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Abstract Wwe obtain current densities from the Active Magnetosphere and Planetary Electrodynamics
Response Experiment (AMPERE), alongside B, and B, from the Interplanetary Magnetic Field (IMF) for
March 2010. For each AMPERE spatial coordinate, we cross-correlate current density with B, and B,,
finding the maximum correlation for lags up to 360 min. The patterns of maximum correlation contain
large-scale structures consistent with the literature. For the correlation with B, the lags on the dayside are
10 min at high latitudes but up to 240 min at lower latitudes. Lags on the nightside are 90-150 min. For B,,
the shortest lags on the dayside are 10-20 min; on the equatorward edge of the current oval, 60-90 min;
and on the nightside, predominantly 90-150 min. This novel approach enables us to see statistically the
timescales on which information is electrodynamically communicated to the ionosphere after magnetic
field lines reconnect on the dayside and nightside.

Plain Language Summary We take the minute-by-minute behavior of the interplanetary
magnetic field (which is in the solar wind) and electric currents flowing along Earth's magnetic field lines
in the Northern Hemisphere. We move them with respect to one another to find the time lag required to
make them agree best, and then note the best agreement and the time lag that we found. We plot both of
these quantities on maps of the Earth's Northern Hemisphere, and then analyze these maps to uncover new
information about Earth's reaction to the solar wind.

1. Introduction

Birkeland currents (also known as field-aligned currents) were first observed by Zmuda et al. (1966) as
magnetic perturbations, which Cummings and Dessler (1967) later recognized as the current systems of
Birkeland (1908, 1913), hence their name. The statistical pattern of the currents was outlined a decade after
their discovery (Iijima & Potemra, 1978), revealing two regions of Birkeland current: Region 1 (R1) has
been shown to be colocated with the open/closed field-line boundary (Clausen et al., 2013), and Region 2
(R2) is a region equatorward of this (therefore, on closed field lines). Examination of the statistical patterns
of the currents with clock angle show that Birkeland current density is enhanced when the interplane-
tary magnetic field (IMF) is southward (e.g., Weimer, 2001), and it has also been established that Birkeland
currents are enhanced when the dayside or nightside reconnection rates are higher (Coxon et al., 2014a,
2014b; Coxon et al., 2016, 2017). Birkeland currents are the mechanism by which stress is transmitted from
the magnetosphere to the ionosphere, and as such, they tell us about how processes such as reconnec-
tion at the magnetopause and in the magnetotail affect the ionosphere (e.g., Cowley, 2000; Southwood &
Hughes, 1983).

Previous studies have looked at the timescales on which currents react to IMF driving. Anderson et al. (2014)
lagged Advanced Composition Explorer (ACE) data to Earth (to 0 Ry in geocentric coordinates) and then
presented case studies in which the Regions 1 and 2 current systems on the dayside appeared within 20 min
of B, turning southward, with nightside currents appearing 60-90 min after the southward turning. Currents
at dawn and dusk intensified after that, yielding a fully formed R1 and R2 system 120 min after the turning
in B,. Anderson et al. (2017) also examined the evolution of Birkeland currents during a geomagnetic storm,
but the focus of that paper was comparing Active Magnetosphere and Planetary Electrodynamics Response
Experiment (AMPERE) data to modeled results. Anderson et al. (2014) interpreted their findings as evidence
that the formation of the current systems was associated with the onset of flows in the ionosphere which
evolve on similar timescales. The timescale for this is bimodal. Following the onset of reconnection at the
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magnetopause, flows respond within minutes near noon and progressively later at later local times (e.g.,
Freeman, 2003, and references therein). Later, after an hour or so, flows are again (analogously) excited by
the onset of nightside reconnection (Cowley & Lockwood, 1992).

