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Abstract

A concise procedure to determine the self-consistent Fermi energy and de-
fect and carrier concentrations in an extended crystalline system is presented.
It is assumed that the formation enthalpies of a set of variously charged point
defects in thermodynamic equilibrium are known, as well as the density of
electronic states in the defect-free system. By applying the constraint of over-
all charge neutrality, the self-consistent Fermi energy is determined using an
iterative searching routine. The procedure is incorporated within a Fortran
code ‘SC-FERMI’: the input consists of the defect formation energies, density
of sites where they can form, and the degeneracy of each charge state; the
material band gap; and the calculated density of states of the pristine sys-
tem. The output is the self-consistent Fermi energy, the total concentrations
of each defect as well as the concentration of its individual charge states,
and the free carrier concentrations. Furthermore, the procedure facilitates
fixing the concentration of one or more defects and determining the resulting
self-consistent Fermi energy and concentrations of other defects (performed
using the related code ‘FROZEN-SC-FERMI’), thus modelling ‘frozen-in’ defects
which may form by kinetic, rather than thermodynamic, processes. One can
fix the total concentration or the concentration of a particular charge state;
it is also possible to introduce new defects with a fixed concentration, but
here the charge state must be specified. The background theory is discussed
in some detail, and the operation of the program is demonstrated by some
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examples.
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Licensing provisions: MIT licence
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Nature of problem:

To determine the self-consistent Fermi energy and equilibrium defect and carrier
concentrations given a set of point defect formation energies in a crystalline sys-
tem, assuming the constraint of charge neutrality.
Solution method:

The concentrations of each defect in each charge state are calculated, as are the
free carrier concentrations. These concentrations are functions of the Fermi energy.
The code, using an interative search algorithm, determines the Fermi energy that
satisfies the charge neutrality constraint (the self-consistent Fermi energy). The
defect and carrier concentrations at that Fermi energy are then reported, as well
as the Fermi energy itself.
Restrictions:

Thermodynamic equilibrium is assumed. The defect formation enthalpies and elec-
tronic density of states of the pristine system must be known.
Additional comments:

The concentrations of defects can be fixed to a particular value, thus modelling
’frozen-in’ defects formed by e.g. kinetic processes. This procedure is facilitated
by the related program, FROZEN-SC-FERMI, which is identical to SC-FERMI apart
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from the additional defect concentration fixing routine.
Running time: Less than one second.

1. Introduction

Defects form in almost all conditions and strongly affect the structural,
elastic, optical and electronic properties of crystalline and amorphous sys-
tems. [1, 2, 3] The physical properties arising from the presence of defects
are notoriously difficult to attribute to individual species experimentally;
unless the defects are present in very high concentrations, most often one
has to infer their structure and energy states by secondary means (see e.g.
Refs. [4, 5, 6, 7]). Computational approaches, however, allow one to con-
struct a system into which a specific defect can be inserted and its proper-
ties calculated, and are therefore crucial to understanding the rôle defects
play. [8, 9, 10] The process of point defect formation, in which an atom or
group of atoms is either removed from a lattice site, replaced by another atom
or group, or embedded in an interstitial site in equilibrium with reservoirs of
the relevant atoms in elementary form (or in other competing compounds)
and charge balanced by the formation of free electron or hole carriers, is
described by a defect reaction. [11, 12, 13, 14, 15, 16] The enthalpy of this
reaction, commonly referred to as the ‘defect formation energy’ can now
be routinely calculated using a number of accurate approaches, with the
workhorse being density functional theory (DFT). [17]

The defect formation energy allows one to determine the most favourable
defects, and therefore most likely to form, in a given system under par-
ticular environmental and thermodynamic conditions. [17] Furthermore, by
analysing how the formation energies vary with the electron chemical poten-
tial or Fermi energy (EF ), the nature of the most dominant charge car-
rier can be inferred, [18, 16, 19] as well as likely compensation schemes
when the system is doped in an attempt to influence carrier concentra-
tions. [20, 21, 22, 23, 24, 25] It is also possible, however, to determine equilib-
rium defect and carrier concentrations at temperature T , given the formation
energies of the defects and density of states (DOS) of the pristine system, [26]
by imposing the constraint of overall charge neutrality in the system. [27, 9]
As the concentrations are functions of EF , one can determine the value of EF

where the concentration of negatively charged defects and electrons equals
that of holes and positively charged defects, i.e. the equilibrium concentra-
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tions that satisfy charge neutrality. This value of EF is referred to as the
‘self-consistent Fermi energy’.

Calculations of defect concentrations as a function of T provide useful
data for experimentalists, particularly since the formation energies depend
on environmental conditions through the chemical potentials of the atoms
exchanged with chemical reservoirs; variations in chemical potential and the
resulting effect on the concentrations allows one to quantify the influence of
the environment on the defect chemistry. [10] A drawback is that the analysis
depends on the assumption of thermodynamic equilibrium during the defect
formation process, a condition which is often not met in real experiments.
It is nevertheless possible to assume that concentrations of certain species
exist within the system, which remain fixed or vary with T in a pre-defined
way, and recalculate the self-consistent EF subject to the charge neutrality
constraint. In this way one can model ‘frozen in’ defects that may form
away from equilibrium and remain in the system due to kinetic barriers. [9]
For example, one can compute the defect concentrations that form at ele-
vated temperatures, and assume some or all persist via kinetic means when
the system is cooled down rapidly, and then determine the equilibrium con-
centrations of other defects and charge carriers given the presence of these
‘frozen in’ defects.

In this paper a simple but effective FORTRAN 90 code to calculate the
self-consistent Fermi energy and equilibrium defect concentrations, given a
temperature, set of defect formation energies and total density of states of
the pristine system is presented, named SC-FERMI. [28, 29, 30, 31] A further
routine, which allows the user to fix concentrations of defects or add more
defects of a particular charge, is also described (FROZEN-SC-FERMI). This
problem has, of course, been solved before (for some examples see Refs. [32,
9, 33, 34, 35, 36, 37, 38]), but the underlying theory has only been discussed
briefly in other works, usually in relation to a particular (often simplified)
problem, and, to the best of my knowledge a straightforward computer code
to treat this problem has not been made available previously to the wider
community. The method of solution presented here is based on a linear
search algorithm, with appropriate checks for both very large and very small
numbers. The implementation of the procedure and the power of the analysis
available from the results is demonstrated through a thorough examination
of a set of defect formation energies derived from calculations of the defect
properties of the wide gap semiconductor GaN.

The background theory on equilibrium concentrations, originating in sta-
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tistical physics, is presented in Section 2, the algorithm is described in Sec-
tion 3, examples of usage are demonstrated in Section 4, and a summary is
given in Section 5.

