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ABSTRACT 35 

1. Remote sensing is a powerful monitoring tool for seaweeds, providing large-scale insights into 36 

their ecosystem benefits and invasive impacts. Satellites and manned aircraft have been 37 

widely used for this purpose, but their spatial resolution is generally insufficient to map 38 

heterogeneous seaweed habitats.  39 

2. In this study, the potential of low-cost and high-resolution drone imagery to map 40 

heterogeneous seaweed habitats was assessed on Azorean coasts, where an invasive and 41 

commercial species, Asparagopsis armata, is present. A Phantom Pro 3 drone equipped with 42 

a visible light sensor was used to create photomosaics in three sites on São Miguel island, and 43 

ground-truth data for various seaweed groups were collected with exploratory kayak 44 

sampling. The support-vector machine, random forest and artificial neural network algorithms 45 

were used to construct predictive models of seaweed coverage.  46 

3. Wind, clouds and sun glint were the most significant factors affecting drone surveys and 47 

images. Exploratory sampling helped locate relatively homogeneous seaweed patches, 48 

however, the data were limited and spatially autocorrelated contributing to over-optimistic 49 

model evaluation metrics. Moreover, the models struggled to distinguish seaweeds deeper 50 

than three to four metres.  51 

4. In conclusion, using drones to monitor heterogeneous seaweed habitats is challenging, 52 

especially in oceanic islands where waters are deep and weather is unpredictable. However, 53 

this study highlights the potential use of photo-interpretation to collect modelling data from 54 

drone imagery, instead of time-consuming exploratory ground-truth sampling. Future studies 55 

could assess drones to map seaweeds in less challenging conditions and use photo-56 

interpretation to improve collection of modelling data. 57 

 58 

Key words: coastal; archipelago; remote sensing; monitoring; algae; alien species; aquaculture 59 

 60 

1 | INTRODUCTION 61 

 62 

Seaweeds are important constituents of coastal habitats, and are often considered to be ecosystem 63 

engineers (Jones, Lawton, & Shachak, 1994). Seaweed habitats support high levels of biodiversity 64 

(Christie, Norderhaug, & Fredriksen, 2009; Steneck et al., 2002), by providing food (Dayton, 1985; Ince, 65 

Hyndes, Lavery, & Vanderklift, 2007), shelter and nursery grounds ( Borg, Pihl, & Wennhage, 1997; 66 

Duffy & Hay, 1991) to a variety of fish and invertebrates including many commercially exploited 67 
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species (Smale, Burrows, Moore, O’Connor, & Hawkins, 2013). Seaweed habitats are also highly 68 

productive  and support high secondary productivity (Balmford et al., 1973). 69 

  Seaweeds provide various ecosystem services to humans, worth billions annually (Beaumont, Austen, 70 

Mangi, & Townsend, 2008; Zemke-White & Ohno, 1999). Seaweeds are highly nutritious to humans 71 

(Macartain, Gill, Brooks, Campbell, & Rowland, 2007) and produce bioactive compounds used in food, 72 

medical and cosmetic products (Holdt & Kraan, 2011; Smit, 2004).  73 

   Seaweeds are threatened by various factors. Climate change is expected to affect species 74 

distributions, due to the high thermal sensitivity of seaweed survival, growth and reproduction (Harley 75 

et al., 2012). Distribution shifts and local extinctions have been observed in some cases (Brodie, 76 

Andersen, Kawachi, & Millar, 2009; Simkanin et al., 2005). A meta-analysis in the British Isles showed 77 

that seaweed distribution has increased with sea surface temperature in some cases (Yesson, Bush, 78 

Davies, Maggs, & Brodie, 2015), although this relationship was not clear. Ocean acidification (Connell 79 

& Russell, 2010; Koch, Bowes, Ross, & Zhang, 2013) and increased storminess (Lozano, Devoy, May, & 80 

Andersen, 2004) are also expected to negatively affect seaweeds. 81 

   Invasive seaweed species also require attention due to their ecological and economic impacts. A 82 

meta-analysis (Williams & Smith, 2007) showed that approximately 277 seaweed species have 83 

become invasive, introduced mainly through shipping and aquaculture (Schaffelke, Smith, & Hewitt, 84 

2006). Most experimental and observational studies have shown that invasive seaweeds tend to have 85 

negative ecological impacts (Schaffelke & Hewitt, 2007; Williams & Smith, 2007), mainly based on their 86 

effects on native seaweeds, but these impacts are case-dependent. In general, assessing the ecological 87 

impacts of invasive seaweeds is difficult as most research only starts after their introduction 88 

(Schaffelke, Smith, & Hewitt, 2006).  89 

   The management of beneficial or invasive seaweeds requires monitoring tools to map the spatio-90 

temporal distribution of target species. Traditional approaches such as diving provide high accuracy 91 

and resolution, however, they are time-consuming and limited to small areas (Werdell & Roesler, 92 

2003). On the other hand, remote sensing can provide large-scale information of submerged coastal 93 

areas in a rapid and cost-effective way (Mumby, Green, Edwards, & Clark, 1999). 94 

