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Abstract
Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-

dimensional space of stimulus features that affect a neuron’s probability of spiking. One popu-

lar method, known asmaximally informative dimensions (MID), uses an information-theoretic

quantity known as “single-spike information” to identify this space. Here we examine MID

from amodel-based perspective. We show that MID is a maximum-likelihood estimator for

the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike

information corresponds to the normalized log-likelihood under a Poisson model. This equiva-

lence implies that MID does not necessarily find maximally informative stimulus dimensions

when spiking is not well described as Poisson. We provide several examples to illustrate this

shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in dis-

crete time bins. To overcome this limitation, we introduce model-based dimensionality reduc-

tion methods for neurons with non-Poisson firing statistics, and show that they can be framed

equivalently in likelihood-based or information-theoretic terms. Finally, we show how to over-

come practical limitations on the number of stimulus dimensions that MID can estimate by

constraining the form of the non-parametric nonlinearity in an LNPmodel. We illustrate these

methods with simulations and data from primate visual cortex.

Author Summary

A popular approach to the neural coding problem is to identify a low-dimensional linear
projection of the stimulus space that preserves the aspects of the stimulus that affect a neu-
ron’s probability of spiking. Previous work has focused on both information-theoretic and
likelihood-based estimators for finding such projections. Here, we show that these two ap-
proaches are in fact equivalent. We show that maximally informative dimensions (MID), a
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popular information-theoretic method for dimensionality reduction, is identical to the
maximum-likelihood estimator for a particular linear-nonlinear encoding model with
Poisson spiking. One implication of this equivalence is that MID may not find the infor-
mation-theoretically optimal stimulus projection when spiking is non-Poisson, which we
illustrate with a few simple examples. Using these insights, we propose novel dimensional-
ity-reduction methods that incorporate non-Poisson spiking, and suggest new parametri-
zations that allow for tractable estimation of high-dimensional subspaces.

Introduction
The neural coding problem, an important topic in systems and computational neuroscience,
concerns the probabilistic relationship between environmental stimuli and neural spike re-
sponses. Characterizing this relationship is difficult in general because of the high dimensional-
ity of natural signals. A substantial literature therefore has focused on dimensionality
reduction methods for identifying which stimuli affect a neuron’s probability of firing. The
basic idea is that many neurons compute their responses in a low dimensional subspace,
spanned by a small number of stimulus features. By identifying this subspace, we can more eas-
ily characterize the nonlinear mapping from stimulus features to spike responses [1–5].

Neural dimensionality-reduction methods can be coarsely divided into three classes: (1)
moment-based estimators, such as spike-triggered average (STA) and covariance (STC) [1, 5–
8]; (2) model-based estimators, which rely on explicit forward encoding models [9–16]; and
(3) information and divergence-based estimators, which seek to reduce dimensionality using
an information-theoretic cost function [17–22]. For all such methods, the goal is to find a
set of linear filters, specified by the columns of a matrix K, such that the probability of
response r given a stimulus s depends only on the linear projection of s onto these filters, i.e.,
p(rjs)� p(rjK>s). Existing methods differ in computational complexity, modeling assump-
tions, and stimulus requirements. Typically, moment-based estimators have low computational
cost but succeed only for restricted classes of stimulus distributions, whereas information-theo-
retic and likelihood-based estimators allow for arbitrary stimuli but have high computational
cost. Previous work has established theoretical connections between moment-based and likeli-
hood-based estimators [11, 14, 17, 19, 23], and between some classes of likelihood-based and
information-theoretic estimators [14, 20, 21, 24].

Here we focus on maximally informative dimensions (MID), a well-known information-
theoretic estimator introduced by Sharpee, Rust & Bialek [18]. We show that this estimator is
formally identical to the maximum likelihood (ML) estimator for the parameters of a linear-
nonlinear-Poisson (LNP) encoding model. Although previous work has demonstrated an as-
ymptotic equivalence between these methods [20, 24, 25], we show that the correspondence is
exact, regardless of time bin size or the amount of data. This equivalence follows from the fact
that the plug-in estimate for the single-spike information [26], the quantity that MID opti-
mizes, is equal to a normalized Poisson log-likelihood.

The connection between the MID estimator and the LNP model makes clear that MID does
not incorporate information carried by non-Poisson statistics of the response. We illustrate
this shortcoming by showing that MID can fail to find information-maximizing filters for sim-
ulated neurons with binary or other non-Poisson spike count distributions. To overcome this
limitation, we introduce new dimensionality-reduction estimators based on non-Poisson noise
models, and show that they can be framed equivalently in information-theoretic or likelihood-
based terms.

Equating Neural Dimensionality Reduction Methods
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Finally, we show that a model-based perspective leads to strategies for overcoming a limita-
tion of traditional MID, that it cannot tractably estimate more than two or three filters. The dif-
ficulty arises from the intractability of using histograms to estimate densities in high-
dimensional subspaces. However, the single-spike information depends only on the ratio of
densities, which is proportional to the nonlinearity in the LNP model. We show that by re-
stricting the parametrization of this nonlinearity so that the number of parameters does not
grow exponentially with the number of dimensions, we can obtain flexible yet computationally
tractable estimators for models with many filters or dimensions.

Results

Background
Linear-nonlinear-Poisson (LNP) encoding model. Linear-nonlinear cascade models pro-

vide a useful framework for describing neural responses to high-dimensional stimuli. These
models define the response in terms of a cascade of linear, nonlinear, and probabilistic spiking
stages (see Fig. 1). The linear stage reduces the dimensionality by projecting the high-dimen-
sional stimulus onto a set of linear filters, and a nonlinear function then converts the output of
these filters to a non-negative spike rate.

Let θ = {K, α} denote the parameters of the LNP model, where K is a (tall, skinny) matrix
whose columns contain the stimulus filters (for cases with a single filter, we will denote the fil-
ter with a vector k instead of the matrix K), and α are parameters governing the nonlinear func-
tion f from feature space to instantaneous spike rate. Under this model, the probability of a
spike response r given stimulus s is governed by a Poisson distribution:

l ¼ f ðK>sÞ
pðrjlÞ ¼ 1

r!
ðDlÞre�Dl;

ð1Þ

Fig 1. The linear-nonlinear-Poisson (LNP) encoding model formalizes the neural encoding process in terms of a cascade of three stages. First, the
high-dimensional stimulus s projects onto bank of filters contained in the columns of a matrix K, resulting in a point in a low-dimensional neural feature space
K>s. Second, an instantaneous nonlinear function fmaps the filtered stimulus to an instantaneous spike rate λ. Third, spikes r are generated according to an
inhomogeneous Poisson process.

doi:10.1371/journal.pcbi.1004141.g001
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where λ denotes the stimulus-driven spike rate (or “conditional intensity”) and Δ denotes a
time bin size. The defining feature of a Poisson process is that responses in non-overlapping
time bins are conditionally independent given the spike rate. In a discrete-time LNP model, the
conditional probability of a dataset D = {(st,rt)}, consisting of stimulus-response pairs indexed
by t 2 {1, . . ., N}, is the product of independent terms. The log-likelihood is therefore a sum
over time bins:

Llnpðy;DÞ ¼
XN
t¼1

logpðrtjst; yÞ ¼
XN
t¼1

 
rt logðDf ðK>

stÞÞ � Df ðK>
stÞ
!

�
XN
t¼1

log rt !

 !
; ð2Þ

where −(∑ log rt!) is a constant that does not depend on θ. The ML estimate for θ is simply the maxi-

mizer of the log-likelihood: ŷML ¼ argmax
y

Llnpðy;DÞ.
Maximally informative dimensions (MID). The maximally informative dimensions

(MID) estimator seeks to find an informative low-dimensional projection of the stimulus by
maximizing an information-theoretic quantity known as the single-spike information [26].
This quantity, which we denote Iss, is the the average information that the time of a single spike
(considered independently of other spikes) carries about the stimulus

Although first introduced as a quantity that can be computed from the peri-stimulus time
histogram (PSTH) measured in response to a repeated stimulus, the single-spike information
can also be expressed as the Kullback-Leibler (KL) divergence between two distributions over
the stimulus (see [26], appendix B):

Iss ¼
Z

pðsjspikeÞ log pðsjspikeÞ
pðsÞ ds ¼ DKL p sjspikeð Þ jj p sð Þ

� �
; ð3Þ

where p(s) denotes the marginal or “raw” distribution over stimuli, and p(sjspike) is the distri-
bution over stimuli conditioned on observing a spike, also known as the “spike-triggered” stim-
ulus distribution. Note that p(sjspike) is not the same as p(sjr = 1), the distribution of stimuli
conditioned on a spike count of r = 1, since a stimulus that elicits two spikes will contribute
twice as much to the spike-triggered distribution as a stimulus that elicits only one spike.

The MID estimator [18] seeks to find the linear projection that preserves maximal single-
spike information:

IssðKÞ ¼ DKL

�
pðK>sjspikeÞ jj pðK>sÞ

�
; ð4Þ

where p(K>s) and p(K>sjspike) are the raw and spike-triggered stimulus distributions projected
onto the subspace defined by the columns of K, respectively. In practice, the MID estimator
maximizes an estimate of the projected single-spike information:

K̂
MID

¼ arg max
K

Î ssðKÞ; ð5Þ

where Îss(K) denotes an empirical estimate of Iss(K). The columns of K̂MID can be conceived as
“directions” or “axes” in stimulus space that are most informative about a neuron’s probability
of spiking, as quantified by single-spike information. Fig. 2 shows a simulated example illus-
trating the MID estimate for a single linear filter in a two-dimensional stimulus space.

Equivalence of MID and maximum-likelihood LNP
Previous work has shown that MID converges asymptotically to the maximum-likelihood
(ML) estimator for an LNP model in the limit of small time bins [20, 24]. Here we present a
stronger result, showing that the equivalence is not merely asymptotic. We show that standard
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MID, using histogram-based estimators for raw and spike-triggered stimulus densities p(s) and
p(sjspike), is exactly the ML estimator for the parameters of an LNP model, regardless of spike
rate, the time bins used to count spikes, or the amount of data.

The standard implementation of MID [18, 20] uses histograms to estimate the projected
stimulus densities p(K>s) and p(K>sjspike). These density estimates are then used to compute
Îss(K), the plug-in estimate of single-spike information in a subspace defined by K (Equation 4).
We will now unpack the details of this estimate in order to show its relationship to the LNP
model log-likelihood.

