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De Novo Missense Variants in FBXW11 Cause
Diverse Developmental Phenotypes Including
Brain, Eye, and Digit Anomalies
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Ellen van Binsbergen,7 Alessandro De Luca,9 Luigi Memo,10 William B. Dobyns,11,12

Alaa Afif Mohammed,13,14 Samuel J.H. Clokie,13 Celia Zazo Seco,15 Yong-Hui Jiang,16

Kristina P. Sørensen,8 Helle Andersen,17 Jennifer Sullivan,18 Zöe Powis,19 Anna Chassevent,20

Constance Smith-Hicks,20 Slavé Petrovski,21,22 Thalia Antoniadi,13 Vandana Shashi,18 Bruce D. Gelb,23

Stephen W. Wilson,2 Dianne Gerrelli,4 Marco Tartaglia,6 Nicolas Chassaing,15,24 Patrick Calvas,15,24

and Nicola K. Ragge1,25,*

The identification of genetic variants implicated in human developmental disorders has been revolutionized by second-generation

sequencing combined with international pooling of cases. Here, we describe seven individuals who have diverse yet overlapping devel-

opmental anomalies, and who all have de novo missense FBXW11 variants identified by whole exome or whole genome sequencing and

not reported in the gnomADdatabase. Their phenotypes include striking neurodevelopmental, digital, jaw, and eye anomalies, and in one

individual, features resembling Noonan syndrome, a condition caused by dysregulated RAS signaling. FBXW11 encodes an F-box protein,

part of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex, involved in ubiquitination and proteasomal degradation and thus funda-

mental to many protein regulatory processes. FBXW11 targets include b-catenin and GLI transcription factors, key mediators of Wnt

and Hh signaling, respectively, critical to digital, neurological, and eye development. Structural analyses indicate affected residues cluster

at the surface of the loops of the substrate-binding domain of FBXW11, and the variants are predicted to destabilize the protein and/or its

interactions. In situ hybridization studies on human and zebrafish embryonic tissues demonstrate FBXW11 is expressed in the developing

eye, brain, mandibular processes, and limb buds or pectoral fins. Knockdown of the zebrafish FBXW11 orthologs fbxw11a and fbxw11b

resulted in embryos with smaller, misshapen, and underdeveloped eyes and abnormal jaw and pectoral fin development. Our findings

support the role of FBXW11 in multiple developmental processes, including those involving the brain, eye, digits, and jaw.
Whole exome or whole genome sequencing (WES and

WGS, respectively) has dramatically advanced the identi-

fication of genetic variants contributing to complex, rare,

and clinically heterogeneous human disorders. However,

because such variants might be private, it can be chal-

lenging to ascribe pathogenicity. Recently, WES and

WGS and the international collation of affected individ-

uals with variants in the same gene1,2 have led to

the identification of several developmental disorders.
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32100 Belluno, Italy; 11University of Washington, Seattle, WA 98195-6320, US

tute, Seattle WA 98101, USA; 13West Midlands Regional Genetics Laboratory,

Trust, Mindelsohn Way, Edgbaston, Birmingham B15 2TG, UK; 14Clinical an

11562 Cairo, Egypt; 15UDEAR, Université de Toulouse, UMRS 1056 Institut
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This approach, referred to as ‘‘reverse phenotyping,’’

has been successfully applied to multiple intellectual

disability syndromes, including those related to genetic

variants in FBXO11 (MIM: 607871),3–5 and syndromes

involving variants in CDC42 (MIM: 116952) and RAC1

(MIM: 602048),6,7 all of which display clinical heteroge-

neity. Here, we use a similar approach to investigate

the role of de novo variants in FBXW11 (MIM: 605651)

in human development.
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Figure 1. Phenotypes of Individuals 1, 2, 4, 5, and 7
(A–C) Individual 1 at age 13 years, showing bilateral ptosis related to the underlying ocular anomalies (A), contractures affecting the
distal interphalangeal joints of the left 4th and 5th fingers (B), and a wide sandal gap, short terminal phalanges, contractures affecting
the 4th and 5th toes, 2–3 toe syndactyly, and scarring from surgery removing the left supernumerary toe (C).
(D–I) Individual 1 at age 24 years, showing bilateral microanterior segment and iris colobomas (D–G), contractures of the 4th and 5th left
fingers (H), scarring from surgery removing the supernumerary toe, 2–3 toe syndactyly, and contractures of the 4th and 5th toes (I).

(legend continued on next page)
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Through WES of 32 individuals with developmental eye

anomalies, we identified a de novo missense variant (Gen-

Bank: NM_012300.2:c.1087C>T; NP_036432:p.Arg363Trp)

in FBXW11. This variant was present in a girl with striking

eye anomalies (bilateral microanterior segments, iris and

chorioretinal coloboma, and lens anomalies), digital anom-

alies, and a psychiatric disorder (individual 1) (Figure 1, Ta-

bles 1 and S1, and the Supplemental Note). No other path-

ogenic variants were present in known eye development

genes. Koolen et al.8 previously described a boy with holo-

prosencephaly (HPE), seizures, small stature, preaxial poly-

dactyly affecting the hand, ‘‘finger-like thumbs,’’ and an

increased sandal gap who had a de novo duplication encom-

passing seven genes, including FBXW11, on chromosome

5q35.1 (1.24 Mb). They hypothesized that his phenotype

could be explained by the duplication of FBXW11, given

its putative role in hedgehog (Hh) signaling and the pheno-

typic overlap with other disorders (HPE and polydactyly)

caused by dysregulation of this pathway. Furthermore,

duplication of the homologous gene BTRC (MIM: 603482)

is implicated in split hand-foot malformation.9 Moreover,

FBXW11 participates in the Wnt/b-catenin signaling

pathway,10,11 which is fundamentally important in eye

and brain development12,13 and digit patterning.14

Through GeneMatcher,2 we identified six other individ-

uals with de novomissense variants in FBXW11; all were pre-

dicted to be damaging and found by WES or WGS. Five in-

dividuals (individuals 2–6) exhibited neurodevelopmental

and/or digit anomalies, and one (individual 7) had a com-

plex phenotype including brain anomalies and features

suggestive of Noonan syndrome (Tables 1 and S1, Figure 1,

and the Supplemental Note). Individual 7 had no patho-

genic variants in genes currently included in Noonan syn-

drome or related RASopathy diagnostic panels. All genetic

testing was performed under research ethics approval

from the UK ‘‘Genetics of Eye and Brain anomalies’’ study

(REC 04/Q0104/129), French (CPP Sud-Ouest and Outre-

Mer II), American (Duke University, Pro00032301 -

Genomic Study of Medical, Developmental, or Congenital

Problems of Unknown Etiology), and Italian (Ospedale

Pediatrico Bambino Gesù study 1702_OPBG_2018) ethics
(J–O) Individual 2 at age 9 years, showing a prominent nasal tip, broa
(see the detailed view of the left 2nd toe), short distal digits, widely sp
M) comparable to that of Individual 1, andMRI scans revealing an abn
small globular dysplastic hippocampi, and mildly reduced white ma
(P–W) Individual 4 at age 18 years, showing dysmorphic facial featu
long and smooth philtrum, a bifid nasal tip, a thin upper lip (P), micr
alies include shortening of the distal phalanx of the thumbs, 5th fing
thenar hypoplasia on the left (U); digital anomalies of the feet inclu
vexity of all toenails (V and W).
(X–AB) Individual 5 at 4 months, showing a small chin (X), adducted
and normal feet (AA and AB).
(AC) Individual 7 at 3 years and 2 months, showing frontal bossing;
ears; and a large, protruding tongue.
(AD–AJ) Individual 7 at 9 years and 8 months, showing frontal bos
rotated ears (AD and AE); mild prognathism (AE); pectus carinatum
AH). Brain MRI of Individual 7 showed complete agenesis of the co
genum, a retro-cerebellar arachnoidal cyst (AI), and colpocephaly ch
and temporal horns and the third ventricle (AJ).
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committees or by clinical diagnostic consent (Supplemental

Material and Methods).

Our seven individuals presented with a range of overlap-

ping phenotypes. Neurodevelopmental features commonly

included neurodevelopmental delay (6/7), speech delay

(5/7), autistic and/or stereotypical behaviors (3/7), psychiat-

ric features (4/7), and micro- (1/7) or macrocephaly (3/7).

MRI data from five individuals indicated corpus callosal

hypoplasia (2/5), dilated ventricles (2/5), and white matter

atrophy (2/5). Five of seven individuals had an under- or

overdeveloped jaw. Digital anomalies were striking and

included brachydactyly or short distal phalanges (3/7), pol-

ysyndactyly (2/7), widened interdigital spaces and/or sandal

gap (2/7), camptodactyly or contractures (2/7), and under-

developed thenar musculature (2/7). Individual 7 was clini-

cally diagnosed with Noonan syndrome, and pulmonary

stenosis, a recurrent feature of this disorder, was present in

individual 5. Only individual 1 had developmental eye

anomalies. Certain of these phenotypes overlap with those

of the boy, presented by Koolen et al.,8 who exhibited mul-

tiple digital anomalies, neurodevelopmental delay, and

absence of the anterior part of the corpus callosum. From

the published images, it also appears that he has broad hal-

luces and short terminal phalanges. The latter are inter-

esting because individual 4 had bilateral shortening of the

thumbs and big toes, individuals 2, 4, and 7 had short termi-

nal phalanges and/or brachydactyly, and individuals 2 and

4 had underdevelopment of the thenar eminence, akin to

‘‘finger-like thumbs.’’ Although overlapping features can

be seen, there is phenotypic diversity, which appears to be

an emerging pattern for variants affecting genes controlling

multiple cellular pathways and developmental processes;

these gene include, for example, CDC42,6 FBXO11,3–5

SHH (MIM: 600725),15,16 and SOX2 (MIM: 184429).17,18

FBXW11 belongs to a highly conserved group of around

60 proteins characterized by a motif of �40 amino acids

(the F-box). This family is subdivided into three classes:

FBXWs containing WD40 repeats, FBXLs containing

leucine-rich repeats, and FBXOs containing either different

protein-protein interaction modules or no recognizable

motifs.19 WD40-repeats are also a motif of approximately
d columella, and retrognathia (J–K), the feet showing contractures
aced toes, left 2–3 toe syndactyly, right 2nd toe clinodactyly (L and
ormal corpus callosum, an absent splenium, thick Probst bundles,
tter volume (N and O).
res including mild ptosis of the upper eyelids, malar hypoplasia, a
ognathia, a tall sloping forehead, and small ears (Q); digital anom-
er clinodactyly (R–U), thenar hypoplasia on the right (S), and mild
de shortening of the distal phalanx of the toes and increased con-

thumbs not well shown as they are held by the clinician (Yand Z),

a deep, broad nasal bridge, epicanthus; low-set, posteriorly rotated

sing; a deep, broad nasal bridge; epicanthus; low-set, posteriorly
(AF); and bilateral clinodactyly of the 4th and 5th toes (AG and
rpus callosum with only a small residual portion of the anterior
aracterized by dilated lateral ventricles, specifically in the occipital
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Table 1. Summary of Phenotypic and Genotypic Data of Individuals with FBXW11 Missense Variants

Individual 1 2 3 4 5 6 7
Koolen et al.
20068

Variant (GenBank:
NM_012300.2; NP_036432.2)

c.1087C>T
(p.Arg363Trp)

c.1091C>A
(p.Ala364Asp)

c.1093G>A
(p.Ala365Thr)

c.1330G>A
(p.Glu444Lys)

c.1340G>A
(p.Arg447Gln)

c.1340G>T
(p.Arg447Leu)

c.724G>C
(p.Gly242Arg)

