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Abstract 33 

Novel hearing therapeutics are rapidly progressing along the innovation pathway and into 34 

the clinical trial domain. Because these trials are new to the hearing community, they come 35 

with challenges in terms of trial design, regulation and delivery. In this paper, we address 36 

the key scientific and operational issues and outline the opportunities for interdisciplinary 37 

and international collaboration these trials offer. Vital to the future successful 38 

implementation of these therapeutics is to evaluate their potential for adoption into 39 

healthcare systems, including consideration of their health economic value. This requires 40 

early engagement with all stakeholder groups along the hearing innovation pathway.  41 
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1.0 Introduction 46 

Hearing loss represents the most common form of sensory dysfunction in humans and has 47 

been recognised as an area of significant unmet clinical need (Looi et al., 2015; Müller and 48 

Barr-Gillespie, 2015). 90% of hearing loss diagnoses relate to dysfunction of the inner ear 49 

and central auditory pathways (Müller and Barr-Gillespie, 2015; Yamasoba et al., 2013). In 50 

this type of hearing loss, scientific breakthroughs have enabled the identification of 51 

potential therapeutic targets. Between 2011 and 2015 alone, 34 patents were granted for 52 

new therapeutic and delivery approaches for inner ear disorders and a recent review 53 

identified 43 companies working in the field (Nguyen et al., 2017; Schilder et al., 2019). 54 

These novel approaches, which include a variety of drug, gene and cell therapies, are rapidly 55 

progressing along the translational pathway to the stage of clinical testing for safety and 56 

efficacy in humans (Schilder et al., 2018). Because these types of trials are new to the 57 

hearing community, they come with challenges in terms of trial design, regulation and 58 

delivery.  59 

 60 

In this paper, we provide an overview of the key scientific issues, from understanding the 61 

pathophysiology of hearing disorders, diagnosing and monitoring patients, to developing 62 

and delivering therapeutics. We then discuss the challenges specific to clinical trials in this 63 

field, outlining the opportunities for interdisciplinary collaboration1, which extend to the 64 
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adoption of novel hearing therapeutics into clinical practice. Based on a focused review of 65 

the key scientific and grey literature and consultations with experts in this field, we present 66 

the state of the science, identify gaps and propose solutions. 67 

  68 

2.0 Genotyping and Phenotyping hearing loss  69 

2.1 Aetiologies of hearing loss 70 

Whilst most hearing disorders are sensorineural in nature, their underlying aetiologies are 71 

diverse, meaning that there will be no future single cure for hearing loss (Nakagawa, 2014; 72 

Okano, 2014; Yamasoba et al., 2013). Pathological dysfunctions include those of the stria 73 

vascularis (metabolic) or the basilar membrane (mechanical) with changes in the spiral 74 

ligament, as well as loss of sensory hair cells (sensory) or spiral ganglion nerve cells (neural) 75 

(Le et al., 2017; Yamasoba et al., 2013). Genetic predisposition, environmental factors (noise 76 

and ototoxic drug exposure), and combinations of the two determine the rate of 77 

development and severity of sensorineural hearing loss (SNHL). Such combinations include 78 

the increased risk of ototoxicity due to mitochondrial DNA mutations causing reduced 79 

clearance and thus higher serum levels of aminoglycosides (Gao et al., 2017; Qian and Guan, 80 

2009).  81 

 82 

Over the past decade our understanding of the genes, molecules and mechano-electrical 83 

processes that determine hearing and hearing loss has improved dramatically, enabling the 84 

detection of potential therapeutic targets. This includes the discovery of core components 85 

of the transduction process, such as transmembrane channel-like proteins (TMC1, TMC2, 86 

whirlin) (Ahmed et al., 2017), tip link filaments acting as gates for transduction channels 87 

(CDHR23, CDHR15, USH1 family) (Araya-Secchi et al., 2016; Emptoz et al., 2017; Libé-88 

Philippot et al., 2017; Sakaguchi et al., 2009) and myosin motor proteins that play vital roles 89 

in hair cell function (MYO1A, MYO6) (Petit and Richardson, 2009). Our insight into the 90 
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structures essential for cochlear cellular function such as tight junction proteins (TRIC and 91 

TJP2) (Kamitani et al., 2015; Kazmierczak et al., 2015; Mariano et al., 2011), associated 92 

proteins (including Usp53), synaptic transmission proteins (such as SLC17A8) (Ryu et al., 93 

2016) as well as transmembrane channels (OTOF) (Hams et al., 2017) has also developed.  94 