Asymmetries in dayside convection and currents are also introduced by the IMF B, component due to lon-
gitudinal stresses on newly reconnected field lines at the magnetopause (Greenwald et al., 1990; Saunders,
1989). As with the response to IMF B, associated with magnetopause reconnection, the response to IMF B, is
within minutes near noon and later toward dawn and dusk (Saunders et al., 1992). It has long been thought
that these B, asymmetries propagate into the magnetotail via convecting field lines (Cowley, 1981), and so
it can be reasonably supposed that the subsequent reconnection of these asymmetric field lines in the tail
will create flow and current asymmetries with timescales similar to the nightside B, case. The timescales of
the Dungey (1961) cycle and the expanding/contracting polar cap (ECPC) paradigm (Cowley & Lockwood,
1992; Siscoe & Huang, 1985) suggest that field lines should take of the order of hours to convect from the
dayside into the magnetotail. Browett et al. (2017) showed that the timescales of propagation of B, compo-
nents from the IMF into the magnetotail are bimodal, and have a timescale of ~1 hr for southward B, and
~3 hr for northward B, consistent with work on magnetospheric dynamics during northward IMF (Fear
& Milan, 2012). Time History of Events and Macroscale Interactions during Substorms (THEMIS) observa-
tions from throughout the magnetotail have been used to examine the propagation of the B, asymmetry in
the tail, and show that this asymmetry propagates into the inner magnetosphere from downtail (Pitkdnen
et al., 2016), also consistent with the idea that asymmetries propagate due to convecting field lines.

Information can propagate into the magnetosphere more quickly than field line convection via Alfvén waves.
It has been suggested that these waves can cause the Birkeland currents to react almost instantaneously to
increases in dayside reconnection (Snekvik et al., 2017) and induce a B, asymmetry in the magnetotail in
the same sense as the IMF on timescales of 15-45 min (Khurana et al., 1996; Tenfjord et al., 2015), and it has
been shown that this mechanism can induce asymmetries on closed field lines (Tenfjord et al., 2017, 2018).

2. AMPERE and OMNI

In this paper, data from AMPERE are employed. This data set uses spherical harmonics and Ampere's law
to take magnetic perturbations measured in situ by the Iridium telecommunications satellite network and
calculate vertical current densities j (Anderson et al., 2000, 2014; Waters et al., 2001), which are available at
a resolution of 1° colatitude and 1 hr of MLT in altitude-adjusted corrected geomagnetic (AACGM) coordi-
nates. We note that using AMPERE data to investigate Birkeland currents assumes that the field lines are
vertical, and the spherical harmonic process may introduce some smoothing of the correlations and lags
reported in this paper. In terms of cadence, the data are evaluated in a sliding window 10 min long, which
is evaluated every 2 min: we note that this will affect the accuracy of the timelags found in this paper. When
comparing AMPERE data with IMF data, we adopt the timestamp of the middle of the sliding window, as
opposed to Anderson et al. (2014), who used the end of the sliding window. We adopt the common conven-
tion, when using AMPERE data, that upward currents have positive j and downward currents have negative
Jj. A review of the work that has been done with AMPERE is presented in Coxon et al. (2018).

This paper also employs OMNI data (King & Papitashvili, 2014), which presents data from a variety of
spacecraft, lagged to the bow shock. We utilize the B, and B, components of the IMF in geocentric solar
magnetospheric coordinates in this study.

Lastly, within this paper we use a cross-correlation technique inspired by the Spatial Information from Dis-
tributed Exogenous Regression (SPIDER) technique developed and applied to SuperMAG data by Shore et al.
(2019). We do a Pearson cross-correlation of the time series of B, and B, during the month of March 2010
with the current density observed by the AMPERE data set j at each spatial coordinate and for time lags
varying from 0-6 hr. We note that we do not compute time lags lower than 0 hr, such that we do not allow
the behavior of the Birkeland currents to precede that of the IMF. We plot the best correlation coefficients
for both components of the IMF in Figures 1a and 2a with the same coordinates as the constituent AMPERE
data. For correlations under 0.1 we fill the coordinate in white in both maps. We emphasize that each cor-
relation in this paper is computed between time series which comprise the entirety of March 2010, varied
by 0-6 hr, such that each correlation is between time series which are ~31 days long. The cross-correlation
functions for each coordinate in Figures 1 and 2 are presented in the supporting information.
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Figure 1. (a) The maximum correlation of B, with j. (b) The lag at which the maximum correlation was achieved.
(c) Key to aid interpretation of the left two panels. White cells indicate coordinates for which the maximum correlation was under 0.1. Note that the color bar
on the left is not saturated, whereas the color bar in the center is saturated at 150 min.
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3. Cross-Correlation of IMF Components With Birkeland Current Density j