1.24Mb
duplication

gnomAD26 frequency absent absent absent absent absent absent absent N/A

Inheritance de novo de novo de novo de novo de novo de novo de novo de novo

InterVar77 classification likely pathogenic likely pathogenic likely
pathogenic

likely pathogenic likely pathogenic likely pathogenic likely pathogenic N/A

SIFT78 classification damaging tolerated damaging damaging damaging tolerated damaging N/A

PolyPhen-279 classification probably damaging probably damaging probably
damaging

possibly damaging probably damaging probably damaging probably damaging N/A

Sex female male male female female male male male

Birth
parameters

Term (weeks
[þdays])

40 (þ5) 40 40 (þ2) 39 40 (þ6) 38 38 N/A

Weight (kg) 4.08 3.63 3.95 3.15 3.17 3.40 3.22 N/A

Growth
parameters
(age)

Current age
(years)

24 9 27 18 1 8 9 years, 7 months 19

Weight in
kg (%ile)

54 (34th %) 33.2 (79th %) 75 (68th %) 37.5 (0.1st %; �3.7 SD) 6.2 (0.1st %; �3.5 SD) 30.2 (82nd %) 24.5 (8th %) N/A

Height in
cm (%ile)

169 (81st %) 138.4 (81st %) 180 (68th %) 146.2 (0.5th %; �2.5 SD) 66 (2nd %; �2.1 SD) 134.5 (86th %) 123.5 (2nd %; �2.1 SD) 157 (5.5th %)
(at 15 years)

Head
circumference
in cm (%ile)

58.4 (>99th %; þ3.7 SD) 53 (64th %) 55.5 (61st %) 48.5 (<1st %; �5.5 SD)a N/A 57 (>99th %; þ3.5 SD) 56 (99th %) 57 (92nd %)
(at 15 years)

(Continued on next page)
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Table 1. Continued

Individual 1 2 3 4 5 6 7
Koolen et al.
20068

Congenital
anomalies

Facial yes yes no yes yes yes yes yes

Mandibular retrognathia retrognathia no micrognathia retrognathia no mild prognathism no

Ocular bilateral microanterior
segment, lens anomalies
and colobomas, R
microphthalmia

severe strabismus mild myopia no alternating
exotropia

no mild myopia no

Hand contractures of the 4th

and 5th fingers
thinning of R and L
thenar musculature,
short 5th metacarpal,
R transverse palmar
crease, and relative
brachydactyly

no thinning of thenar
musculature R > L and
short distal phalanges
of thumbs, bilateral
mild 5th finger
clinodactyly

nob no brachydactyly,
small hands

right preaxial
polydactyly,
finger-like
thumbs

Foot L middle toe polydactyly,
wide sandal gaps, 2–3 toe
syndactyly, contractures
of the L 4th and 5th toes

mild 2–3 toe
syndactyly, 2nd toe
clinodactyly,
brachydactyly,
wide toe spacing,
contractures of the
2nd and 4th toes,
short 5th metatarsal

no short terminal
phalanges, wide
sandal gaps

no no bilateral clinodactyly
of the 4th and 5th

toes, brachydactyly,
small feet

wide sandal
gaps

Cardiac no no no no pulmonary stenosis no patent foramen ovale ventricular
septal defect

renal or
urological

no no no no R renal
hypoplasia

no no VUR

Skeletal no no no yes no no yes no

Development Motor delay no moderate moderate severe severe mild to
moderate

severe yes

Intellectual
deficiency

no moderate to severe severe severe delayed
milestones

moderate to
severe

moderate to severe mild

Speech and
language
delay

no severe severe severe N/A moderate moderate N/A

Behavior ASD or
psychiatric
features

psychiatric issues repetitive behaviors classic autism hand stereotypy,
self-injurious, impulsive
and aggressive behavior

N/A ASD, anxiety self-injurious,
impulsive and
aggressive behavior

N/A

(Continued on next page)
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Table 1. Continued

Individual 1 2 3 4 5 6 7
Koolen et al.
20068

Neurological
features

Tone normal increased increased narrow based
gait

cerebral palsy low low increased

Seizures or
EEG activity

N/A mild slowing of
cerebral activity

normal N/A N/A N/A normal infrequent
seizures

MRI N/A hypoplasia of the
corpus callosum,
reduced white
matter, abnormal
hippocampi

N/A normal generalized white
matter atrophy,
periventricular
white matter
changes with
ischemic damage

mild
prominence
of lateral
ventricles

hypoplasia of the
corpus callosum, mild
prominence of lateral
ventricles

lobar HPE,
hypoplasia of
the corpus
callosum

Other relevant findings none umbilical and
inguinal hernias

none hyperkinetic circulatory
collapse at few
days of age

dermal
melanosis,
cupped ears

webbed neck, bilateral
cryptorchidism

N/A

Details of the previously reported individual with the 1.24Mb duplication8 are included in a separate column for reference. Detailed information is provided in the Supplemental Note and Table S1. The protein domains are
reported according to UniProt annotations. All variants are absent from gnomAD. Variant locations are given according to GenBank: NM_012300.2 and NP_036432.2. Clinical interpretation of genetic variants according to
ACMG/AMP 2015 guidelines was automatically predicted by InterVar for missense variants. Where available, information regarding inheritance was included in the InterVar prediction. Abbreviations are as follows: ASD ¼
autism spectrum disorder; L ¼ left; N/A ¼ not available; R ¼ right; and VUR ¼ vesicoureteric reflux.
aExtreme microcephaly.
bAdducted thumbs.
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p.Arg363Trp
(Individual 1)

p.Ala364Asp
(Individual 2)

p.Ala365Thr
(Individual 3)

p.Glu444Lys
(Individual 4)

p.Arg447Gln
(Individual 5)

p.Arg447Leu
(Individual 6)

F-Box WD1 WD2 WD3 WD4 WD5 WD6 WD7

A

p.Gly242Arg
(Individual 7)

SENSKGVYCLQ VLVGHRAAVNVVD LEGHEELVRCIRFDHomo sapiens (NP_036432)
Danio rerio (NP_958467)
Danio rerio (NP_998669)
Macaca mulatta (NP_001248237)
Mus musculus (NP_598776)
Gallus gallus (NP_001034351)
Rattus norvegicus (NP_001100463) -----------

SENSKGVYCLQ
SENSKGVYCLQ

SENSKGVYCLQ
SENSKGVYCLQ
SENSKGVYCLQ

VLVGHRAAVNVVD
VLVGHRAAVNVVD

VLVGHRAAVNVVD
VLVGHRAAVNVVD

VLVGHRAAVNVVD
VLVGHRAAVNVVD

LEGHEELVRCIRFD
LEGHEELVRCIRFD
LEGHEELVRCIRFD
LEGHEELVRCIRFD
LEGHEELVRCIRFD
LEGHEELVRCIRFD

242 363-365 444 447

B

Hd D

C

E

D

Figure 2. Structural Modeling of FBXW11 Missense Variants
(A) A schematic representation of FBXW11 showing the relative locations of the homodimerization domain D (Hd D, blue), F-box (red),
WD40 domains (green), and the missense variants identified in our seven individuals.
(B) A Clustal Omega alignment of the FBXW11 regions containing the variants identified in this study showing affected amino acids
highlighted in yellow and complete conservation across species.
(C) A homology model of FBXW11 in complex with Skp1 and b-catenin based on PDB structure PDB: 1P22. Skp1 is shown in blue,
b-catenin in orange, and the FBXW11 domains in red (F-box), green (linker region), and gray (WD40 domains).

(legend continued on next page)
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Table 2. FoldX Predictions of the Impact on FBXW11 and BTRC Stability and Their Interactions with Skp1 and b-catenin of the FBXW11
Variants Identified in Individuals 1–7

Individual 1 2 3 4 5 6 7

Variant p.Arg363Trp p.Ala364Asp p.Ala365Thr p.Glu444Lys p.Arg447Gln p.Arg447Leu p.Gly242Arg

FBXW11 FBXW11 DDG 0.521609 4.09086 4.12764 �0.0159721 1.63651 0.1246 12.0844

Stability minor decrease decrease decrease none decrease none decrease

þ Skp1 DDG 0.0 0.0 0.482 0.0 0.0 0.9022 9.6142

Stability none none minor decrease none none minor decrease decrease

þ b-catenin DDG 0.12782 4.943962 3.866386 �0.37936 2.2931 1.55266 10.19112

Stability none decrease decrease none decrease decrease decrease

BTRC BTRC DDG 0.51728 4.47495 3.59842 �0.10002 1.54555 0.0186672 10.264

Stability minor decrease decrease decrease none decrease none decrease

þ Skp1 DDG 0.0 0.0 0.6572 0.0 0.0 0.7318 8.8664

Stability none none minor decrease none none minor decrease decrease

þ b-catenin DDG 0.14382 5.78723 3.457756 �0.33198 2.279382 1.5214 9.16596

Stability none decrease decrease none decrease decrease decrease

DDG provided as kcal mol-1. Values of DDG greater than 0.46 kcal mol-1 indicate a decrease in stability, whereas decreases greater than �0.46 kcal mol-1 indicate
an increase in stability. Mean values of DDG for five replicate analyses of each variant are given.
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40 amino acids and typically fold into a b-propeller struc-

ture that is involved in protein-protein interaction.20,21

Alterations in other F-box genes, for example FBXO113–5

and FBXL4 (MIM: 605654), have been associated with neu-

rodevelopmental disorders.22 FBXW11 is a substrate adaptor

of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex,

which catalyzes phosphorylation-dependent ubiquitina-

tion.11,23 It has several targets, including b-catenin and

GLI transcription factors, key mediators of the Wnt and

the Hh pathways, respectively. Despite the importance of

these two pathways, little is known about the role of

FBXW11 in human development and the impact of aber-

rant FBXW11 function on human disease.

Different in silicometrics indicate that FBXW11 is moder-

ately intolerant to variation.24,25 It has a Residual Variation

Intolerance Score (RVIS) of �0.47, ranking it among the

23% of human protein-coding genes most intolerant to

functional (missense, nonsense, and splice) variants.24

Moreover, metrics reported on gnomAD (v2.1.1)26 suggest

it is intolerant to both loss-of-function (LoF) variants

(observed/expected [o/e] score¼ 0.15, 0.08–0.31 90% confi-

dence interval [CI]; pLI score ¼ 0.98) and missense variants

(o/e score ¼ 0.37, 0.32–0.43 90% CI; Z score ¼ 3.96). The

latter is of particular relevance because all the de novo

variants in this study are missense changes. In addition to

these seven variants, two further de novo changes of

uncertain clinical significance in FBXW11 have been re-

ported in large scale studies of autism spectrum disorder

(ASD) (GenBank: NM_012300.2:c.243C>G [p.Asp81Glu];
(D) The locations of the amino acids affected by the FBXW11 varian
(E) The modeled WD40 domain of FBXW11 in complex with b-cate
or Cdc4 (cyclin E C-terminal degron, cyclin E N-terminal degron, D
SIC1).
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dbSNP: rs995419585, c.508C>T [p.Arg170Ter]).27,28 None

of theseninevariants or other changes affecting these amino

acids were listed on gnomAD, with the exception of a rare

synonymous variant for Ala365 (dbSNP: rs775168567,

GenBank:NM_012300.2:c.1095C>T,minorallele frequency

[MAF] ¼ 0.00001771) and a missense change for Arg170

(dbSNP: rs995419585, GenBank: NM_012300.2:c.508C>G

[p.Arg170Gly], MAF ¼ 0.000003984). Furthermore, the

nucleotide positions affected by our sevenmissense variants

are evolutionarily conserved according to the GERP rejected

substitutions scores29,30 (Table S1). Interestingly, these vari-

ants are located in regions depleted for nonsynonymous

variation (Figure S1). According to the model developed by

Havrilla et al.,31 six of the sevenmissense changes affect res-

idues located within portions of the protein considered as

under thehighest constraint in thehuman genome, ranking

among the top 5% constrained coding regions (CCRs). The

amino acid substitution (c.724G>C [p.Gly242Arg]) in indi-

vidual 7, who presentedwith features of Noonan syndrome,

is located in a region characterized by a slightly lower level of

constraint (85th percentile). Therefore, the location of the

variants in these regions further supports their potential

relevance to protein function.