Let {B1, . . ., Bm} denote a group of sets (“histogram bins”) that partition the range of the
projected stimuli K>s. In the one-dimensional case, we typically choose these sets to be inter-
vals Bi = [bi−1,bi), defined by bin edges {b0, . . ., bm}, where b0 = −1 and bm = +1. Then let
p̂ ¼ ðp̂1; . . . ; p̂mÞ and q̂ ¼ ðq̂1; . . . q̂mÞ denote histogram-based estimates of p(K>s) and
p(K>sjspike), respectively, given by:

p̂i ¼
# stimuli in Bi

# stimuli
¼ 1

N

XN
t¼1

1Bi
ðxtÞ

q̂i ¼
# stimuli in Bijspike

# spikes
¼ 1

nsp

XN
t¼1

1Bi
ðxtÞrt;

ð6Þ

where xt = K>st denotes the linear projection of the stimulus st, nsp ¼
PN

t¼1 rt is the total num-

ber of spikes, and 1Bi
(�) is the indicator function for the set Bi, defined as:

1Bi
ðxÞ ¼ 1; x 2 Bi

0; x =2 Bi

ð7Þ
(

The estimates p̂ and q̂ are also known as the “plug-in” estimates, and correspond to maxi-
mum likelihood estimates for the densities in question. These estimates give us a plug-in

Fig 2. Geometric illustration of maximally-informative-dimensions (MID). Left: A two-dimensional stimulus space, with points indicating the location of
raw stimuli (black) and spike-eliciting stimuli (red). For this simulated example, the probability of spiking depended only on the projection onto a filter ktrue,
oriented at 45�. Histograms (inset) show the one-dimensional distributions of raw (black) and spike-triggered stimuli (red) projected onto ktrue (lower right) and
its orthogonal complement (lower left). Right: Estimated single-spike information captured by a 1D subspace, as a function of the axis of projection. The MID
estimate k̂MID (dotted) corresponds to the axis maximizing single-spike information, which converges asymptotically to ktrue with dataset size.

doi:10.1371/journal.pcbi.1004141.g002
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estimate for projected single-spike information:

Î ss ¼
Xm
i¼1

q̂i log
q̂i

p̂i

¼ 1

nsp

Xm
i¼1

XN
t¼1

1Bi
ðxtÞrt log

q̂i

p̂i

¼ 1

nsp

XN
t¼1

rt log ĝðxtÞ ð8Þ

where the function ĝ(x) denotes the ratio of density estimates:

ĝðxÞ≜
Xm
i¼1

1Bi
ðxÞ q̂i

p̂i

: ð9Þ

Note that ĝ(x) is a piece-wise constant function that takes the value q̂i/p̂i over the ith histo-
gram bin Bi.

Now, consider an LNP model in which the nonlinearity f is parametrized as a piece-wise
constant function, taking the value fi over histogram bin Bi. Given a projection matrix K, the
ML estimate for the parameter vector α = (f1, . . ., fm) is the average number of spikes per stimu-
lus in each histogram bin, divided by time bin width Δ, that is:

f̂ i ¼
1

D
�
PN

t¼1 1Bi
ðxtÞrtPN

t¼1 1Bi
ðxtÞ

¼ nsp

ND

� �
q̂i

p̂i

: ð10Þ

Note that functions f̂ and ĝ are related by f̂ ðxÞ ¼ nsp
ND

� �
ĝðxÞ and that the sumPN

t¼1 f̂ ðxtÞD ¼ nsp. We can therefore rewrite the LNP model log-likelihood (Equation 2):

Llnpðy;DÞ ¼
XN
t¼1

rt log
nsp

N
ĝðxtÞ

� �
� nsp �

XN
t¼1

log rt!

¼
XN
t¼1

rt log ĝðxtÞ þ nsp log
nsp

N
� 1

� �
�
XN
t¼1

log rt!

ð11Þ

This allows us to directly relate the empirical single-spike information (Equation 8) with the
LNP model log-likelihood, normalized by the spike count as follows:

Î ssðKÞ ¼ 1
nsp

Llnpðy;DÞ � 1
nsp

nsp log
nsp

N
� nsp �

X
log rt!

h i
ð12Þ

¼ 1
nsp

Llnpðy;DÞ � 1
nsp
Llnpðy0;DÞ ð13Þ

where Llnp(θ0, D) denotes the Poisson log-likelihood under a “null”model in which spike rate

does not depend on the stimulus, but takes constant rate l0 ¼ nsp
ND across the entire stimulus

space. In fact, the quantity −Llnp(θ0, D) can be considered an estimate for the marginal entropy
of the response distribution, H(r) = −∑ p(r) log p(r), since it is the average log-probability of the
response under a Poisson model, independent of the stimulus. This makes it clear that the sin-
gle-spike information Iss can be equally regarded as “LNP information”.

Empirical single-spike information is therefore equal to LNP model log-likelihood per
spike, plus a constant that does not depend on model parameters. This equality holds indepen-
dent of time bin size Δ, the number of samples N and the number of spikes nsp. From this rela-
tionship, it is clear that the linear projection K that maximizes Îss also maximizes the LNP log-
likelihood Llnp(θ; D), meaning that the MID estimate is the same as an ML estimate for the
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filters in an LNP model:

K̂MID ¼ K̂ML: ð14Þ

Moreover, the histogram-based estimates of the raw and spike-triggered stimulus densities
p̂ and q̂, which are used for computing the empirical single-spike information Îss, correspond
to a particular parametrization of the LNP model nonlinearity f as a piece-wise constant func-
tion over histogram bins. The ratio of these plug-in estimates gives rise to the ML estimate for
f. MID is thus formally equivalent to an ML estimator for both the linear filters and the nonlin-
earity of an LNP model.

Previous literature has not emphasized that the MID estimator implicitly provides an esti-
mate of the LNP model nonlinearity, or that the number of histogram bins corresponds to the
number of parameters governing the nonlinearity. Selecting the number of parameters for the
nonlinearity is important both for accurately estimating single-spike information from finite
data and for successfully finding the most informative filter or filters. Fig. 3 illustrates this
point using data from a simulated neuron with a single filter in a two-dimensional stimulus

Fig 3. Effects of the number of histogram bins on empirical single-spike information and MID performance. (A) Scatter plot of raw stimuli (black) and
spike-triggered stimuli (gray) from a simulated experiment using two-dimensional stimuli to drive a linear-nonlinear-Bernoulli neuron with sigmoidal
nonlinearity. Arrow indicates the direction of the true filter k. (B) Plug-In estimates of p(k>sjspike), the spike-triggered stimulus distribution along the true filter
axis, from 1000 stimuli and 200 spikes, using 5 (blue), 20 (green) or 80 (red) histogram bins. Black traces show estimates of raw distribution p(k>s) along the
same axis. (C) True nonlinearity (black) and ML estimates of the nonlinearity (derived from the ratio of the density estimates shown in B). Roughness of the
80-bin estimate (red) arises from undersampling, or (equivalently) overfitting of the nonlinearity. (D) Empirical single-spike information vs. direction,
calculated using 5, 20 or 80 histogram bins. Note that the 80-bin model overestimates the true asymptotic single-spike information at the peak by a factor of
more than 1.5. (E) Convergence of empirical single-spike information along the true filter axis as a function of sample size. With small amounts of data, all
three models overfit, leading to upward bias in estimated information. For large amounts of data, the 5-bin model underfits and therefore under-estimates
information, since it lacks the smoothness to adequately describe the shape of the sigmoidal nonlinearity. (F) Filter error as a function of the number of
stimuli, showing that the optimal number of histogram bins depends on the amount of data.

doi:10.1371/journal.pcbi.1004141.g003
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space. For small datasets, the MID estimate computed with many histogram bins (i.e., many
parameters for the nonlinearity) substantially overestimates the true Iss and yields large errors
in the filter estimate. Even with 1000 stimuli and 200 spikes, a 20-bin histogram gives substan-
tial upward bias in the estimate of single-spike information (Fig. 3D). Parametrization of the
nonlinearity is therefore an important problem that should be addressed explicitly when using
MID, e.g., by cross-validation or other model selection methods.

Models with Bernoulli spiking
Under the discrete-time inhomogeneous Poisson model considered above, spikes are modeled as
conditionally independent given the stimulus, and the spike count in a discrete time bin has a
Poisson distribution. However, real spike trains may exhibit more or less variability than a Pois-
son process [27]. In particular, the Poisson assumption breaks down when the time bin in which
the data are analyzed approaches the length of the refractory period, since in that case each bin
can contain at most one spike. In that case, a Bernoulli model provides a more accurate descrip-
tion of neural data, since it allows only 0 or 1 spike per bin. The Bernoulli and discrete-time Pois-
son models approach the same limiting Poisson process as the bin size (and single-bin spike
probability) approaches zero while the average spike rate remains constant. However, as long as
single-bin spike probabilities are above zero, the two models differ.

Here we show that the standard “Poisson”MID estimator does not necessarily maximize in-
formation between stimulus and response when spiking is non-Poisson. That is, if the spike
count r given stimulus s is not a Poisson random variable, then MID does not necessarily find
the subspace preserving maximal information between stimulus and response. To show this,
we derive the mutual information between the stimulus and a Bernoulli distributed spike
count, and show that this quantity is closely related to the log-likelihood under a linear-nonlin-
ear-Bernoulli encoding model.

Linear-nonlinear-Bernoulli (LNB) model. We can define the linear-nonlinear-Bernoulli
(LNB) model by analogy to the LNP model, but with Bernoulli instead of Poisson spiking. The
parameters θ = {K, α} consist of a matrix K that determines a linear projection of the stimulus
space, and a set of parameters α that govern the nonlinearity f. Here, the output of f is spike
probability λ in the range [0, 1]. The probability of a spike response r 2 {0,1} given stimulus s is
governed by a Bernoulli distribution. We can express this model as

l ¼ f ðK>sÞ ð15Þ

pðrjlÞ ¼ lrð1� lÞ1�r
; ð16Þ

and the log-likelihood for a dataset D = {(st,rt)} is

Llnbðy;DÞ ¼
XN
t¼1

�
rt log ðf ðK>

stÞÞ � ð1� rtÞ log ð1� f ðK>
stÞÞ
�
: ð17Þ

If K has a single filter and the nonlinearity is restricted to be a logistic function, f(x) = 1/(1+exp
(−x)), this reduces to the logistic regression model. Note that the spike probability λ is analo-
gous to the single-bin Poisson rate λΔ from the LNP model (Equation 1), and the two models
become identical in the small-bin limit where the probability of spiking p(r = 1) goes to zero
[24, 26].