   Satellites are remote sensing tools frequently used to map seaweeds. Various studies have 95 

efficiently used multispectral satellite data to map submerged seaweeds (Andréfouët, Zubia, & Payri, 96 

2004; Casal, Kutser, Domínguez-Gómez, Sánchez-Carnero, & Freire, 2011; Casal, Sánchez-Carnero, 97 

Sánchez-Rodríguez, & Freire, 2011; Hoang, O’Leary, & Fotedar, 2016), achieving classification 98 

accuracies near the recommended 85% (Congalton & Green, 2009). In general, most studies 99 

accomplish broad taxonomic classifications, mainly focusing on brown, red and green seaweed 100 

groups. Bio-optical modelling indicates that effective discrimination of submerged red and brown 101 
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groups (Kutser, Vahtmäe, & Martin, 2006), and potentially genera or species within these groups, 102 

requires fine spectral resolution provided by hyperspectral imagery. The fine spectral resolution 103 

presented by multi- and hyper-spectral imagery allows for attenuation correction, which is an 104 

important consideration for remote sensing of submerged habitats (Zoffoli et al., 2014). However, a 105 

few studies have highlighted the difficulty of using hyperspectral imagery to classify heterogeneous 106 

submerged coastal habitats (Casal, Kutser, et al., 2011; Vahtmae & Kutser, 2007). Hyperspectral 107 

imagery tends to have low spatial resolution (Govender, Chetty, & Bulcock, 2007), leading to 108 

difficulties in mapping highly heterogeneous habitats, submerged or otherwise, due to mixing of 109 

spectral information within single pixels. Thus, despite the efficient use of satellites to map submerged 110 

seaweeds, higher spatial resolution is required for mapping heterogeneous habitats (Bennion et al., 111 

2018). From a cost perspective, there are coarser resolution (tens of meters) publicly accessible global 112 

datasets such as Landsat and Sentinel, but finer scale resolution (1-5m) often requires novel 113 

acquisition which incurs substantial costs. 114 

   Airborne remote sensing involves collection of aerial imagery from a sensor mounted on an aircraft. 115 

The high spatial and spectral resolution of airborne sensors can provide high classification accuracy of 116 

submerged aquatic vegetation (Silva, Costa, Melack, & Novo, 2008) and tackle the issue of spatial 117 

heterogeneity. Many studies have efficiently used hyperspectral aerial imagery to distinguish red, 118 

green and brown groups for floating (Dierssen, Chlus, & Russell, 2015), intertidal (Oppelt, Schulze, 119 

Bartsch, Doernhoefer, & Eisenhardt, 2012) and submerged environments (Casal, Kutser, Domínguez-120 

Gómez, Sánchez-Carnero, & Freire, 2013;;; Vahtmäe et al., 2012). However, spectral library modelling 121 

has indicated that aerial hyperspectral imagery may be incapable of achieving fine taxonomic 122 

resolution in submerged environments due to high spectral similarities (Casal et al., 2013), which can 123 

be further complicated by mixing of spectral information in heterogeneous submerged coastal areas 124 

(Vahtmae & Kutser, 2007). In addition, the high spatial resolution of typical airborne systems 125 

compared to satellites may still be insufficient to map submerged seaweeds in heterogeneous 126 

habitats. 127 

   Drones, or unmanned aerial vehicles (UAVs), are modern technological advancements which have 128 

been increasingly used in the field of ecology (Ventura, Bruno, Jona Lasinio, Belluscio, & Ardizzone, 129 

2016). Drones are airborne systems which can rapidly provide very high spatial resolution images 130 

(centimeter scale) of wide areas, providing cost-effective solutions for environmental monitoring (Koh 131 

& Wich, 2012). The present UAVs are payload restricted, limiting the sensors available, and most 132 

commercial UAVs are fitted with optical cameras. Detailed spectral resolution can be important for 133 

distinguishing groups with similar RGB (red, green, blue) optical profiles, and restricting spectral 134 

resolution limits the potential for attenuation correction which is improved by hyperspectral data 135 
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availability (Zoffoli et al., 2014), although sensor development is proceeding rapidly and a variety of 136 

multi-spectral camera systems are available for UAV systems. Compared to satellites and typical 137 

airborne systems, drones can provide higher spatial and temporal resolution due to their practicality 138 

(but lower spectral resolution), access to remote areas and insensitivity to cloud cover (Paneque-139 

Gálvez, McCall, Napoletano, Wich, & Koh, 2014). In fact, a study comparing remote sensing platforms 140 

to map Mediterranean seagrass habitats showed that drone imagery provides the highest spatial 141 

accuracy (Ventura, Bonifazi, Gravina, & Ardizzone, 2017), although there is a trade-off between spatial 142 

coverage and resolution that must be considered when evaluating methods (Bennion et al. 2018). The 143 

high spatial resolution provided by drones could be suitable for mapping heterogeneous seaweed 144 

habitats, potentially to fine taxonomic detail due to less spectral mixing.  145 

   The red seaweed Asparagopsis armata, also known as harpoon weed, is believed to be native to 146 