Intriguingly, all seven missense variants affected the

WD40 domain of FBXW11 (Figure 2). In particular, six of

the seven changes appeared to cluster at the N-terminal

end of the WD4 (residues 363 to 365, in individuals 1, 2,

and 3, affecting consecutive amino acids) and WD6 (resi-

dues 444 and 447, in individuals 4, 5, and 6 [individuals
ts within the WD40 domain. b-catenin is shown in orange.
nin (orange) and other available peptides known to bind FBXW7
ISC1, high-affinity CPD phosphopeptide from human cyclin E,

2019



Figure 3. In Situ Hybridization Studies Showing FBXW11
Expression During Human Eye Development
(A–E) Sagittal sections of the eye at CS15 (A), CS17 (B), CS19 (C),
CS20 (D), and CS21 (E) made by using the 50 UTR probe showing
a strong FBXW11 signal in the lens (A–C), the retina (A–E), the lips
of the optic fissure closure (B), and regions of the developing con-
junctiva (C and E). As eye development progresses, the stronger

The Ame
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5 and 6 had the same affected amino acid]) repeats. The

seventh variant (in individual 7) affected the N-terminal

end of the WD1 repeat. In contrast with this specific distri-

bution, the two variants reported in the ASD-affected indi-

viduals27,28 either affected a different domain of FBXW11

(p.Asp81Glu, homodimerization domain), or resulted in

a truncated, likely inactive, protein (p.Arg170Ter).

No protein structure for FBXW11 was available in the

Research Collaboratory for Structural Bioinformatics Pro-

tein Data Bank (RCSB PDB).32 However, an experimentally

derived crystal structure for a homolog, BTRC, complexed

with Skp1 and b-catenin was available (PDB: 1P22).20 Pair-

wise alignment of BTRC (GenBank: NP_003930.1) and

FBXW11 (GenBank: NP_036432.2) show the proteins

have 79.0% identity and 87.4% similarity, and the regions

containing the missense variants in individuals 1–7 were

highly conserved (Figure S2). Therefore, we modeled a 3D

structure for FBXW11 (GenBank: NP_036432.2) based on

the crystal structure of BTRC, employing a previously

described procedure.33 The location of the affected residues

was visualized with PyMOL v2.0 (the PyMOL Molecular

Graphics System, Version 2.0 Schrödinger). Notably, all

affected residues were located toward the tips of the loops

of the WD repeat domains, which are predicted to mediate

substrate binding (Figure 2). Because there is high conserva-

tion of the WD repeat structure, and because each repeat

contacts b-catenin,20 all seven altered residues are expected

to impact substrate binding. Clustering of the de novo

missense variants suggests an impact on protein function

via gain-of-function or dominant-negative mechanisms.34

Despite this, and the fact that the phenotypes of these indi-

viduals fall in broad, overlapping categories, there is varia-

tion in the specifics of their features. We modeled the

WD40 domain of FBXW11 bound to substrates of the

WD40-domain-containing proteins FBXW7 and Cdc4

(Figure 2E). This indicated that individual substrates might

adopt different orientations when binding to FBXW11, sug-

gesting a variable contribution of the differentWD40motifs

in FBXW11 binding to individual ligands. Therefore, it is

possible that the missense variants identified here might

have varying impacts depending on the substrate.

We investigated the impact of the missense variants on

protein stability and interaction with Skp1 and b-catenin

for both ourmodeled FBXW11 structure and BTRC by using

FoldX.35 Predictions indicatedfiveof the sevenmissensevar-

iants (c.1087C>T [p.Arg363Trp]; c.1091C>A [p.Ala364Asp];

c.1093G>A [p.Ala365Thr]; c.1340G>A [p.Arg447Gln];

and c.724G>C [p.Gly242Arg]) impact the stability of

both FBXW11 and BTRC (Table 2). Furthermore, five of

the variants (p.Ala364Asp, p.Ala365Thr, p.Arg447Gln,

p.Arg447Leu, and p.Gly242Arg) were predicted to decrease

the stability of the FBXW11-b-catenin and BTRC-b-catenin
signal observed in the retina progressively shifts from the inner to-
ward the outer retinal layers (A–D). Abbreviations are as follows:
Cj ¼ conjunctiva; HV ¼ hyaloid vasculature; Ls ¼ lens; OF ¼ optic
fissure; and Rn ¼ retina.
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Figure 4. In Situ Hybridization Studies Comparing FBXW11 and
SOX9 Expression During Human Limb Development
(A–J) Coronal sections of the forelimb at different CS
stages showing the expression pattern of FBXW11 (50 UTR
probe) on the left (A, C, E, G, and I) and the chondrogenic
marker SOX9 on the right (B, D, F, H, and J). E, F, I, and
J show increased magnification of the boxed regions at CS19

10 The American Journal of Human Genetics 105, 1–18, September 5
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interactions. Three variants (p.Ala365Thr, p.Arg447Leu, and

p.Gly242Arg) also decreased the stability of the FBXW11-

Skp1 and BTRC-Skp1 interactions (Table 2). Interestingly,

the variant (p.Gly242Arg) in individual 7, who presented

with features of Noonan syndrome, was predicted to have

the greatest impact on both FBXW11 and BTRC stability

and their interactionswith b-catenin and Skp1. On the basis

of these analyses, the variants are predicted to produce vari-

able downstream effects and resultant phenotypes, particu-

larlybecauseFBXW11is involved inmultipledevelopmental

pathways.

Next, we determined the expression profile of FBXW11

during human development by using nonradioactive RNA

in situ hybridization on human embryo sections from Car-

negie Stages (CS) 15–21, obtained from the MRC/Wellcome

Trust Human Developmental Biology Resource, UCL,

with full ethical approval.36 We designed two probes to

target all three FBXW11 human isoforms (GenBank:

NM_012300, NM_033644, and NM_033645) (Supple-

mental Material and Methods). Both probes showed similar

expression patterns (Figures 3–5 and S3–S6).

In the eye, FBXW11 expression was seen throughout

the lens at multiple time points (Figures 3A–3C, S3A–

S3F, S3I, and S3J), a fact of particular relevance to the

congenitally absent and thin lenses in individual 1. In

the retina, FBXW11 expression appeared to shift over

time from the inner to outer neuroretinal cell layers (Fig-

ures 3A–3D). Sagittal sections of the eye at CS17 also

showed FBXW11 expression at the margins of the optic

fissure (Figures 3B, S3C, and S3D), indicating a potential

role in optic fissure closure, relevant to the bilateral

chorioretinal colobomas in individual 1. Expression of

FBXW11 was also seen in the developing conjunctiva

(Figures 3C, 3E, and S3E–S3J).

In the developing hand, expression of FBXW11 was

analyzed in parallel with expression of the chondrogenic

marker SOX9 (MIM: 608160).37 At CS15, a strong signal

was detected for both genes (Figures 4A, 4B, S4A, and

S4B); FBXW11 displayed more widespread expression

throughout the limb bud compared with the restricted

expression pattern of SOX9. At CS19 and CS21, after the

digits have begun to form, strong FBXW11 expression

was seen in the mesenchyme surrounding the developing

cartilage (Figures 4C–4J and S4C–S4J). Interestingly, digital

anomalies were observed in four of the individuals we

report, as well as the boy reported by Koolen et al.8

In the brain, FBXW11 expression was present in the

primitive ventricles (CS17 and CS19, Figures 5A–5C, S5A,

S5B, S6A, and S6 B), metencephalon (CS19, Figures 5C,

S5B, and S6B), hypothalamus (CS17, Figure 5D), and me-

dulla (CS17, Figure 5E). These expression patterns are

consistent with the altered brain structure, including

prominence of the lateral ventricles and periventricular
(C and D) and CS21 (G and H) highlighting FBXW11 expres-
sion around the developing cartilage of the digits in the hand
plate.
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Figure 5. In Situ Hybridization Studies of FBXW11 in the Human Showing the Expression Pattern in Multiple Structures during
Embryonic Development
Experiments performed using the 50 UTR probe. Structures of interest are indicated by arrows.
(A) A sagittal section of embryo at CS17 (week 6), showing FBXW11 expression in multiple developing structures.
(B) A sagittal section of the head at CS17 (week 6) indicating expression in the structures forming the lateral, third, and fourth ventricles.
(C) A sagittal section of the head at CS19 (week 7) showing strong expression in the regions surrounding the lateral ventricle and the
metencephalon.

(legend continued on next page)
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changes, of individuals 2, 5, 6, and 7. Furthermore, this

finding supports an important role for FBXW11 in path-

ways, including the Hh and the Wnt cascades, essential

for normal brain development.38,39 Strong expression

was also observed in the pharyngeal arches, including

the mandibular process and tongue (CS17, Figures 5F,

S5C, and S6C). Expression in these structures might relate

to the micrognathia or retrognathia of four of the reported

individuals (1, 2, 4, and 5) and the large tongue in individ-

ual 7. Other structures showing expression included: the

adrenal glands (CS17, Figures 5G, S5D, and S6D), the lungs

(CS17 and CS21, Figures 5G, 5H, S5E, and S6E), the pulmo-

nary artery and dorsal aorta (CS21, Figures 5I, S5F, and

S6F), the liver (CS15, Figures 5J, S5G, and S6G), the spleen

(CS15, Figures 5J, S5G, and S6G), and the midgut (CS17,

Figures 5K, S5H, and S6H); the dorsal ganglia (CS21, Fig-

ures 5L, S5I, and S6I) and the spinal cord (CS15, Figures

5J, S5G, and S6G; CS17 Figures 5A, S5A, and S6A; and

CS21, Figures 5M, S5J, and S6J), where the signal was de-

tected in the floor plate, the roof plate, and the ventricular

and intermediate layers of the spinal cord (CS21, Figures

5M, S5J, and S6J). The expression in the pulmonary artery

and dorsal aorta is interesting given the pulmonary steno-

sis seen in individual 5.