Figure 1a shows that the regions of maximum correlation with the IMF B, lie on two concentric rings of
about 13° and 21° radius centered a few degrees antisunward of the geomagnetic pole. Each of the corre-
lations in Figure 1a lies more than 2¢ from the mean correlation in that coordinate. The locations of these
regions are clearly identified with the Regions 1 and 2 Birkeland current (lijima & Potemra, 1978), which
may be understood because negative B, mostly drives these Birkeland currents. Therefore, positive corre-
lations are associated with downward Birkeland current and vice versa. We will describe the regions of
correlation associated with the R1 and R2 current as the R1 correlation and the R2 correlation for the conve-
nience of the reader. The R1 and R2 correlations are not as well defined in the midnight MLT sector, and the
positive correlation looks like a spiral, as the positive R1 and R2 correlations are linked at noon MLT: These
features are very reminiscent of the statistical patterns reported by lijima and Potemra (1978). In addition to
the R1 and R2 correlations, there are regions of correlation which are of the opposite sense to the R1 corre-
lation and ~2° poleward, which we refer to as the X correlations. There are also more localized and slightly
weaker regions of correlation in the dayside polar cap which are the same sense as the R1 correlations but
which are displaced ~5° poleward of the R1 correlation: we refer to these as the Y correlations. All four of
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Figure 2. (a) The maximum correlation of B, with j. (b) The lag at which the maximum correlation was achieved, saturated at 240 min. (c) Key to aid

y

interpretation of the left two panels. (d) A zoomed-in view of part of the center panel, saturated at 60 min. White cells indicate coordinates for which the

maximum correlation was under 0.1.
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these are indicated on the key in Figure 1c. We note here that, unlike the R1 and R2 correlations, our choice
of terminology for the X and Y correlations is solely intended to refer to the spatial regions indicated—that
is, we do not intend to imply any causation with external variables. We will discuss the potential cause of
the X and Y correlations later in the paper.

Similarly, the maximum correlation between B, and j is presented in Figure 2a, in the same format as
Figure 1a. Each of the correlations in Figure 2a lies more than 2¢ from the mean correlation in that coor-
dinate. There are two regions of correlation centered on noon MLT: a positive correlation located within a
colatitude of 10°, which we denote the A correlation; and a negative correlation located between 10°-15°,
the B correlation. Both of these correlations are limited solely to the dayside. A region of negative correlation
starts at approximately 16 MLT and extends to 2 MLT just poleward of 20° colatitude: this is the C correla-
tion. The region of positive correlation which is equatorward of and extends 1 hr less than the C correlation
in each direction is the D correlation. Figure 2c shows the locations of these correlations. The labels for these
correlations are, again, solely intended to refer to the spatial regions indicated and are not intended to imply
causation with external variables.

4. The Timescales of the Identified Regions of Correlation

The timescales of the identified correlation regions are shown in Figures 1b and 2b. In both cases, the
cross-correlation was performed up to time lags of 6 hr. For each coordinate contributing to the maps in
Figures 1a and 2a we plot the correlation coefficient against the time lag in order to see how the lag affects
the correlation. These plots of the correlation coefficient versus time lag are presented in the supporting
information and show that the lags for the majority of coordinates have a single, clear peak. In Figure 1b,
we saturate the color scale at 150 min which encapsulates most of the structure therein; in Figure 2b, we
saturate the color scale at 240 min. Figure 2d shows the correlations with lower time lags saturated at 60
min to highlight the structure therein.