Bernoulli information. We can derive an equivalent dimensionality-reduction estimator
in information-theoretic terms. The mutual information between the projected stimulus
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x = K>s and a Bernoulli spike response r 2 {0,1} is given by:

Iðx; rÞ ¼ HðxÞ � HðxjrÞ

¼ �
Z

dx pðxÞ log pðxÞ þ
X
j2f0;1g

pðr ¼ jÞ
Z

dx pðxjr ¼ jÞ log pðxjr ¼ jÞ

¼
X
j2f0;1g

pðr ¼ jÞ
Z

dx pðxjr ¼ jÞ log pðxjr ¼ jÞ
pðxÞ

¼
X
j2f0;1g

pðr ¼ jÞDKL

�
pðxjr ¼ jÞ jj pðxÞ

�
: ð18Þ

If we normalize by the probability of observing a spike, we obtain a quantity with units of bits-
per-spike that can be directly compared to single-spike information. We refer to this as the Ber-
noulli information:

IBer ¼
1

pðr ¼ 1Þ Iðx; rÞ ¼ I0 þ Iss ð19Þ

where I0 ¼ pðr¼0Þ
pðr¼1ÞDKL pðxjr ¼ 0Þ jj pðxÞ

� �
is the information (per spike) carried by silences, and

Iss is the single-spike information (Equation 4). Thus, where single-spike information quanti-
fies the information conveyed by each spike alone (no matter how many spikes might co-occur
in the same time bin) but neglects the information conveyed by silences, the Bernoulli informa-
tion reflects the information conveyed by both spikes and silences.

Let ÎBer = Î0+Îss denote the empirical or plug-in estimate of the Bernoulli information, where
Îss is the empirical single-spike information (Equation 8), and Î0 is a plug-in estimate of the KL

divergence between p(xjr = 0) and p(x), weighted by
�
N−nsp

�
/nsp, the ratio of the number of si-

lences to the number of spikes. It is straightforward to show that empirical Bernoulli informa-
tion equals the LNB model log-likelihood per spike plus a constant:

Î Ber ¼
1

nsp

Llnb þ
1

�r
Ĥ ½r� ð20Þ

where �r ¼ nsp
N
denotes mean spike count per bin and Ĥ ½r� ¼ � nsp

N
log

nsp
N
� N�nsp

N
log

N�nsp
N

is the

plug-in estimate for the marginal response entropy. Because the second term is independent of
θ, the maximum of the empirical Bernoulli information is identical to the maximum of the
LNB model likelihood, meaning that once again, we have an exact equivalence between likeli-
hood-based and information-based estimators.

Failure modes for MID under Bernoulli spiking. The empirical Bernoulli information
is strictly greater than the estimated single-spike (or “Poisson”) information for a binary
spike train that is not all zeros or ones, since Î0 > 0 and these spike absences are neglected by
the single-spike information measure. Only in the limit of infinitesimal time bins, where
p(r = 1)! 0, does ÎBer converge to Îss[24, 26]. As a result, standard MID can fail to identify the
most informative subspace when applied to a neuron with Bernoulli spiking. We illustrate this
phenomenon with two (admittedly toy) simulated examples. For both examples, we compute

the standard MID estimate k̂MID by maximizing Îss, and the LNB filter estimate k̂Ber which max-
imizes the LNB likelihood.

The first example (Fig. 4) uses stimuli uniformly distributed on the right half of the unit cir-
cle. The Bernoulli spike probability λ increases linearly as a function of stimulus angle:
λ = (s−π/2)/π, for s 2 (−π/2,π/2]. For this neuron, the most informative 1D axis is the vertical
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axis, which is closely matched by the estimate k̂Ber . By contrast, k̂MID exhibits a substantial
clockwise bias, resulting from its failure to take into account the information from silences
(which are more informative when spike rate is high). Fig. 4B shows the breakdown of total
Bernoulli information into Îss (spikes) and Î0 (silences) as a function of projection angle, which
illustrates the relative biases of the two quantities.

A second example (Fig. 5) uses stimuli drawn from a standard bivariate Gaussian (0 mean
and identity covariance), in which standard MID makes a 90° error in identifying the most in-
formative one-dimensional subspace. The neuron’s nonlinearity (Fig. 5A) is excitatory in stim-
ulus axis s1 and suppressive in stimulus axis s2 (indicating that a large projection onto s1
increases spike probability, while a large projection onto s2 decreases spike probability). For
this neuron, both stimulus axes are clearly informative, but the (suppressive, vertical) axis s2
carries 13% more information than the (excitatory, horizontal) axis s1. However, the standard
MID estimator identifies s1 as the most informative axis (Fig. 5C), due once again to the failure
to account for the information carried by silences.

These artificial examples were designed to emphasize the information carried by missing
spikes, and we do not expect such stark differences between Bernoulli and Poisson estimators
to arise in typical neural data. However, it is clear that the assumption of Poisson firing can
lead the standard MID estimator to make mistakes when spiking is actually Bernoulli. In gener-
al, we suggest that the question of which estimator performs better is an empirical one, and de-
pends on which model describes the true spiking process more accurately.

Quantifying MID information loss for binary spike trains. In the limit of infinitesimal
time bins, the information carried by silences goes to zero, and the plug-in estimates for

Fig 4. Illustration of MID failure mode due to non-Poisson spiking. (A) Stimuli were drawn uniformly on
the unit half-circle, θ*Unif(−π/2,π/2). The simulated neuron had Bernoulli (i.e., binary) spiking, where the
probability of a spike increased linearly from 0 to 1 as θ varied from −π/2 to π/2, that is: p(spikejθ) = θ/π+1/2.
Stimuli eliciting “spike” and “no-spike” are indicated by gray and black circles, respectively. For this neuron,
the most informative one-dimensional linear projection corresponds to the vertical axis (k̂Ber), but the MID
estimator (k̂MID) exhibits a 16� clockwise bias. (B) Information from spikes (black), silences (gray), and both
(red), as a function of projection angle. The peak of the Bernoulli information (which defines k̂Ber) lies close to
π/2, while the peak of single-spike information (which defines k̂MID) exhibits the clockwise bias shown in A.
Note that k̂MID does not converge to the optimal direction even in the limit of infinite data, due to its lack of
sensitivity to information from silences. Although this figure is framed in an information-theoretic sense,
equations (19) and (20) detail the equivalence between IBer and Llnb, so that this figure can be viewed from
either an information-theoretic or likelihood-based perspective.

doi:10.1371/journal.pcbi.1004141.g004
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Bernoulli and single-spike information converge: I0 ! 0 and ÎBer ! Îss. However, for finite
time bins, the Bernoulli information can substantially exceed single-spike information.

In the previous section, we showed that this mismatch can lead to errors in subspace identifi-
cation. Here we derive a lower bound on the information lost due to the neglect of I0, the infor-
mation (per spike) carried by silences, as a function of marginal probability of a spike, p(r = 1).

In the limit of rare spiking, p(r = 1)! 0, we find that:

I0
IBer

¼ I0
I0 þ Iss

� pðr ¼ 1Þ
2

: ð21Þ

The fraction of lost information is at least half the marginal spike probability. Thus, for exam-
ple, if 20% of the bins in a binary spike train contain a spike, the standard MID estimator will
necessarily neglect at least 10% of the total mutual information. We show this bound holds in
the asymptotic limit of small p(r = 1) (see Methods for details), but conjecture that it holds for
all p(r = 1). The bound is tight in the Poisson limit, p(r = 1)! 0, but is substantially loose in
the limit where spiking is common p(r = 1)! 1, in which all information is carried by silences.
Fig. 6 shows our bound compared to the actual (numerical) lower bound for an example with a
binary stimulus.

Models with arbitrary spike count distributions
For neural responses binned at the stimulus refresh rate (e.g., 100 Hz), it is not uncommon to
observe multiple spikes in a single bin. For the general case, then, we must consider an arbitrary
distribution over counts conditioned on a stimulus. As we will see, maximizing the mutual in-
formation based on histogram estimators is once again equivalent to maximizing the likelihood
of an LN model with piece-wise constant mappings from the linear stimulus projection to
count probabilities.

Linear-nonlinear-count (LNC) model. Suppose that a neuron responds to a stimulus s
with a spike count r 2 {0, . . ., rmax}, where rmax is the maximum possible number of spikes

Fig 5. A second example Bernoulli neuron for which k̂MID fails to identify the most-informative one-dimensional subspace. The stimulus space has
two dimensions, denoted s1 and s2, and stimuli were drawn iid from a standard GaussianN(0,1). (A) The nonlinearity f(s1,s2) = p(spikejs1,s2) is excitatory in
s1 and suppressive in s2; brighter intensity indicates higher spike probability. (B) Contour plot of the stimulus-conditional densities given the two possible
responses: “spike” (red) or “no-spike” (blue), along with the raw stimulus distribution (black). (C) Information carried by silences (I0), single spikes (Iss), and
total Bernoulli information (IBer = I0+Iss) as a function of subspace orientation. The MID estimate k̂MID ¼ 90� is the maximum of Iss, but the total Bernoulli
information is in fact 13% higher at k̂Ber ¼ 0� due to the incorporation of no-spike information. Although both stimulus axes are clearly relevant to the neuron,
MID identifies the less informative one. As with the previous figure, equations (19) and (20) detail the equivalence between IBer and Llnb, so that this figure
can be viewed from either an information-theoretic or likelihood-based perspective.

doi:10.1371/journal.pcbi.1004141.g005
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within the time bin (constrained by the refractory period or firing rate saturation). The linear-
nonlinear-count (LNC) model, which includes LNB as a special case, is defined by a linear di-
mensionality reduction matrix K and a set of nonlinear functions {f (0). . ., f (rmax)} that map the
projected stimulus to the probability of observing {0, . . ., rmax} spikes, respectively. We can
write the probability of a spike response r given projected stimulus x = K>s as:

lðjÞ ¼ f ðjÞðxÞ; for j ¼ 0; . . . ; rmax

pðr ¼ jjlðjÞÞ ¼ lðjÞ:
ð22Þ

Note that there is a constraint on the functions f requiring that ∑j f
(j)(x) = 1,8x, since the proba-

bilities over possible counts must add to 1 for each stimulus.
The LNC model log-likelihood for parameters θ = (K, α(0), . . . α(rmax)) given data D = {(st,rt)}

can be written:

Llncðy;DÞ ¼
XN
t¼1

Xrmax

j¼0

1jðrtÞ log
�
f ðjÞðK>

stÞ
�� �

; ð23Þ

where 1j(rt) is an indicator function selecting time bins t in which the spike count is j. As be-
fore, we consider the case where f ( j) takes a constant value in each ofm histogram bins {Bi}, so

that the parameters are just those constant values: að jÞ ¼ ðf ð jÞ0 ; . . . ; f ð jÞm Þ. The maximum-

Fig 6. Lower bound on the fraction of total information neglected by MID for a Bernoulli neuron, as a
function of the marginal spike probability p(spike) = p(r = 1), for the special case of a binary stimulus.
Information loss is quantified as the ratio I0/(I0+Iss), the information due to no-spike events, I0, divided by the
total information due to spikes and silences, I0+Iss. The dashed gray line shows the lower bound derived in
the limit p(spike)! 0. The solid black line shows the actual minimum achieved for binary stimuli s 2 {0,1} with
p(s = 1) = q, computed via a numerical search over the parameter q 2 [0, 1] for each value of p(spike). The
lower bound is substantially loose for p(spike)> 0, since as p(spike)! 1, the fraction of information due to
silences goes to 1.

doi:10.1371/journal.pcbi.1004141.g006
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likelihood estimates for the values can be given in terms of the histogram probabilities:

f̂ ðjÞi ¼ nðjÞ
i

ni

¼ q̂ðjÞ
i

p̂i

N ðjÞ

N
: ð24Þ

where ni is the number of stimuli in bin Bi, n
ðjÞ
i is the number of stimuli in bin Bi that elicited j

spikes, N (j) is the number of stimuli in all bins that elicited j spikes, and N is the total number
of stimuli. The histogram fractions of the projected raw spike counts p̂i are defined as in Equa-
tion 6, with the j-spike conditioned histograms defined analogously:

q̂ðjÞ
i ¼ 1

N ðjÞ

X
t

1Bi
ðxtÞ1jðrtÞ ¼ nðjÞ

i

N ðjÞ ; ð25Þ

Thus, the log-likelihood for projection matrix K, having already maximized with respect to
the nonlinearities by using their plug-in estimates, is

LlncðK;DÞ ¼
XN
t¼1

Xrmax

j¼0

�
1jðrtÞ log f̂ ðjÞðK>

stÞ
� ��

ð26Þ

¼
XN
t¼1

Xrmax

j¼0

Xm
i¼1

�
1jðrtÞ1Bi

ðK>
stÞ log

�
f̂ ðjÞi
��

ð27Þ

¼
Xrmax

j¼0

Xm
i¼1

nðjÞ
i log

nðjÞ
i

ni

 !
ð28Þ

¼
Xrmax

j¼0

Xm
i¼1

N ðjÞq̂ðjÞ
i log

q̂ðjÞ
i

p̂i

NðjÞ

N

 ! !
ð29Þ

¼
Xrmax

j¼0

Xm
i¼1

N ðjÞq̂ðjÞ
i log

q̂ðjÞ
i

p̂i

 ! !
þ
Xrmax

j¼0

NðjÞ log
N ðjÞ

N

� �� �
: ð30Þ

Information in spike counts. If the binned spike-counts rt measured in response to sti-
muli st are not Poisson distributed, the projection matrix K which maximizes the mutual infor-
mation between K>s and r can be found as follows. Recalling that rmax is the maximal spike
count possible in the time bin and writing x = K>s, we have:

Iðx; rÞ ¼ HðxÞ � HðxjrÞ ð31Þ

¼ �
Z

dx pðxÞ log pðxÞ þ
Xrmax

j¼0

pðr ¼ jÞ
Z

dx pðxjr ¼ jÞ log pðxjr ¼ jÞ ð32Þ

¼
Xrmax

j¼0

pðr ¼ jÞ
Z

dx pðxjr ¼ jÞ log pðxjr ¼ jÞ
pðxÞ ð33Þ

¼
Xrmax

j¼0

pðr ¼ jÞDKL

�
pðxjr ¼ jÞ jj pðxÞ

�
: ð34Þ
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To ease comparison with the single-spike information, which is measured in bits per spike, we
normalize the mutual information by the mean spike count to obtain:

Icount ¼
1

�r
Iðx; rÞ ¼ I0 þ I1 þ � � � þ Irmax

ð35Þ

where r ̄ = ∑t rt/N is the mean spike count, and Ij ¼ pðr¼jÞ
�r

DKL pðxjr ¼ jÞ jj pðxÞð Þ is the normal-

ized information carried by the j-spike responses. Note that I1, the information carried by
single-spike responses, is not the same as the single-spike information Iss, since the latter
combines information from all responses with 1 or more spikes, by assuming that each spike is
conditionally independent of all other spikes.

We can estimate the mutual information from data using a histogram based plug-in
estimator:

Î count ¼
Xrmax

j¼0

1

�r
NðjÞ

N

Xm
i¼1

q̂ðjÞ
i log

q̂ðjÞ
i

p̂i

: ð36Þ

Comparison with the LNC model log-likelihood (Equation 30) reveals that:

Î count ¼
1

nsp

Llnc þ
1

�r
Ĥ ½r� ð37Þ

where Ĥ ½r� ¼ �Prmax

j¼0
NðjÞ
N
log NðjÞ

N
is the plug-in estimate for the marginal entropy of the ob-

served spike counts. Note that this reduces to the relationship between Bernoulli information
and LNB model log-likelihood (Equation 20) in the special case where rmax = 1.

Thus, even in the most general case of an arbitrary distribution over spike counts given a
stimulus, the subspace projection K that maximizes the histogram-based estimate of mutual in-
formation is identical to the maximum-likelihood K for an LN model with a corresponding
piece-wise constant parametrization of the nonlinearities.

Failures of MID under non-Poisson count distributions. We formulate two simple ex-
amples to illustrate the sub-optimality of standard MID for neurons whose stimulus-condi-
tioned count distributions are not Poisson. For both examples, the neuron was sensitive to a
one-dimensional projection along the horizontal axis and emitted either 0, 1, or 2 spikes in re-
sponse to a stimulus.

Both are illustrated in Fig. 7. The first example (A) involves a deterministic neuron, where
spike count is 0, 1, or 2 according to a piece-wise constant nonlinear function of the projected
stimulus. Here, MID does not use the information from zero or two-spike bins optimally; it ig-
nores information from zero-spike responses entirely, and treats stimuli eliciting two spikes as
two independent samples from p(xjspike). The Icount estimator, by contrast, is sensitive to the
non-Poisson statistics of the response, and combines information from all spike counts (Equa-
tion 35), yielding both higher information and faster convergence to the true filter.

Our second example (Fig. 7B) involves a model neuron in which a sigmoidal nonlinearity
determines the probability that it fires exactly 1 spike (high at negative stimulus projections) or
stochastically emits either 0 or 2 spikes, each with probability 0.5 at positive stimulus projec-
tions). Thus, the nonlinearity does not change the mean spike rate, but strongly affects its vari-
ance. Because the probability of observing a single spike is not affected by the stimulus, single-
spike information is zero for all projections, and the MID estimate does not converge to the
true filter even with infinite data. However, the full count information Îcount correctly weights
the information carried by different spike counts and provides a consistent estimator for K.
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Identifying high-dimensional subspaces
A significant drawback to standard MID is that it does not scale tractably to high-dimensional
subspaces; that is, to the simultaneous estimation of many filters. MID has usually been limited
to estimation of only one or two filters, and we are unaware of a practical setting in which it
has been used to recover more than three. This stands in contrast to methods like spike-trig-
gered covariance (STC) [1, 7], information-theoretic spike-triggered average and covariance
(iSTAC) [19], projection-pursuit regression [28], Bayesian spike-triggered covariance [14], and
quadratic variants of MID [21, 22], all of which can tractably estimate ten or more filters. This
capability may be important, given that V1 neurons exhibit sensitivity to as many as 15 dimen-
sions [29], and many canonical neural computations (e.g., motion estimation) require a large
number of stimulus dimensions [22, 30].

Before we continue, it is helpful to consider whyMID is impractical for high-dimensional
feature spaces. The problem isn’t the number of filter parameters: these scale linearly with di-
mensionality, since a p-filter model with D-dimensional stimuli requires only Dp parameters,
or indeed only ðD� 1Þp� 1

2
pðp� 1Þ parameters to specify the subspace after accounting for

degeneracies. The problem is instead the number of parameters needed to specify the densities
p(x) and p(xjspike). For histogram-based density estimators, the number of parameters grows

Fig 7. Two examples illustrating sub-optimality of MID under discrete (non-Poisson) spiking. In both cases, stimuli were uniformly distributed within
the unit circle and the simulated neuron’s response depended on a 1D projection of the stimulus onto the horizontal axis (θ = 0). Each stimulus evoked 0, 1, or
2 spikes. (A) Deterministic neuron. Left: Scatter plot of stimuli labelled by number of spikes evoked, and the piece-wise constant nonlinearity governing the
response (below). The nonlinearity sets the response count deterministically, thus dramatically violating Poisson expectations.Middle: information vs. axis of
projection. The total information Icount reflects the information from 0-, 1-, and 2-spike responses (treated as distinct symbols), while the single-spike
information Iss ignores silences and treats 2-spike responses as two samples from p(sjspike). Right: Average absolute error in k̂MID and k̂count as a function of
sample size; the latter achieves 18% lower error due to its sensitivity to the non-Poisson structure of the response. (B) Stochastic neuron with sigmoidal
nonlinearity controlling the stochasticity of responses. The neuron transitions from almost always emitting 1 spike for large negative stimulus projections, to
generating either 0 or 2 spikes with equal probability at large positive projections. Here, the nonlinearity does not modulate the mean spike rate, so Îss is
approximately zero for all stimulus projections (middle) and the MID estimator does not converge (right). However, the k̂count estimate converges because the
LNCmodel is sensitive to the change in conditional response distribution. Equation (37) details the relationship between Icount and Llnc, so that this figure can
be interpreted from either an information-theoretic or likelihood-based perspective.

doi:10.1371/journal.pcbi.1004141.g007
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exponentially with dimension: a histogram withm bins along each of p filter axes requiresmp

parameters, a phenomenon sometimes called the “curse of dimensionality”.
Density vs. nonlinearity estimation. A key benefit of the LNP model likelihood frame-

work is that it shifts the focus of estimation away from the separate densities p(xjspike) and
p(x) to a single nonlinear function f. This change in focus makes it easier to scale the likelihood
approach to high dimensions for a few different reasons. First, direct estimation of a single
nonlinearity in place of two densities immediately halves the number of parameters required to
achieve a similarly detailed picture of the neuron’s response to the filtered stimulus. Second,
the dependence of the MID cost function on the logarithm of the ratio p(xjspike)/p(x) makes it
very sensitive to noise in the estimated value of the denominator p(x) when that value is near 0.
Unfortunately, as p(x) is also the probability with which samples are generated, these low-value
regions are precisely where the fewest samples are available. This is a common difficulty in the
empirical estimation of information-theoretic quantities, and others working in more general
machine-learning settings have suggested direct estimation of the ratio rather than its parts
[31–33]. In LN neural modeling such direct estimation of the ratio is equivalent to direct esti-
mation of the nonlinearity.