The zebrafish genome includes two orthologs of

FBXW11, fbxw11a and fbxw11b. These genes encode

proteins with 90.4% sequence identity and 95.3%

similarity. Furthermore, both zebrafish orthologs share

around 85% identity and 91% similarity with human

FBXW11 (GenBank: NP_036432.2) (Fbxw11a [GenBank:

NP_958467.1]: 84.7% identity, 90.6% similarity; Fbxw11b

[GenBank: NP_998669.2]: 85.6% identity, 91.2% similar-

ity). We performed in situ hybridization with probes de-

signed against the low homology 30 UTR region of fbxw11a

and fbxw11b to avoid cross-detection (Supplemental Mate-

rial and Methods).40 At 4 days post fertilization (dpf),

fbxw11a is expressed at low levels in the retina and brain

and higher levels in the jaw mesenchyme (Figure 6A).

fbxw11b is expressed widely in the brain and eyes, and

there are high levels in the retinal ganglion layer, inner nu-

clear layer, in or adjacent to the outer plexiform layer, in

the photoreceptor layer, ciliary marginal zone, jaw mesen-

chyme, oral epithelia (Figure 6B), and pectoral fins (Figures

S7A–S7D). These findings are comparable to the expression
(D–G) Increased magnification of structures from (A) highlighting F
pharyngeal arches (F), and the adrenal glands and lungs (G).
(H) A coronal section at CS21 (week 8) showing expression in the lu
(I) A coronal section of the heart at CS21 showing FBXW11 expressi
(J) A sagittal section of the embryo at CS15 (week 5) highlighting str
(K) Increased magnification of (A) showing FBXW11 expression in t
(L) A transverse section at CS21 showing a strong FBXW11 signal in
(M) A transverse section of the spinal cord at CS21 showing FBXW11
intermediate layers of the spinal cord.
Abbreviations are as follows: AG ¼ adrenal glands; AP ¼ alar plate; BP
agus; FP ¼ floor plate; FV ¼ fourth ventricle; Hp ¼ hypothalamus; IL
Md ¼ medulla; Me ¼ metencephalon; Mg ¼ midgut; ML ¼ margina
pharyngeal arches; RP ¼ roof plate; SC ¼ spinal cord; Sp ¼ spleen; S
layer; and Vt ¼ vertebra.
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data in humans, further supporting a role for FBXW11 in

the development of the eye, jaw, limbs, and brain.

To further investigate the role of FBXW11 in vertebrate

development, we generated zebrafish knockdown models

by using a combination of morpholino and CRISPR-Cas9

technologies (Supplemental Material and Methods). Mor-

pholino knockdown of fbxw11a resulted in no overt pheno-

type in zebrafish embryos (Figures S7E and S7F). fbxw11b

morphants consistently showed reduced eye size and a

shorter and bent axis phenotype (Figures S7E and S7G).

Because morpholinos can have off-target effects, using

CRISPR-Cas9 we induced a 7bp frameshift mutation (allele

u5010, p.Asp24Leufs*6) in fbxw11b exon 2 (Figures 6C

and S7H–S7K). fbxw11bu5010/u5010 homozygous embryos

showed no abnormal phenotype andwere viable and fertile.

Maternal zygotic (MZ) mutant fbxw11bu5010/u5010 embryos

from an fbxw11bu5010/u5010 female to fbxw11bþ/u5010 male

cross also showed no abnormal phenotype (Figures 6D

and 6E).

We hypothesized that compensation by fbxw11a could

result in the absence of phenotype inMZfbxw11bu5010/u5010

embryos. For instance, recent studies have shown that the

loss of function of a gene resulting from nonsense-mediated

decay (NMD) might be compensated for by altered

expression of other genes.41–43 Because our CRISPR-Cas9

fbxw11b mutant carries a frameshift mutation, it might

be subject to NMD. Therefore, the lack of phenotype

observedmightbe a result of compensatory geneexpression,

possibly by fbxw11a. However, in situ hybridization experi-

ments did not show any obvious upregulation of fbxw11a

in fbxw11b mutants at 48 h post fertilization (hpf) (not

shown). Therefore, the basal level of expression of fbxw11a

might be sufficient to compensate for the lack of function

of fbxw11b. To begin to address this issue, we injected

fbxw11a morpholino (mofbxw11a) in MZfbxw11bu5010/u5010

and sibling embryos. No overt phenotype was generated

before 2dpf in any genotype, and no phenotype

was observed in morpholino-injected heterozygous or

wild-type siblings at any stage examined. By 3dpf,

MZfbxw11bu5010/u5010/mofbxw11a morphants showed abnor-

mally developed pectoral fins and heart edema (Figures

6D–6I, n ¼ 20/21); this is of interest given the digital

anomalies in the individuals presented here. At 5dpf,

MZfbxw11bu5010/u5010/mofbxw11a morphant knockdown
BXW11 expression in the hypothalamus (D), lower medulla (E),

ngs.
on in the dorsal aorta and the pulmonary artery.
ong FBXW11 expression in the liver, spleen, and spinal cord.
he midgut.
the dorsal ganglia.
expression in the floor plate, roof plate, and the ventricular and the

¼ basal plate; DA ¼ dorsal aorta; DG ¼ dorsal ganglia; Es ¼ Esoph-
¼ intermediate layer; Lg ¼ lungs; Li ¼ liver; LV ¼ lateral ventricle;
l layer; MP ¼ mandibular process; PA ¼ pulmonary artery; Par ¼
t ¼ stomach; To ¼ tongue; TV ¼ third ventricle; VL ¼ ventricular
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Figure 6. fbxw11a and fbxw1b Are Expressed in the Zebrafish Eye, and Their Knockdown Leads to Abnormal Eye and Jaw Development
(A and B) Coronal plastic sections showing the expression pattern of fbxw11a (A) and fbxw11b (B) in 4dpf zebrafish heads detected by in situ
hybridization. Dorsal is up. The scale bar in (A) is 100mm.
(C) Diagram of human FBXW11 and zebrafish Fbxw11b and Fbxw11bu5010. The bTrCP domain is in blue, the F-box domain is in green,
the sevenWD40 domains are in yellow, and the nonsense sequence of Fbxw11bu5010 is in red. The numbers are amino acid positions in
respective proteins.
(D–I) 3dpf live zebrafishMZfbxw11u5010/u5010 (D, E, H, and I) andMZfbxw11bþ/u5010 (F and G) embryos injected with 500pg of control
(D and E) or fbxw11a (F–I) morpholinos. Lateral (D, F, and H) and dorsal (E, G, and I) view, both anterior to left. The scale bar in (D) is
400mm and in (E) is 200mm.
(J–Q) 5dpf zebrafishMZfbxw11bþ/u5010 (J, K, N, and P) andMZfbxw11u5010/u5010 (L, M, O, and Q) embryos injected with 500pg fbxw11a
morpholino. (J–M) Live embryos lateral (J and L) and dorsal (K andM) view, both anterior to left. The scale bar in (J) is 400mmand in (K) is
200mm.
(N and O) Confocal imaging of DAPI-stained coronal plastic sections. The scale bar in (N) is 100mm.
(P and Q) Alcian blue staining of cartilage structures. Ventral view, anterior to left. The scale bar in (P) is 200mm.
Abbreviations are as follows: Aq ¼ aqueous humor; bh ¼ basihyal; ch ¼ ceratohyal; CMZ ¼ ciliary marginal zone; hs ¼ hyosymplectic;
INL ¼ inner nuclear layer; IPL ¼ inner plexiform layer; mc¼Meckel’s cartilage; ONL¼ outer nuclear layer; OPL¼ outer plexiform layer;
pq ¼ palatoquadrate; PR ¼ photoreceptor layer; and RGL, retina ganglion layer.
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embryos developed periocular edema and smaller eyes

compared to MZfbxw11bþ/u5010/mofbxw11a knockdown het-

erozygous siblings (Figures 6J–6M, n ¼ 20/20). Coronal sec-

tions showed that 5dpf MZfbxw11bu5010/u5010/mofbxw11a

knockdown eyes had all the retinal layers present in the

wild-type; however, the eye was smaller and misshapen.

This was potentially because of a lack of aqueous humor

in MZfbxw11bu5010/u5010/mofbxw11a knockdowns, although

it was present in the phenotypically normal siblings

at the same stage (Figures 6N and 6O). The reduction
The Amer
in eye size in mutant knockdown fish supports a role

for FBXW11 in eye development and supports the

FBXW11 variant’s being implicated in the microphthalmia

observed in individual 1. Alcian blue cartilage staining

in MZfbxw11bu5010/u5010/mofbxw11a knockdowns revealed

abnormal development of the jaw (Figures 6P and 6Q). The

basihyal (pharyngeal arch) cartilage structure protruded

anteriorly in MZfbxw11bu5010/u5010/mofbxw11a knockdowns

because of shorter Meckel’s and palatoquadrate cartilages

(Figures 6P and 6Q). These latter observations are consistent
ican Journal of Human Genetics 105, 1–18, September 5, 2019 13
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with four of our individuals presenting with retrognathia or

micrognathia.

FBXW11 has been shown to negatively regulate theWnt/

b-catenin pathway.44 Inhibition ofWnt/b-catenin signaling

is required for the correct specification of forebrain terri-

tories, and enhanced Wnt activity leads to embryos with

smaller or no eyes.45,46 Enhanced Wnt activity in tcf7l1a

mutants results in a smaller eye field and reduced eye size

by 32hpf.47 To determine whether Wnt/b-catenin signaling

was affected in fbxw11bu5010/u5010 embryos, we assessed

whether there were any genetic interactions between the

mutated forms of fbxw11b and tcf7l1a. As previously

shown,47 tcf7l1a�/� eyes were close to 50% of the size of

wild-type eyes (Figure S8A). However, fbxw11b u5010/u5010/

tcf7l1a�/� double mutant embryos developed even smaller

eyes, about 80% of the size of eyes in tcf7l1a embryos

(Figure S8A, p ¼ 0.0001, tcf7l1a�/� embryos, ~x ¼
910.337mm3 5 118e3 n ¼ 20; fbxw11b u5010/u5010/

tcf7l1a�/� embryos, ~x¼ 727.5885 145e,3 n¼ 19). This sug-

gests that abrogation of fbxw11b leads to further enhanced

Wnt signaling in tcf7l1a�/�mutants. Furthermore, exposure

of embryos to a low dose of the Wnt/b-catenin agonist BIO

(0.5mm treatment from 24hpf onward) led to an upward

bent trunk in fbxw11bu5010/u5010/mofbxw11a knockdown

embryos but not in fbxw11bu5010/u501 or wild-type embryos

(Figures S8B–S8D, 100% n ¼ 13, two experiments).

This morphology is similar to that observed in APC

mutants in which the Wnt pathway is constitutively

overactivated.48 Overall, these results suggest that the

fbxw11bu5010/u5010/mofbxw11a knockdown embryos are sensi-

tized to the effects of enhanced Wnt/b-catenin activity.

Given the phenotype of individual 1 and our in situ and

zebrafish data, we further explored whether FBXW11 vari-

ants contribute more widely to developmental eye disorders

by performing targeted screening in an additional 263 indi-

viduals with anophthalmia, microphthalmia, or coloboma

(AMC) by using high-resolution melt curve analysis49 or

Sanger sequencing (Supplemental Material and Methods).

Excluding three 30 UTR private variants (c.*4064_*

4065insT [chr5:171,288,698–171,288,699], c.*2867G>A

[chr5:171,289,855], c.*2592C>T [chr5:171,290,168]; Gen-

Bank: NM_012300.2, GRCh37/hg19) inherited from unaf-

fected parents, no functionally relevant variants were iden-

tified. Similarly, array comparative genome hybridization

(aCGH) analysis of 77 individuals, including individual 1,

with isolated or syndromic AMC did not identify any

copy number aberrations affecting FBXW11. This indicates

variants in FBXW11 might only rarely be associated with

human AMC.