2. Theory

Let us assume that there exists an extended, solid-state system comprised
of one or more atomic species in which defects may form, in thermodynamic
equilibrium with its environment. The electronic structure of the material is
described by the density of states per unit volume ρ(E), a function of energy
E, and both electron (n0) and hole (p0) carrier concentrations can be present
through thermal activation across the band gap Eg. The concentrations are
given by: [39]

n0 =

∫ ∞

Eg

fe(E)ρ(E)dE; (1)

p0 =

∫ 0

−∞

fh(E)ρ(E)dE; (2)

where fe(E) = [exp((EF − E)/kT ) + 1]−1 is the Fermi-Dirac distribution
function and fh(E) = 1− fe(E) (k is Boltzmann’s constant). Note that the
valence band maximum (VBM) is set as the zero of the energy scale, and
that it is possible that Eg = 0, i.e. gapless materials can be included in
this analysis [30, 40]. For gapless materials, such as metals and semimetals,
one must take considerable care in the modelling of charged defects, which
will be screened by the surrounding charge density so that the combined
defect plus screening charge is neutral. How the screening is achieved for
particular defects in such systems needs to be analysed carefully; in metals
defects can be ionised, [41] which may affect the Fermi energy and thus their
concentrations could be analysed using SC-FERMI, but modelling such defects
accurately can be challenging. [30] Of course, the details of how the defects
are simulated only affects the input to SC-FERMI.

Above 0 K, in thermodynamic equilibrium the system contains a set of
defects {X}; each member X of this set can exist in a range of charge states
q, [42] each with a particular Gibb’s free energy of formation ∆G(Xq) =
∆H(Xq)− T∆S(Xq), where ∆H refers to enthalpy and ∆S to entropy. For
simplicity, the defects are assumed to form in the dilute limit and are hence
non-interacting. In the majority of realistic situations involving point defect
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formation in solids, the entropic contribution to ∆G(Xq) is at least one or-
der of magnitude lower than the enthalpic contribution. [8, 9, 43] Moreover,
although defect formation can contribute a defect volume and pressure in a
crystal, [43] the effect is small and typically ignored. It is therefore quite
common to ignore the entropic term and equate ∆G(Xq) with the formation
energy (rather than enthalpy) of Xq, Ef(X

q), although there have been sug-
gestions that some results from this approach can be misleading. [44, 45, 46]
This approximation is applied in the following derivation, in common with
many computational analyses of defects in solids. [17] It should be noted
that one can still include the full enthalpic and entropic contributions to de-
fect formation in the equations below; [47] it is not done so here for ease of
notation.

The formation energy, computed from the relevant defect reaction, is
given by

Ef(X
q) = ∆E(Xq) +

∑
i

niµi + qEF , (3)

where ∆E(Xq) is the energy difference between the system with the defect
and without and ni is the number of atoms i with chemical potential µi

removed (ni > 0) or added (ni < 0) when forming X .
The thermal transition level from charge state q to the neutral state ǫ(q/0)

is defined as that value of EF for which Ef(X
q) = Ef (X

0):

qǫ(q/0) = ∆E(X0)−∆E(Xq). (4)

Defect X has a total concentration CXT , and each of its charge states has a
concentration CXq . Each defect X can form on crystal sites of density NX ,
and each of its charge states has a degeneracy gXq . In the neutral state, the
concentration CX0 is given by:

CX0 = NXgX0exp(−Ef (X
0)/kT ). (5)

This result is a well-known consequence of statistical thermodynamics [26, 47]
that follows from consideration of the configurational entropy associated with
the formation of X0 and the minimisation of the resulting change of free
energy as a function of the number of X0 formed. [48] Taking into account
the law of mass action for a process whereby X0 transforms to Xq, one
can derive an expression for CXq equivalent to Eq. 17 below. [12, 13] An
alternative derivation, however, resulting from counting the average number
of electrons (and holes) occupying defect states, is presented here. This
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method demonstrates the connection between defect formation and electron
counting in a solid and, indeed, is fully quantum statistical mechanical in
nature. It has not been presented in this generalised form previously to
my knowledge, and therefore should provide an instructive example of the
statistics of defect formation.

The problem we would like to solve is to determine the EF which satisfies
the constraint of charge neutrality in our system, given the presence of excess
charge carriers and defects with non-zero charge states. To quantify the
charge balance in the system, the electron and/or hole concentration that
arises from the presence of charged defects therefore needs to be determined.
A defect X will have several states associated with it that can be occupied
by different numbers of electrons, or, alternatively, holes. The thermally
averaged concentration of electrons 〈nX〉 associated with X is calculated by
summing the contributions of the different charge states q, dividing by the
partition function and multiplying by the total concentration of X , CXT : [49]

〈nX〉 =

∑
q N(Xq)exp(−(EXq −EFN(Xq))/kT )∑

q exp(−(EXq − EFN(Xq))/kT )
CXT . (6)

EXq is the energy of an electron in state q of X , EXq = ∆E(Xq)−∆E(X0),
whileN(Xq) is the number of electrons in state q ofX . Each state contributes
gXq terms to the summations in Eq. 6. One hole can be counted as -1 electron;
〈nX〉 will therefore be positive for electrons and negative for holes, we have
N(Xq) = −q and the condition of charge neutrality can be expressed as

n0 +
∑
X

〈nX〉 = p0, (7)

where we sum over all defects that form in the system. Taking into account
the expression for the transition level qǫ(q/0) in Eq. 4, we can write:

〈nX〉 =

∑
q −q gXq

g
X0

exp(q(ǫ(q/0)− EF )/kT )

1 +
∑

q 6=0
gXq

g
X0

exp(q(ǫ(q/0)−EF )/kT )
CXT . (8)

The form of the exponent here indicates clearly the intuitive reasoning that,
if the average occupation of a charged state q is high and hence has a large
exponential term in Eq. 8, when q > 0 (q < 0) EF lies above (below) the
transition level. This outcome corresponds to the well-known picture of oc-
cupation of donor or acceptor levels in semiconductors, depending on the
relative position of EF to those levels. [39]
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Let us now define the factor:

BXq ≡
gXq

gX0

exp(q(ǫ(q/0)−EF )/kT ), (9)

so that

〈nX〉 =

∑
q −qBXq

1 +
∑

q 6=0BXq

CXT ≡
∑
q

−qCXq . (10)

This result follows simply from the fact that each Xq contributes −q electrons
(counting holes as negative amounts of electrons, see above). We therefore
have

CXq =
BXq

1 +
∑

q 6=0BXq

CXT . (11)

By definition,

CXT =
∑
q 6=0

CXq + CX0, (12)

=

∑
q 6=0BXq

1 +
∑

q 6=0BXq

CXT + CX0 , (13)

= CX0(1 +
∑
q 6=0

BXq). (14)

It therefore follows that

CXq = CX0BXq (15)

= CX0

gXq

gX0

exp(q(ǫ(q/0)− EF )/kT ). (16)

Finally, noting from Eqs. 3 and 4 that q(ǫ(q/0)− EF ) = Ef (X
0)− Ef (X

q),
we have

CXq = NXgXqexp(−Ef (X
q)/kT ). (17)

With reference to Eq. 5 and the law of mass action this result is not that
surprising; indeed, the theory from which Eq. 5 is derived does not specify
the charge of the defect species, but is applied to the neutral state to avoid
problems of electron counting associated with charge neutrality. The above
derivation demonstrates the relationship between the electrons introduced by
a defect (that occupy its different states) and the total concentration of that
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defect, thus taking into account directly the effect the defect concentration
has on the charge balance in the system. We can rewrite Eq. 7 as

n0 −
∑
X

∑
q

qCXq = p0. (18)

As each term in Eq. 18 depends on EF , a search algorithm can be used to
calculate that value of EF satisfying Eq. 18, given T .