As the nonlinearity is a property of the neuron rather than the stimulus, it may be more
straightforward to construct a smoothed or structured parametrization for f (or to regularize its
estimate based on prior beliefs about neuronal properties) regularizing the estimates of stimu-
lus densities. For example, consider an experiment using natural visual images. While natural
images presumably form a smooth manifold within the space of all possible pixel patterns, the
structure of this manifold is neither simple nor known. The natural distribution of images does
not factor over disjoint sets of pixels, nor over linear projections of pixel values. A small ran-
dom perturbation in all pixels makes a natural image appear unnaturally noisy, violating the
underlying presumption of kernel density estimators that local perturbations do not alter the
density much. Indeed the question of how best to model the distribution of natural stimuli is a
matter of active research. By contrast, we might expect to be able to develop better parametric
forms to describe the non-linearities employed by neural systems. For instance, we might
expect the neural nonlinearity to vary smoothly in the space of photoreceptor activation, and
thus of filter outputs. Thus, locally kernel-smoothed estimates of the non-linear mapping—or
even parametric choices of function class, such as low-order polynomials—might be valid,
even if the stimulus density changes abruptly. Alternatively, subunits within the neural recep-
tive field might lead to additively or multiplicatively separable components of the nonlinearity
that act on the outputs of different filters. In this case, it would be possible to factor f between
two subsets of filter outputs, say to give f(x) = f1(x1)f2(x2), even though there is no reason for
the stimulus distribution to factor: p(x) 6¼ p(x1)p(x2). This reduction of f to two (or more)
lower-dimensional functions would avoid the exponential parameter explosion implied by the
curse of dimensionality.

Indeed, such strategies for parametrization of the nonlinear mapping are already implicit in
likelihood-based estimators inspired by the spike-triggered average and covariance. In many
such cases, f is parametrized by a quadratic form embedded in a 1D nonlinearity [14], so that
the number of parameters scales only quadratically with the number of filters. A similar ap-
proach has been formulated in information-theoretic terms using a quadratic logistic Bernoulli
model [21, 22, 24]. Another method, known as extended projection pursuit regression (ePPR)
[28], parametrizes f as a sum of one-dimensional nonlinearities, in which case the number of
parameters grows only linearly with the number of filters.

Parametrizing the many-filter LNP model. Here we provide a general formulation that
encompasses both standard MID and constrained methods that scale to high-dimensional
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subspaces. We can rewrite the LNP model (Equation 1) as follows:

x ¼ K>s ðdimensionality reductionÞ ð38Þ

l ¼ f ðxÞ ¼ g
Xn�
i¼1

ai�iðxÞ
 !

ðnonlinearityÞ ð39Þ

rj� � PoissðlDÞ ðspikingÞ: ð40Þ

The nonlinearity f is parametrized using basis functions {φi(�)}, i = 1, . . ., nφ, which are linearly
combined with weights αi and then passed through a scalar nonlinearity g. We refer to g as the
output nonlinearity; its primary role is to ensure the spike rate λ is positive regardless of
weights αi. This can also be considered a special case of an LNLN model [15, 34, 35].

If we fix g and the basis functions {φi} in advance, fitting the nonlinearity simply involves es-
timating the parameters αi from the projected stimuli and associated spike counts. If g is con-
vex and log-concave, then the log-likelihood is concave in {αi} given K, meaning the
parameters governing f can be fit without getting stuck in non-global maxima [11].

Standard MID can be seen as a special case of this general framework: it sets g to the identity
function and the basis functions φi to histogram-bin indicator functions (denoted 1Bi

(�) in
Equation 7). The maximum-likelihood weights {α̂i} are proportional to the ratio between the
number of spikes and number of stimuli in the i’th histogram bin (Equation 10). As discussed
above, the number of basis functions nφ scales exponentially with the number of filters, making
this parametrization impractical for high-dimensional feature spaces.

Another special case of this framework corresponds to Bayesian spike-triggered covariance
analysis [14], in which the basis functions φi are taken to be linear and quadratic functions of
the projected stimulus. If the stimulus is Gaussian, then standard STC and iSTAC provide an
asymptotically optimal fit to this model under the assumption that g is exponential [14, 19].

In principle, we can select any set of basis functions. Other reasonable choices include poly-
nomials, sigmoids, sinusoids (i.e., Fourier components), cubic splines, radial basis functions, or
any mixture of these bases. Alternatively, we could use non-parametric models such as Gauss-
ian processes, which have been used to model low-dimensional tuning curves and firing rate
maps [36, 37]. Theoretical convergence for arbitrary high-dimensional nonlinearities requires
a scheme for increasing the complexity of the basis or non-parametric model as we increase the
amount of data recorded [38–41]. We do not examine such theoretical details here, focusing in-
stead on the problem of choosing a particular basis that is well suited to the dataset at hand.
Below, we introduce basis functions {φi} that provide a reasonable tradeoff between flexibility
and tractability for parametrizing high-dimensional nonlinear functions.

Cylindrical basis functions for the LNP nonlinearity. We propose to parametrize the
nonlinearity for many-filter LNP models using cylindrical basis functions (CBFs), which we in-
troduce by analogy to radial basis functions (RBFs). These functions are restricted in some di-
rections of the feature space (like RBFs), but are constant along other dimensions. They are
therefore the function-domain analogues to the probability “experts” used in product-of-ex-
perts models [42] in that they constrain a high-dimensional function along only a small num-
ber of dimensions, while imposing no structure on the others.

We define a “first-order” CBF as a Gaussian bump in one direction of the feature space, pa-
rametrized by center location μ and a characteristic width σ:

�1stðxÞ ¼ exp
�ðxi � mÞ2

2s2

� �
; ð41Þ
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which affects the function along vector component xi and is invariant along xj 6¼ i. Parametriz-
ing f with first-order CBFs is tantamount to assuming f can be parametrized as the sum of
1D functions along each filter axis, that is f (x) = g (f1(x1) + . . . fm(xm)), where each function fi is
parametrized with a linear combination of “bump” functions. This setup resembles the param-
etrization used in the extended projection-pursuit regression (ePPR) model [28], although the
nonlinear transformation g confers some added flexibility. For example, we can have multipli-
cative combination when g(�) = exp(�), resulting in a separable f, or rectified additive combina-
tion when g(�) = max(�,0), which is closer to ePPR. If we use d basis functions along each filter
axis, the resulting nonlinearity requires kd parameters for a k-filter LNP model.

We can define second-order CBFs as functions that have Gaussian dependence on two di-
mensions of the input space and that are insensitive to all others:

�2ndðxÞ ¼ exp
�ðxi � miÞ2 � ðxj � mjÞ2

2s2

 !
ð42Þ

where μi and μj determine the center of the basis function in the (xi,xj) plane. A second-order

basis represents f as a (transformed) sum of these bivariate functions, giving k

2

 !
d2 parameters

if we use d2 basis functions for each of the k

2

 !
possible pairs of k filter outputs, or merely k

2
d2 if

we instead partition the k filters into disjoint pairs. Higher-order CBFs can be defined analo-
gously: k0th order CBFs are Gaussian RBFs in a k0-dimensional subspace while remaining con-
stant in the remaining k−k0 dimensions. Of course, there is no need to represent the entire
nonlinearity using CBFs of the same order. It might make sense, for example, to represent the
nonlinear combination of the first two filter responses with second order CBFs (which is com-
parable to standard MID with a 2D histogram representation of the nonlinearity), and then use
first order CBFs to represent the contributions of additional (less-informative) filter outputs.

To illustrate the feasibility of this approach, we applied dimensionality reduction methods
to a previously published dataset from macaque V1 [29]. This dataset contains extracellular
single unit recordings of simple and complex cells driven by an oriented 1D binary white noise
stimulus sequence (i.e., “flickering bars”). For each neuron, we fit an LNP model using: (1) the
information-theoretic spike-triggered average and covariance (iSTAC) estimator [19]; and (2)
the maximum likelihood estimator for an LNP model with nonlinearity parametrized by first-
order CBFs. The iSTAC estimator, which combines information from the STA and STC, re-
turns a list of filters ordered by informativeness about the neural response. It models the non-
linearity as an exponentiated quadratic function (an instance of a generalized quadratic model
[23]), and yields asymptotically optimal performance under the condition that stimuli are
Gaussian. For comparison, we also implemented a model with a less-constrained nonlinearity,
using Gaussian RBFs sensitive to all filter outputs (rbf-LNP). This approach is comparable to
to “classic”MID, although it exploits the LNP formulation to allow local smoothing of the non-
linearity (rather than square histogram bins). Even so, the number of parameters in the nonlin-
earity still grows exponentially with the number of filters so, computational concerns
prevented us from recovering more than four filters with this method.

