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Three decades after the spectroscopic detection
of H+

3 in space, the inspiring developments in
physics chemistry and astronomy of H+

n (n = 3, 5, 7)
systems, which led to this Royal Society Discussion
Meeting, are reviewed, the present state-of-the-art as
represented by the meeting surveyed and future lines
of research considered.

1. Background
In 1989 Drossart et al [1] detected a strong spectroscopic
signature of H+

3 in the southern aurora of Jupiter.
Although H+

3 was known to exist on Jupiter from
in situ measurements performed as part of in the
Voyagers’ flybies [2,3], the observation contained two
surprises. First, the emissions were from an overtone
band that had yet to be characterised in the laboratory
and instead relied on first principle, or ab initio,
quantum mechanical predictions [4] and second the
H+

3 emissions corresponded to a temperature of
over 1000 K, about twice what was expected. These
observations laid the seeds for many of the research
themes of intervening thirty years: the detection of
H+

3 in active astronomical environments, its use as a
probe revealing, often uniquely, detailed information
about these environments, the close interplay between
laboratory studies and astrophysics, and the study of H+

3

and its hydrogenated relatives H+
5 and H+

7 as benchmark
quantum mechanical systems. All these themes are
discussed below and are reflected in the articles that
comprise this volume. Work on these topics were
the subject of three previous Royal Society Discussion
Meetings held in 2000 [5], 2006 [6] and 2012 [7]. Similarly,
the physics and astrophysics of H+

3 have been the subject
of a series of reviews notably by Oka [8,9], McNab [10]
and the present authors [11–13].
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Following its detection in the ionosphere of Jupiter, H+
3 was detected in the gas giants Uranus

[14] and Saturn [15], but notably not in Neptune [16,17]. Long-running attempts by Oka [18] to
detect interstellar H+

3 finally bore fruit with its detection in both the dense [19] and the diffuse
[20] interstellar medium. The claimed serendipitous observation of H+

3 in the cooling remants of
supernova SN1987a [21] is supported by chemical models [22] but, of course, cannot be repeated.
However, despite its perceived importance for cooling and stablising hot Jupiter exoplanets [23]
, there remains no definitive observation of H+

3 in either an exoplanet [24–26] or a brown dwarf
[27].

The H+
3 molecular ion is the simplest stable molecular ion of hydrogen. It is rapidly formed

by collisions between H2 and H+
2 . As outlined above its presence the interstellar medium and

the ionospheres of gas giant planets is now well established but carefully study of its spectra are
providing valuable information on issues as diverse as the cosmic ray ionisation rate in different
environments [28] and winds speeds in planetary upper atmospheres [29]. Use of H+

3 to obtain
these insights demands detailed knowledge of properties and processes involving the ion.

At the same time, H+
3 is the electronically simplest stable polyatomic molecule and therefore

provides a benchmark system for testing high accuracy ab initio methods [30]. While impressive
accuracy has been achieved, calculations on the isoelectronic H2 molecule remain many orders
of magnitude more accurate [31]; this problem is not directly due to issues with the multi-
dimensional nuclear motion problem, which is capable of high accuracy solution [32], but more
to treating various subtle effects in many dimensions.

H+
5 may seem superficially similar to H+

3 but is it an a structural or fluxional molecule:
one for which there is facile conversion between multiple equilibrium geometries, leading to
complicated and delocalised wavefunctions. The study of H+

5 , alongside the other key fluxional
system CH+

5 [33,34], raise their particular issues in terms of predicting and interpreting their
spectral signatures.

Reactions between ionised and neutral hydrogenic species, such as H+ + H2 or H+
2 + H2, are of

importance for studies of hydrogen plasmas both on Earth and in the interstellar medium. These
reactions also raise their own issues with fundamental physics. Modern experimental techniques,
which provide the ability study atoms and molecules at extremely low temperatures, allow these
processes to be studies increasing detail which raises new challenges for theory to address.

The original discovery of H+
3 occurred over a century ago [26] but, as this issue demonstrates,

there clearly remains a whole host of fundamental issues and their implications to be studied,
both using and involving the molecular ions of hydrogens.

2. Current state-of-the-art

(a) Planets
Steve: you will probably want to edit what I have written here.

Ground and space-based observations of H+
3 spectra are in the process of revolutionising our

understanding the of the upper atmospheres of the gas giants [35]. This has led to construction of
detailed models of giant planet atmospheres [36] capturing the many physical processes which
contribute to what is proving to be a highly complex picture.