 95 

The signalling and transcription factors belonging to the Notch and Wnt pathways are key to 96 

regulating inner ear development and cell differentiation; mutations in the genes encoding 97 

these pathways are increasingly recognised as a cause of hearing loss, opening avenues for 98 

treatment (Li et al., 2015; Wu et al., 2016). Hearing is highly dependent on mitochondrial 99 

energy supply (Böttger and Schacht, 2013). Whole mitochondrial genome screens have 100 

allowed for the detection of specific mutations which are associated with ototoxic and non-101 

syndromic hearing loss (Yano et al., 2014).  102 

 103 

2.2 From Genotype to Phenotype  104 

These genetic and molecular insights are not yet matched by similar advances in 105 

phenotyping hearing loss (Bitner-Glindzicz, 2002; Myint et al., 2016). This is in part due to 106 

the breadth of the field (with over 1,000 genes linked to polygenic forms of genetic hearing 107 

loss), as well as current gaps in phenotypic profiling ability. Many profiling efforts have 108 

focused on monogenic hearing loss. Audiometric profiles of Usher syndrome type III and 109 

DFNA10 patients followed over time have helped clinicians estimate and inform families 110 

about hearing loss progression rates (Plantinga et al., 2005; van Beelen et al., 2016). The 111 

AudioGene project captures hearing profiles of hundreds of patients with autosomal 112 

dominant, non-syndromic forms of hearing loss caused by known mutations. It uses 113 

machine learning to predict candidate genes based on these audiometric profiles, which 114 

allows for prioritisation of genetic screening in affected families (Hildebrand et al., 2009, 115 

2008).  116 

 117 

Next-generation sequencing (NGS) technology that allows for whole-genome sequencing at 118 

lower cost and greater efficiency has advanced the identification of hearing loss genes 119 

(Vona et al., 2015). Parallel sequencing of linked loci has replaced single gene sequencing, 120 

which is particularly important in the diagnosis of non-syndromic hearing loss which is most 121 

common in genetic sensorineural hearing loss. With NGS now widely available, research 122 



focus has shifted into gene-disease associations via auditory phenotyping (Abou Tayoun et 123 

al., 2016).  124 

 125 

3.0 Diagnosing hearing loss 126 

3.1 Auditory tests  127 

Precision medicine for hearing loss, which links underlying pathophysiology to targeted 128 

treatment, requires precision diagnosis, which is not yet offered by our current hearing tests 129 

(Rudman et al., 2018; Schilder et al., 2018).  130 

 131 

Pure tone audiometry (PTA), the universal baseline hearing test, is a compound measure of 132 

hearing reflecting dysfunction of outer hair cells (OHCs); the test is much less sensitive to 133 

inner hair cell (IHC) loss and peripheral neuropathy (Lobarinas et al., 2013; Plack et al., 134 

2016). Similarly otoacoustic emissions, particularly distortion produced otoacoustic 135 

emissions, are used to assess the integrity of OHCs that are critical to the sensitivity and 136 

frequency selectivity of the cochlea and speech discrimination (Rüttiger et al., 2017). The 137 

Threshold-Equalising-Noise (TEN) test, used in hearing aid fitting as an instrument for 138 

detecting cochlear dead regions, still needs to prove its usability in precision hearing 139 

medicine (Moore et al., 2004). Auditory brainstem responses (ABR) are commonplace in 140 

both clinical and research settings; using comparative electrophysiological measurement, 141 

they indicate firing of the auditory nerve (wave 1) and activation of brainstem pathways 142 

(Rüttiger et al., 2017). The threshold of ABRs induced upon defined sound stimuli can be 143 

used as a functional biomarker for loss of OHCs in defined cochlear regions; however, when 144 

OHCs are functioning, ABRs are unable to detect diffuse neuronal loss (Rüttiger et al., 2017).  145 

 146 

Auditory steady-state response (ASSR) is an auditory evoked potential measured in a similar 147 

manner to ABRs, but in response to rapid stimuli. It represents phase locked discharging of 148 

the auditory nerve and cortex activation, but is again insensitive to auditory neuropathy. 149 

Importantly, both ABR and ASSR allow objective estimation of thresholds for those unable 150 

to take part in traditional behavioural testing. Speech in noise testing probably best reflects 151 

the hearing difficulties that prompt patients to present with hearing loss, but does not help 152 

identify underlying pathology (Guest et al., 2018). An illustration of the limitations of these 153 

hearing tests is in the diagnosis of ‘hidden hearing loss’, a term for hearing impairment in 154 



people with normal PTA thresholds, and thought to be caused by dysfunction of the IHCs, 155 

auditory neurons and their synaptic connections (cochlear synaptopathy) (Bakay et al., 156 