Fig. 8 compares the performance of these estimators on neural data, and illustrates the abili-
ty to tractably recover high-dimensional feature spaces using maximum likelihood methods,
provided that the nonlinearity is parametrized appropriately. We used 3 CBFs per filter output
for the cbf-LNP model (resulting in 3p parameters for the nonlinearity), and a grid with 3 RBFs
per dimension for the rbf-LNP model (3p parameters). By contrast, the exponentiated-quadrat-
ic nonlinearity underlying the iSTAC estimator requires O(p2) parameters.
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To compare performance, we analyzed the growth in empirical single-spike information
(computed on a “test” dataset) as a function of the number of filters. Note that this is equivalent
to computing test log-likelihood under the LNP model. For a subset of neurons determined to
have 8 or more informative filters (16/59 cells), the cbf-LNP filters captured more information
than the iSTAC filters (Fig. 8C). This indicates that the CBF nonlinearity captures the nonline-
ar mapping from filter outputs to spike rate more accurately than an exponentiated quadratic,
and that this flexibility confers advantages in identifying the most informative stimulus dimen-
sions. The first four filters estimated under the rbf-LNP model captured slightly more

Fig 8. Estimation of high-dimensional subspaces using a nonlinearity parametrized with cylindrical
basis functions (CBFs). (A) Eight most informative filters for an example complex cell, estimated with iSTAC
(top row) and cbf-LNP (bottom row). For the cbf-LNPmodel, the nonlinearity was parametrized with three
first-order CBFs for the output of each filter (see Methods). (B) Estimated 1D nonlinearity along each filter
axis, for the filters shown in (A). Note that third and fourth iSTAC filters are suppressive while third and fourth
cbf-LNP filter are excitatory. (C) Cross-validated single-spike information for iSTAC, cbf-LNP, and rbf-LNP,
as a function of the number of filters, averaged over a population of 16 neurons (selected from [29] for
having� 8 informative filters). The cbf-LNP estimate outperformed iSTAC in all cases, while rbf-LNP yielded
a slight further increase for the first four dimensions. (D) Computation time for the numerical optimization of
the cbf-LNP likelihood for up to 8 filters. Even for 30 minutes of data and 8 filters, optimisation took about 4
hours. (E) Average number of excitatory filters as a function of total number of filters, for each method. (F)
Information gain from excitatory filters, for each method, averaged across neurons. Each point represents the
average amount of information gained from adding an excitatory filter, as a function of the number of filters.

doi:10.1371/journal.pcbi.1004141.g008
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information again than the cbf-LNP filters, indicating that first-order CBFs provide slightly too
restrictive a parametrization for these neurons. Due to computational considerations, we did
not attempt to fit the rbf-LNP model with> 4 filters, but note that the cbf-LNP model scaled
easily to 8 filters (Fig. 8D).

In addition to its quantitative performance, the cbf-LNP estimate exhibited a qualitative dif-
ference from iSTAC with regard to the ordering of filters by informativeness. In particular, the
cbf-LNP fit reveals that excitatory filters provide more information than iSTAC attributes to
them, and that excitatory filters should come earlier relative to suppressive filters when order-
ing by informativeness. Fig. 8A-B, which shows the first 8 filters and associated marginal one-
dimensional nonlinearities for an example V1 complex cell, provides an illustration of this dis-
crepancy. Under the iSTAC estimate (Fig. 8A, top row), the first two most informative filters
are excitatory but the third and fourth are suppressive (see nonlinearities in Fig. 8B). However,
the cbf-LNP estimate (and rbf-LNP estimate, not shown) indicates that the four most informa-
tive filters are all excitatory. This tendency holds across the population of neurons. We can
quantify it in terms of the number of excitatory filters within the first n filters identified
(Fig. 8E) or the total amount of information (i.e., log-likelihood) contributed by excitatory fil-
ters (Fig. 8F). This shows that iSTAC, which nevertheless provides a computationally inexpen-
sive initialization for the cbf-LNP estimate, does not accurately quantify the information
contributed by excitatory filters. Most likely, this reflects the fact that an exponentiated-qua-
dratic does not provide as accurate a description of the nonlinearity along excitatory stimulus
dimensions as can be obtained with a non-parametric estimator.

Relationship to previous work
A variety of neural dimensionality reduction methods have been proposed previously. Here,
we consider the relationship of the methods described in this study to these earlier approaches.
Rapela et al [28] introduced a technique known as extended Projection Pursuit Regression
(ePPR), where the high-dimensional estimation problem is reduced to a sequence of simpler
low-dimensional ones. The approach is iterative. A one-dimensional model is found first, and
the dimensionality is then progressively increased to optimize a cost function, but with the
search for filters restricted to dimensions orthogonal to all the filters already identified. From a
theoretical perspective this assumes that the spiking probability can be defined as a sum of
functions of the different stimulus components; that is,

pðspikejsÞ ¼ g1ðk>
1 sÞ þ g2ðk>

2 sÞ þ � � � gNðk>
NsÞ : ð43Þ

Rowekamp et al [43] compared such an approach to the joint optimization more common in
MID analysis (as in [18]), and derived the bias that results from sequential optimization and its
implicit additivity. By contrast, we have focused here on parametrization rather than sequential
optimization. In all cases, we optimized the log-likelihood simultaneously over all filter dimen-
sions. For high-dimensional models, we advocate parametrization of the nonlinearity so as to
avoid the curse of dimensionality. However, the CBF form we have introduced is more flexible
than that of ePPR, both in that two- or more dimensional components are easily included, and
in that the outputs of the components can be combined non-linearly.

Other proposals can be seen as assuming specific quadratic-based parametrizations for the
nonlinearity, that are more restrictive than the CBF form. The iSTAC estimator, introduced by
Pillow & Simoncelli [19], is based on maximization of the KL divergence between Gaussian ap-
proximations to the spike-triggered and stimulus ensembles—thus finding the feature space
that maximizes the single-spike information under a Gaussian model of both the spike-trig-
gered and stimulus ensembles. Park & Pillow [44] showed its relationship to an LNP model
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with an exponentiated quadratic spike rate, which takes the form:

pðspikejsÞ ¼ exp ðaþ K>sþ s>CsÞ: ð44Þ

Such a nonlinearity readily yields maximum likelihood estimators based on the STA and STC.
Moreover, they proposed a new model, known as “elliptical LNP”, which allowed estimation of
a non-parametric nonlinearity around the quadratic function (instead of assuming an expo-
nential form). Rajan et al. [24] considered a similar model within an information-theoretic
framework and proposed extending it to nonlinear combinations of outputs from multiple
quadratic functions. In a similar vein, Sharpee et al[45, 46] used

pðspikejsÞ ¼ 1

1þ exp ðaþ Ksþ s>CsÞ : ð45Þ

This model corresponds to quadratic logistic regression, and thus assumes Bernoulli output
noise (and a binary response). The authors also proposed a “nonlinear MID” in which the stan-
dard MID estimator is extended by setting the firing rate to be a quadratic function of the form
f (k>s+s>C s). This method is one-dimensional in a quadratic stimulus space (unlike multidi-
mensional linear MID) and therefore avoids the curse of dimensionality. Other work has used
independent component analysis to find directions in stimulus space in which the spike-trig-
gered distribution has maximal deviations from Gaussianity [8].

Discussion

Distributional assumptions implicit in MID
We have studied the estimator known as maximally informative dimensions (MID) [18], a
popular approach for estimating informative dimensions of stimulus space from spike-train
data. Although the MID estimator was originally described in information-theoretic language,
we have shown that, when used with plug-in estimators for information-theoretic quantities, it
is mathematically identical to the maximum likelihood estimator for a linear-nonlinear-Pois-
son (LNP) encoding model. This equivalence holds irrespective of spike rate, the amount of
data, or the size of time bins used to count spikes. We have shown that this follows from the
fact that the plug-in estimate for single-spike information is equal (up to an additive constant)
to the log-likelihood per spike of the data under an LNP model.

Estimators defined by the optima of information-theoretic functionals have attractive theo-
retical properties, including that they provide well-defined and (theoretically) distribution-ag-
nostic characterizations of data. In practice, however, such agnosticism can be difficult to
achieve, as the need to estimate information-theoretic quantities from data requires the choice
of a particular estimator. MID has the virtue of using a non-parametric estimator for raw and
spike-triggered stimulus densities, meaning that the number of parameters (i.e., the number of
histogram bins) can grow flexibly with the amount of data. This allows it to converge for arbi-
trary densities, in the limit of infinite data. However, for a finite dataset, the choice of number
of bins is critical for obtaining an accurate estimate. As we show in Fig. 3, a poor choice can
lead to a systematic under- or over-estimate of the single-spike information, and in turn, a
poor estimate of the most informative stimulus dimensions. Determining the number of histo-
gram bins should therefore be considered a model selection problem, validated with a statistical
procedure such as cross-validation.

A second kind of distributional assumption arises fromMID’s reliance on single-spike in-
formation, which is tantamount to an assumption of Poisson spiking. To be clear, the single-
spike information represents a valid information-theoretic quantity that does not explicitly as-
sume any model. As noted in [26], it is simply the information carried by a single spike time,
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independent of all other spike times. However, conditionally independent spiking is also the
fundamental assumption underlying the Poisson model and, as we have shown, the standard
MID estimator (based on the KL-divergence between histograms) is mathematically identical
to the maximum likelihood estimator for an LNP model with piece-wise constant nonlinearity.
Thus, MID achieves no more and no less than a maximum likelihood estimator for a Poisson
response model. As we illustrate in Fig. 4, MID does not maximize the mutual information be-
tween the projected stimulus and the spike response when the distribution of spikes condi-
tioned on stimuli is not Poisson; it is an inconsistent estimator for the relevant stimulus
subspace in such cases.

The distributional-dependence of MID should therefore be considered when interpreting its
estimates of filters and nonlinearities. MID makes different, but not necessarily fewer, assump-
tions when compared to other LN estimators. For instance, although the maximum-likelihood
estimator for a generalized linear model assumes a less-flexible model for the neural nonlinear-
ity than does MID, it readily permits estimation of certain forms of spike-interdependence that
MID neglects. In particular, MID-derived estimates are subject to concerns regarding model
mismatch that arise whenever the true generative family is unknown [47].

In light of the danger that these distributional assumptions be obscured by the information-
theoretic framing of MID, our belief is that the safer approach is to specify a model explicitly
and adopt a likelihood-based estimation framework. Where the information theoretic and like-
lihood-based estimators are identical, nothing is lost by this approach. However, besides mak-
ing assumptions explicit, the likelihood-based framework also readily facilitates the
introduction of suitable priors for regularization, or hierarchical models [48, 49], or of more
structured models the type discussed here.

Generalizations
Having clarified the relationship between MID and the LNP model, we introduced two general-
izations designed to recover a maximally informative stimulus projection when neural response
variability is not well described as Poisson. From a model-based perspective, the generaliza-
tions correspond to maximum likelihood estimators for a linear-nonlinear-Bernoulli (LNB)
model (for binary spike counts), and the linear-nonlinear-Count (LNC) model (for arbitrary
discrete spike counts). For both models, we obtained an equivalent relationship between log-
likelihood and an estimate of mutual information between stimulus and response. This corre-
spondence extends previous work that showed only approximate or asymptotic relationships
between between information-theoretic and maximum-likelihood estimators [20, 24, 25]. The
LNC model is the most general of the models we have considered. It requires the fewest as-
sumptions, since it allows for arbitrary distributions over spike count given the stimulus. It in-
cludes both LNB and LNP as special cases (i.e., when the count distribution is Bernoulli or
Poisson, respectively).