3. Algorithm

Read input
and perform

checks

Calculate
transition

level diagram
and output it

Calculate
each CX0

Set EF = 0,
d = 1, i = 0,

Estep = Emax/10

EF = EF +
i × Estep × d

Calculate
n0, p0 and
each CXq

Calculate
∆new = n0 −∑
X

∑
q CXq −p0

∆new = 0?

|∆new| > |∆old|?

Set Estep = Estep/10,
d = (−1) × d,
∆old = ∆new

Estep < ε? i = i+1

End

yes

no

yes

no

yes
no

Figure 1: Flow chart of main algorithm.
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A simple representation of the algorithm we have implemented to calcu-
late the concentrations and self-consistent EF is shown in Fig. 1. A detailed
description now follows.

The initial step is to read in the input, which consists of ρ(E), defined as
the number of states per energy interval per unit cell, with the energy scale
set to zero at the initial EF (which will be the VBM for an insulator), Eg

(which may be zero), the temperature T , the lattice vectors a, b and c of the
unit cell for which ρ(E) was calculated and the number of electrons within
that unit cell. For each defect of the set {X}, the name, the number of sites
on which they can form within the unit cell, and the degeneracies gXq and
formation energies Ef (X

q) (at EF = 0) of each of its charge states q are read
in. By providing the Ef (X

q), the user sets the environmental conditions in
which defect formation is considered via the chemical potentials in Eq. 3. [50]
Simple checks are performed on the input, such as making sure ρ(E), T and
Eg are non-negative and that the energy range within which ρ(E) has been
defined is broad enough to include conduction band states. From the lattice
vectors, the cell volume is computed as V = a ·b×c. The density of states is
then integrated using Simpson’s rule up to the initial Fermi energy (which, as
stated above, for an insulator is set equal to the VBM and coincides with the
zero of the energy scale) to check that the number of electrons and number of
occupied states are compatible; if not, or if there are small differences, ρ(E)
is renormalised.

Once the input has been read in and checked, the defect formation en-
ergies are used to calculate the thermal transitions and output a transition
level diagram, consisting of the formation energy of each defect in its lowest
energy charge state, as a function of energy within the range for which ρ(E)
has been defined. These datasets are calculated as follows: for each defect,
the lowest energy charge state is found at Emin, the lower limit of the energy
range, using the values provided by the user of Ef (X

q) at EF = 0 and Eq. 3.
Calling this charge state q, the energies Emin and Ef (X

q) at EF = Emin are
sent to ouput in two column format. The next step is to determine the q′

for which ǫ(q/q′) (see Eq. 4) lies closest to Emin, where q′ > q. ǫ(q/q′) and
the formation energy Ef (X

q) at EF = ǫ(q/q′) are then sent to output. This
procedure is repeated, with q replaced by q′, until all charge states have been
cycled through, resulting in a set of points defining the line of lowest for-
mation energy for X as a function of EF from Emin to Emax, the maximum
energy in the range for which ρ(E) is defined. The two column format can
then be graphed to produce the transition level diagram.
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After the transition level diagram has been determined, the neutral con-
centrations CX0 are calculated using Eq. 5. Next, an initial value for EF is
defined, but also for Estep, i and d, which are parameters used to step EF

through the energy range in some direction (given by d) in an energy step size
Estep. The search algorithm begins by stepping EF by an amount i×Estep×d
(for the initial step i = 0). n0, p0 and the various CXq are then determined
using Eqs. 1, 2 and 17, respectively, from which the difference from charge
neutrality, ∆new = n0 −

∑
X

∑
q CXq − p0 is calculated. First we check if

∆new = 0 (zero here is approximated by 10−12 × (n0 −
∑

X

∑
q CXq + p0)); if

so then the algorithm finishes, if not we check if ∆new > ∆old (for the first
iteration, ∆old is not defined, so this check is assumed to be false), and, if
false, we increment i and return to the stage where EF is stepped along the
energy range. If true, however, it indicates that we are progressing EF in
the wrong direction in order to find where the charge neutrality condition is
satisfied. We therefore multiply d by −1, which changes the search direction,
and reduce Estep by an order of magnitude, allowing EF to be stepped along
the energy range by a finer one-dimensional grid point size. If, after these
changes, Estep is below a certain value ε (we set ε = 10−12 eV), the algorithm
finishes. If not, i is iterated and the procedure returns to the stage where
EF is stepped along the energy range.

The algorithm therefore proceeds by a one-dimensional line search along
the energy range to determine where EF results in an n0, p0 and set of CXq

that most closely satisfy the charge neutralily condition given by Eq. 18.
Once the algorithm finishes, n0, p0 and all the CXT are calculated (see
Eqs. 1, 2 and 14) and outputted, along with the final (self-consistent) EF .

3.1. Large and small exponential terms

The procedure is quite stable, but care must be taken to avoid floating
point number underflow and overflow. Underflow may become problematic
at very low T , when all exponential terms are so small that they become
stored as zero within the computer memory. When this problem arises,
the search algorithm will fail as there will be a range of energy for which
∆new = ∆old = 0, with the true solution lying somewhere within this range.
Our approach to overcome this problem is to take the midpoint of this range
as the self-consistent EF , which is a poor approximation but justifiable as
equilibrium defect concentrations at very low T (below 10 K) are very rarely
of interest. Overflow is less problematic, as large values of exponential terms
occur far from where the charge neutrality condition is satisfied, so that the
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algorithm by design avoids these energy ranges. By defining a maximum
number as the limit to which the exponential terms can approach, set by the
order of magnitude of the largest floating point number that can be stored
in memory, overflow problems are avoided.

3.2. Fixed defect concentrations

The theory presented so far corresponds to thermodynamic equilibrium
concentrations of defects and charge carriers. In real systems, however, many
processes by which materials are grown or modified may occur far from equi-
librium. In such cases, it is possible that defects form in non-equilibrium
conditions and become ‘frozen in’ by kinetic barriers. [51] Their presence can
then affect strongly the defect chemistry by altering the charge neutrality
condition given in Eq. 18.

Modelling such ‘frozen in’ defects is possible using the procedure described
above. If our system contains a set of defects {X}, for which we know the
Ef(X

q), then we can consider the following possibilities: one (or more) of the
defects within {X} has a fixed total concentration CXT ; one (or more) of the
defects has a fixed concentration CXq for one (or more) of its charge states
q; or a combination of both these cases. One must be cautious, however, in
the application of the latter two possibilities, as the relative concentrations of
different charge states of a defect depend strongly on the Fermi energy. Fixing
the concentration of a certain charge state, while allowing the Fermi energy to
change in order to find a self-consistent solution, corresponds to an unphysical
situation. This functionality is included strictly for testing purposes. It
may be the case that the user intends to analyse an assumption made in an
experimental study regarding the dominant charge states of certain defects
and the consequences for the electronic properties of the system in question.
By fixing the concentrations of certain charges states, the outcomes of such
assumptions can be tested for a given set of computed formation energies.
Furthermore, one can consider the case where another defect Y , not belonging
to {X}, has a fixed concentration CY q for a charge state q (here, as the Ef(Y

q)
are unknown, we must assume the charge state is also fixed). In this way,
one can analyse how the balance in the concentrations of the defects X is
affected by the presence of the charged defects Y q, which would allow, for
example, the compensation of ionised donors or acceptors in semiconductors
to be calculated.