FBXW11 is involved in multiple developmental path-

ways, including Wnt signaling, which plays a crucial role

in the regulation of cell proliferation, tissue patterning,

and organ morphogenesis. Wnt signaling can be divided

into canonical and non-canonical pathways; and a key

element of the former is ubiquitination of b-catenin (Fig-

ures S9A and S9B).10,50 This ubiquitination, controlled by

the SCF complex, is directed either by BTRC or its paralog
14 The American Journal of Human Genetics 105, 1–18, September 5
BTRC2, encoded by BTRC and FBXW11, respectively.11,51

Aberrations of this pathway can lead to a range of human

pathologies, including developmental disorders affecting

the limbs, as well as neurodevelopmental and psychiatric

disorders.10,52,53 There is also significant evidence of the

importance of Wnt signaling in developmental eye disor-

ders in mouse models.54,55

FBXW11 is also involved in Hh signaling by regulating

the ubiquitination of GLI transcription factors (Figures

S9C and S9D). Variants in Hh pathway genes are associated

with developmental anomalies, some of which are compa-

rable to those observed in the individuals presented here.

Copy number gains encompassing BTRC are linked with

developmental limb anomalies.9,56 Drosophila with muta-

tions in Slimb, the ortholog of both FBXW11 and BTRC,

develop supernumerary limbs or ectopic legs and eye

anomalies.57–59 In mice, mutations of GLI transcription

factors can cause multiple malformations, including poly-

dactyly, anophthalmia, and coloboma.60–63 Finally, in

humans, genetic variants affecting members of the Hh

signaling pathway, such as SHH and PTCH1 (MIM:

601309), have been associated with developmental eye

anomalies and HPE.15,64–66 GLI2 (MIM: 165230) and

GLI3 (MIM: 165240) variants have also been reported in in-

dividuals with a variety of phenotypic features including

HPE, polydactyly, and anophthalmia.67–70 However,

some of the GLI2 variants have subsequently been classi-

fied as benign in ClinVar.

Individual 7 presented with distinctive characteristics of

Noonan syndrome, a phenotype linked to RAS-MAPK

signaling dysregulation.71,72 Ras trafficking and activity

are regulated by several mechanisms, including ubiquiti-

nation, which can be mediated by different ubiquitin

ligase complexes.73 Recent studies have also identified a

circuit involving LZTR1, a Kelch-domain-containing pro-

tein altered in Noonan syndrome. LZRT1 functions as a

substrate receptor in the cullin 3 ubiquitin ligase complex

involved in the ubiquitination and functional down mod-

ulation of HRAS.33,74,75 Interestingly, the SCF-b-TrCP E3

ligase complex has also been implicated in the ubiquitina-

tion and proteasomal degradation of HRAS,76 supporting

an unanticipated functional link between FBXW11 and

RAS signaling modulation warranting further exploration.

Our structural analyses provide evidence of the specific

impact of the identified variants on FBXW11 function, as

well as for the dominant role of these amino acid changes.

Specifically, the variants are predicted to impair proper

recognition and/or binding of substrates by the SCF ubiq-

uitin ligase complex. In contrast to the presently reported

variants, the two de novo changes previously reported in

the ASD-affected individuals are predicted to alter protein

function by different mechanisms. The exon 3 missense

variant is located within the homodimerization domain

and might interfere with protein dimerization. Instead,

the nonsense substitution affecting exon 4 is predicted to

lead to NMD or a truncated protein, potentially reducing

the amount of functional protein. Although several of
, 2019
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our individuals presented with features of ASD, little clin-

ical information is available for the individuals from these

ASD studies, except that the individual carrying the

nonsense variant has a high IQ.28 This limits our ability

to suggest further how these alternate mechanisms might

contribute to phenotypic variation.

In conclusion, we report seven unrelated individuals

presenting with phenotypes including eye, digital, and

jaw anomalies, and neurodevelopmental or psychiatric

disorders. These individuals all carry de novo probably

pathogenic missense variants in FBXW11, a member of

the ubiquitin ligase SCF complex that functions as a regu-

lator of both the Wnt and Hh signaling developmental

pathways. In silico analyses provide a model for the func-

tional impact of the variants; in vitro experiments with hu-

man and zebrafish developmental tissue supported early

expression of FBXW11 in relevant structures and in vivo ze-

brafish studies documented the relevance of FBXW11 in

developmental processes affected in this phenotypic series.

Collectively, these data support the role of FBXW11 vari-

ants in human developmental disorders affecting the

brain, eye, jaw, and digits, possibly via modulation of the

Wnt/b-catenin, Hh, and RAS signaling pathways.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.07.005.
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Supplemental Data 

Supplemental Note: Case Reports 

Individual 1 was born with bilateral eye anomalies following an uncomplicated pregnancy. 

At 13 years-of-age, she had right microphthalmia (17.4 mm axial length) with a small 

anterior segment (horizontal corneal diameter [HCD] 5 mm), iris coloboma, absent lens, a 

large chorioretinal coloboma and persistent hyaloid vessel with no perception of light. Her 

left eye had an axial length of 20.4 mm (low borderline normal) with small anterior segment 

(HCD 6.5 mm), iris coloboma, thin lens, and large chorioretinal coloboma and a visual acuity 

of 2/60 (corrected with 0.00, -2.25 D x 100). She had mild retrognathia, wide sandal gaps 

between 1st and 2nd toes, left 2-3 toe syndactyly, mesoaxial polydactyly of the left 3rd toe 

(surgically corrected), contractures of the left 4th and 5th toes, and contractures of the left 

4th and 5th fingers. Her overall development was normal, although she had some psychiatric 

issues during adolescence and early adulthood. No other candidate variants to potentially 

explain the patient’s phenotype were identified by whole exome sequencing (WES) or array 

comparative genomic hybridisation (aCGH). 

 

Individual 2 was a 9-year-old boy with global developmental delay. He was born following 

an uneventful pregnancy at full term by caesarean section, following a prolonged labour. He 

had infantile strabismus that resolved, delayed motor, cognitive and speech development. 

He walked at age 3 years and talked in single words at 5½-6 years. At age 9 years, his 

general development was around the 4-year-old level. He spoke only in short phrases and 

he had behavioural issues with a preference for strict routine, frustration with lack of 

communication and self-injurious behaviours. He had a prominent glabella, a broad, 

possibly bifid uvula, retrognathia, and a prominent nasal tip. He had a right transverse 



 

palmar crease, mildly short 5th metacarpals, relatively short digits, slightly thin thumbs with 

deficiency of thenar and hypothenar muscle eminencies bilaterally. He had wide spaces 

between all of his toes with contractures of the 2nd and 4th toes, short 5th metatarsals, 

lateral clinodactyly of the 2nd toe, which was moderately broad, and mild 2-3 toe syndactyly. 

He walked with a slightly unusual gait and tended to toe walk. His deep tendon reflexes 

were brisk. MRI revealed a severely abnormal corpus callosum with absent splenium, thick 

Probst bundles, small globular dysplastic hippocampi and mildly reduced white matter 

volume. No other variants of interest were identified in this individual by WES. 

 

Individual 3, in addition to the de novo missense variant in FBXW11, carried two paternally 

inherited heterozygous mutations, in GALT (MIM: 230400) and PTS (MIM: 261640), 

predicted pathogenic, but with no evidence of a second mutation in either or phenotypes 

matching the known recessive disorders associated with variants in these genes. SNP array 

analysis was normal, and there was no CGG repeat expansion in FMR1 (MIM: 309550). 

Individual 3 was the second child of non-consanguineous parents. Pregnancy and birth were 

unremarkable. His development was delayed. He started walking at the age of 20 months, 

and toe walked for a long time. His first words came at the age of one year; however, after 1 

– 1.5 years there was stagnation or even regression in his language skills. He never 

combined words and is practically nonverbal as an adult. He was diagnosed with classic 

autism and severe intellectual disability and showed compulsive behaviour. At 23 years, he 

was emotionally at the level of 18 months. His hearing and vision were normal, with mild 

myopia. He had normal growth parameters and no dysmorphic features. 

 



 

Individual 4 had extreme microcephaly (congenital), very small stature and a history of 

global developmental delay with moderate/severe intellectual disability (ID) and absent 

speech. Pregnancy and birth were unremarkable. She exhibited some stereotypies with her 

hands and self-injurious behaviour. She had dysmorphic facial features including 

micrognathia, tall sloping forehead, malar hypoplasia, long, smooth philtrum, bifid nasal tip, 

thin upper lip, small ears and mild ptosis, with normal external eye appearances. She 

exhibited digital anomalies, with shortening of the distal phalanx of the thumbs and big 

toes, bilateral 5th finger clinodactyly, thenar hypoplasia on the right and mild thenar 

hypoplasia on the left, and increased curvature of thumb and all toenails, indicative of distal 

digital hypoplasia. In addition to the variant in FBXW11, variants of unknown clinical 

significance in two additional genes were noted. A de novo missense change 

(NM_152486.2:c.58A>G, NP_689699.2:p.Ile20Val) was identified in SAMD11 (MIM: 616765), 

while inherited compound heterozygous variants were present in SYCP2L (MIM: 616799) 

(NM_001040274.2:c.1720G>A, NP_001035364.2:p.Glu574Lys, maternally inherited; 

NM_001040274.2:c.1777G>C, NP_001035364.2:p.Ala593Pro, paternally inherited). Array 

CGH analysis was normal. 

 

Individual 5 was a 1-year-old girl born with a severe pulmonary stenosis (operated on at a 

few days of age), unilateral (right) renal hypoplasia with compensatory left renal 

hypertrophy, renovascular hypertension and adducted thumbs. She had a broad nasal 

bridge, short nose, deep philtrum, and retrognathia. Her feet showed no anomalies. Her eye 

examination was unremarkable apart from alternating exotropia. At a few days of age she 

suffered a circulation collapse. She has been clinically diagnosed with cerebral palsy. 

Cerebral MRI at age 10 months showed generalised white matter atrophy and small 



 

periventricular changes in white matter with discrete hemosiderin deposits indicating a 

small haemorrhagic component at some point earlier in life. At age 6 months, her 

development was delayed corresponding to approximately age 3 months. At 8 months she 

recognised her parents and smiled. At 1 year she could hold her head, but was unable to roll 

or sit. In addition to the FBXW11 variant, the girl carried another de novo variant in OLFML3 

(MIM: 610088) (NM_020190 c.398C>T, p.Thr133Ile, chr1:114,523,237), absent from 

gnomAD and of uncertain clinical significance. Array CGH (Affymetrix Cytoscan HD) did not 

reveal any potentially pathogenic structural variant. 

 

Individual 6 was an 8 year old boy with macrocephaly, intellectual disability, autism 

spectrum disorder and hypotonia. He was born at 38 weeks’ gestation with a birth weight of 

3.4kg following a pregnancy complicated by gestational diabetes and cervical incompetence, 

treated with Pitocon. His birth history was otherwise unremarkable. His motor development 

was slightly delayed: he sat at 9 months, walked at 18 months. His speech was also delayed, 

with first words at 2 years, and combining words at 3 years. He was able to feed himself 

with a spoon at 1 year old and developed a mature pincer at 3 years old. At the time of last 

assessment, he continued to have poor coordination and difficulty with motor planning and 

completing tasks without direct supervision. He had particular difficulty with attention and 

behaviour management. Full scale IQ (FSIQ) at 7 years old was in the Extremely Low Range 

between 61-72 (average between 90-109). Verbal comprehension was normal. MRI 

indicated he had mild prominence of the lateral ventricles with a mild colpocephalic 

configuration. He was also noted to have dermal melanosis and cupped ears. No other 

dysmorphic features were observed. In addition to his FBXW11 variant, Individual 6 carried 

a maternally inherited 2q13 duplication (chr2:110,863,908-110,980,346, hg19) also present 



 

in healthy individuals, detected by aCGH using the Human OMNI ExpressExome Beadchip 

containing over 950,000 markers (Illumina, Inc. USA), and analysed with CNV partition 

2.4.4.0. He also had a MT-ND1 (MIM: 516000) variant that is only 2% heteroplasmy. Neither 

variant was considered likely to contribute to his phenotype. 