2018; Schaette and McAlpine, 2011). Speech in noise perception testing may help with its 157 

identification, and ABR wave 1 analysis provides some insight but is highly variable in 158 

humans, making interpretation challenging (Plack et al., 2016).  159 

 160 

More precise diagnostic tests that are being used experimentally prior to their validation in 161 

larger cohorts include electrocochleography, giving insights into cochlear function, and 162 

compound action potentials and the cochlear microphonic detecting IHC dysfunction. The 163 

difference between waveform peaks generated by hair cells (summating potentials) and 164 

cochlear neurons (action potentials), known as the SP/AP ratio, indicates selective neural 165 

loss (particularly those with low spontaneous rates), and may help in the diagnosis of 166 

‘hidden hearing loss’ (Liberman et al., 2016).  Other tests being used experimentally include 167 

pupillometry as a measure of listening effort, and electroencephalography to reflect 168 

listening effort and central auditory processing (Marsella et al., 2017; Miles et al., 2017; 169 

Milner et al., 2018). 170 

 171 

3.2 Imaging 172 

Although the quality and resolution of current imaging techniques of the inner ear, including 173 

CT scanning and MRI, are improving in line with technological advances, these techniques 174 

do not yet have the resolution to identify the ultrastructural phenomena required for 175 

precision hearing medicine. This can be achieved with micro-optical coherence tomography, 176 

which has been used to show differentiation of cell types within the fixed guinea pig 177 

cochlea, but is limited at present by the high radiation doses required (Iyer et al., 2016). 178 

 179 

Preclinical tests of iodine based compounds and gold or silver nanoparticles as contrast 180 

agents have been shown to improve image quality (Zou et al., 2015). For example, 181 

intratympanic administration of iohexol greatly enhanced image resolution in a temporal 182 

bone study (Abt et al., 2016).  183 

 184 

As imaging resolution reaches the cellular level, the challenge will become its interpretation. 185 

Bioinformatic and machine learning approaches, similar to those used in ophthalmology, 186 



will be crucial to integrating these complex multidimensional data into clinical practice 187 

(Burgansky-Eliash et al., 2005; Wong and Bressler, 2016).   188 

3.3 Biomarkers 189 

Many researchers are working on identifying molecular biomarkers for hearing disorders, 190 

both circulating and in the inner ear fluids, with most projects still at the preclinical stage (Y. 191 

H. Li et al., 2018; Rüttiger et al., 2017; Schmitt et al., 2018, 2017). Prestin, an OHC-specific 192 

protein, has been identified as an otologic peripheral circulating biomarker for OHC damage 193 

after acoustic trauma, chronic industrial noise exposure and cisplatin induced hearing loss 194 

(Hana and Bawi., 2018; Liba et al., 2017; Naples et al., 2018; Parham and Dyhrfjeld-Johnsen, 195 

2016). In preclinical models of acoustic trauma, the severity of hearing loss and OHC death 196 

correlates with patterns of change in blood levels of prestin (Parham et al., 2019, 2014). If 197 

these findings could be validated clinically and be generally applicable as a surrogate marker 198 

of OHC survival, this biomarker could also be of great value in the monitoring for ototoxicity 199 

during drug treatments and hair cell regeneration in trials of regenerative therapeutics. 200 

 201 

Other candidate biomarkers include circulating RNAs, which would offer high specificity, but 202 

require validation in humans before entering clinical use (Lee et al., 2018; Pang et al., 2016). 203 

Using preserved human temporal bones to investigate correlates of gene expression and 204 

audiometric profiles is a further avenue which could substantially advance inner ear 205 

biomarkers research (Bai et al., 1997; Fischel-Ghodsian et al., 1997; Markaryan et al., 2010).  206 

 207 

Metabolomics and proteomics (measurement of complete cellular metabolic processes and 208 

protein expression) offer vast potential for biomarker discovery, but require access to inner 209 

ear cells and perilymph (Shew et al., 2018; Wong et al., 2018). This is a challenge that is 210 

already being overcome by the use of sampling during operations such as vestibular 211 

schwannoma resections and cochlear implantation (Edvardsson Rasmussen et al., 2018; 212 

Lysaght et al., 2011).   213 

 214 

In cardiovascular disease for example, advances in data science have allowed linkage of 215 

extensive biological data (genomics, metabolomics, proteomics) on large numbers of people 216 

with equally extensive information on lifestyle, environmental factors and health records 217 