Australia, Tasmania and New Zealand (Horridge, 1951). Its gametophytes have been shown to support 147 

rich crustacean assemblages (Pacios, Guerra-García, Baeza-Rojano, & Cabezas, 2011) and produce 148 

toxic compounds which deter predators (Paul, De Nys, & Steinberg, 2006). 149 

   Currently, A. armata is mainly distributed in Oceania, the Mediterranean Sea and European Atlantic 150 

coasts, while it is also reported in a few areas in the Americas, Africa and Asia based on the AlgaeBase 151 

database (http://www.algaebase.org). A. armata has become invasive in the Mediterranean Sea and 152 

Eastern Atlantic Ocean, introduced in the 1920s presumably from Australia (Mineur, Davies, Maggs, 153 

Verlaque, & Johnson, 2010). In the Mediterranean, it is considered a highly important marine invasive 154 

which tends to dominate seaweed canopies (Streftaris & Zenetos, 2006). Moreover, in the Strait of 155 

Gibraltar, it has been shown to support less peracarid species than the native Ellisolandia elongata 156 

(Guerra-García, Ros, Izquierdo, & Soler-Hurtado, 2012).   157 

   A. armata is known to produce halogenic and methanolic compounds (McConnell & Fenical, 1977) 158 

with antimicrobial (Pesando & Caram, 1984; Salvador, Gómez Garreta, Lavelli, & Ribera, 2007) and 159 

anti-cancer properties (Alves, Pinteus, Horta, & Pedrosa, 2016). In fact, it is harvested in seaweed 160 

farms in Ireland (Kraan & Barrington, 2005) and Portugal, where it is considered an invasive. Invasive 161 

species can be difficult and expensive to manage (Anderson, 2007), so finding commercial incentives 162 

to control populations by harvesting can be a valuable approach to management (Pasko & Goldberg, 163 

2014)  164 

   A. armata was introduced to the Azores in the early 20th century, where its close relative A. 165 

taxiformis is also present. Currently, there are ongoing efforts to understand its ecological impacts 166 

and potential for commercial exploitation (http://aspazor2016.wixsite.com/aspazor). Rapid 167 

monitoring of the distribution and coverage of the species is essential to address these issues.  168 



 

7 
 

   The aim of this study was to evaluate drones as monitoring tools for seaweeds, applied to the 169 

invasive Asparagopsis armata in the Azores. The working hypothesis was that low-cost drone imagery 170 

can be efficiently used to monitor seaweeds in heterogeneous habitats and potentially distinguish 171 

species, owing to its high spatial resolution.  172 

 173 

2 | METHODS 174 

 175 

2.1 l Study area 176 

 177 

The Azores archipelago consists of nine volcanic islands located approximately 1630 km west of 178 

Portugal, and situated on top of the Mid-Atlantic Ridge (Figure 1). The islands are mainly formed by 179 

basalt rock and surrounded by deep waters within short distances from the coasts. Due to recent 180 

volcanic formation, the coastlines tend to have high slopes and irregular shapes, exhibiting semi-181 

diurnal tides with low tidal ranges. The climate is mild yet highly unpredictable due to the influence of 182 

the surrounding Atlantic Ocean. 183 

   São Miguel is the largest and most densely populated island of the Azores. It is surrounded by rocky 184 

shores which are mainly covered by bedrock, cobbles or boulders. The Caloura and Lagoa coasts are 185 

located towards the south and have boulder substrates, the latter exhibiting a higher slope 186 

(Wallenstein & Neto, 2006). The coast of Mosteiros is located to the north-west, and is covered by 187 

bedrock and has a similar slope to Caloura. Wallenstein and Neto (2006) analysed the intertidal 188 

biotopes of São Miguel and identified over 70 species of brown, green and red seaweed, mainly 189 

growing in turf communities. A. armata was found to grow on all substrate types from the lower 190 

litteral zone to the subtidal.  191 

   The Caloura, Mosteiros and Lagoa coasts were selected for this study due to the high density of 192 

Asparagopsis species and ease of accessibility. During the period of study, A. taxiformis was found to 193 

be present in Caloura and Lagoa and A. armata in Mosteiros. 194 

 195 

2.2 l Drone surveys 196 

 197 

The drone surveys were carried out with a low-cost DJI Phantom 3 Professional quadcopter drone (DJI, 198 

Shenzhen). The drone’s visible light Sony EXMOR camera specifications are provided in the 199 

supplementary information. The Phantom 3 was flown once per site around low tide to maximize 200 

seaweed exposure to light and under optimal weather conditions, including relatively low cloud cover 201 

and wave speed. The DroneDeploy software (DroneDeploy, Florida) was used to design flight plans, 202 
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flying at 114 m to achieve an approximate 4.93 cm/pixel resolution in acquired imagery. Such high 203 

resolution increased the potential of capturing the smallest of seaweed patches within pixels.  The 204 

image overlaps were set to 85% frontlap and 80% sidelap. Ground control points (GCPs) were used by 205 

taking GPS readings with a handheld GPS/GLONASS receiver (Trimble GeoXT 3.5G, Geoxplorer 6000 206 

series, submetre accuracy) at locations readily identifiable in the aerial images, such as prominent or 207 

distinctive rocks on the coastline.  208 

   Pix4Dmapper (Pix4D SA, Switzerland) was used to construct photomosaics through stitching the 209 