Observations of polar H+
3 emissions in Saturn have shown peaks which differ from those

presented by H2 [37] and that there is a persisant temperature asymmetry between the two region
polars [38]. The latest results from Cassini’s encounter with Saturn are discussed by Stallard [39].

Long-term monitoring H+
3 emissions from Uranus have shown a persistent cooling over nearly

three decades [40–45], punctuated only by a violent storm in 2014 [46]. Melin discusses possible
explanations for these observations [47].

The arrival of the Juno space mission at Jupiter with its Jupiter InfraRed Auroral Mapper
(JIRAM) instrument specifically tuned to monitor emissions from H+

3 at spatial resolution way
beyond what previously achievable is allowing the study of the Jovian upper atmosphere in
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unprecident detail [48,48]. Early discoveries include identication of complicated ionic auroral
structure associated with the footprints of the major Jovian satellites. Mid-to-low lattide studies
show H+

3 heating which cannot be explained by insolation alone [49]; particurly intreaguing is
the recent, unexplained detection of significant H+

3 heating in upper atmosphere directly above
the Great Red Spot [50]. These issues are discussed by Dinelli [51] and Ray [52].

As mentioned above, attempts to detecting H+
3 in brown dwarfs or exoplanets have so far

proved negative. However, the role lightning in these bodies has been considered for sometime
[53,54]. Helling [55] considers how lightning and charge processes in brown dwarf and exoplanet
atmospheres may lead to the production of H+

3 in observable quantities.

(b) ISM
As in the gas giants, H+

3 is proving a unique window on the interstellar medium. In particular,
observations of the galactic central molecular zone (CMZ) using H+

3 have revealed the many
complex structures present in this, in astronomical terms, crowded region [56]. Monitoring the
metastable (J, K) = (3, 3) rotational state of H+

3 has exposed the presence of huge, warm (T ≈
250 K), diffuse clouds in the CMZ. As discussed by Geballe [57], H+

3 spectra are providing a
wealth of information on the temperature, motion and distribution of the gas in the CMZ.

In less active regions of the galaxy fractionation can lead to extreme enhancements of
deuterated H+

3 . Although D+
3 has yet to be observed in space, models suggest that under

conditions appropriate to completely depleted, low mass pre-protostellar cores, for which heavy
elements such as C, N, and O have vanished from the gas phase, it possible for D+

3 to be
the dominant molecular ion [58]! Due to their permanent dipole moments, the asymmetrically
substited species H2D+ and D2H+ can be observed through their pure rotational spectrum.
The interstellar detection of H2D+ [59] strand recently D2H+ [60] provides a new handle on
the fractionation and other processes [61]. Surveys of H2D+ distributions [62,63] are helping to
provide information on the ages of interstellar clouds [64].

H+
3 has shown itself to be versatile probe of the local ionisation rate by cosmic rays. It long

assumed that this rate was essentially constant throughout the galaxy but obseravations of H+
3

abundances in a variety of locations are showing that this is far from true and that the effective
ionisation rate due to cosmic rays varies hugely throughout the galaxy [65]. There is strong
evidence that our own solar system was born in violent storm of energetic, ionising rays which
should also have led to the formation of significant quantities of H+

3 [66].

(c) Polyatomic ions
The H+

5 ion is a remarkable species. The delocalised wavefunction which samples multiple
minima has mean that it is essentially a structural of fluxional. Special techniques are therefore
required to simulate the H+

5 ion spectrum [67–69] and it shows unusual behaviour on isotopic
substitution [70]. An interesting suggestion [71] is that the many unassigned lines in the H+

3

spectrum recorded in a liquid nitrogen-cooled discharge by H+
5 . Quantum mechanical methods

developed for computating spectra of H+
5 are now being Bawendi et al. [72] may actually belong

to extended H+
7 ions [73].

Hydrogen ion clusters have been detected up to H+
99 [74]. However, tt woudld appear that

the higher hydrogen ionic species which have the general for H+
2n+1, n = 3, 4, . . . rare somewhat

different from H+
5 . These appear to behave like clusters of H2 molecules nucleated round a central

ion, probably H+
3 [75–77].