 

Individual 7 was born following an uneventful pregnancy at 38 weeks. Bilateral 

cryptorchidism was noticed at birth. At age 13 months, he exhibited macrocephaly, 

dysmorphic facial features including frontal bossing, deep broad nasal bridge, epicanthus, 

low-set posteriorly rotated ears, large and protruding tongue, webbed neck, and pectus 

carinatum. He showed disproportionate short stature as well as small hands and feet. He 

had bilateral clinodactyly of the fourth and fifth toes, with the second toe overlapping the 

first. He had a flat angioma on the median nuchal region, a nevus on the right buttock, and a 

cafè-au-lait spot on the right leg. MRI documented agenesis of the corpus callosum with 

only evidence of the genu, prominence of lateral ventricles with mild colpocephalic 

configuration. Echocardiography showed a patent foramen ovale. At subsequent 

examinations, he displayed an accentuation of macrocephaly and mild prognathism with 

dental malocclusion, reduced growth, thoracolumbar scoliosis, and a supernumerary rib. He 

had delayed motor, cognitive and speech development. He walked independently at 3 

years, and spoke his first words at 2 years. Currently he is in elementary school, requiring 

learning support. He lacks anal sphincter control, shows a self-injurious, impulsive and 

aggressive behaviour, and has sleep difficulties. Based on the presence of clinical features 

that were suggestive of Noonan syndrome or a related RASopathy, he was tested for 

mutations in PTPN11 (MIM: 176876), SOS1 (MIM: 182530), KRAS (MIM: 190070), HRAS 

(MIM: 190020), NRAS (MIM: 164790), SHOC2 (MIM: 602775), BRAF (MIM: 164757), RAF1 



 

(MIM: 164760), MAP2K1 (MIM: 176872), MAP2K2 (MIM: 601263), RIT1 (MIM: 609591) and 

CBL (MIM: 165360), which yielded negative results. Karyotype and aCGH analysis did not 

show any clinically relevant rearrangement. No other potentially causative variants were 

identified.
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Figure S1: Constrained coding regions (CCRs) within FBXW11 and locations of the seven 

missense variants identified in this study. The diagrams show the FBXW11 gene and cDNA 

structure (Ensembl Gene ID: ENSG00000072803; Transcript ID: ENST00000265094), where 

the coding exons from all isoforms are combined in a single model of coding sequence 

according to the model developed by Havrilla et al.1 CCRs ranking at the highest percentiles 

represent the protein-coding regions under the highest constraint in the human genome. A: 

CCRs are reported as histogram bars on the corresponding genomic regions. The height of 

the bars and their colours indicate predicted constraint as percentile ranking (top). The 

underlying inset shows an enlargement of the genomic region containing the identified 

variants. The corresponding CCRs are highlighted as above. Specifically, the three CCRs 

harbouring the missense variants identified in this study have the following genomic 

boundaries: chr5:171,318,530-171,318,553 (rank: 85th percentile, amino acid 242); 

chr5:171,303,339-171,303,385 (rank: 96th percentile, amino acids 363 – 365); 

chr5:171,297,790-171,297,862 (rank: 99th percentile, amino acids 444 – 447). B: Histograms 

bars showing ranking of CCRs are depicted along the FBXW11 coding sequence, according to 

the same scheme as panel A. Green boxes indicate coding exons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

BTRC               1 MDPAEAVLQEKALKFMNSSEREDCNNGEPPRKIIPEKNSLRQTYNSCARL     50 

                     |:| ::|:::|.::.|.|               :|     |..:..||.| 

FBXW11             1 MEP-DSVIEDKTIELMCS---------------VP-----RSLWLGCANL     29 

 

BTRC              51 CLNQETVCLAS--TAMKTENCVAKTKLANGTSSMIVPKQRKLSASYEKEK     98 

                     .   |::|..|  .:|.:..|:   :::|||||:||.::|....:|:||| 

FBXW11            30 V---ESMCALSCLQSMPSVRCL---QISNGTSSVIVSRKRPSEGNYQKEK     73 

 

BTRC              99 ELCVKYFEQWSESDQVEFVEHLISQMCHYQHGHINSYLKPMLQRDFITAL    148 

                     :||:|||:||||||||||||||||:||||||||||||||||||||||||| 

FBXW11            74 DLCIKYFDQWSESDQVEFVEHLISRMCHYQHGHINSYLKPMLQRDFITAL    123 

 

BTRC             149 PARGLDHIAENILSYLDAKSLCAAELVCKEWYRVTSDGMLWKKLIERMVR    198 

                     |.:|||||||||||||||:||||||||||||.||.|:||||||||||||| 

FBXW11           124 PEQGLDHIAENILSYLDARSLCAAELVCKEWQRVISEGMLWKKLIERMVR    173 

 

BTRC             199 TDSLWRGLAERRGWGQYLFKNKPPDGNAPPNSFYRALYPKIIQDIETIES    248 

                     ||.||:||:|||||.||||||:|.||  |||||||:|||||||||||||| 

FBXW11           174 TDPLWKGLSERRGWDQYLFKNRPTDG--PPNSFYRSLYPKIIQDIETIES    221 

 

BTRC             249 NWRCGRHSLQRIHCRSETSKGVYCLQYDDQKIVSGLRDNTIKIWDKNTLE    298 

                     |||||||:||||.||||.|||||||||||:||:||||||:||||||.:|| 

FBXW11           222 NWRCGRHNLQRIQCRSENSKGVYCLQYDDEKIISGLRDNSIKIWDKTSLE    271 

 

BTRC             299 CKRILTGHTGSVLCLQYDERVIITGSSDSTVRVWDVNTGEMLNTLIHHCE    348 

                     |.::||||||||||||||||||:|||||||||||||||||:|||||||.| 

FBXW11           272 CLKVLTGHTGSVLCLQYDERVIVTGSSDSTVRVWDVNTGEVLNTLIHHNE    321 

 

BTRC             349 AVLHLRFNNGMMVTCSKDRSIAVWDMASPTDITLRRVLVGHRAAVNVVDF    398 

                     |||||||:||:|||||||||||||||||.||||||||||||||||||||| 

FBXW11           322 AVLHLRFSNGLMVTCSKDRSIAVWDMASATDITLRRVLVGHRAAVNVVDF    371 

 

BTRC             399 DDKYIVSASGDRTIKVWNTSTCEFVRTLNGHKRGIACLQYRDRLVVSGSS    448 

                     |||||||||||||||||:|||||||||||||||||||||||||||||||| 

FBXW11           372 DDKYIVSASGDRTIKVWSTSTCEFVRTLNGHKRGIACLQYRDRLVVSGSS    421 

 

BTRC             449 DNTIRLWDIECGACLRVLEGHEELVRCIRFDNKRIVSGAYDGKIKVWDLV    498 

                     |||||||||||||||||||||||||||||||||||||||||||||||||. 

FBXW11           422 DNTIRLWDIECGACLRVLEGHEELVRCIRFDNKRIVSGAYDGKIKVWDLQ    471 

 

BTRC             499 AALDPRAPAGTLCLRTLVEHSGRVFRLQFDEFQIVSSSHDDTILIWDFLN    548 

                     |||||||||.||||||||||||||||||||||||:||||||||||||||| 

FBXW11           472 AALDPRAPASTLCLRTLVEHSGRVFRLQFDEFQIISSSHDDTILIWDFLN    521 

 

BTRC             549 DPAAQAEPPRSPSRTYTYISR    569 

                     .|.:.....|||||||||||| 

FBXW11           522 VPPSAQNETRSPSRTYTYISR    542 

 

Figure S2: EMBOSS Needle alignment of BTRC (NP_003930.1) and FBXW11 (NP_036432.2). 

The positions of the missense variants identified in FBXW11 are indicated: green = 

p.Gly242Arg, yellow = p.Arg363Trp, blue = p.Ala364Asp, purple = p.Ala365Thr, grey = 

p.Glu444Lys, red = p.Arg447Gln/p.Arg447Leu. 

 

 



 

  



 

Figure S3: In situ hybridisation studies using the 3’ UTR probe showing FBXW11 expression 

during human eye development. In situ hybridisations of sagittal sections of the eye at CS15 

(A,B), CS17 (C,D), CS19 (E,F), CS20 (G,H) and CS21 (I,J) using FBXW11 3’ UTR antisense (left 

panel) and sense (right panel) probes. FBXW11 signal was present in the lens (A, C, E, I), the 

retina (A, C, E, G, I), lips of the optic fissure closure (C) and regions of the conjunctiva (E, G, 

I). Abbreviations: Cj, Conjunctiva; Ls, Lens; OF, Optic Fissure; Rn, Retina. 

 

 



 

 



 

Figure S4: In situ hybridisation studies using the 3’ UTR probe showing FBXW11 expression 

during human limb development. In situ hybridisations of coronal sections of the forelimb 

at different CS stages, using FBXW11 3’ UTR antisense (left panel) and sense (right panel) 

probes. E, F, I, J show increased magnification of the boxed regions at CS19 (C, D) and CS21 

(G, H), highlighting FBXW11 expression around the developing cartilage of the digits in the 

hand plate (E, I). 



 

 



 

Figure S5: In situ hybridisation studies of FBXW11 using the 3’ UTR antisense probe 

showing the expression pattern in multiple human embryonic structures. Structures of 

interest are indicated by arrows. Sagittal section of embryo at CS17 (week 6), showing 

FBXW11 expression in multiple developing structures (A). Sagittal section of the head at 

CS19 (week 7) indicating expression in structures forming the lateral and fourth ventricles, 

including the metencephalon (B). Increased magnification from (A) of the pharyngeal arches 

(C), showing a generalised expression in this structure, including the mandibular process and 

the tongue. Increased magnification from (A) highlighting FBXW11 expression in the adrenal 

glands and the pulmonary artery (D). Coronal section CS21 (week 8) showing expression in 

the lungs (E). Coronal section of the heart at CS21 showing FBXW11 expression in the dorsal 

aorta and the pulmonary artery (F). Sagittal section of the embryo at CS15 (week 5) 

highlighting strong FBXW11 expression in the liver, spleen and spinal cord (G). Increased 

magnification from (A), showing FBXW11 expression in midgut (H). Transverse section at 

CS21 showing FBXW11 expression in the dorsal ganglia (I). Transverse section of the spinal 

cord at CS21 highlighting FBXW11 expression in the floor plate, roof plate, and the 

ventricular and the intermediate layers (J). Abbreviations: AG, Adrenal Glands; AP, Alar 

Plate; BP, Basal Plate; DA, Dorsal Aorta; DG, Dorsal Ganglia; Es, Esophagus; FP, Floor Plate; 

FV, Fourth Ventricle; Hp, Hypothalamus; IL, Intermediate Layer; Lg, Lungs; Li, Liver; LV, 

Lateral Ventricle; Md, Medulla; Me, Metencephalon; Mg, Midgut; ML, Marginal Layer; MP, 

Mandibular Process; PA, Pulmonary Artery; RP, Roof Plate; SC, Spinal Cord; Sp, Spleen; To, 

Tongue; TV, Third ventricle; VL, Ventricular Layer; Vt, Vertebra. 