(Dale et al., 2017; Hemingway et al., 2017; Joshi et al., 2017; López-López et al., 2017). The 218 



hearing loss field has yet to take advantage of these novel approaches and will benefit from 219 

fostering collaborations with the data science field.   220 

 221 

3.4 Outcome Measures 222 

Linked to improved diagnostic testing and biomarkers in reflecting the underlying 223 

pathophysiology of SNHL, as outlined above, is the choice of outcome measures for novel 224 

hearing therapeutics; what are the early signals of efficacy and how are functional changes 225 

in hearing best measured?  226 

 227 

 An example of the challenges faced in hearing outcomes is in age related hearing loss, 228 

where current hearing tests rely on patients’ ability to comprehend instructions given by an 229 

audiologist, which can be challenging for older people with cognitive impairment and poses 230 

the question of whether the test is capturing deficiency in hearing or in cognition. Given the 231 

link between adult onset hearing loss and dementia, accurate testing to enable treatment 232 

selection and measurement of its outcomes is vital. Such tests should capture listening 233 

challenges (effort) and the effect of listening on cognitive resources, including 234 

electroencephalography (EEG) and pupillometry, and outcome measures should capture 235 

changes in these tests alongside changes in threshold testing (Piquado et al., 2010; Shen et 236 

al., 2016).  237 

 238 

At the same time the field needs to consider how these measures relate to patients’ 239 

experiences of changes in hearing. Current hearing tests performed in sound proof booths 240 

may not reflect or detect the subtle changes in hearing that patients may experience in 241 

challenging listening environments. A range of self-reported questionnaires are in use to 242 

quantify patients’ hearing experiences and measure changes in hearing and tinnitus over 243 

time (Granberg et al., 2014; Hall et al., 2016).  244 

 245 

There is also a need to achieve consensus and guidance on which outcome measures and 246 

accompanying instruments to use in trials in this emerging field. Such consensus would form 247 

the basis for a ‘white paper’ for industry, research institutions and regulatory agencies 248 

regarding the minimum package of clinical assessments to deliver proof of concept studies 249 

of novel hearing therapeutics. Initiatives like  COMET (Core Outcome Measures in 250 



Effectiveness Trials), COSMIN (Consensus-based Standards for the selection of health 251 

Measurement Instruments) and CORE (Centre for Outcomes Research and Evaluation) 252 

recommend approaches to developing agreed standardised sets of outcomes across (late 253 

phase) clinical trials (COMET, 2019; CORE, 2019; COSMIN, 2019). Hall et al (2018) have 254 

applied COMET’s methodology to develop a core outcome set for tinnitus (Hall et al., 2018).  255 

 256 

4.0 Developing Novel Therapeutics 257 

4.1.0 Tailored therapeutic approaches  258 

More than 75 therapeutic programs covering a range of therapeutic targets, approaches 259 

and modalities and lead indications in hearing and balance are currently progressing along 260 

the translational pathway (Crowson et al., 2017; Schilder et al., 2018). Clinical trials of 261 

otoprotective, restorative and regenerative therapeutics are underway with several having 262 

completed Phase III (Schilder et al., 2019). Some approaches have yet to fulfil their promise, 263 

such as NMDA receptor antagonists and Kv3 ion channel modulators for the treatment of 264 

tinnitus, while others have succeeded, such as sodium thiosulfate as an otoprotectant 265 

against cisplatin induced hearing loss in children with hepatoblastoma (Auris Medical AG, 266 

2015; Autifony, 2014; Brock et al., 2018, 2016). With age related hearing loss as the most 267 

common cause of SNHL and given its association with dementia, treatments which could 268 

regenerate hair cells, restore synapses and protect cochlear neurons would have the biggest 269 

impact on health beyond hearing capabilities (Livingston et al., 2017).  270 

 271 

The below highlights several of the therapeutic approaches that have recently translated to 272 

trials. 273 

 274 

4.1.1 Notch Pathway  275 

Given their key roles in cell fate determination, Notch and Wnt pathways are prime targets 276 

for hair cell regeneration (Atkinson et al., 2015; Mizutari et al., 2013). Trials of gene and 277 

drug therapies aimed at regenerating hair cells have already begun, with modulation of the 278 

Notch pathway as the focus of two ongoing clinical trials. One uses a small molecule drug 279 

approach with transtympanic injections of a gamma secretase inhibitor to target Notch 280 

signalling; the other utilises a gene therapy approach surgically delivering Atonal (Hath1), a 281 

key determinant of cell fate in human inner ear hair cells, by a viral vector directly into the 282 



inner ear (Novartis Pharmaceuticals, 2014; REGAIN, 2017). Trials of small molecule drugs 283 

manipulating Wnt pathways are also progressing (Frequency Therapeutics, 2018). Screens 284 

for potentially more efficacious modulators of this pathway are being developed (Zeng et 285 

al., 2018). 286 

 287 

4.1.2 Neurotrophins 288 

Cochlear synaptopathy as a target for therapeutics is being explored by various academic 289 

and biotech groups, but difficulties with diagnosis pose a translational challenge in this area 290 

(Hickox et al., 2017). There is increasing insight into the fate and function of cochlear 291 

neurons with age and with progressing hearing loss; neuroprotection and 292 

neuroregeneration therefore provide alternative therapeutic approaches. Neurotrophins 293 