images obtained in each flight and implementing GCPs for accurate georeferencing. The GCPs were 210 

initially processed with GPS pathfinder office version 5.6 (Trimble, California) to improve their 211 

accuracy up to approximately ±0.5 m. The WGS84/UTM26 (EPSG:32626) coordinate system was used 212 

to georeference the images. 213 

   A manual mask was applied to each image with QGIS (https://www.qgis.org), to remove pixels 214 

corresponding to land. No value adjustment was made to account for brightness variation between 215 

the images. 216 

   To reduce noise such as shadows, sun glint and foam, the images were converted to greyscale with 217 

the average method to find thresholds for pixel removal (Movia, Beinat, & Crosilla, 2016). The 218 

thresholds were conservatively set to 35 and 200 based on the greyscale value distribution of noise 219 

and non-noise pixels, to prevent removal of the latter. Values below 35 belonged exclusively to 220 

shadows, while values above 200 to sun glint and foam. 221 

 222 

2.3 l Ground-truth surveys 223 

 224 

Kayak surveys were undertaken to collect ground-truth data of each site. The targets involved healthy 225 

Asparagopsis armata, healthy and decaying Asparagopsis taxiformis, brown seaweeds, as well as 226 

white substrate, typically a mix of white rock and whitish Corallina species. In this case, large 227 

homogeneous patches were defined as patches with at least 3 m radius and at least 50% coverage of 228 

a particular target. The drone and kayak surveys were organized with a maximum of one day 229 

difference to reliably correspond the ground-truth data with the drone images, considering the 230 

gradual changes in the abundance of the seaweed targets.  231 

   Two transect surveys with exploratory sampling were designed at each site, covering the areas 232 

present in the drone images. This targeted sampling design helped collect data representative of each 233 

target on these heterogeneous coasts, by sampling areas with high density of a particular target. The 234 

surveys involved designing transects above and below the 5 m depth. A snorkeller located large 235 

homogeneous targets with a minimum interval of 10 m, taking videos of the patch with an action 236 
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camera (GoPro Hero 4, Silver) and estimating depth with a dive computer (Mares Puck Dive 237 

Computer). The GPS coordinates for each sample were estimated from a kayak above, with a handheld 238 

GPS/GLONASS receiver (Garmin Dakota 20, accuracy ±3 m). The 10 m interval minimized overlap 239 

between sampling points, considering the 3m spatial uncertainty of the GPS device. 240 

   The videos were qualitatively assessed to determine the approximate proportion of the most 241 

frequent target in each ground-truth sample. The samples were included in the analysis only if this 242 

proportion exceeded approximately 50%. 243 

 244 

2.4 l Image analysis 245 

 246 

Supervised classification algorithms were used to construct predictive models of seaweed coverage, 247 

through modelling of RGB spectral profiles. The classes were determined both by ground-truthing and 248 

photo-interpretation (visual inspection of the images), in some cases including different groups due 249 

to spectral similarities (Table 1). The one-vs-one support vector machine (SVM), random forest (RF) 250 

and feed-forward artificial neural network (ANN) supervised algorithms were used to classify the 251 

drone images, which have been used successfully in other classification studies (Breiman, 2001; Cortes 252 

& Vapnik, 1995; Hsu & Lin, 2002; Schmidhuber, 2015). 253 

   To improve geospatial accuracy of the ground-truth samples, their location was manually adjusted 254 

through detection of visual patterns between the images and underwater videos, such as shapes of 255 

rocks or seaweed patches. The pixel values were rescaled to range between 0 and 1 dividing by 255. 256 

Each ground-truth point was represented as a circle with 3 m radius around the central location (as 257 

shown in Figure 3). All pixels from the aerial imagery that overlapped with this circle were selected as 258 

representative of the observed target, including approximately 12320 to 13150 pixels depending on 259 

the image. The frequency of each RGB triplet value was examined within this area, and the top 5% of 260 

triplet values, corresponding to 5% of the area, were selected as representative of the target. Using 261 

the most frequent values minimized the contribution of the less frequent targets and was more 262 

reliable than using all values. This method of representative pixel selection was adapted from the 263 

methodology used by Brodie, Ash, Tittley, and Yesson (2018). 264 

   To train the SVM and ANN algorithms, a five-fold cross validation was undertaken (Hastie, Tibshirani, 265 

& Friedman, 2016). Random forest inherently splits the data into bootstrap subsets and uses each 266 

subset to construct a decision tree, which is validated on the remaining data (Ho, 1998). The 267 

algorithms were evaluated through the mean kappa coefficients of the contingency matrices 268 

(Stehman, 1997). 269 
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   Five-fold cross validation also helped adjust the parameters of SVM (Chang & Lin, 2013) and ANN 270 

(Hansen & Salamon, 1990; Krogh & Hertz, 1992) through repeating the process for various parameter 271 

combinations and choosing the parameters corresponding to the highest kappa (Table 2). The RF 272 

parameters (Breiman, 2001) were adjusted based on the highest kappa acquired through the .632+ 273 

bootstrap method (Efron & Tibshirani, 1997).  274 

   The data were analysed with the raster (Hijmans, 2017) and caret (Kuhn, 2018) R packages.  275 

