).  511 

In situ ground-based datasets stand in stark contrast with this situation, because the more 512 

reliable data are obtained by human specialists, who are paid for gathering them, verifying them, 513 

and maintaining databases over decades. In addition to data collection costs, data curation and 514 

coordination is also costly, and these costs do not come down with time. Most of the ground 515 

forest stand data available as of 2018, and summarized above, were collected and processed 516 

through long-term collaborations and with funds mobilized by the scientific community of many 517 

countries, and for a multitude of purposes. Few were collected with the express purpose of 518 

calibrating or validating remote imagery. It should not be assumed that the level of funding 519 

provided to these science projects will persist with the same intensity from 2019 to 2029. The 520 

majority of the principal investigators reside in countries with limited support from national 521 

science funding, hence relying on international collaboration to sustain their activities. It is 522 

reasonable to suppose that if the substantial future ground effort proposed in this chapter is to be 523 

effectively used to support remote-sensing missions, then it needs to be funded to do so. 524 

 It was estimated by FOS partners that the full cost of recensusing a single 1-ha plot in 525 

high-diversity tropical forests is on the order of 15 k€ (2016 economic conditions). This reflects 526 

the entire cost from concept to delivery of the highest possible quality data with accurate tree 527 

dimensions and identification. For instance, to fully recensus 600 1-ha plots across all four 528 

tropical continents included in the ForestPlots database, the full cost would be 9 M€ per 529 

remeasurement cycle. A similar figure is to be expected for the ForestGEO network. These costs 530 

are indicative, but result from decades of experience in establishing and maintaining tropical 531 
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forest plots across the world. If satellite estimates of biomass are to be of high quality and serve 532 

the widest use, these costs should be factored in the calibration and validation strategies of EO 533 

missions.  534 

 A coordinated and global ground-based monitoring of forests would benefit several 535 

sectors of science and the society, and would be of direct use to biomass-related spaceborne 536 

missions. It would allow to collect and maintain ground-based databases for the lifetime of the 537 

currently planned missions, and potentially for longer periods. In addition, this ‘ground mission’ 538 

would help consolidate the remote-sensing/ecology nexus, helping bridge the gap between these 539 

two scientific communities and accelerate the valorisation of both ground and remotely-sensed 540 

data. Finally, the study sites could be valorised beyond the currently planned biomass missions. 541 

For instance, several missions are committed to measuring photosynthetic activity through solar-542 

induced fluorescence, or aim to monitor biodiversity using hyperspectral imagery. In these 543 

situations, it is also essential to validate the concept of these missions at a set of reference sites 544 

that can be appropriately accessed, equipped and maintained.  545 

 546 
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Tables 688 

 689 

 690 

Table 1. List of characteristics for some of the international tropical forest monitoring networks 691 

currently in operation.  692 

Network Coun

tries 

Plots Plot Sample 

Area (ha) 

Trees Species Measur

ements 

Forest 

Types 

Regional 

Focus 

ForestGEO 26 65 16 – 120 6.5 

million 

12,000 20 

million 

Primary Global 

RAINFOR 9 400 0.2 – 9, 

mostly 1 

280,000 5,500 2 

million 

Primary South 

America 

AfriTRON 11 320 0.2 – 10, 

mostly 1 

170,000 1,800 600,000 Primary Africa 

TmFO 10 517 0.25 - 27, 

mostly 1 

300,000- 

400,000 

- ~6 

million 

Logged Pantropical  

 693 

 694 
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Figure captions 696 

 697 

Fig 1 Permanent plot in intact lowland tropical forest at the Nouragues station, French Guiana. 698 

Left: Large, buttressed, trees encompass the majority of the aboveground biomass stock. Right: 699 

A pioneer tree (Cecropia sciadophylla Mart.) has grown from the top of a palm, causing issues 700 

of trunk diameter measurement. Situations like this one are resolved only with proper field 701 

protocols 702 

 703 

Fig 2 The supersite concept. Relatively few sites with long-term investment by plot principal 704 

investigators, and the potential to upgrade the sites. The background is taken from Ashton (1964, 705 

Kuala Belalong, Brunei) 706 

 707 

Fig 3 Potential location of 78 candidate supersites. Proposed sites were selected to maximize 708 

geographical coverage, environmental and forest structure conditions, and logistical constraints 709 

of maintaining long-term sites. The background is Avitabile et al. (2016) carbon stock map 710 

 711 

Fig 4 (a) Environmental coverage of the 78 candidate supersites in bioclimatic space (Whittaker 712 

diagram). (b) Distribution of the candidate supersites across the range of elevation (in m above 713 

sea level); drought stress, as measured by the climate water deficit: larger values represent more 714 

stressed environments (sites above 500 are usually ascribed to xeric habitats). In both panels, 715 

disturbance intensity is displayed with large red dots representing highly disturbed sites, while 716 

small yellow dots represent undisturbed habitats. Disturbance intensity was measured by the 717 

proportion of forest pixels lost between 2000 and 2017 in a buffer of 5-km radius around the 718 

supersites, using the global 30-m resolution Landsat (Hansen et al. 2013) 719 
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