(NTs), such as brain derived neurotrophic factor (BDNF), have been shown to stimulate 294 

neurite outgrowth of auditory nerve cells (Plontke et al., 2017; van Loon et al., 2013). A 295 

phase I trial of a gene construct which stimulates the overexpression of BDNF using 296 

electrophoresis in patients undergoing cochlear implantation is underway (Pinyon et al., 297 

2018, 2014). Viral delivery systems of BDNF and other NTs are being tested preclinically 298 

(Budenz et al., 2015). The use of cochlear implants as a delivery device is very attractive; but 299 

is limited to those eligible for implantation and its effectiveness relies on retaining neuronal 300 

function.  301 

 302 

4.1.3 Stem cells   303 

Stem cells provide an attractive source of differentiable material and have multiple potential 304 

applications (Lenarz, 2017; Lustig and Akil, 2012; Mittal et al., 2017). Their use as an inner 305 

ear therapeutic has been stymied by limited understanding of specific signalling pathways 306 

necessary to determine cell fate, as well as challenges in verifying viable function within the 307 

resulting hair cell like structures (Takeda et al., 2018). Preclinical models have highlighted 308 

the potential of mesenchymal stem cell therapeutics in parallel with cochlear implant 309 

surgery via bio-hybrid electrodes (Roemer et al., 2016); nerve growth factors produced by 310 

these stem cells can enhance implant success. Feasibility and safety of this approach has 311 

recently been tested in a human trial (Roemer et al., 2016). Further work has highlighted the 312 

opportunity to modulate inner ear cell behaviour following local delivery of mesenchymal 313 

stromal cells (Schulze et al., 2018). 314 



 315 

4.1.4 Gene therapies  316 

Monogenic forms of hearing loss are potentially the most promising conditions for gene 317 

therapies (Lustig and Akil, 2012; Yoshimura et al., 2018). Restoration of hearing for Tmc1 318 

mutant mice has been achieved recently via local delivery of synthetic adeno-associated 319 

viral vectors encoding Tmc1 (Nist-Lund et al., 2019). In murine models of Usher syndrome, 320 

local adeno-associated viral delivery of wild-type whirlin cDNA resulted in improved hearing 321 

and vestibular function (Isgrig et al., 2017). This offers promise for translation to human 322 

trials, particularly given on-going trials of gene therapy via retinal injection in patients with 323 

Usher syndrome type 1b related retinitis pigmentosa (Sanofi, 2012; UshTher, 2018). 324 

Otoferlin mutations are an important cause of inherited auditory neuropathy and are being 325 

explored for gene therapy in pre-clinical models; they are monogenic and leave the inner 326 

ear structure relatively intact making them a promising target for interventions (Michalski et 327 

al., 2017; Rodríguez-Ballesteros et al., 2008).  328 

 329 

4.1.5 Challenges in developing novel therapeutics  330 

Currently, potential therapeutics are tested in explant cultures and/or in vivo in small 331 

mammals. This poses not only logistical and ethical constraints, but importantly it is 332 

unknown how well positive results will translate to humans; some compounds proven 333 

efficacious in animal models have failed to fulfil their promise in human trials (Le Prell et al., 334 

2016). Whilst difficulties in translating animal work are common across clinical research, 335 

they are particularly significant for the emerging hearing therapeutic field (Denayer et al., 336 

2014; Frisina et al., 2018; Mak et al., 2014). These problems are compounded by difficulties 337 

in identifying endpoints for drug testing (Bognar et al., 2017; Posey Norris et al., 2014; 338 

Vasaikar et al., 2016). 339 

 340 

While vertebrates offer the opportunity to study the in-depth effects of drugs on both 341 

cochlea structure and function, they are not suited to drug screening (Ou et al., 2010). 342 

Drosophila melanogaster, a screening tool for many therapeutic classes has been 343 

highlighted as a potential screening tool for hearing therapeutics and offers great potential 344 

(Christie and Eberl, 2014; T. Li et al., 2018; Wang et al., 2016; Yadav et al., 2016). The 345 

zebrafish has been identified as a valuable model for studying hair cell development and 346 



function, and appears to be a useful screening tool for the identification of ototoxic drugs 347 

(Chiu et al., 2008). Cell culture would offer the opportunity to screen a wide variety of novel 348 

and existing compounds at a much lower time and economic cost, but inherent difficulties in 349 

culturing the cells of the organ of Corti make developing an appropriate model enormously 350 

challenging (Rivolta and Holley, 2002). Efforts to create such lines from stem cells have 351 

shown promise in generating spiral ganglion neurones that can be used for drug screening 352 