We could analogously define arbitrary “LNX”models, where X stands in for any probability
distribution over the neural response (analog or discrete), and perform dimensionality reduction
by maximizing likelihood for the filter parameters under this model. The log-likelihood under
any such model can be associated with an information-theoretic quantity, analogous to single-
spike, Bernoulli, and count information, using the difference of log-likelihoods (see also [35]):

Ilnx ≜
X
r;s

pðsÞpxðrjs; yÞ log pxðrjs; yÞ �
X

r

pxðrjy0Þ log pxðrjy0Þ; ð46Þ

where px(rjs,θ) denotes the conditional response distribution associated with the LNXmodel
with parameters θ, and px(rjθ0) describes the marginal distribution over r under the stimulus
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distribution p(s). The empirical or plug-in estimate of this information is equal to the LNX
model log-likelihood plus the estimated marginal entropy:

Î lnxðyÞ ¼
1

n
Llnxðy;DÞ � Llnxðy0;DÞð Þ; ð47Þ

where n denotes the number of samples and θ0 depends only on the marginal response distribu-
tion. The maximum likelihood estimate is therefore equally a maximal-information estimate.

Note that all of the dimensionality-reduction methods we have discussed treat neural re-
sponses as conditionally independent given the stimulus, meaning that they do not capture de-
pendencies between spike counts in different time bins (e.g., due to refractoriness, bursting,
adaptation, etc.). Spike-history dependencies can influence the single-bin spike count distribu-
tion—for example, a Bernoulli model is more accurate than a Poisson model when the bin size
is smaller than or equal to the refractory period, since the Poisson model assigns positive prob-
ability to the event of having� 2 two spikes in a single bin. The models we have considered
can all be extended to capture spike history dependencies by augmenting the stimulus with a
vector representation of spike history, as in both conditional renewal models and generalized
linear models [10, 12, 27, 50–52].

Lastly, we have shown that viewing MID from a model-based perspective provides insight
into how to overcome practical limitations on the number of filters that can be estimated. Stan-
dard implementations of MID employ histogram-based density estimators for p(K>s) and
p(K>sjspike). However, dimensionality and parameter count can be a crippling issue given lim-
ited data, and density estimation becomes intractable in dimensionalities > 3. Furthermore,
the dependence of the information on the logarithm of the ratio of these densities amplifies
sensitivity to errors in these estimates. The LNP-likelihood view suggests direct estimation of
the nonlinearity f, rather than of the densities. Such estimates are naturally more robust, and
are more sensibly regularized based on expectations about neuronal responses without refer-
ence to any regularities in the stimulus distribution. We have proposed a flexible yet tractable
form for the nonlinearity in terms of linear combinations of basis functions cascaded with a
second output nonlinearity. This approach yielded a flexible, computationally efficient, con-
strained version of MID that is able to estimate high-dimensional feature spaces. It is also gen-
eral in the sense that it encompasses standard MID, generalized linear and quadratic models,
and other constrained models that scale tractably to high-dimensional subspaces. Future work
might seek to extend this flexible likelihood-based approach further, for example by including
priors over the weights with which basis functions are combined to improve regularization, or
perhaps by adjusting hyperparameters in a hierarchical model as has been successful with line-
ar approaches [48, 49].

In recent years, the ability to successfully characterize low-dimensional neural feature spaces
using MID has proved useful to address questions relating to multidimensional feature selectiv-
ity [53–56]. In all of these examples however, issues with dimensionality have prevented the es-
timation of feature spaces with more than two dimensions. The methods presented within this
paper will help to overcome these issues, opening access to further important questions regard-
ing the relationship between stimuli and their neural representation.

Methods

Bound on lost information under MID
Here we present a derivation of the lower bound on the fraction of total information carried by
silences for a Bernoulli neuron, in the limit of rare spiking. For notational convenience, let
ρ = p(r = 1) denote the marginal probability of a spike, so the probability of silence is p(r = 0) =
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1−ρ. Let Q1 = p(sjr = 1) and Q0 = p(sjr = 0) denote the spike-triggered and silence-triggered
stimulus distributions, respectively. Let Ps = p(s) denote the raw stimulus distribution. Note
that we have the Ps = ρQ1+(1−ρ)Q0. The mutual information between the stimulus and one bin
of the response (Equation 18) can then be written

Iðs; rÞ ¼ rDKL Q1 jj Psð Þ þ ð1� rÞDKL Q0 jj Psð Þ: ð48Þ
Note that this is a generalized form of the Jensen-Shannon (JS) divergence; the standard JS-di-
vergence between Q0 and Q1 is obtained when r ¼ 1

2
.

In the limit of small ρ (i.e., the Poisson limit), the mutual information is dominated by the
first (Q1) term. Here we wish to show a bound on the fraction of information carried by the Q0

term. We can do this by computing a second-order Taylor expansion of ð1� rÞDKLðQojPsÞ
and I(s,r) around ρ = 0, and show that their ratio is bounded below by ρ/2. Expanding in ρ, we
have

ð1� rÞDKL Qo jj Psð Þ ¼ 1
2
r2VðQ1;Q0Þ þ Oðr3Þ; and ð49Þ

Iðs; rÞ ¼ rDKL Q1 jjQ0ð Þ � 1
2
r2VðQ1;Q0Þ þ Oðr3Þ; ð50Þ

where

VðQ1;Q0Þ ¼
Z
O

Q1

Q1

Q0

� 1

� �
ds; ð51Þ

which is a an upper bound on the KL-divergence: VðQ1;Q0Þ � DKL Q1 jjQ0ð Þ, since (z−1)� log
(z). We therefore have

ð1� rÞDKL Qo jj Psð Þ
Iðs; rÞ ¼

1
2
r2VðQ1;Q0Þ þ Oðr3Þ

rDKL Q1 jjQ0ð Þ � 1
2
r2VðQ1;Q0Þ þ Oðr3Þ �

rVðQ1;Q0Þ
2DKL Q1 jjQ0ð Þ �

r
2

ð52Þ

in the limit ρ! 0.
We conjecture that the bound holds for all values of ρ. For the case of r ¼ 1

2
, this corre-

sponds to an assertion about the relative contribution of each of the two terms in the JS diver-
gence, that is:

DKL Q1 jj 12ðQ0 þ Q1Þ
� �

DKL Q1 jj 12ðQ0 þ Q1Þ
� �þ DKL Q1 jj 12ðQ0 þ Q1Þ

� � � 1

4
ð53Þ

for any choice of distributions Q0 and Q1. We have been unable to find any counter-examples
to this (or to the more general conjecture), but have so far been unable to find a general
proof.

Single-spike information and Poisson log-likelihood
An important general corollary to the equivalence between MID and an LNP maximum likeli-
hood estimate is that the standard single-spike information estimate Îss based on a PSTH mea-
sured in response to repeated stimuli is also a Poisson log-likelihood per spike (plus a
constant). Specifically, the empirical single-spike information is equal to the log-likelihood
ratio between an inhomogeneous and homogeneous Poisson model of the repeat data (normal-
ized by spike count):

Î ss ¼ 1
nsp

Lðλ̂ML; rÞ � Lð�λ; rÞ� �
; ð54Þ

Equating Neural Dimensionality Reduction Methods

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004141 April 1, 2015 24 / 31



where λ̂ML denotes the maximum-likelihood or plug-in estimate of the time-varying spike rate
(i.e., the PSTH itself), �λ is the mean spike rate across time, and L(λ;r) denotes the log-likeli-
hood of the repeat data r under a Poisson model with time-varying rate λ.

We can derive this equivalence as follows. Let {rjt} denote spike counts collected during a
“frozen noise” experiment, with repeat index j 2 {1, . . ., nrpt} and index t 2 {1, . . ., nt} over time
bins of width Δ. Then T = ntΔ is the duration of the stimulus and N = nt nrpt is the total number
of time bins in the entire experiment. The single-spike information can be estimated with a dis-
crete version of the formula for single-spike information provided in [26] (see eq. 2.5):

Î ss ¼
1

nt

Xnt
t¼1

l̂ðtÞ
�l

log
l̂ðtÞ
�l

; ð55Þ

where l̂ðtÞ ¼ 1
Dnrpt

Pnrpt
j¼1 rjt is an estimate of the spike rate in the t’th time bin in response to the

stimulus sequence s, and �l ¼ ðPnt
t¼1 l̂ðtÞÞ=nt is the mean spike rate across the experiment.

Note that this formulation assumes (as in [26]) that T is long enough that an average over stim-
ulus sequences is well approximated by the average across time.

The plug-in (ML) estimator for spike rate can be read off from the peri-stimulus time histo-
gram (PSTH). It results from averaging the response across repeats for each time bin:

l̂ðtÞ ¼ 1

nrptD

Xnrpt
j¼1

rjt: ð56Þ

Clearly, �l ¼ nsp
ND, where nsp = ∑j,t rjt is the total spike count. This allows us to rewrite single-spike

information (Equation 55) as:

Î ss ¼
nrptD

nsp

Xnt
t¼1

l̂ðtÞ log l̂ðtÞ � log
nsp

ND
: ð57Þ

Now, consider the Poisson log-likelihood L evaluated at the ML estimate

l̂ ¼ ðl̂ð1Þ; . . . ; l̂ðntÞÞ, i.e., the conditional probability of the response data r = {rjt} given rate

vector l̂. This is given by:

Lðλ̂; rÞ ¼
Xnt
t¼1

Xnrpt
j¼1

rjt log l̂ðtÞD
� �

� l̂ðtÞD� log rjt!
� �

¼
Xnt
t¼1

Xnrpt
j¼1

rjt

 !
log l̂ðtÞ � nsp þ nsp logD�

X
t;j

log rjt!

¼ nrptD
Xnt
t¼1

l̂ðtÞ log l̂ðtÞ � nsp þ nsp logD�
X
t;j

log rjt!

¼ nspÎ ss þ nsp log
nsp

N
� nsp �

X
t;j

log rjt!