 276 

3 | RESULTS 277 

 278 

3.1 l Drone surveys 279 

 280 

Surveys were conducted in May and June 2018. Weather conditions were problematic, highly variable 281 

and difficult to predict. Due to time limitations of the project coupled with limited blooming time of 282 

Asparagopsis, surveys had to be conducted in sub-optimal conditions (waves and clouds).  Two 283 

hundred to 300 images were taken at each site covering areas between 1/5 - 1/4 km2 (Table 3). The 284 

original and masked Caloura photomosaics are illustrated in Figure 2. Georeferencing the 285 

photomosaics using the GCPs resulted in a spatial uncertainty of at least one metre (Root-mean-286 

square error> 1 m). The proportion of pixels identified as noise was 1.5% for Caloura, 0.5% for Lagoa 287 

and 0.4% for Mosteiros. The low noise values at Mosteiros obscures the difficulty removing the sun 288 

glint affect on the water surface, these were not sufficiently bright to trigger exclusion through the 289 

brightness filter (despite a number of attempts varying the thresholds). There remained a noticeable 290 

glint effect on the Mosteiros images, but these were analysed regardless.  291 

 292 

 293 

 294 

3.2 l Ground-truth surveys 295 

 296 

Ground truth surveys were conducted on days close to the equivalent drone surveys as possible. The 297 

sample sizes per target and depth range are presented in Table 4. A. taxiformis was found in Caloura 298 

and Lagoa, while A. armata was only found in Mosteiros. In general, the seabed was highly 299 

heterogeneous, but the target coverage in the ground-truth samples was qualitatively determined to 300 

exceed 50 %. Two A. armata samples were discarded from further analysis due to very low coverage. 301 

Example views of A. armata samples from aerial and underwater images are presented in Figure 3. 302 

 303 
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 304 

3.3 l Image analysis 305 

 306 

Each habitat class was represented in the model training data with between 4940-8279 pixels, based 307 

on ground-truthing surveys and photo interpretation (Table 5).  A. armata shows a relatively dark 308 

profile (low values) compared to other classes (Figure 4), in comparison A. taxiformis shows a similar 309 

escalation of values (R<G<B), but with less variation within each colour. As expected the sand class 310 

shows the brightest RGB profile (highest values), and the class of green seaweed is the only class with 311 

green values consistently higher than the other bands. Red values are consistently lower than other 312 

bands, reflecting greater attenuation of the red light in the water. 313 

   These distinct spectral profiles were predicted well by the models. Model evaluation produced 314 

consistently high kappa values for all models (Table 6), with consistently high prediction success for 315 

all classes (see example contingency matrix for the ANN model in Table 7).  316 

   Prediction of habitat classes over the study sites produced a series of habitat maps, an example of 317 

the ANN model predictions for the Lagoa region is presented in Figure 5.  Predicted area of the target 318 

species varies by modelling method (Figure 6), the RF model suggests 5.7 ha of A. armata was present 319 

in Mosteiros, while the SVM model predicts only 1.8 ha. A. armata was not found during ground 320 

truthing at Caloura or Lagoa and the models predict almost no habitat at these sites. Predictions of A. 321 

taxiformis coverage are more consistent, with coverage for Lagoa (where it is most prevalent) 322 

between 2.5 ha and 1.8 ha, and at Caloura 0.13-0.16 ha (Figure 6, Table 8).   323 

 324 

4 | DISCUSSION 325 

 326 

The overall aim of this study was to evaluate drones as monitoring tools for seaweeds, using a low-327 

cost aircraft. Drones can achieve very high spatial resolution which might tackle the issues of habitat 328 

heterogeneity and possibly species differentiation, compared to satellites and typical airborne 329 

systems. This monitoring methodology was assessed on a species of high importance in the Azores, 330 

Asparagopsis armata, where the seaweed habitats are highly heterogeneous and closely related 331 

species are also present. 332 

 333 

4.1 l Drone surveys 334 

 335 

The drone surveys in all study sites were strongly affected by weather conditions. In June, rain or 336 

drizzle is expected 11 days of the month and the average wind speed is 16 km/h (Weather2 Ltd, 2018), 337 
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while DJI suggests not exceeding 20-28 km/h (DJI forum, 2016). Priority was given to days with low 338 

wind to fly the drone, and early timing in the morning to minimize sun glint (Mount, 2005). However, 339 

clouds were always present to various extents and despite the resulting variation in brightness 340 

conditions between the surveys, no effort was made to account for this factor. Flying the drone at 341 

similar times of day may be the simplest way of minimizing brightness variation, although this would 342 

be dependent on other factors affecting brightness such as time of year (which influences sun 343 

direction/height at a given time of day) and cloud cover. 344 

   The selection of weather conditions was aimed at minimizing noise due to sun glint, foam and 345 

shadows. Optimal conditions were considered to be cloud-free days (or at least days where cloud was 346 

unlikely to directly obscure direct sunlight), low wind (i.e. conditions with minimal waves and thus 347 

minimal sea foam and glint from wave peaks – optimal wind speeds will vary by exposure of the site 348 

and wind direction, but are likely to be substantially lower than the safe operating parameters of the 349 