(Whitlon, 2017). This success has not yet been replicated with cochlea cells, although 353 

significant advances have been made, with several groups progressing towards having 354 

cultured hair cells or organoids (Jeong et al., 2018; Longworth-Mills et al., 2016; McLean et 355 

al., 2017).   356 

  357 

Developing human cell models is limited by access to human inner ear tissue. Recently,  358 

vestibular tissue harvested during trans-labyrinthine acoustic neuroma surgery has been 359 

regenerated with some success and is a good option for testing regenerative therapeutics 360 

(Taylor et al., 2018, 2015). 361 

 362 

4.2 Delivery of therapeutics to the inner ear  363 

A key challenge in hearing loss trials is choice of delivery method. The decision will depend 364 

on the pharmacokinetic profile of the individual agent, and the balance of risks associated 365 

with delivery against the potential benefit of the treatment. Whilst some therapeutics 366 

currently undergoing clinical trials can be delivered orally (EU Clinical Trials Register, 2018), 367 

this mechanism of delivery is not always possible. 368 

 369 

For small molecule delivery, systemic routes, or delivery via the middle ear have been in use 370 

clinically for some time. The efficacy of systemic administration however depends on both 371 

the pharmacokinetic properties of the molecule, and the underlying pathology. Molecules in 372 

current clinical use, such as corticosteroids, require high blood concentrations to overcome 373 

the tight junctions of the blood-perilymph barrier, increasing the chance of side effects 374 

(Jahnke, 1980; Salt and Plontke, 2009).  Middle ear approaches include transtympanic 375 

injections of liquid or gel-form drugs, controlled release devices and surgical application of 376 

drugs to the round window niche (Borenstein, 2009; Gurman et al., 2015; Hütten et al., 377 

2014; Liu et al., 2014; Plontke et al., 2014, 2006; Tandon et al., 2015). All rely on simple 378 



diffusion through epithelial barriers, which is subject to inter-drug and inter-person 379 

variation, and leads to formation of concentration gradients, with variable concentrations 380 

reaching more apical regions of cochlea (W. Li et al., 2018; Liu et al., 2014; Salt et al., 2007; 381 

Salt and Plontke, 2018). Work is on-going in animal models to develop ways to overcome 382 

these problems, including magnetically targeted drug delivery and nanoparticles (Pyykkö et 383 

al., 2016, 2011; Shapiro et al., 2014).  384 

 385 

Intracochlear drug delivery offers the best control of delivery, but comes with the highest 386 

risk to hearing, although the problem of base-apex gradient formation remains. Cochlear 387 

implant associated drug delivery presents a unique opportunity to develop this route for a 388 

subset of patients (Plontke et al., 2017). Options include coating implants with drugs or 389 

cells, incorporating catheters into the implant to allow controlled release or injecting drugs 390 

intracochlear at the time of surgery (Bas et al., 2016; Jolly et al., 2010; Roemer et al., 2016; 391 

Ye et al., 2007). 392 

 393 

For gene and cell therapy, intracochlear routes are necessary, and round window, 394 

cochleostomy and canalostomy approaches have been developed in animals (Gehrke et al., 395 

2016; György et al., 2017; Plontke et al., 2016; Suzuki et al., 2017; Yoshimura et al., 2018). 396 

The on-going phase I trial of intra-labyrinthine infusion of an adenoviral vector carrying 397 

Atonal is the first to use intracochlear delivery in humans (Novartis Pharmaceuticals, 2014; 398 

Peppi et al., 2018).   399 

 400 

Translation of local delivery methods from animal models to human trials is challenging 401 

primarily due to differences in the size of the cochlea altering diffusion and excretion of 402 

agents. Computer modelling, currently used primarily to validate experimental data, may 403 

offer the only opportunity to gain insight into the intracochlear behaviour of therapeutics in 404 

humans and has potential to become a valuable translational tool (Plontke et al., 2007; Salt 405 

and Hirose, 2018).  406 

 407 

5.0 Translating to clinical practice  408 

5.1 Clinical trials capacity and capability 409 



With novel hearing therapeutics progressing along the innovation pathway, it is vital that 410 

capacity and capability for delivering clinical trials is increased, by improving access to 411 

patient populations and their hearing data through patient registries as well as by building 412 

professional and clinical trials networks specialised in hearing research.  413 

 414 

Development of successful patient registries and data repositories requires mapping-out 415 

patient populations and establishing collaborations with other medical specialties and 416 

professional organisations (Mandavia et al., 2017). This is particularly important considering 417 

that many people with or at risk of hearing loss, and therefore potentially eligible for 418 

hearing trials, are not ‘on the radar of’ existing hearing services. This includes people visiting 419 

memory and dementia clinics; patients treated with ototoxic medication, military staff and 420 

musicians exposed to occupational noise and individuals exposed to recreational noise 421 