¼ nspÎ ss þ Lð�λ; rÞ; ð58Þ

which is identical to relationship between single-spike information and Poisson log-likelihood
expressed in Equation 13. Thus, even when estimated from raster data, Iss is equal to the differ-
ence between Poisson log-likelihoods under an inhomogeneous (rate-varying) and a homoge-
neous (constant rate) Poisson model, divided by spike count (see also [57]). These normalized

log-likelihoods can be conceived as entropy estimates, with� 1
nsp
Lð�l; rÞ providing an estimate
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for prior entropy, measuring the prior uncertainty about spike times given the mean rate,

and� 1
nsp
Lðl̂; rÞ corresponding to posterior entropy, measuring the posterior uncertainty once

we know the time-varying spike rate.
A similar quantity has been used to report the cross-validation performance of conditionally

Poisson models, including the GLM [13, 58]. To penalize over-fitting, the empirical single-

spike information is evaluated using the rate estimate l̂ obtained with parameters fit to training
data and responses r from unseen test data. This results in the “cross-validated” single-spike in-
formation:

Î ½xv�ss ¼ 1

nsp
½test� Lðλ̂ ½train�; r½test�Þ � Lð�λ ½test�; r½test�
� �

: ð59Þ

This can be interpreted as the predictive information (in bits-per-spike) that the model cap-
tures about test data, above and beyond that captured by a homogeneous Poisson model with
correct mean rate. Note that this quantity can be negative in cases of extremely poor model fit,
that is, when the model prediction on test data is worse than of the best constant-spike-rate
Poisson model. Cross-validated single-spike information provides a useful measure for com-
paring models with different numbers of parameters (e.g., a 1-filter vs. 2-filter LNP model),

since units of “bits” are more interpretable than raw log-likelihood of test data. Generally, Î ½xv�ss

can be considered to a lower bound on the model’s true predictive power, due to stochasticity
in both training and test data. By contrast, the empirical Iss evaluated on training data tends to
over-estimate information due to over-fitting.

Computation of model-based information quantities
To gain intuition for the different information measures we have considered (Poisson, Ber-
noulli, and categorical or “count”), it is useful to consider how they differ for a simple idealized
example. Consider a world with two stimuli, ‘A’ and ‘B’, and two possible discrete stimulus se-
quences, s1 = AB and s2 = BA, each of which occurs with equal probability, so p(s1) = p(s2) =
0.5. Assume each sequence lasts T = 2s, so the natural time bin size for considering the spike re-
sponse is Δ = 1s. Suppose that stimulus A always elicits 3 spikes, while B always elicits 1 spike.
Thus, when sequence s1 is presented, we observe 3 spikes in the first time interval and 1 spike
in the second interval; when s2 is presented, we observe 1 spike in the first time interval and 3
spikes in the second.

Single-spike information can be computed exactly from λ1(t) and λ2(t), the spike rate in re-
sponse to stimulus sequence s1 and s2, respectively. For this example, λ1(t), takes the value
3 during (0,1] and 1 during (1,2], while λ2(t) takes values 1 and 3 during the corresponding in-
tervals. The mean spike rate for both stimuli is λ̄ = 2 sp/s. Plugging these into Equation 54 gives
single-spike information of Iss = 0.19 bits/spike. This result is slightly easier to grasp using an
equivalent definition of single-spike information as the mutual information between the stimu-
lus s and a single spike time τ (see [26]). If one were told that a spike, sampled at random from
the four spikes present during every trial, occurred during [0, 1], then the posterior p(sjτ = 1)
attaches 3/4 probability to s = s1 and 1/4 to s = s2. The posterior entropy is therefore −0.25 log
0.25−0.75 log 0.75 = 0.81 bits. We obtain the same entropy if the spike occurs in the
second interval, soH(sjτ) = 0.81. The prior entropy isH(s) = 1 bit, so once again we have Iss = 1
−0.81 = 0.19 bits/spike.

The Bernoulli information, by contrast, is undefined, since r takes values outside the set
{0,1}, and therefore cannot have a Bernoulli distribution. To make Bernoulli information well
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defined, we would need to either truncate spike counts above 1 (e.g., [59]), or else use smaller
bin size so that no bin contains more than one spike. In the latter case, we would need to pro-
vide more information about the distribution of spike times within these finer bins. If, for ex-
ample, the three spikes elicited by A are evenly spaced within the interval and we use bins equal
to 1/3s, then the Bernoulli information will clearly exceed single-spike information, since the
time of a no-spike response (r = 0, a term neglected by single-spike information) provides per-
fect information about the stimulus, since it occurs only in response to B.

Lastly, the count information is easy to compute from the fact that count r carries perfect in-
formation about the stimulus, so the mutual information between stimulus (A or B) and r is
1 bit. We defined Icount to be the mutual information normalized by the mean spike count per
bin (Equation 35). Thus, Icount = 0.5 bits/spike, which is more than double the single-
spike information.

Gradient and Hessian of LNP log-likelihood
Here we provide formulas useful for fitting the the many-filter LNP model with cylindrical
basis function (CBF) nonlinearity. We performed joint optimization of filter parameters K and
basis function weights {αi} using MATLAB’s fminunc function. We found this approach to
converge much more rapidly than alternating coordinate ascent. We used analytically comput-
ed gradient and Hessian of the joint-likelihood to speed up performance, which we provide
here.

Given a dataset fðst; rtÞgntt¼1, define r = (r1, . . ., rnt)
> and λ = (f(K>s1), . . ., f(K

>snt))
>, where

nonlinearity f = g(∑αi φi) depends on basis function F = {φi} and weights α = {αi} (Equation
39). We can write the log-likelihood for the many-filter LNP model (from Equations 38–40) as:

LðyÞ ¼ r> logλ� ðDÞ1>λ ð60Þ

where θ = {K,α} are the model parameters, Δ is the time bin size, and 1 denotes a vector of
ones. The first and second derivatives of the log-likelihood are given by

@L
@yi

¼ @λ

@yi

� �>
r

λ
� D1

� �
ð61Þ

@2L
@yi@yj

¼ @2λ
@yi@yj

 !>
r

λ
� D1

� �
þ @λ

@yi

@λ
@yj

 !>
r

λ2

� �
; ð62Þ

where multiplication, division, and exponentiation operations on vector quantities indicate
component-wise operations.

Let k1, . . ., km denote the linear filters, i.e., them columns of K. Then the required gradients
of λ with respect to the model parameters can be written:

@λ
@ki

¼ S>ðλ0 � FðiÞaÞ ð63Þ

@λ

@a
¼ F>

λ0 ð64Þ

where S denotes the (nt × D) stimulus design matrix, F denotes the (nt × nφ) matrix whose
(t, j)’th entry is φj(K

>st), and F
(i) denotes a matrix of the same size, formed by the point-wise

derivative of F with respect to its i’th input component, evaluated at each projected stimulus
K>st. Finally, λ0 = g0(Fα) is a (nt × 1) vector composed of the point-wise derivatives of the

Equating Neural Dimensionality Reduction Methods

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004141 April 1, 2015 27 / 31



inverse-link function g at its input, and ‘�’ denotes Hadamard or component-wise
vector product.

Lastly, second derivative blocks, which can be plugged into Equation 62 to form the Hessian,
are given by

@2λ

@ki@kj

¼ S>diag λ00 � ðFðiÞaÞ � ðFðjÞaÞ� 	þ λ0 � Fði;jÞa
� 	� �

S ð65Þ

@2λ

a2
¼ F>

diag λ00ð ÞF ð66Þ

@2λ

@ki@a
¼ S> diag λ00 � ðFðiÞaÞ� �

Fþ diag λ0ð ÞFðiÞ� �
; ð67Þ

where λ@ = g@(Fα) and F(i, j) is a matrix of point-wise second-derivatives of F with respect to
i’th and j’th inputs, evaluated for each projected stimulus K>st.

V1 data analysis
To examine performance in recovering high-dimensional subspaces, we analyzed data from
macaque V1 cells, driven by 1D binary white noise “flickering bars” stimulus, presented at a
frame rate of 100 Hz (data published in [29]). The spatiotemporal stimulus had between 8 and
32 spatial bars and we considered 10 time bins for the temporal integration window. This
made for a stimulus space with dimensionality ranging from 80 to 320.

The cbf-LNP model was implemented with a cylindrical basis function (CBF) nonlinearity
using three first-order CBFs per filter. For a k-filter model, this resulted in 3k parameters for
the nonlinearity, and (240+3)k parameters in total for a stimulus with 24 bars.

The traditional MID estimator (rbf-LNP) was implemented using radial basis functions
(RBFs) to represent the nonlinearity. Unlike the histogram-based parametrization discussed in
the manuscript (which produces a piece-wise constant nonlinearity), this results in a smooth
nonlinearity and, more importantly, a smooth log-likelihood with tractable analytic gradients.
We defined a grid of RBFs with three grid points per dimension, so that CBF and RBF models
were identical for a 1-filter model. For a k-filter model, this resulted in 3k parameters for the
nonlinearity, and 240k+3k parameters in total, for a stimulus with 24 bars.

For both models, the basis function responses were combined linearly and transformed by a
“soft-rectification” function: g(�) = log(1+exp(�)), to ensure positive spike rates. We also evalu-
ated the performance of an exponential function, g(�) = exp(�), which yielded slightly worse
performance (reducing single-spike information by* 0.02 bits/spike).

The cbf- and rbf-LNP models were both fit by maximizing the likelihood for the model pa-
rameters θ = {K,α}. Both models were fit incrementally, with the N+1 dimensional model being
initialized with the parameters of the N dimensional model, plus one additional filter (initial-
ized with the iSTAC filter that provided the greatest increase in log-likelihood). The joint likeli-
hood in K and α was ascended using MATLAB’s fminunc optimization function, which
exploits analytic gradients and Hessians. The models were fit to 80% of the data, with the re-
maining 20% used for validation.

In order to calculate information contributed by excitatory filters under the cbf-LNP model
(Fig. 8F), we removed each filter from the model and refit the nonlinearity (using the training
data) using just the other filters. We quantified the information contributed by each filter as
the difference between log-likelihood of the full model and log-likelihood of the reduced model
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(on test data). We sorted the filters by informativeness and computed the cumulative sum of
information loss to obtain the trace shown in (Fig. 8F).

Measurements of computation time (Fig. 8D) were averaged over 100 repetitions using dif-
ferent random seeds. For each cell, four segments of activity were chosen randomly with fixed
lengths of 5, 10, 20 and 30 minutes, which contained between about 22000 and 173000 spikes.
Even with 30 minutes of data, 8 filters could be identified within about 4 hours on a desktop
computer, making the approach tractable even for large numbers of filters.

Code will be provided at http://pillowlab.princeton.edu/code.html.
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