4.1. R1 and R2 Correlations

The shortest timescales observed in the dayside R1 and R2 correlations shown in Figure 1 are between 10
and 20 min. The dayside R1 correlations show this short timescale at their poleward edge, with timescales of
~60 min on the equatorward edge. We interpret this as a signature of the ECPC paradigm, since the current
ovals will expand during southward B, and thus j at high latitudes will react to southward B, before j at lower
latitudes. The dayside R2 correlation on the dusk side follows the same pattern, also consistent with the
ECPC paradigm, with timescales approaching 90 min on the equatorward edge. However, the day/dawn R2
correlation is not as well described in this way: at 8 and 9 MLT the timescales are shorter on the equatorward
edge, although the rest of the banding seems more consistent.

The X correlation in Figure 1 may be a signature of the expansion of the R1 and R2 current systems and
therefore of the ECPC paradigm. As the polar cap expands with southward IMF, the initial coordinates of the
polar cap will see areduction of R1 current. This means that an expansion of the R1 current oval will manifest
as a region of correlation in the opposite sense to the R1 correlation, like the X correlation. However, the
timescales in these regions are ~50 min, which is much longer than the 10-20 min reported on the poleward
edge of the R1 correlations: we explore alternative explanations for the X correlation in section 4.2.

On the nightside of Figure 1, the R1 and R2 correlations show longer timescales than on the dayside. The
equatorward edge of the R1 correlation reacts with a timescale of 70-90 min, and the poleward edge reacts
with a timescale of 120-150 min. This is again consistent with the ECPC paradigm, which would suggest
that the longest timescales on the nightside are the currents flowing at the point where the polar cap has
contracted at the end of a period of nightside reconnection (e.g., a substorm). The nightside R2 correlation
on the dawn side follows the same pattern, with timescales between 30 min on the equatorward edge and
100 min on the poleward edge. The night/dusk R2 correlation, similar to the day/dawn correlation, does not
seem as well described by the ECPC paradigm, with shorter timescales on the poleward edge at 21-23 MLT.

The interpretation of the timescales within the context of the ECPC paradigm explains most of the observed
lags in the R1 and R2 correlations. In the case of R1, which maps directly to the magnetopause on the
dayside, we note that if we assume that the R1 current sheet is a thin current sheet which is moving with the
boundary of the polar cap, the timescales here as a function of latitude are indicative of how R1 is moving
equatorward and poleward due to magnetic reconnection in the ECPC paradigm. Since R1 maps directly
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to the magnetopause, this does not necessarily imply that higher-frequency variability in the IMF does not
affect the R1 current on smaller timescales. In the case of R2, the day/dawn and night/dusk correlations do
not seem well described by the ECPC paradigm. The correlations at noon MLT poleward of 15° colatitude
appear to react at very long timescales of 120 min, and timescales of 160-170 min poleward of 10° colatitude,
which is also difficult to interpret within the ECPC paradigm. We will discuss these further in section 5.

4.2. Other Regions of Correlation

We now turn to the other regions of correlation on the dayside. The Y correlations (Figure 1) can be inter-
preted in terms of NBz currents, named for their occurrence during northward IMF (Iijima et al., 1984;
Iijima & Shibaji, 1987; Zanetti et al., 1984). The NBz currents are of opposite polarity to the R1 and R2 cur-
rents, but since they are driven by positive B, instead of negative B, any correlation with NBz will be of the
same sense as the R1 correlations observed. The Y correlations show shorter lags (10-20 min) at the equa-
torward edge and longer lags (50-70 min) at their poleward edge, which can be interpreted as a signature of
the ECPC paradigm if these correlations are associated with NBz currents. As northward B, does not open
magnetic flux, nightside reconnection during northward B, will lead the polar cap to contract. This means
that, during northward B,, j at lower latitudes will react to the solar wind driver before j at higher latitudes,
giving this signature.