(Lanvers-Kaminsky and Ciarimboli, 2017; Le Prell and Brungart, 2016; Le Prell and Clavier, 422 

2017; Livingston et al., 2017).   423 

 424 

To screen and monitor these large populations for hearing loss systematically, there is a 425 

need for alternatives to conventional sound-booth technologies with expensive audiometric 426 

equipment and highly trained personnel. This has been recognised by a range of companies 427 

developing and marketing novel strategies to bring hearing testing out of the booth and, 428 

often directly into the hands of the patients (Barczik and Serpanos, 2018; Yousuf Hussein et 429 

al., 2018). Early assessment of these technologies suggests that they may represent 430 

accurate, cost-effective and efficient tools for screening and follow-up. The use of high-431 

quality sound attenuated insert earphones or circumaural earcups to compensate for the 432 

less than ideal sound environment is critical.  (Barczik and Serpanos, 2018; Mahomed-Asmail 433 

et al., 2016). (Campbell et al., 2016; Rourke et al., 2016). Whilst these technologies are 434 

rapidly progressing, they do not yet allow for precision diagnosis, limiting their current 435 

applications in clinical and research settings.  436 

 437 

Clinicians, scientists and industry have highlighted the importance of creating international 438 

registries and data repositories of systematically collected clinical hearing data, combined 439 

with biorepositories of blood samples and tissue specimens for future genomic, proteomic, 440 

and metabolomic analysis. Provided patient consent-to-contact is in place, these registries 441 



allow for efficient patient identification and recruitment to so called registry-based clinical 442 

trials and provide an infrastructure for the collection of treatment and trial outcomes (Li et 443 

al., 2016). Ethical, governance and quality standards would need to be established among 444 

participating centres. These registries represent a long term investment for both patient and 445 

professional stakeholders; expectations regarding short term patient benefit need to be 446 

carefully managed. 447 

 448 

5.2 Clinical trials and research networks for delivery of hearing trials 449 

There is a need for clinical trials networks in the hearing field that will provide academic 450 

teams, biotech, pharma and Clinical Research Organisations (CROs) access to expert trial 451 

teams to deliver their hearing trials nationally and internationally. These expert teams with 452 

a track record of successful trial delivery, will play a vital role in the delivery to time and 453 

target of the rapidly increasing number of hearing trials and should share their expertise 454 

with the wider community, whilst offering guidance to newer teams. Collaboration with 455 

stakeholders including patients and advocacy groups will be essential for maximising trial 456 

recruitment. 457 

 458 

Examples of successful international trial networks are SIOPEL, the International Childhood 459 

Liver Tumors Strategy Group, through which the trial of sodium thiosulfate in children 460 

receiving cisplatin for hepatoblastoma was successfully delivered across 52 centres in 12 461 

countries. A similar global network, called ReSViNET, has been established to facilitate trials 462 

of new vaccines for Respiratory Syncytial Virus (RSV) infection as well as developing 463 

validated outcome measures in this field (Justicia-Grande et al., 2016; Mazur et al., 2018). 464 

 465 

In the UK, The National Institute for Health Research Clinical Research Network (NIHR CRN) 466 

provides infrastructure and resources to support the rapid set-up and patient recruitment 467 

into clinical studies by streamlined approval processes, funding local research support staff 468 

and facilities, and linking NHS clinical research expertise across hospital sites. The NIHR CRN 469 

has placed a focus on the life sciences industry to help patients gain earlier access to 470 

breakthrough treatments: in the year 2016/17, the CRN brought 729 new commercial 471 

clinical trials to the UK and recruited more than 34,000 participants to life sciences industry 472 

research. A 2016 KPMG report on the impact and value of the NIHR CRN estimated that CRN 473 



supported clinical research activity generated £2.4 billion of gross value added and almost 474 

UK 40,000 jobs. Additional impacts included improved transparency in pricing and more 475 

rapid uptake of treatments (KPMG, 2016). To build capacity for the growing NIHR CRN 476 

portfolio of hearing, tinnitus and balance studies, Audiology Champions and Trainee 477 

Speciality Leads have been appointed across the country; they signpost audiologists and ENT 478 

trainees to opportunities to develop as hearing researchers.  479 

 480 

UK ENT trainees have recently united in INTEGRATE, a National ENT Trainee Research 481 

Collaborative conducting multicentre research within clinical training and NHS services 482 

(Smith et al., 2018). Our author group is working with INTEGRATE on a trainee led national 483 

prospective cohort study of adult patients presenting to the NHS with sudden onset SNHL. 484 