The procedure to treat such cases for ‘frozen in’ defects is as follows. If
we have a defect X whose total concentration CXT is fixed, as well as that
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of some of its charge states q′ (CXq′ ), then we first calculate the CXq , where
q 6= q′, in anology with Eq. 11:

CXq =
BXq

1 +
∑

q 6=0BXq

[CXT −
∑
q′

CXq′ ]. (19)

The charge neutrality condition in Eq. 18 is then calculated, including the
fixed concentrations CXq′ in the summation, and the procedure is continued
as normal. Notice that the formation energies for the charge states q′ need not
be known; therefore one can add fixed concentrations for charge states not
initially considered in the set {X}. In the same manner, one can introduce
the fixed concentrations CY q of defects not in {X}. If Ef (X

0) is known, then
the concentration for the neutral case is determined as

CX0 = CXT −
∑
q′

CXq′ −
∑
q

CXq . (20)

If Ef(X
0) is not known, then the denominator in Eq. 19 is replaced with∑

q 6=0BXq .
Problems associated with very small exponentials (see Section 3.1) may

occur during the procedure to compute the CXq when CXT is fixed. To miti-
gate such problems, the minimum Ef (X

q
min) at the current EF is determined,

and the energies that enter the computation of the Bq in Eq. 19 are shifted
relative to that minimum energy. Doing so ensures that at least one term
of the summation in the denominator of the right hand side of Eq. 19 has
a factor of one, rather than exp(−Ef (X

q
min)/kT ), which avoids difficulties

arising when Ef(X
q
min)/kT is large enough that the exponential is stored as

zero in memory.
This methodology is a useful analytical tool to employ after the equilib-

rium concentrations for the set {X} have been determined. One can then
easily calculate the effect of ‘freezing’ particular defects and/or charge states,
for example to model the formation of defects at an elevated temperature that
persist after rapid quenching, test assumptions made regarding the persis-
tence of particular defect charge states as well as introduce new defects with
an assumed dominant charge state that change the defect chemistry of the
system of interest.

4. Examples

To illustrate how the program works, a set of formation energies of in-
trinsic defects in the wide gap semiconductor GaN has been selected. The
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purpose of this section is not to analyse the technological aspects of the ma-
terial, discuss fundamental physical processes in GaN, explain experimental
observations nor consider the implications of defect formation on potential
device applications; rather, the usage of the program and the power of the
analysis it provides is demonstrated. Some introduction to the topic, how-
ever, is required. GaN is a widely studied and technologically important
material and a key component in blue light emitting diodes (LEDs). [52, 53]
It has a fundamental band gap at low temperature of 3.5 eV, [54] and tends
to be intrinsically n-type and easily n-dopable. [55] Achieving p-type sam-
ples, however, which are crucial for LEDs amongst other applications, is
extremely challenging. [55] To date, doping with Mg has provided the only
route to realising p-type GaN, but large concentrations of Mg are necessary
for observable hole concentrations and the mechanism by which Mg incorpo-
ration promotes free hole formation is still a matter of debate. [56, 57] Key
to understanding the conductivity properties and dopability of GaN is the
intrinsic defect chemistry of the system. More details on defect formation in
GaN can be found in, for example, Refs. [58, 59, 60].

In Table 1 a set of formation energies for intrinsic defects in GaN including
a Ga vacancy (VGa), N vacancy (VN), Ga interstitial (Gai), N antisite (NGa)
and N interstitial (Ni), is presented. Each defect formation energy, calculated
with EF = 0 eV (the zero of the energy scale equals the VBM of the system),
is given with the corresponding q and gXq . A comprehensive description of
how these energies have been computed is given in Ref. [61]; here it suffices to
say that the hybrid quantum mechanical/molecular mechanical (QM/MM)
embedded cluster technique was employed, [62, 63, 64, 61, 65] using DFT
with the hybrid functional B97-2. [66] The results are given for “anion-poor”
conditions, i.e. those whereby an excess of Ga is present in the environment,
so that in defect formation processes N atoms are exchanged with a reservoir
of GaN(s), rather than N2(g).

It is worthwhile to note that, to demonstrate the usage of SC-FERMI

and FROZEN-SC-FERMI, how the defect formation energies were computed is
largely irrelevant. Indeed, the approach used to determine the values in Ta-
ble 1 is non-standard for defects in wide-gap semiconductors and may in fact
be somewhat controversial [60]. It is therefore paramount to stress that the
current work does not aim to explain the defect physics of GaN, but to demon-
strate the power of analysis available using SC-FERMI and FROZEN-SC-FERMI.
The set of defect formation energies from Ref. [61] has been chosen, not nec-
essarily for accuracy, but for the availability of all defect charge states over a
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Fermi energy range greater than the band gap, which is required to demon-
strate the full analytical power of the codes described here. It is shown below,
however, that the current set in fact is quite similar to others determined us-
ing standard supercell techniques [58, 59]. (In the Supplementary Material,
it is indicated that the conclusions reached using the current dataset would
also be arrived at using the results available in Refs. [58, 59]). With this in
mind, the key point is that a set of formation energies has been determined,
and our task is now to compute the equilibrium carrier and defect concen-
trations at particular values of T , and analyse how such concentrations alter
when particular defect concentrations are kept fixed.
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Figure 2: The calculated total density of states in pristine GaN (see Ref. [61]) as a function
of energy relative to the valence band maximum (VBM). The density of states is given in
units of number of states per energy interval per unit cell.

The values given in Table 1, along with ρ(E) (shown in Fig. 2), Eg, T
and the unit cell parameters of wurtzite GaN (a = 3.181 Å, c = 5.185 Å) [61]
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Table 1: The formation energies Ef (X
q) of the five lowest energy defects X in GaN in

their various charge states q (each with degeneracy gXq ), determined at EF = 0 eV in
anion-poor conditions. The values are taken from Ref. [61] and were determined using
DFT with the B97-2 hybrid functional.

X q gXq Ef (X
q);EF = 0 (eV)

VGa -3 1 14.75
-2 6 11.84
-1 6 9.23
0 2 7.01
1 2 5.61

VN 3 1 -3.49
2 2 -2.17
1 1 0.91
0 6 2.94
-1 6 6.70

Gai 3 1 -0.86
2 2 2.13
1 1 4.44
0 2 9.03

NGa -3 4 21.29
-2 2 15.64
-1 4 12.43
0 1 9.24
1 6 7.24
2 1 5.07
3 6 3.93

Ni -2 4 14.46
-1 2 9.37
0 8 5.89
1 4 3.09
2 8 1.98

comprise the input for SC-FERMI. In the following analysis, for simplicity
the formation energies, unit cell paramters, ρ(E) and Eg are assumed not to
change with T . Of course, if known the trends of these properties with T
can easily be incorporated by editing the input to the code.
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4.1. Transition level diagram
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Figure 3: GaN intrinsic defect formation energies as a function of Fermi energy relative to
the valence band maximum (VBM). The conduction band minimum (CBM) is indicated
by the vertical dashed line. The slopes of the lines indicate the defect charge states;
transitions from one charge state to another are represented by circles. The formation
energies in (a) correspond to those in Table 1, while those in (b) are taken from Ref. [58]
and in (c) from Ref. [59].