UAV) and limited to several hours around midday to minimise shadows (clearly this is dependent on 350 

the time of year and latitude). However, ideal conditions were seldom forthcoming and these issues 351 

(glint/foam/shadows) were sometimes evident in images. Some shadows and foam were observed 352 

nearby rocks, but were excluded by the noise removal process (Movia et al., 2016).  Sun glint on the 353 

water surface was an issue for the Mosteiros survey, ideally this would have been re-surveyed but 354 

suitable weather conditions (particularly calm seas) were not forthcoming. The result was an over 355 

prediction of the sand class in Mosteiros, where it was not observed on the ground surveys. This 356 

stresses the importance of surveying in the best possible conditions. 357 

   Seaweed and coral remote sensing studies have shown that mixing of spectral information between 358 

different groups in heterogeneous coasts limits image classification accuracy (Andréfouët et al., 2004; 359 

Caras, Hedley, & Karnieli, 2017; Vahtmae & Kutser, 2007). Specifically, the neighbouring presence of 360 

small and spectrally variable patches results in merging of information within single pixels in low 361 

spatial resolution images. Caras et al. (2017) suggest using a spatial resolution near the average size 362 

of the desired targets to minimize this effect. In this study, a 4.93 cm/pixel resolution was used as a 363 

compromise between the potential of capturing individual patches within pixels and practicality. 364 

Increasing the resolution would entail flying the drone at a lower altitude, requiring more flight time 365 

and possibly causing issues during photomosaic construction (Koh & Wich, 2012).  366 

   Georeferencing of the photomosaics had a spatial uncertainty of at least one metre. Spatial accuracy 367 

of the photomosaics was important to reliably overlay the ground-truth points on the images, which 368 

was further complicated by spatial uncertainty of the latter. However, the high spatial detail in the 369 

images made it possible, in many cases, to determine the exact location of seaweed patches in the 370 

images through identifying either substrate features, such as rocks, or the exact patches in the 371 
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underwater videos. This has strong implications for the accuracy and strategy of the ground-truthing 372 

process for drone surveys, as discussed below. 373 

 374 

4.2 l Ground-truth surveys 375 

 376 

Accurate assignment of ground-truth locations to the image is fundamental to predictive modelling 377 

(Brodie et al., 2018). The exploratory sampling strategy helped accurately position the ground-truth 378 

classes in the images by targeting large exemplar patches, but might have increased spatial 379 

autocorrelation and resulted in over-optimistic model evaluation metrics (Hammond & Verbyla, 1996; 380 

Millard & Richardson, 2015). Indeed, the ground-truth points were sometimes clustered and normally 381 

collected in limited depth ranges. For example, brown seaweeds and decaying A. taxiformis were 382 

mainly sampled on top of large rocks near the surface, and A. armata samples were clustered within 383 

a small area where the species was located. An important observation of this study, however, is the 384 

potential of collecting modelling data through detecting shape patterns between the drone and 385 

underwater footage. Thus, instead of searching for large homogeneous seaweed patches, it could be 386 

possible to implement random or systematic sampling strategies which are less biased and time-387 

consuming. Photo-interpretation can then be used to collect modelling data, although great caution 388 

should be given to its subjective nature. 389 

 390 

4.3 l Image analysis 391 

 392 

The spectral profiles were quite distinct between most classes. An interesting observation was the 393 

substantial similarity between the A. armata and black rock profiles. Both classes showed dark spectral 394 

profiles in drone imagery and this resulted in Amisclassfications between these groups. A. armata 395 

patches typically displayed bright pink coloration when viewed in underwater imagery, and this red-396 

dominant spectral profile will be significantly affected by attenuation, resulting in difficulties 397 

distinguishing this profile when viewed through the water column.  Correcting the spectral profile for 398 

water depth could be an effective way of combatting this issue (Cho & Lu, 2010), although this would 399 

require estimating water depths from the same set of images, which in turn requires ground truthing 400 

of water depths (Visser et al., 2015) and employing hyperspectral imaging may improve this method 401 

(Lu & Cho, 2011). Depth invariant methods for water column radiometric correction have been 402 

proposed (reviewed in Zoffoli et al., 2014), but these methods are dependant on multi- and hyper-403 

spectral data being available, which means RGB imagery from standard optical cameras are not 404 

applicable for these methods (Zoffoli et al., 2014).  Additionally, techniques of spectral unmixing (e.g. 405 
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Ettrich et al., 2018) could be employed to help disentangle habitats with similar spectral profiles, but 406 

these are best employed when high spectral resolution data (hyperspectral) is available (Hu et al., 407 

2015). 408 

 This study presents a pixel based classification of the aerial imagery collected. An alternative approach 409 

is object-based image analysis (OBIA – e.g. Blaschke, 2010). Habitat mapping using OBIA has increased 410 

with the greater availability of higher spatial resolution data, and can be particularly useful where 411 

habitat patches are larger the pixels of the remote sensing data (Blaschke, 2010). OBIA can reduce the 412 

‘salt and pepper’ effect often seen in pixel-based methods of classification and can utilise more 413 

features than isolated pixel values by incorporating contextual information for classification (Benz, 414 