 



 

 



 

Figure S6: In situ hybridisation studies of FBXW11 3’ UTR sense probe in multiple human 

embryonic structures. Sagittal section of embryo at CS17 (A). Sagittal section of the head at 

CS19 (B). Increased magnification of structures from (A): pharyngeal arches (C), including 

the mandibular process and the tongue, and the adrenal glands (D). Coronal section of the 

lungs at CS21 (E). Coronal section of the dorsal aorta and the pulmonary artery at CS21 (F). 

Sagittal section of the embryo at CS15 showing the liver, spleen and spinal cord (G). 

Increased magnification of (A), showing midgut (H). Transverse section of the dorsal ganglia 

and developing vertebra at CS21 (I). Transverse section of the spinal cord at CS21 (J).  

Abbreviations: AG, Adrenal Glands; AP, Alar Plate; BP, Basal Plate; DA, Dorsal Aorta; DG, 

Dorsal Ganglia; Es, Esophagus; FP, Floor Plate; FV, Fourth Ventricle; IL, Intermediate Layer; 

Lg, Lungs; LV, Lateral Ventricle; Me, Metencephalon; Mg, Midgut; ML, Marginal Layer; MP, 

Mandibular Process; PA, Pulmonary Artery; RP, Roof Plate; SC, Spinal Cord; Sp, Spleen; To, 

Tongue; TV, Third ventricle; VL, Ventricular Layer; Vt, Vertebra. 

 



 

 

Figure S7: Zebrafish fbxw11 in situ hybridisation and knockdown. A-D: Whole mount in situ 

hybridisation of zebrafish fbxw11b. Lateral (A, C) and dorsal (B, D) views of 48 hours post 

fertilisation (hpf) (A, B) and 72hpf (C, D) embryos. Anterior to the left and dorsal up (A, C), 



 

anterior to the top (B, D). Scale bars 400µm in A, C and 200µm in B, D. E-G: Lateral views 

(anterior to left, dorsal up) of 48hpf live wildtype zebrafish embryos injected with (E) 

0.8pmol of morpholino control, (F) 0.8pmol mofbxw11a and (G) 0.8pmol mofbxw11b. H, I: 

Electropherograms of wildtype fbxw11b (H) and homozygous fbxw11bu5010 mutant (I). J, K: 

Wildtype (J) and fbxw11bu5010 (K) DNA and translated amino acid sequence. U5010 deletion 

highlighted in yellow, amino acid sequence resulting from the frameshift highlighted in red. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S8: Zebrafish embryos with compromised fbxw11a and fbxw11b function are 

sensitised to enhanced Wnt/-catenin signalling. A: Plot showing eye size in wildtype 

(n=11, �̃�=1.573.007µm3), fbxw11b-/- (n=9, �̃�=1.611.194µm3), tcf7l1a-/- (n=20, �̃�=910.337µm3) 

and fbxw11b-/-/tcf7l1a-/- (n=19, �̃�=727.855µm3) embryos at 30hpf. B-D: Lateral views of 3 

day post fertilisation wildtype (B) and fbxw11bu5010/u5010/fbxw11a morphant (C, D) embryos, 

treated with 2% DMSO (C) or 0.5µm BIO in 2% DMSO (B, D). Scale bar=250µm. 



 

 



 

Figure S9: FBXW11 in the canonical Wnt and Hh signalling pathways. A: During Wnt 

signalling, extracellular Wnt ligands bind to the transmembrane Frizzled receptors and 

LRP5/6 co-receptors. Wnt ligand interaction with the receptor complex induces their 

dimerisation and the relocalisation of the “destruction complex”,2 formed by the tumour 

suppressor proteins Axin and APC and the serine/threonine kinases CK1 and GSK3, to the 

membrane. These changes result in stabilisation and accumulation of -catenin. 

Translocation of -catenin to the nucleus and subsequent interaction with TCF transcription 

factors then lead to the transcriptional activation of target genes. B: In the absence of Wnt 

ligand, the destruction complex recruits and phosphorylates -catenin. FBXW11 is able to 

recognise this phosphorylation motif and recruit the other components of the SCF (Skp1-

cullin-F-box) complex, an E3 ligase complex which mediates ubiquitination and proteasomal 

degradation. This maintains low levels of -catenin in the cytoplasm and the nucleus. In the 

nucleus, this results in the interaction of TCF transcription factors with Groucho-like 

transcriptional co-repressor proteins. Schematic adapted from Nusse and Clevers (2017).3 C: 

In the active state, extracellular Hedgehog (HH) ligands bind to the transmembrane receptor 

Patched, preventing the suppression of the receptor-like protein Smoothened (Smo). This 

initiates a signalling cascade that results in the activation of GLI transcription factors. In 

particular, GLI2 and GLI3, after dissociating from the complex containing SUFU and the 

cilium-associated kinesin KIF7, translocate into the nucleus. As full-length proteins, they 

function as transcriptional activators. D: In the absence of HH signalling, Patched inhibits 

ciliary localisation of Smoothened, which is necessary for the activation of the pathway. In 

the cytoplasm, SUFU forms a complex with KIF7 and sequesters GLI2 and GLI3. Once 

recruited by this complex, GLI2/3 are subsequently phosphorylated by the kinases PKA, 

GSK3B and CK1. This promotes GLI2 and GLI3 ubiquitination, mediated by FBXW11-SCF and 



 

BTRC-SCF complexes respectively. This directs GLI2/3 to the proteasome, where they can be 

either degraded or processed into truncated forms, which function as transcriptional 

repressors. 

 

Supplemental Methods  

Cohort description 

A UK cohort of 263 individuals with ocular anomalies, principally anophthalmia, 

microphthalmia and coloboma (AMC), was recruited as part of a national ‘Genetics of Eye 

and Brain anomalies’ study (REC 04/Q0104/129). Informed consent was obtained according 

to the tenets of the Declaration of Helsinki. Additionally, 32 French individuals with 

developmental eye disorders were recruited via the Toulouse University Diagnostic 

Laboratories, France. Participant informed consent was approved by the local Ethics 

Committee (CPP Sud-Ouest and Outre-Mer II). Both groups had previously been screened by 

indication in eye development genes, but lacked a definitive genetic diagnosis. Six further 

individuals (2-7) were identified through GeneMatcher.4 Clinical informed consent was 

obtained for Individuals 2, 3, 5 and 6 through the host institutions. Consent for Individual 4 

was obtained as part of the “Genomic Study of Medical, Developmental, or Congenital 

Problems of Unknown Etiology” study (Pro00032301, Duke University institutional review 

board). Consent for Individual 7 was obtained as part of the “Ospedale Pediatrico Bambino 

Gesù” study (1702_OPBG_2018).  

 

 

 

 



 

Whole exome/genome sequencing 

Individual 1, UK and French AMC cases: 

32 individuals with congenital eye anomalies (26 from the 263 UK cohort and 6 from the 32 

French cohort) were screened by WES. WES was performed as described previously for 

14/26 UK cases and 6/6 French cases.5 WES of the remaining 12 UK cases was performed by 

the West Midlands Regional Genetics Laboratory (WMRGL) by Covaris shearing of sample 

DNA, followed by library preparation using the Agilent SureSelect Exome V6 probe kit and 

SureSelectXT target enrichment chemistry.  

 

The prepared libraries were sequenced by 2 x 100bp paired-end sequencing using the 

Illumina HiSeq 2500 platform. Data were analysed using an in-house pipeline that consisted 

of the following stages: read quality assessment performed using FastQC (v0.10.1) and 

alignment quality using Picard’s CollectHsMetrics (v1.97), followed by Samtools stats (v1.2).6 

Prior to alignment, reads were trimmed using Trimmomatic (v0.30)7 to remove low quality 

bases and adapter sequences. Alignment was performed using Burrows-Wheeler Alignment 

tool BWA-MEM (v0.7.12-r1039)8 against GRCh37/hg19, duplicates removed using 

samblaster (v0.1.21),9 realignment performed using Abra (v0.97)10 and qualities recalibrated 

using Bam utils recab (v1.0.12).11 Variants were called using GATK HaploTypeCaller (v3.4-46) 

12 according to the Broad’s best practices. Variant analysis was performed using both 

VariantStudio v2.2 (Illumina) and a separate in-house bioinformatics pipeline. Briefly, all 

variants were annotated using ANNOVAR.13 We prioritised exonic and splicing variants, 

excluding synonymous variants. Within ANNOVAR, alternate allele frequencies were 

annotated for each variant using several public databases, including the 1000 Genomes 

Project (version August 2015),14 the Exome Aggregation Consortium Browser (ExAC, v0.3) 



 

and gnomAD (version 2017).15 A minor allele frequency (MAF) threshold of ≤1% was chosen 

for homozygous variants and ≤0.1% for heterozygous variants. Various prediction scores for 

the impact on function were annotated using dbNSFP v3.3a.16; 17 Prediction algorithms, such 

as the Combined Annotation Dependent Depletion (CADD18) and the meta-predictors 

MetaSVM and MetaLR19 were used to interpret the potential pathogenicity of 

nonsynonymous variants. When parental data was available, trio analysis was performed to 

identify de novo variants. 

 

Individual 2: 

For Individual 2, genomic DNA extraction, exome library preparation, sequencing, 

bioinformatics pipeline, and data analyses were performed at Ambry Genetics (Aliso Viejo, 

CA) on the proband and their parents as previously described.20; 21 Briefly, samples were 

prepared and sequenced using paired-end, 100 cycle chemistry on the Illumina HiSeq 2500 

sequencer. Exome enrichment was performed using the SeqCap EZ VCRome 2.0 (Roche 

NimblGen). Variants were confirmed by Sanger sequencing. 

 

Individual 3: 

For Individual 3 diagnostic WES was performed for the proband and their parents in a 

clinical laboratory. Exomes were enriched using the SureSelect XT Human All Exon V5 kit 

(Agilent) and sequenced in rapid run mode on the HiSeq 2500 sequencing system (Illumina) 

at a mean target depth of 100x. The target was defined as all coding exons of UCSC and 

Ensembl +/- 20bp intron flanks. At this depth ~95% of the target was covered at least 15x. 

Reads were aligned to hg19 using BWA (BWA-MEM v0.7.5a) and variants were called using 

the GATK haplotype caller (v2.7-2). Detected variants were annotated, filtered and 



 

prioritised using the Bench NGS Lab platform (Cartagenia, Leuven, Belgium). A trio analysis 

of the proband and both parents was performed. Analysis was based upon a tiered analysis 

approach. The first tier analysed genes in which variants are known to contribute to 

intellectual disability. The second tier filtered for de novo variants and the last tier filtered 

for recessive variants. Variant confirmation and segregation analyses were performed using 

standard Sanger sequencing (primer sequences available upon request). 

 

Individual 4: 

Whole exome trio screening for Individual 4 was performed as described previously.22  

 

Individual 5: 

For Individual 5 a trio-based WES approach was undertaken. DNA from patient and parents 

was subjected to exome capture using NimbleGen SeqCap EZ MedExome (Roche), followed 

by sequencing on an Illumina NextSeq550 to a mean coverage of 118x, with 95% of targeted 

bases covered with minimum 20x coverage. Raw reads were aligned using the Burrows-

Wheeler Alignment tool (BWA-MEM) v0.7.1523 and the GATK Best Practice pipeline v3.8–0 

was used for variant calling.12 Annotation and filtering of variants were performed using 

VarSeq 2.0.2 (Golden Helix). 