On execution, the program provides a file to plot the defect formation en-
ergies as a function of Fermi energy relative to the VBM. The corresponding
plot is shown in Fig. 3(a). For comparison, the computed defect formation
energies determined using plane-wave DFT are shown in Fig. 3(b), taken
from Ref. [58] and in Fig. 3(c), taken from Ref. [59]. As can be seen, the
main discrepancies between the results in Fig. 3(a) and the other studies
are the energies of formation of the NGa and the (3+/+) transition of VN.
Neither of these differences, however, affect the results presented below in a
significant way, as can be seen from the corresponding results presented in
the Supplementary Material derived using the plane-wave DFT calculations
from Refs. [58, 59]. The data presented in Fig. 3(a) has been chosen for fur-
ther analysis as the full set of formation energies for each defect in all charge
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states has been made available over a Fermi energy range greater than the
band gap. For the data shown in Fig. 3(b) and (c), only particular charge
states are available and the formation energies for EF above the CBM are
speculative, based on extrapolations from the values within the band gap.

Some conclusions can be drawn immediately from Fig. 3(a). According
to the computed formation energies, the dominant intrinsic defect will be VN

as it has the lowest formation energy for values of EF across the band gap
and up to 0.5 eV above the CBM, after which VGa becomes the lowest energy
defect. As the dominant charge states of VN are 3+ up to EF = 1.30 eV and
+ for 1.30 < EF < 3.81 eV, the defect may act as a compensating centre for
acceptor-like dopants, depending on its concentration. Also of note is the fact
that, at EF < 1.19 eV, Ef(VN) is negative. From Eq. 17, it is evident that
a negative formation energy would result in a defect concentration greater
than the concentration of sites on which that defect can form; a logical in-
consistency indicating the breakdown of the assumption of non-interacting
defects at the dilute limit. The self-consistent EF therefore cannot be in
this range. Although these conclusions can be drawn by simply studying the
transition level diagram, SC-FERMI allows one to progress beyond this basic
analysis and calculate the concentrations at different temperatures. In the
following, all conclusions are based on the computed defect formation ener-
gies presented in Table 1. Once again, it is worth stating that the conclusions
are not definitive with regard to the defect physics of GaN; instead they are
what can be determined given a particular set of defect formation energies.

4.2. Equilibrium concentrations

In Fig. 4, the computed self-consistent EF (upper panel) and equilibrium
carrier and defect concentrations (lower panel) in GaN as a function of T are
shown. As expected from examining the transition level diagram, the dom-
inant defect is VN, the concentration of which is compensated (to maintain
charge neutrality) by electron carriers. EF remains in the upper half of the
band gap for the entire range of T used, as charge neutrality depends on the
balance between [VN], which decreases with increasing EF , and n0, which
increases with EF . Indeed, for the values of EF determined over this range
of T , the most favourable state is V+

N; consequently, [VN] = n0 holds, as can
be seen in the lower panel of Fig. 4. At T > 1340 K, p0 rises above 1011

cm−3, which can be attributed to thermal ionisation across the band gap.
p0 remains approximately five orders of magnitude below n0 and [VN], how-
ever, and therefore has no visible effect on the charge neutrality condition of
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Figure 4: The self-consistent Fermi energy (upper panel) and carrier and defect concentra-
tions (lower panel) as a function of temperature for intrinsic defects in GaN. In the upper
panel, the blue and red dashed lines indicate the energies of the valence band maximum
(VBM) and conduction band minimum (CBM), respectively.

[VN] = n0.
In terms of material properties, these results demonstrate that VN will

form in significant concentrations that give rise to intrinsic n-type carrier
concentrations in GaN (assuming that the calculated formation energies and
ρ(E) are sufficiently accurate). The n0, however, is somewhat lower than
that measured in real samples, apart from at higher values of T . One can
posit that the VN form during synthesis, when T is far higher than room
temperature (typically 900−1050◦ C), [55] and persist at lower T (or become
‘frozen in’) due to the presence of kinetic barriers. [9] This situation can then
be analysed using FROZEN-SC-FERMI.
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Figure 5: The self-consistent Fermi energy EF (thick black line in upper panel), electron
carrier n0 (thick red line), hole carrier p0 (thick blue line) and defect concentrations (all in
lower panel) as a function of temperature for intrinsic defects in GaN, when the N vacancy
concentration [VN] (thin cyan line) is kept fixed at 6.447× 1015 cm−3. In the upper panel,
the blue and red dashed lines indicate the energies of the valence band maximum (VBM)
and conduction band minimum (CBM), respectively.

4.3. Fixed concentrations of N vacancies

If the formation of VN occurs at T = 1273 K, and these defects persist at
lower T , by fixing [VN] = 6.447×1015 cm−3 (the value calculated at T = 1273
K) the concentrations of other defects and carriers that would be present
under such circumstances can be determined. Fig. 5 shows the self-consistent
EF (upper panel) and carrier and defect concentrations (lower panel) as a
function of T , with [VN] = 6.447 × 1015 cm−3 kept fixed. The situation
is similar to that depicted in Fig. 4, i.e. charge neutrality is maintained via
[VN] = n0, except here [VN] does not change with T , and, due to the enforced
higher [VN] at T < 1273 K, EF is pushed closer to the CBM. The variation
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in EF with T , governed by maintaining [VN] = n0, follows the trend for a
gas of fermions, which is unsurprising given the dependence of n0 on the
Fermi-Dirac distribution function (see Eq. 1). Again, at higher T , p0 rises
above 1011 cm−3 due to thermal activation.
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Figure 6: (a) The self-consistent Fermi energyEF (thick black line in upper panel), electron
carrier n0 (thick red line), hole carrier p0 (thick blue line) and defect concentrations
(all in lower panel) as a function of temperature for intrinsic defects in GaN, when the
concentration of the N vacancy in the 3+ charge state [V3+

N
] is kept fixed at 6.447× 1015

cm−3. In the upper panel, the blue and red dashed lines indicate the energies of the valence
band maximum (VBM) and conduction band minimum (CBM), respectively. (b)−(d)
Similar to (a), but here the self-consistent Fermi energy and concentrations are shown as
a function of [V3+

N
], for temperature T = 300 K (b), T = 600 K (c) and T = 1200 K

(d). The Ga vacancy concentration [VGa] is indicated by the thin green line and the N
vacancy concentration [VN] by the thin cyan line. In (b)−(d) the squares represent the
data points; the lines are a guide for the eye.

The results displayed in Fig. 5 were obtained by assuming the total con-
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centration of VN was fixed to the value determined at T = 1273 K. If instead,
one would like to consider the situation where those VN formed at higher T
have a particular dominant charge state, say 3+, which persists at lower T ,
[V3+

N ] should then be kept fixed (rather than [VT
N]). The results for such a

situation are shown in Fig. 6. In Fig. 6(a), the self-consistent EF (upper
panel) and carrier and defect concentrations (lower panel) as a function of
T , with [V3+

N ] = 6.447 × 1015 cm−3 kept fixed, are shown. Here, the charge
neutrality condition is satisfied through 3[VN] = n0, up to about T = 1200
K; above this value the total [VN] begins to increase, and gets closer to n0. In
Fig. 6(b)−(d), the self-consistent EF (upper panels) and defect and carrier
concentrations (lower panels) are shown when T is kept constant and the
fixed value of [V3+

N ] is allowed to vary. For (b) T = 300 K and (c) T = 600
K, 3[VN] = n0 holds for values of [V3+

N ] up to 1020 cm−3; above this concen-
tration n0 is much closer to [VN], and a significant [VGa] is observed. In (d),
where T = 1200 K, the results are quite different. For [V3+

N ] < 1015 cm−3, n0

is equal (or very close) to [VN]; above 10
15 cm−3 n0 becomes closer to 3[VN].