Alternatively, cusp currents may be responsible for the Y, A, and B correlations. Saunders (1989) argued that
cusp currents were caused by field lines shortening over the dayside magnetopause, leading to field tension
imparting an east/west component of motion, and further argued that the cusp current was caused by the
tilt in the magnetic field which resulted from the field lines changing direction to move antisunward across
the polar cap. Figure 1 of Saunders (1989) reports the average cusp currents for the positive and negative B, ,
both of which would be contained within our Figure 1a. When these average cusp currents are summed,
the resulting pattern is very close to the Y correlation in our Figure 1a. Taking the difference of the average
cusp currents gives a signature very close to the A and B correlations in our Figure 2a, which is consistent
with the prevailing negative B, observed during March 2010. The timescales in our Figure 2d are 15-30 min,
indicating a near-instantaneous effect of the B, component of the IMF on the dayside Birkeland currents.

The description of Saunders (1989) does not appear to be inconsistent with the framework employed by
Ohtani et al. (1995), who suggested that what they referred to as RO currents were associated with the shear
of antisunward convection flows as their velocities decrease toward the pole, on open field lines mapping
into the plasma mantle. This would mean that the X correlation could be explained in a similar physical
manner to the Y, A, and B correlations. The timescales for the X correlations are ~50 min: interpreted in
the ECPC paradigm, this would indicate that these currents are on field lines which have not yet fully con-
vected over the polar cap and into the magnetotail, consistent with the explanation of Ohtani et al. (1995).
This explanation is also consistent with observations of B, made by Shore et al. (2019), who concluded that
spatial features of their timescales were consistent with field lines convecting across the polar cap (albeit at
timescales of 20-25 min).

Finally, we turn to the nightside to examine the C and D correlations in Figure 2. Following similar logic to
the cusp currents (Saunders, 1989), when field lines twisted by B, asymmetries reconnect there should be
an associated field-aligned current which acts to untwist the field lines. This implies that the C and D cor-
relations are associated with substorms occurring when the magnetotail has some B, asymmetry. Figure 2b
shows that the timescales for the C correlation are 90-150 min, whereas the D correlation appears to show
generally slightly shorter timescales of 90-120 min. The shorter timelags appear to be on the poleward edge
in the D correlation and the 21-23 sector in the C correlation. Longer timescales are observed in the 00-02
MLT and the 18-20 MLT sectors in both the C and D correlations; we will discuss the timescales in the
context of the literature in section 5.

5. Discussion

The correlations of B, and j have the same large-scale structure as that previously seen in statistical patterns
of Birkeland current. The overall structure in the R1 and R2 correlations in Figure 1a is reminiscent of
the original patterns reported by Iijima and Potemra (1978), but is even more similar to the clock angle
relationships shown in Weimer (2001). Figure 1a's spiral structure in the positive correlations, with the
negative correlations on either side, looks very similar to the pattern seen by Weimer (2001) for the case
where both B, and B, were negative.
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The correlations reported in Figures 1a and 2a are low compared with previous reports of the correlation
of Birkeland current with IMF driving. Coxon et al. (2014a) reported that the correlation of the total R1
Birkeland current with dayside reconnection rate @, was 0.60. Plotting the correlation of j with ®,, in the
polar cap for March 2010 (not shown) shows that the correlations are slightly higher than those in Figure 1a
but the correlations reported in Coxon et al. (2014a) were ~0.15 higher. By summing j across several local
times, then noise which is uncorrelated in local time will cancel out, and the signal-to-noise of the summed
Jj will therefore be higher than j in each coordinate. If that noise is uncorrelated with IMF, the reaction of the
summed j to the IMF will also have a higher signal-to-noise ratio. This explains why the correlations seen in
Figures 1a and 2a are lower than in previous studies which summed the currents spatially (e.g., Coxon et al.,
2014a). We interpret the fidelity of our reported statistical patterns relative to those reported by Weimer
(2001) as evidence that our technique yields physically meaningful results.