2004).  415 

   An important question of this study was whether the high resolution of drone imagery can help 416 

distinguish closely related species, partly due to less spectral mixing. The underwater footage showed 417 

that A. taxiformis displayed a darker coloration than A. armata. The spectral profiles between the 418 

Asparagopsis species were also distinct, but this is difficult to explain solely based on coloration 419 

differences between the species. In any case, acquiring the pure profiles of seaweeds in 420 

heterogeneous habitats is complicated by the difficulty of determining their exact pixel location. The 421 

methodology of representative pixel extraction (Brodie et al., 2018) applied in this study to deal with 422 

spatial uncertainty and patch heterogeneity assumes that the extracted pixels are representative of 423 

the desired target. Extracting the top 5% of ground-truth circle values was a compromise between 424 

sample size and target representativity. In this sense, it is not clear to what extent the profiles were 425 

representative of the classes. Thus, this work is limited in its ability to address the potential of drone 426 

visible light imagery to distinguish the Asparagopsis species, and closely related species in general. 427 

   The models showed very high evaluation metrics indicating overfitting to the training data. 428 

Overfitting might have been partly caused by the presence of relatively few distinct values per class in 429 

the 5% dataset. Objectively evaluating the generalizability of a trained model requires testing on a 430 

distinct validation dataset (Witten & Frank, 2005). Radosavljevic and Anderson (2014) suggest using a 431 

geographically masked cross-validation approach to evaluate training data on validation data collected 432 

in different regions. However, in this study each class was typically present only at one site, and the 433 

samples were too few to create spatial partitions within each site. Thus, both spatial autocorrelation 434 

and limited values might have contributed to model overfitting. 435 

   An interesting observation was the heterogeneity of classifications in deep waters compared to 436 

shallower waters. In fact, deeper than three to four metres, the models typically predicted a single 437 

class indicating the difficulty of separating targets in such depths. This was likely amplified by the 438 
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shortness of turf-forming seaweeds dominating the Azorean coasts (Wallenstein & Neto, 2006), 439 

compared to canopy-forming species. 440 

 441 

4.4 l Monitoring and management implications  442 

 443 

An important goal of this project was to develop models predicting A. armata coverage in drone 444 

imagery, to monitor the abundance and distribution of this invasive in the Azores. Unfortunately, we 445 

feel that, at present, our approach is not sufficient to produce reliable models for this study.  This 446 

should not discourage others from attempting other drone-based monitoring as there are some 447 

particular issues with the Azores and Asparagopsis that inhibited this study. The short-lived 448 

gametophyte phase places a particular time-pressure on surveys, which are further confounded by 449 

highly unpredictable, oceanic weather. Monitoring targets with year-round visible presence, in 450 

friendlier climates would make more obvious targets for similar studies.  451 

   There are many advantages to drone-based monitoring, such as the relative low-cost, accessibility 452 

and practicality which may facilitate monitoring. The repeated monitoring of sites where invasive 453 

species are known or suspected to be a threat could be a valuable tool for invasive management. 454 

However, there are cost considerations beyond the price of the UAV hardware, these may include 455 

equipment for high spatial precision georeferencing (cm scale), training to safely operate equipment, 456 

specialised software (such as Pix4D) and computing resources for mass processing of imagery, as well 457 

as the time required for image acquisition and analysis.  These associated costs will inevitable come 458 

down making studies more practical and reliable with improved technology, incorporating more 459 

sensors, and improved methods for processing imagery (Bennion et al. 2018).  460 

 461 

5 l CONCLUSIONS 462 

 463 

An important conclusion of the study is that using drones to monitor the turfy and highly 464 

heterogeneous seaweed habitats of the Azores is challenging, which may extend to similar habitats 465 

and other oceanic islands. Firstly, collecting accurate ground-truth data in such habitats is challenging 466 

and complicates the development of efficient predictive models. In addition, despite the practicality 467 

of drones, the unpredictable weather limits their spatio-temporal flexibility and flights are restricted 468 

to early morning or evening to avoid sun glint. It is also worth noting that the shortness of turfy 469 

seaweeds amplified by the high slope of oceanic islands limits monitoring to a small distance from the 470 

shore.     471 
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   Despite these limitations, an important implication of this work is the potential use of photo-472 

interpretation to collect accurate modelling data from drone imagery. Pattern detection between 473 

aerial and underwater footage can reduce the necessity of explorative ground-truth surveys in such 474 

cases, encouraging systematic or random surveys which are less biased and time-consuming.  475 

   This study was implemented in challenging geographic and weather conditions, confounded by the 476 

short-lived target species. In areas with more stable and predictable weather, and with long-enduring 477 

monitoring targets, drones should be efficient tools for monitoring seaweeds. . 478 

 479 

ACKNOWLEDGMENTS 480 

 481 

This study is a contribution to the research project ‘ASPAZOR – Ecosystem impacts and socioeconomic 482 

benefits of Asparagopsis armata in the Azores’ (Ref. ACORES-01-1045-FEDER-00060) funded through 483 

FEDER (85%) and Regional funds (15%) via “Programa Operacional Açores 2020”. Alexandros Kellaris 484 

was supported by Imperial College London with a project budget for his Masters thesis. The 485 

participation of co-author Artur Gil in this study was supported by the Post-Doctoral Research Project 486 