Again, at [V3+
N ] = 1021 cm−3, n0 is closer to [VN] and there is a significant

[VGa] present.
The puzzling aspects of some of these results can easily be resolved by

looking at the concentrations of the individual charge states of VN, which
are given in the output from FROZEN-SC-FERMI. Fig. 7 shows the total con-
centration of nitrogen vacancies, [VT

N], as well as the concentrations of the
individual charge states (see Table 1). Fig. 7(a) corresponds to Fig. 6(a),
that is, the same constraints apply, but now just the VN concentrations are
plotted; Fig. 7(b) corresponds to Fig. 6(d). As a guide, in the upper panels
the positions of the relevant transition levels ǫ(3+/+) and ǫ(+/−) are shown
relative to the VBM and CBM. In Fig. 6(a), where the results are shown for
a fixed [V3+

N ] = 6.447 × 1015 cm−3 over a range of values of T , an increase
in [VN] was observed for T > 1200 K. In Fig. 7(a), it is evident that this
increase is due to a thermally induced increase in [V+

N], which is the lowest
energy charge state for the computed range of EF shown in the upper panel.
The other charge states of VN do not play a rôle here. In Fig. 6(d), the
results correspond to the situation where T = 1200 K is constant, and the
fixed [V3+

N ] is varied. Fig. 7(b) shows that, for [V3+
N ] < 1015 cm−3, the total

concentration is dominated by [V+
N] (as + is the lowest energy charge state

for the corresponding values of EF ), which is much greater than the (fixed)
[V3+

N ]. Above 1015 cm−3, [V3+
N ] becomes greater than [V+

N] and dominates the
total concentration, so that [V3+

N ] = [VT
N]. At the same time, EF is pushed
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Figure 7: (a) The self-consistent Fermi energy EF (thick black line in upper panel), total
N vacancy concentration [VT

N] (thick cyan line) and concentrations of the individual charge
states: [V−

N
] (thin red line), [V0

N] (thin brown line), [V+

N
] (thin magenta line), [V2+

N
] (thin

indigo line) and [V3+

N
] (thin blue line), as a function of temperature, while [V3+

N
] is kept

fixed at 6.447× 1015 cm−3. In the upper panel, the blue and red dashed lines indicate the
energies of the valence band maximum (VBM) and conduction band minimum (CBM),
respectively, while the thin black dashed lines represent the VN (3+/+) and (+/-) tran-
sition energies. (b) Similar to (a), but here EF and the VN concentrations are shown as
a function of [V3+

N
], for temperature T = 1200 K. The squares represent the data points;

the lines are a guide for the eye.

to higher values (due to the increase in n0 to maintain charge neutrality),
which increases the formation energy of V+

N; consequently, [V
+
N] decreases.

At [V3+
N ] = 1019 cm−3, EF crosses ǫ(+/−). At higher values of [V3+

N ], an
increase in [V−

N] is therefore observed and, at [V3+
N ] = 1021 cm−3, in Fig. 6(d)

it can be seen that n0 becomes closer to [VN]. This result follows as, at this
point EF rises close to 5 eV, where Ef(V

3−
Ga) is low enough that significant

concentrations of this defect form, which compensate the positive V3+
N , thus

pushing down n0. From this analysis, a complex balance between charge
states and compensation mechanisms is thus revealed for the case where a
concentration of VN is ‘frozen in’ to the system.

23



0

1

2

3

4

5
E

F
(e

V
)

200 400 600 800 1000 1200 1400
Temperature (K)

10
11

10
13

10
15

10
17

C
o

n
ce

n
tr

at
io

n
 (

cm
-3

)

n
0

p
0

[V
Ga

]

[V
N

]

CBM

VBM

Figure 8: The self-consistent Fermi energy EF (thick black line in upper panel), electron
carrier n0 (thick red line), hole carrier p0 (thick blue line) and defect concentrations (all
in lower panel) as a function of temperature for intrinsic defects in GaN, when the Ga
vacancy concentration [VGa] (thin green line) is kept fixed at 1017 cm−3. In the upper
panel, the blue and red dashed lines indicate the energies of the valence band maximum
(VBM) and conduction band minimum (CBM), respectively. The N vacancy concentration
[VN] is indicated by the thin cyan line.

4.4. Fixed concentrations of Ga vacancies

Although, according to the results shown in Fig. 3, Ga vacancies have
high formation energies for EF in the band gap or close to the CBM, these
defects have been proposed to be present in significant concentrations and
to affect the luminescence properties of the material. [5, 67, 68] Their for-
mation may occur under strongly non-equilibrium conditions, or arise due
to the presence of complex and/or extended defects. Whatever their origin,
using FROZEN-SC-FERMI one can analyse their effect on the concentrations of
carriers and other defects. Fig. 8 shows the self-consistent EF (upper panel)
and carrier and defect concentrations (lower panel) as a function of T , with
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[VGa] = 1017 cm−3 kept fixed. For much of the range of T , the material is
intrinsic, with no significant concentration of a majority carrier; the charge
neutrality constraint results in EF remaining at values where V0

Ga dominates.
For T > 1000 K, however, EF is increased to values where negative charge
states of VGa become favourable, which are compensated by suitable con-
centrations of VN. At these elevated temperatures, where EF moves closer
to the CBM, n0 begins to increase, while p0 also increases due to thermal
excitation across the band gap. Both n0 and p0, however, remain quite low
compared with the concentrations of the vacancies.

Fixing [VGa] results in, for T < 1000 K, the neutral state dominating.
It may be of interest to analyse whether this defect may be electronically
active, and promote hole formation in the system, which may be done by
fixing a particular charge state, say V3−

Ga. The results obtained with [V3−
Ga] =

1017 cm−3 kept fixed, while T is varied, are displayed in Fig. 9(a), with
the self-consistent EF shown in the upper panel and the carrier and defect
concentrations in the lower panel. Figs. 9(b)−(d) shows the results when the
value of the fixed [V3−

Ga] is varied and T is kept constant at (b) T = 100 K, (c)
T = 600 K and (d) T = 1200 K. Rather than promoting hole formation, it is
found that the VGa are compensated by the formation of VN. In Fig. 9(a), for
T < 300 K, the charge neutrality condition is determined by [VGa] = [VN],
while for T > 400 eV, the condition is 3[VGa] = [VN]. This change in the
charge neutrality condition is also seen in the differences between the results
in Fig. 9(b) and those in Fig. 9(c), where T is below and above 400 eV,
respectively; although, at values of [V3−

Ga] > 1018 cm−3, in (c) it is observed
that [VN] moves closer to [VGa], rather than remaining three times larger. In
Fig. 9(d), where T is much higher at 1200 K, for values of [V3−