 

Individual 6:  

Genomic DNA for Individual 6 was enriched for the complete coding regions and splice site 

junctions using a proprietary capture system for next-generation sequencing with CNV 

calling (NGS-CNV) (GeneDx). Enriched targets were sequenced with paired-end reads on an 

Illumina platform and reads assembled and aligned to NCBI RefSeq transcripts and human 



 

genome build GRCh37/hg19. Using a custom-developed analysis tool (XomeAnalyzer), data 

were filtered and analysed to identify sequence variants and most deletions and 

duplications involving three or more coding exons.24 Reported clinically significant variants 

were confirmed by an appropriate orthogonal method. 

 

Individual 7: 

For Individual 7, sequencing was performed using Illumina HiSeq X and the resulting 150bp 

paired-end reads were aligned to the GRCh38 reference genome using bwa mem (v0.7.12).8 

Data analysis was performed using an in-house implemented pipeline, mainly based on the 

Genome Analysis Toolkit (GATK v3.7)25 framework, as previously reported.26-28 GATK/Picard 

tools (v3.7/2.3) were used for removing duplicates, base quality recalibration and variant 

calling. SNVs and small INDELs were identified by means of the GATK’s HaplotypeCaller tool 

used in gVCF mode, followed by family-level joint genotyping and phasing; finally, variants 

were quality-filtered using a VQSR strategy, according to GATK’s 2016 best practices.12 

Following the exclusion of any relevant structural variants, by means of Delly2,29 we 

annotated and prioritised SNV/INDELs with functional effect on coding sequences and 

splicing. To retain private and clinically associated variants, we removed common SNPs 

(dbSNP151, MAF >1%), selecting annotated variants with unknown frequency or having 

minor allele frequency (MAF) <0.1% (gnomAD v2.0), and occurring with a frequency <1% in 

an in-house database including frequency data from approximately 1300 population-

matched WES. To analyse variants in the CDS and splice regions (variants located from −3 to 

+8 with respect to an exon-intron junction) we took advantage of the pipeline we previously 

developed for WES data,27; 28 using SnpEff toolbox (v4.3) and dbNSFP (v3.5).19; 30; 31 The 



 

functional impact of variants was analysed by CADD v1.4 and InterVar v2.0 algorithms,18; 32 

to obtain clinical interpretation according to ACMG/AMP 2015 guidelines.32 

 

Targeted gene sequencing 

Targeted resequencing of 187 genes, including FBXW11, was performed for the 26/32 

French individuals with undiagnosed microphthalmia or anophthalmia, as described 

previously.5  

 

Candidate gene screening of FBXW11  

Single gene screening for variants in the exons and a minimum of 50bp of flanking intronic 

sequence of FBXW11 was performed by either high-resolution melt analysis33 or direct 

Sanger sequencing. All potential variants identified using high-resolution melt analysis were 

validated by Sanger sequencing. Primers and amplification conditions are available upon 

request.  

 

The locations of all variants identified in this study are given according to the human 

genome assembly GRCh37/hg19, gene accession number NM_012300.2 and protein ID 

NP_036432.2. 

 

Array Comparative Genome Hybridisation (aCGH) of AMC cohort cases 

Array CGH data were available for 77 of the 263 UK individuals with AMC. Fifty-seven 

patients, including Individual 1, were analysed by aCGH using the Agilent (USA) 44K 

oligonucleotide platform (design 017457), which included six probes located within 

FBXW11. Twenty additional patients received aCGH using standard UK National Health 



 

Service (NHS)-validated diagnostic techniques, of which 10 were run on a customised array 

including FBXW11, with exon-level density of probes. 

 

Bioinformatic variant modelling  

PolyPhen-2,34 SIFT,35 CADD36 and InterVar32 software tools were used to predict the 

functional effects of missense variants. For each variant, GERP++ rejection scores (RS)37 are 

also indicated (Table S1), as position-specific estimates of mammalian conservation. Positive 

RS represent a substitution deficit, which suggests that a site may be under evolutionary 

constraint. 

 

The distribution of constrained coding regions (CCRs) across FBXW11 was also analysed, 

according to the model developed by Havrilla et al.1 CCRs with the highest percentiles are 

the most constrained coding regions across the human genome. Ranking percentiles of the 

three CCRs harbouring the variants discussed in this study are indicated in Table S1. 

 

Protein structures were obtained from the Research Collaboratory for Structural 

Bioinformatics Protein Data Bank (RCSB PDB)38 and visualised using PyMOL (The PyMOL 

Molecular Graphics System, Version 2.0 Schrödinger, LLC). Pairwise alignments of protein 

sequences were performed using EMBOSS Needle.39 Homology modelling of the human 

FBXW11 (NP_036432.2, residues 110-518) was based on the crystal structure of the human 

BTRC (Protein Data Bank, PDB, 1P22, chain A) employing the pairwise sequence alignment. 

Skp1 and β-catenin molecules co-crystallized with BTRC in the PDB structure 1P22 were 

added in same relative binding poses to the FBXW11 model making side chain optimisation 

of the resulting FBXW11/Skp1/β-catenin complex. Homology modelling and side chain 



 

optimisation were performed employing same procedure as previously described.40 To show 

potentially alternative binding modes of peptides to the WD40 domain of FBXW11, we 

searched peptide ligands bound to WD40 domain-containing proteins in the PDB database 

and found the following complexes: cyclinE C-terminal degron bound to FBXW7 (PDB 

2OVQ); cyclinE N-terminal degron bound to FBXW7 (PDB 2OVR); DISC1 bound to FBXW7 

(PDB 5V4B); high-affinity CPD phosphopeptide from human cyclin E bound to Cdc4 (PDB 

1NEX); SIC1 bound to Cdc4 (PDB 3V7D). The structures of these peptides were placed onto 

the WD40 domain of FBXW11 employing the same binding poses relative to the WD40 

proteins present in the parent PDB structures. Mutational modelling of variants was 

performed using the FoldX plugin41 within the YASARA program. The mean ΔΔG (difference 

in energy between wildtype and variant) was calculated for five replicate runs.  

 

In situ hybridisation 

Nonradioactive RNA in situ hybridisation was performed on human formalin fixed, paraffin 

embedded embryo sections from Carnegie Stages (CS) 15-21, as described elsewhere.42 

Human embryos were obtained from the MRC/Wellcome Trust Human Developmental 

Biology Resource, UCL, with full ethical approval. Two probes were generated using the 

primers CTTCAGGTCTGCACGTCCTAC and GCTATCGCACCCACTCTAGC, amplifying a unique 

233bp region of the FBXW11 5’ UTR, and AATGTCCAGGGCTTTCATTT and 

TGACTCCAGCAACTTTGAGG, amplifying a 375bp region of the 3’ UTR. Both probes were 

designed to target all three FBXW11 human isoforms (NM_012300, NM_033644, and 

NM_033645). Probes for the chondrogenic marker SOX9 were synthesised as described by 

Morais da Silva et al.43 

 



 

Zebrafish husbandry and mutant allele 

Adult zebrafish were kept under standard husbandry conditions and embryos obtained by 

natural spawning. Ethical approval for zebrafish experiments was obtained from the Home 

Office UK according to the Animal Scientific Procedures Act 1986. Wildtype and tcf7l1am88144 

mutant embryos were raised at 28oC and staged according to Kimmel et al. 45 

 

Zebrafish morpholino microinjection 

Zebrafish embryos were co-injected with 10nl of a mix of 50pg of GFP mRNA and 

morpholinos at the indicated amount at 1-cell stage. Only embryos with an even GFP 

fluorescent expression at 1 day post fertilisation were analysed. 

 

Generation of CRISPR fbxw11b mutants 

CRISPR/Cas9 mutations were induced in the second exon of fbxw11b, which codes for the 

start of the open reading frame, by co-injecting 150pg of Cas9 mRNA and 30pg guide RNA 

(gRNA) to a 10nl volume into the yolk of one-cell stage zebrafish embryos. The gRNA, 

designed to anneal the target GGAGAGCGGTCTGCAGTCTG, was transcribed with a HiScribe 

T7 High Yield RNA Synthesis Kit (New England Biolabs) followed by DNase I digestion (New 

England Biolabs), and purified with the RNeasy MiniKit (Qiagen). Capped Cas9 mRNA was 

transcribed from an XbaI-digested pT3TS-nCas9n (Addgene) plasmid, using the mMessage 

mMachine T3 Transcription Kit (Life Technologies) followed by polyadenylation with the 

Poly(A) Tailing Kit (Life Technologies). The mRNA was purified using the RNeasy MiniKit 

(Qiagen). We tested the efficacy of mutation induction by melting curve analysis of 

amplicons generated with primers F (CGTCTGCAGAACACCTCTGT) and R 

(TCAAACCTGAGGCACCACTC) and using genomic DNA from fin clips or embryos as a 



 

template. Genomic DNA was isolated by HotSHOT method and fbxw11U5010 mutations were 

genotyped by KASP assays (K Biosciences).  

 

Zebrafish in situ hybridisation, plastic sections, alcian blue staining, eye size measurement 

and BIO treatment 

Zebrafish embryos were fixed in 4% paraformaldehyde for an hour at room temperature, 

then dehydrated and kept in methanol. In situ hybridisation was performed according to 

Thisse and Thisse,46 except that embryos were left in NBT/BCIP staining for three days at 

room temperature changing the substrate daily. 

 

For plastic sections, embryos were embedded in resin using the JB-4 kit (Sigma). Embryos 

were step dehydrated into methanol, then incubated in 50% JB-4 kit SolutionA/methanol for 

1 hour, then transferred to 100% SolutionA for overnight incubation at 4oC. Embryos were 

then placed in rubber mounting moulds, the excess SolutionA was removed and replaced 

with a 24:1 mix of room temperature pre-warmed active SolutionA and SolutionB. After 

orienting the embryos, the mould was placed in a hermetic chamber together with a small 

pot of liquid nitrogen to promote polymerisation of the resin. The chamber was sealed once 

the liquid nitrogen was evaporated and kept overnight at room temperature. The resin 

blocks were glued to acrylic supports using Technovit 3040 Kit (Kulzer) and sectioned with a 

Leica Jung RM2055 micrometer at 8µm. Each plastic section was placed on a 30µl drop of 

water on a glass slide and manually unfolded under a dissecting microscope using forceps. 

Glass slides were then placed on a heat plate at 37oC until the water had evaporated. 

Sections were then covered with a 4µg/ml DAPI solution for 20 minutes, washed 3 times in 

water for 10 minutes each and covered with DPX mountant (Sigma) and a coverslip.  



 

For alcian blue staining, fixed embryos were dehydrated in 70% ethanol/PBS for 5 minutes 

and then incubated over night at room temperature in a staining solution of 0.02% alcian 

blue, 0.2M MgCl2 and 60% Ethanol in water. The staining solution was washed off in PBS and 

embryos were imaged under a dissecting microscope.  

 

The eye size of 30hpf embryos was assessed as previously described.47  BIO (Sigma, B1686) 

was diluted to 0.5µm in 2% DMSO in embryo medium and embryos were incubated in this 

solution from 24hpf until 3 days post fertilisation. 
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