With trainees being the frontline staff managing these patients, this study will engage them 485 

in a better understanding of the condition and the patient pathways; as such paving the way 486 

for the successful delivery of upcoming trials of novel therapeutics for sudden onset SNHL. 487 

 488 

5.3 Funding opportunities 489 

Funding opportunities for hearing research have never been better. Support from: EU 490 

Research and Innovation Programmes, national public funders such as the National Institute 491 

on Deafness and Other Communication Disorders (NIDCD), the US Department of Defence 492 

(DoD) Hearing Center of Excellence, the NIHR, The UK Engineering and Physical Sciences 493 

Research Council (EPSRC), and charities like the Wellcome, Hearing Health Foundation, 494 

Action on Hearing Loss and Fondation Pour l’Audition have enabled major advances in the 495 

understanding of hearing loss and the development of innovative treatments.  496 

 497 

At the same time biotech start-ups have benefitted from a sharp increase in funding; from 498 

2007-12 to 2013-17, private funding rose from $86.4 million to $299.3 million, and public 499 

funding from $57 million to $469.7 million (Li, 2017).  Recently large capital raised from 500 

private investors, pharmaceuticals and biotechnology companies as well as venture 501 

capitalists have recognised the growing investment opportunities in this field and are 502 

funding a pipeline of research into novel hearing therapeutics. The Cochlear Centre for 503 

Hearing and Public Health at the John Hopkins University is an excellent example of joint 504 

funding, including public, private and philanthropic support (Johns Hopkins Bloomberg 505 



School of Public Health, 2018). Moving forward, to continue this funding trend, positive trial 506 

results will be needed to justify such investments in the longer term.   507 

 508 

5.4 Adoption into clinical practice 509 

If proven effective, novel hearing therapeutics are set to have a major impact on hearing 510 

services. It is therefore essential that the field starts thinking now about implementation 511 

and how these treatments can be of most value to patients. Lessons should be learned from 512 

other health fields, particularly Ophthalmology where anti-VEGF injections befell clinical 513 

services, and insufficient preparation by funders and providers led to inequalities in patient 514 

access, economic inefficiency and sub-optimal outcomes (Hollingworth et al., 2017; Shalaby 515 

et al., 2016). Crucial to implementation of these novel therapeutics, is to assess and 516 

evaluate their potential for adoption into healthcare systems (The Academy of Medical 517 

Sciences, 2018). This is determined by multiple interacting factors, each with their own 518 

intentions, including: “market makers” (discovery scientists, industry, investors) driving the 519 

uptake of novel therapeutics; “bodies of strategic constraint” (regulators, funders, guideline 520 

and policy makers) trying to impose order and cost-control; and “users” (patients and 521 

clinicians) extracting opportunities for treatment and ‘coping’ with potential service 522 

redistribution from secondary to primary care (May and Finch, 2009). Predicted cost-523 

effectiveness represents another key factor within this arena, influencing and influenced by 524 

the decisions and perspectives of these agents (IJzerman et al., 2017; IJzerman and Steuten, 525 

2011). Figure 1 introduces the core research components that must come together for the 526 

successful implementation of hearing innovations.  527 

 528 

Figure 1 529 

 530 

Our author team has constructed an early health economic model comparing novel 531 

regenerative hearing therapeutics with the current standard of care for people with age 532 

related hearing loss. Input data were derived from systematic literature searches and 533 

stakeholder expert opinion. We adopted a healthcare perspective of the UK National Health 534 

Service (NHS) and applied: headroom analysis to explore the maximum potential value; 535 

threshold analysis to search for the minimum effectiveness needed for the innovation to be 536 

cost-effective; and sensitivity and scenario analyses to evaluate relevant uncertainty. Figure 537 



2 illustrates the key steps in our economic model development. Though this work focuses 538 

on regenerative hearing therapies for age related hearing loss, this model has the potential 539 

to serve as a framework for other hearing therapeutics and patient populations.  540 

 541 

Figure 2 542 

 543 

5.5 Moving forward, ‘collaboration is the new competition’ 544 

Interdisciplinary discussion and cooperation involving stakeholders from each section of the 545 

innovation pathway are necessary in order to enable the latest developments in inner ear 546 

therapies to progress along the clinical pathway. The recently established International 547 

Society of Inner Ear Therapies (ISIET) will provide a forum for potential collaborators to 548 

share information and experiences as well as set standards.  549 

 550 

Coordinated activities with The Pharmaceutical Interventions for Hearing Loss (PIHL) group 551 

also enables hearing stakeholders to discuss the latest advances in discovery science and 552 

clinical trials, as well as develop evidence-based standards for clinical research. The PIHL 553 

group, which is organised by the DOD’s Hearing Centre of Excellence, is dedicated to 554 

disseminating the results of these discussions to the wider community.  555 

 556 
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