Ga] < 1015 cm−3,
the equilibrium concentration of VN is higher (see Fig. 4) than that of the
fixed [V3−

Ga], and hence the dominant carriers are compensating electrons, with
n0 = [VN]. For [V

3−
Ga] > 1015 cm−3, however, the VGa begin to dominate while

being compensated by [VN] and their presence pushes EF into the band gap,
reducing n0. Initially the condition 3[VGa] = [VN] holds, but at [V

3−
Ga] = 1021

cm−3 the condition becomes closer to [VGa] = [VN]. Some thermally excited
holes are also evident in this range of [V3−

Ga].
The changes in the charge neutrality condition described above with ref-

erence to Fig. 9 can be easily understood by looking at the concentrations of
the individual charge states of VN, and the variation in EF with respect to
the ǫ(3+/+) transition level, as a function of temperature and of [V3−

Ga]. The
self-consistent EF (upper panels), and the total VN concentration, as well as
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Figure 9: (a) The self-consistent Fermi energyEF (thick black line in upper panel), electron
carrier n0 (thick red line), hole carrier p0 (thick blue line) and defect concentrations
(all in lower panel) as a function of temperature for intrinsic defects in GaN, when the
concentration of the Ga vacancy in the 3− charge state [V3−

Ga
] is kept fixed at 1017 cm−3.

In the upper panel, the blue and red dashed lines indicate the energies of the valence
band maximum (VBM) and conduction band minimum (CBM), respectively. (b)−(d)
Similar to (a), but here the self-consistent Fermi energy and concentrations are shown as
a function of [V3−

Ga
], for temperature T = 100 K (b), T = 600 K (c) and T = 1200 K

(d). The Ga vacancy concentration [VGa] is indicated by the thin green line and the N
vacancy concentration [VN] by the thin cyan line. In (b)−(d) the squares represent the
data points; the lines are a guide for the eye. Note that in the lower panel in (b), the cyan
line lies directly on top of the green line.

that of its charge states and of V3−
Ga (lower panels) are shown in Fig. 10, where

(a) corresponds to Fig. 9(a), and (b) corresponds to Fig. 9(d). In Fig. 10(a)
it is immediately obvious that the change in the charge neutrality condition
that occurs at about T = 300 K arises from EF crossing ǫ(3 + /+), which
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Figure 10: (a) The self-consistent Fermi energy EF (thick black line in upper panel), total
N vacancy concentration [VT

N] (thick cyan line) and concentrations of the individual charge
states: [V0

N] (thin brown line), [V+

N
] (thin magenta line), [V2+

N
] (thin indigo line) and [V3+

N
]

(thin blue line), as a function of temperature, while [V3−

Ga
] (thin green line) is kept fixed

at 1017 cm−3. In the upper panel, the blue and red dashed lines indicate the energies of
the valence band maximum (VBM) and conduction band minimum (CBM), respectively,
while the thin black dashed lines represent the VN (3+/+) and (+/-) transition energies.
(b) Similar to (a), but here EF and the VN concentrations are shown as a function of
[V3−

Ga
], for temperature T = 1200 K. The squares represent the data points; the lines are

a guide for the eye.

changes the dominant charge state of VN from 3+ to +, thus changing the
concentration of VN required to compensate the fixed [V3−

Ga]. Interestingly,
one can see that, around the point where ǫ(3+/+) is crossed, significant con-
centrations of V2+

N are observed. At no value of EF is 2+ the ground state; by
just considering the transition level diagram (Fig. 3) this charge state would
not be considered important, but the results in Fig. 10(a) demonstrate that
it can occur in quite significant concentrations. V2+

N can also be seen to play
an important rôle in Fig. 10(b); for [V3−

Ga] < 1020 cm−3, EF remains in the
upper half of the band gap and the dominant charge state of VN is +, with
[V+

N] = [VT
N]. At [V3−

Ga] = 1021 cm−3, however, where [VN] moves closer to
[VGa] (as discussed above), EF approaches ǫ(3 + /+), and [V+

N], [V
2+
N ] and

[V3+
N ] all contribute to the compensation of the V3−

Ga.
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4.5. Fixed concentrations of ionised donors and acceptors
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Figure 11: (a) The self-consistent Fermi energy EF (thick black line in upper panel),
electron carrier n0 (thick red line) and defect concentrations (all in lower panel) as a
function of temperature for intrinsic defects in GaN, when the concentration of an ionised
Si donor in the + charge state [Si+

Ga
] (thin brown line) is kept fixed at 1019 cm−3. In

the upper panel, the blue and red dashed lines indicate the energies of the valence band
maximum (VBM) and conduction band minimum (CBM), respectively. (b)−(d) Similar to
(a), but here the self-consistent Fermi energy and concentrations are shown as a function of
[Si+

Ga
], for temperature T = 300 K (b), T = 600 K (c) and T = 1200 K (d). The Ga vacancy

concentration [VGa] is indicated by the thin green line and the N vacancy concentration
[VN] by the thin cyan line. In (b)−(d) the squares represent the data points; the lines are
a guide for the eye.

The results so far demonstrate how the set of intrinsic point defect forma-
tion energies presented in Table 1 can be used to compute equilibrium concen-
trations and analyse the effects of fixing particular total defect concentrations
and concentrations of certain charge states of defects. FROZEN-SC-FERMI,
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however, can also be used to study the effect other charged defects, not
belonging to the original set and hence having unknown formation energies,
have on the charge balance and consequent carrier and defect concentrations.
Such an approach can be used to analyse, for example, how intrinsic defects
respond to the presence of ionised impurities, such as donors and acceptors
in semiconductors. In GaN, a commonly observed donor is Si substituting
on a Ga site, SiGa, [55, 5, 69] which formally donates a single electron to the
conduction band. Shown in Fig. 11 are the calculated self-consistent EF (up-
per panels) and defect and carrier concentrations (lower panels) that result
from a fixed concentration of a singly-ionised donor, denoted Si+Ga, where in
(a) T is varied and [Si+Ga] = 1019 cm−3 is fixed, and in (b)−(d) the value
of the fixed [Si+Ga] is varied while T is kept constant at (b) T = 300 K, (c)
T = 600 K and (d) T = 1200 K. In some respects, the results shown here are
trivial. As there are no compensating negative defects with low formation
energies, for the full range of T in Fig. 11(a) the condition n0 = [Si+Ga] holds,
i.e. the donors are fully activated. The same situation applies in Figs. 11(b)
and (c), although in (c) at [Si+Ga] = 1021 cm−3, where EF gets pushed up
close to 5 eV, a small compensating concentration of VGa is observed. In
Fig. 11(d), due to the elevated T , at values of [Si+Ga] < 1015 cm−3, there is a
substantial concentration of VN that is compensated by n0. for [Si

+
Ga] > 1015

cm−3, n0 = [Si+Ga] and EF increases with [Si+Ga], until at [Si
+
Ga] = 1021 cm−3,

where, similar to in (c), EF gets close to 5 eV and some compensating VGa

are observed ([VN] also increases here, after intially decreasing, due to the
dominance of the − state, which becomes more favourable as EF increases,
see Fig. 3).