Ionic clusters with even numbers of protons, H+
2n, n = 2, 3, . . . are generally thought to be

less stable than their odd counterparts. However, such species are know and the H+
6 molecular

ion has recently been generared in a pulsed-discharge supersonic expansion of hydrogen and
mass-selected in a time-of-flight spectrometer allowing it vibrational spectrum to be measured
[78].
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The H+
5 system itself is the the intermediate in the proton exchange reaction between H+

3

and H2 which is thought to lead to thermalisation of H+
3 ortho/para ratios at low temperatures

[79]. The rate of dissociative recombination (DR) of H+
3 was long a subject of controversy which

appears now to be subtantially resolved [80]. Conversely measurements of the DR rate H+
5 , or

more precisely for D+
5 , suggest that the situation is more straightforward with a simple picture of

the recombination process capturing the essential physics of the problem [81,82].

(d) Laboratory
Laboratory studies involving the H+

3 system remain an active area motivated by the desire to
understand the rich physics of this fundamental system and to provide key data for other studies,
notably astrophysics.

The spectum of H+
3 and its isotopologues have long acted as a benchmark for rigorous ab

initio theory [31,83]. Highly accurate solution of the Born-Oppenheimer electronic Schrödinger
equation [84] has shifted the emphasis towards study of corrections which go beyong this model
including the so-called Lamb shift due to quantum electrodynamics [85] and accurate treatment
of non-adiabatic effects arising from failure of the Born-Oppenheimer approximation [86–88].

The new-found ability to performe experiments at cool and ultracool temperatures has allowed
collisions involving hydrogen ions to be explored with increasing accuracy with full quantum
resolution [89]. The advanced are driving the development of novel theories capable of study
low-energy collision processes. [90].

The H+
3 system itself has facets in its near-dissociation region which meriting further

investigation including its near-doissociation spectrum, the possible presence of a whole series
of weakly bound, long-range vibrational states [91] and exploring the nature of H+

3 potential
energy surface in the region above dissociation. In this region there is interaction between surfaces
which correlate with the two lowest dissocation asympotes, H2+H+ and H+

2 +H. The seam
between these surfaces is now being probed using both photon processes and charge exchange
[92]. Modelling these studies will require the extension of accurate, global ground potential H+

3

potential energy surface [93,94] to forms which give multiple surfaces [95] accurately.
Cryogenic traps provide an environment of the study of the spectra of H3+ and its

isotopologues under very controlled conditions [96,97] which have also been used to probe
complexes such as He – H+

3 [98]. H3+ is an active protonator of species which might otherwise
be inert in the interstellar medium [99] and spectra of species such as O2H+ can also be recorded
in crygenic traps [100,101] paving the way to possible astrophysical detection. The development
of the new CSR (Cryogenic Storage Ring) further opens the way astrochemical studies of species
and processes involving molecular ions [102].

3. Future prospects
Steve: do you wish to add other topics here?

Thirty years after the original detection of the spectrum of H+
3 in space there is still much to

be done on the molecular hydrogen ions. The detection of H+
3 itself in new enviroments such

as the atmospheres of exoplanets and brown dwarfs remains a tantelizing possibility. While the
presence of the weakly bound hydrogen dimer, (H2)2, is now well established in the atmospheres
of Jupiter and Saturn [103], its much more stable protonated analogue H+

5 remains unseen.
The near dissociation spectrum of H+

3 and its isotopologues as characterised in great detail
by Carrington, McNab and co-workers [104–109] remins uncharacterised [110] and poorly
understood. This spectrum provides clear link with H+ + H2 reaction dynamics which is now
being probed in detail [111]. The elucidation of this spectrum would benefit from experimental
studies performed under more controlled conditions such as the multiphoton near-dissociation
spectra of water recorded by Boyarkin, Rizzo and co-workers [112,113] which allow the observed
resonances states to be rotationally assigned.
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Treatment of the H+
3 vibration-rotation problem beyond the Born-Oppenheimer (BO)

approximation remains a challenge. A number of studies have attempted to do this by adding
corrections to a BO approach with reasonable results [32,86,87,114]. Only recently has a fully non-
BO treatment been attempted [115] but the results are very far from spectroscopic accuracy. It is
notable that for the isoelectron H2 problem both approaches now give excellent results, accurate
to about 10−4 cm−1. There is clearly more work to be done to get a proper beyond BO treatment.

The above topics of course concern H+
3 only; for the higher ions represent are substantially

unexplored. They therefore present a whole host of issues for exploration in the laboratory and,
possibly, astrophysically.
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