The timescales we report appear to be well explained by the ECPC paradigm, suggesting that the timescale
of the poleward edge of the correlations in both B, and B, (10-20 min) corresponds to the timescale of
the correlation as the polar cap begins to expand with dayside reconnection. Snekvik et al. (2017) found
evidence for instantaneous response of Birkeland currents to driving by the IMF at noon and midnight MLT,
which they interpreted in the context of Alfvén wave propagation. We find very low time lags at noon but
not at midnight, which is in line with ECPC timescales. Interpreting our results within the ECPC paradigm
suggests that the timescale of the equatorward edge on both the dayside and nightside is indicative of the
point at which the polar cap reaches its largest point (60-90 min) and that the longest timescales on the
nightside (120-150 min) are indicative of the end of a cycle of expansion and contraction. Currents at these
timescales are not directly driven by the solar wind but are the integral of some process (or possibly, several
processes) which occur at longer timescales and peak at the times shown in Figures 1b and 2b, which we
refer to as an “integral response.”

Our observed time lag of 10-20 min implies that the dayside currents in the unexpanded polar cap are
directly driven by variability in the IMF, and is consistent with the timescales of B, and e on the dayside
reported by Shore et al. (2019) of 15-25 min, and the dayside timescale of 20 min reported by Anderson
et al. (2014). McPherron et al. (2018) reported the peak response of AMPERE-derived dayside currents to
a universal coupling function as 40 min, which is longer than all three other studies mentioned above; the
reasons for this are unclear. The e timescales in Shore et al. (2019) are longer at the poleward edge of the
correlation, rather than timescales increasing with distance equatorward as is seen here. From the difference
in behavior between the B, response in this study and in Shore et al. (2019), we infer that the OCB expands
and contracts more than the apparent width of the R1/R2 current system but less than the apparent width
of the electrojets as seen by SuperMAG.

The 60-90 min timescale that we infer to be indicative of the end of polar cap expansion (and by extension,
the onset of nightside reconnection) is identical to the timescale found by Anderson et al. (2014) and is
also consistent with timescales of ~65 min reported by Shore et al. (2019) at a colatitude of 30°, who found
similar behavior in MLT. McPherron et al. (2018) reported that the response of AMPERE-derived nightside
currents to a universal coupling function peaked at 60 min, at the short end of our range. Our 120- to 150-min
timescale, which we interpret as the end of a substorm cycle, is at the upper end of the timescale for the
formation of the complete R1/R2 system given by Anderson et al. (2014) but is slightly shorter than the
reported timescale for substorm periodicity reported by Freeman and Morley (2004), who found that the
periodicity was 2.7-2.9 hr (162-174 min). However, our timescale of 150 min is only 12 min shorter than
Freeman and Morley (2004)'s periodicity of 162 min, and the uncertainty in propagating the IMF from the
L1 point to the bow shock, combined with the 10-min uncertainty in the sliding window for evaluating
AMPERE data, may mean that when these uncertainties are considered these timescales are not inconsistent
with one another.

Asnoted in section 4.1, the R2 correlations do not appear to be as easily described using the ECPC paradigm.
The R2 correlations on the dayside/duskside and the nightside/dawnside are consistent with the ECPC
paradigm, whereas those correlations in the other two quadrants are not. Analysis of the OMNI data for the
month shows that the B, component of the IMF was generally negative, and generally more negative than
B,. Comparison of Figure 2a with the analysis of Weimer (2001) shows that the correlation of j with B, looks
very similar to their result for purely negative B,. As such, we interpret our observations in the context of
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the ECPC paradigm, but with some rotation of the current systems introduced by a B, asymmetry during
the month, which explains the behavior of the R2 correlation.

In this paper, we have highlighted the manner in which the cusp currents can explain all of the non-R1 and
R2 currents on the dayside, whereas the Y correlations can also be explained by the NBz current system and
the X correlation can also be explained by the expansion of the R1 and R2 current ovals during periods of
dayside driving. It is likely that each of these factors is contributing to the results presented herein, and we
plan to employ case studies in the future to explore the relative contributions of each effect to our results.