The situation that arises when a fixed concentration of acceptors is intro-
duced is quite different. In Fig. 12, the calculated self-consistent EF (upper
panels) and defect and carrier concentrations (lower panels) that result from
a fixed concentration of singly-ionised acceptors, denoted Mg−Ga, are shown,
where in (a) T is varied and [Mg−Ga] = 1019 cm−3 is fixed, and in (b)−(d) the
value of the fixed [Mg−Ga] is varied while T is kept constant at (b) T = 300
K, (c) T = 600 K and (d) T = 1200 K. As there are low-formation-energy
defects with positive charge states for EF throughout the band gap, the
most significant of which is the VN, the negatively charged ionised accep-
tors are fully compensated and no significant hole concentrations are ob-
served. In Figs. 12(a)−(c) charge neutrality is maintained by [Mg−Ga] = [VN]
or [Mg−Ga] = 3[VN], depending on the value of EF . This result implies that,
given the formation energies of intrinsic point defects in Table 1, even if all

29



200 400 600 800 1000 1200 1400

Temperature (K)

0

2

4

E
F
 (

eV
)

10
12

10
14

10
16

10
18

C
o
n
ce

n
tr

at
io

n
 (

cm
-3

)

n
0

p
0

10
12

10
14

10
16

10
18

10
20

0

2

4

E
F
 (

eV
)

10
12

10
14

10
16

10
18

10
20

[Mg
Ga

-
] (cm

-3
)

10
12

10
14

10
16

10
18

10
20

C
o
n
ce

n
tr

at
io

n
 (

cm
-3

)

[V
N

]

[Mg
Ga

]

10
12

10
14

10
16

10
18

10
20

[Mg
Ga

-
] (cm

-3
)

CBM

VBM

T = 300 K

T = 600 K T = 1200 K

(a) (b)

(c) (d)

Figure 12: (a) The self-consistent Fermi energy EF (thick black line in upper panel), elec-
tron carrier n0 (thick red line), hole carrier p0 (thick blue line) and defect concentrations
(all in lower panel) as a function of temperature for intrinsic defects in GaN, when the
concentration of an ionised Mg acceptor in the − charge state [Mg−

Ga
] (thin orange line)

is kept fixed at 1019 cm−3. In the upper panel, the blue and red dashed lines indicate the
energies of the valence band maximum (VBM) and conduction band minimum (CBM),
respectively. (b)−(d) Similar to (a), but here the self-consistent Fermi energy and concen-
trations are shown as a function of [Si+

Ga
], for temperature T = 300 K (b), T = 600 K (c)

and T = 1200 K (d). The Ga vacancy concentration [VGa] is indicated by the thin green
line and the N vacancy concentration [VN] by the thin cyan line. In (b)−(d) the squares
represent the data points; the lines are a guide for the eye.

the acceptors introduced to the system are fully ionised, they remain unac-
tivated. Mg is the only known p-type dopant in GaN, and the associated
acceptor state has an ionisation energy of at least ∼ 0.2 eV, [56, 5, 70] mean-
ing that significant thermal activation is required. The analysis here, based
on the point defect energies, however, indicates that simple substitution can
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not result in p-type conductivity; instead non-equilibrium processes, possibly
involving more complex defects, which suppress VN formation in some way
must dominate. In Fig. 12(d), at T = 1200 K it is observed that significant
[VN] is present even for [Mg−Ga] < 1015 cm−3, which gives rise to n0 = [VN].
For [Mg+Ga] > 1015 cm−3, EF is pushed further into the gap, n0 decreases and
[Mg−Ga] = [VN].
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Figure 13: (a) The self-consistent Fermi energy EF (thick black line in upper panel), total
N vacancy concentration [VT

N] (thick cyan line) and concentrations of the individual charge
states: [V0

N] (thin brown line), [V+

N
] (thin magenta line), [V2+

N
] (thin indigo line) and [V3+

N
]

(thin blue line), as a function of temperature, while [Mg−
Ga

] (thin orange line) is kept fixed
at 1019 cm−3. In the upper panel, the blue and red dashed lines indicate the energies of
the valence band maximum (VBM) and conduction band minimum (CBM), respectively,
while the thin black dashed lines represent the VN (3+/+) and (+/-) transition energies.
(b) Similar to (a), but here EF and the VN concentrations are shown as a function of
[Mg−

Ga
], for temperature T = 300 K. The squares represent the data points; the lines are

a guide for the eye.

The change from the condition [Mg−Ga] = 3[VN] to [Mg−Ga] = [VN] in
Fig. 12(a), and vice versa in Fig. 12(b) and (c), is shown in more detail in
Fig. 13(a) (corresponding to Fig. 12(a)) and Fig. 13(b) (corresponding to
Fig. 12(b)). The upper panels show the self-consistent EF and the lower
panels show the concentrations of the total and individual charge state con-
centrations of VN, as well as [Mg−Ga], as (a) T is varied and [Mg−Ga] = 1019
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cm−3 is kept fixed, and (b) as the fixed [Mg−Ga] is varied with T = 300 K is kept
constant. In Fig. 13(a), it is clear that the transition from [Mg−Ga] = 3[VN]
to [Mg−Ga] = [VN] at about 400 K occurs as EF crosses ǫ(3 + /+) and the
dominant charge state changes from + to 3+. Again, it is worth noting that
the 2+ charge state, the importance of which is not evident from Fig. 3, con-
tributes significantly to [VT

N], particularly at values of T close to the transition
point. The same effect is evident in Fig. 13(b), but in this case, as [Mg−Ga]
increases, EF moves downwards within the band gap, crossing ǫ(3 + /+) at
about [Mg−Ga] = 1015 cm−3. Therefore the transition goes from [Mg−Ga] = [VN]
to [Mg−Ga] = 3[VN], and the importance of the 2+ state is once again in evi-
dence.

The results in this section demonstrate the power of the analysis avail-
able with SC-FERMI and FROZEN-SC-FERMI. Although some conclusions can
be drawn simply from the transition level diagram, the programs facilitate
quantitative analysis of intrinsic carrier concentrations and compensation
mechanisms, but also provide insights not available from the defect formation
energies alone, such as the importance of particular non-ground state con-
figurations and division of defect concentration amongst charge states close
to transition levels. Moreover, how carrier compensation changes with T or
with impurity concentrations can be determined easily, while the dopability
of a material can be quantified given the possible compensating defects. The
above analysis was applied to a wide-gap semiconductor, but could equally
well be applied to conventional semiconductors, insulators, narrow gap sys-
tems and (semi)metals.

5. Conclusions

A program to compute the self-consistent Fermi energy and equilibrium
carrier and defect concentrations has been presented and the relevant theory
has been described. The input required consists of the defect charge states,
degeneracies, possible formation sites in the unit cell and formation energies;
the density of states of the pristine system; the unit cell lattice vectors used
to determine the volume; and the temperature. The concentrations and self-
consistent Fermi energy, as well as a transition level diagram, comprise the
output. An additional functionality, whereby certain defect concentrations
(either total concentrations, or concentrations of particular charge states)
can be fixed and the resulting self-consistent Fermi energy due to the new
charge balance determined, is included and described. The operation of the
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program is demonstrated using some relevant examples. The equations used
to compute defect concentrations were derived using a fully quantum statis-
tical mechanical approach, for the first time in such a generalised manner to
the best of my knowledge. This code will benefit those analysing defect for-
mation in a wide range of systems, where formation energies can be reliably
computed.
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