The results shown in section 4.2 show that the timescales of B, on the nightside are between 90 and 150 min,
and that the timescales are smallest in the 21-23 MLT sector. This might imply substorms occur in the 21-23
sector preferentially and the timescales in the adjacent sectors are a result of the westward traveling surge
and some similar eastward propagation (e.g., Tanaka et al., 2015). It is known that the B, component of the
IMF is a factor in the deviation of substorm onset MLT from the average substorm onset MLT of ~22 MLT
(Wang et al., 2007), so it is perhaps also possible that these results imply more asymmetrical magnetotail
lobe configurations result in delayed substorm onsets compared to those which occur at times when the
magnetotail is less asymmetrical.

Previous work has disagreed on the relative timescales of B, propagation into Earth’s magnetotail. Some
authors have argued that the timescales should be similar to those suggested by the convection speed of field
lines as part of the Dungey cycle and ECPC paradigm (Browett et al., 2017; Fear & Milan, 2012) whereas
others have employed an argument based around MHD waves to argue that the asymmetry propagates into
the magnetotail on timescales of tens of minutes (Tenfjord et al., 2015, 2017, 2018). Since any change in
the configuration of the Earth's magnetic field should be communicated to the ionosphere by Birkeland
currents, we can use this analysis to test the timescales on which this occurs.

Our analysis supports the result of Browett et al. (2017), since we see time lags of the correlation in B,
between 90 and 120 min on the nightside (which Browett et al., 2017, inferred to be the timescale of B,
propagation during southward IMF), but we do not see much correlation at 180 min (inferred by Browett
et al., 2017, as due to northward IMF). Since AMPERE currents are weaker for lower dayside driving and
therefore weaker for northward IMF (Coxon, 2015), we infer from this that the signal from the southward
IMF driving during our selected time is dominating over the signal from the northward IMF, especially on
the nightside. Shore et al. (2019) reported B, timescales were 20-25 min on the nightside, but the correlations
they reported were entirely within 15° colatitude, and thus their nightside timescales are entirely spatially
distinct from the nightside timescales we present in this paper. Shore et al. (2019) attributed the structure
they observed in the correlations to field lines moving across the polar cap, which is the same logic employed
by this paper and by Browett et al. (2017) in interpreting B, timescales.

6. Conclusion

We lag the IMF B, and B, compared with the current density j reported by AMPERE in order to find the
maximum correlation within a lag of 2 hr, and the time lag which yields that maximum correlation. We
find that the maximum correlations are colocated with the constituent Birkeland current systems (lijima &
Potemra, 1978; Weimer, 2001), showing that they are influenced by B, and B,.

The time lags associated with the B, correlations show that statistically, on the dayside, the poleward side
of the R1 correlation is associated with a timescale of 10-20 min, before the equatorward edge of the R1
correlation at ~60 min. On the nightside, the equatorward edge of the R1 correlation has a timescale of
70-90 min and the poleward correlation has a timescale of 120-150 min. This is indicative of a process in
which R1 currents form on the dayside colocated with the polar cap, expand with the polar cap, form on
the nightside, and then contract with the polar cap as nightside reconnection occurs, and can therefore be
easily interpreted in the ECPC paradigm (Cowley & Lockwood, 1992; Siscoe & Huang, 1985).

The time lags associated with the B, correlations are evidence for models of IMF B, propagation based
around the convection of magnetic field lines (Browett et al., 2017; Cowley, 1981; Fear & Milan, 2012) which
suggest timescales of propagation should be on the order of hours rather than the order of tens of minutes,
as has previously been suggested (Tenfjord et al., 2018, 2015, 2017).

The timescales of the reaction of Birkeland currents to solar wind driving also indicate the timescales of the
ionospheric response to solar wind driving, as it is the Birkeland currents which communicate stresses from
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the magnetopause and magnetotail into the ionosphere. The technique we use to uncover these timescales,
inspired by the SPIDER technique developed and applied to SuperMAG data by Shore et al. (2019), is novel
in its application to AMPERE data, and makes relatively few assumptions about the system. We intend to
exploit this technique with case studies in the future.
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