SFRH/BPD/100017/2014 from FCT, funded by the National Budget of the Ministry of Education and 487 

Science of Portugal and by the European Social Fund. The authors thank Anabela Isidoro, Vasco 488 

Medeiros, João Luis Pacheco and the overall institutional support from the DRRF - "Direção Regional 489 

de Recursos Florestais". 490 

 491 

 492 

REFERENCES 493 

 494 

Alves, C., Pinteus, S., Horta, A., & Pedrosa, R. (2016). High cytotoxicity and anti-proliferative activity 495 

of algae extracts on an in vitro model of human hepatocellular carcinoma. SpringerPlus, 5. 1339  496 

Anderson, L. W. J. (2007). Control of invasive seaweeds. Botanica Marina, 50, 418–437.  497 

Andréfouët, S., Zubia, M., & Payri, C. (2004). Mapping and biomass estimation of the invasive brown 498 

algae Turbinaria ornata (Turner) J. Agardh and Sargassum mangarevense (Grunow) Setchell on 499 

heterogeneous Tahitian coral reefs using 4-meter resolution IKONOS satellite data. Coral Reefs, 500 

23, 26–38.  501 

Balmford, A., Bennun, L., Brink, B., Cooper, D., Côté, I. M., Crane, P., … Walther, B. A. (1973). 502 

Seaweeds: Their productivity and strategy for growth. Science, 182, 14–16. 503 

Beaumont, N. J., Austen, M. C., Mangi, S. C., & Townsend, M. (2008). Economic valuation for the 504 

conservation of marine biodiversity. Marine Pollution Bulletin, 56, 386–396.  505 



 

17 
 

Bennion, M., Fisher, J., Yesson, C., & Brodie, J. (2019). Remote Sensing of Kelp (Laminariales, 506 

Ochrophyta): Monitoring Tools and Implications for Wild Harvesting. Reviews in Fisheries 507 

Science & Aquaculture, 27, 127-141. 508 

Benz, U.C. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-509 

ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58, 239– 258. 510 

Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of 511 

Photogrammetry and Remote Sensing, 65, 2-16. 512 

Borg, A., Pihl, L., & Wennhage, H. (1997). Habitat choice by juvenile cod ( Gadus morhua L .) on 513 

sandy soit bottoms with different vegetation types. Helgoländer Meeresuntersuchungen, 51, 514 

197–212. 515 

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.  516 

Brodie, J., Andersen, R. A., Kawachi, M., & Millar, A. J. K. (2009). Endangered algal species and how 517 

to protect them. Phycologia, 48, 423–438.  518 

Brodie, J., Ash, L. V., Tittley, I., & Yesson, C. (2018). A comparison of multispectral aerial and satellite 519 

imagery for mapping intertidal seaweed communities. Aquatic Conservation: Marine and 520 

Freshwater Ecosystems, 28, 872–881.  521 

Caras, T., Hedley, J., & Karnieli, A. (2017). Implications of sensor design for coral reef detection: 522 

Upscaling ground hyperspectral imagery in spatial and spectral scales. International Journal of 523 

Applied Earth Observation and Geoinformation, 63, 68–77.  524 

Casal, G., Kutser, T., Domínguez-Gómez, J. A., Sánchez-Carnero, N., & Freire, J. (2011). Mapping 525 

benthic macroalgal communities in the coastal zone using CHRIS-PROBA mode 2 images. 526 

Estuarine, Coastal and Shelf Science, 94, 281–290.  527 

Casal, G., Kutser, T., Domínguez-Gómez, J. A., Sánchez-Carnero, N., & Freire, J. (2013). Assessment of 528 

the hyperspectral sensor CASI-2 for macroalgal discrimination on the Ría de Vigo coast (NW 529 

Spain) using field spectroscopy and modelled spectral libraries. Continental Shelf Research, 55, 530 

129–140.  531 

Casal, G., Sánchez-Carnero, N., Sánchez-Rodríguez, E., & Freire, J. (2011). Remote sensing with SPOT-532 

4 for mapping kelp forests in turbid waters on the south European Atlantic shelf. Estuarine, 533 

Coastal and Shelf Science, 91, 371–378.  534 

Chang, C., & Lin, C. (2013). LIBSVM : A Library for Support Vector Machines. ACM Transactions on 535 

Intelligent Systems and Technology (TIST), 2, 1–39.  536 

Cho, H.J., & Lu, D.J. (2010) A water-depth correction algorithm for submerged vegetation spectra. 537 

Remote Sensing Letters, 1, 29-35. 538 

Christie, H., Norderhaug, K. M., & Fredriksen, S. (2009). Macrophytes as habitat for fauna. Marine 539 



 

18 
 

Ecology Progress Series, 396, 221–233.  540 

Congalton, R., & Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data (2nd ed.). Florida: 541 

CRC Press. 542 

Connell, S. D., & Russell, B. D. (2010). The direct effects of increasing CO2 and temperature on non-543 

calcifying organisms: increasing the potential for phase shifts in kelp forests. Proceedings of the 544 

Royal Society B: Biological Sciences, 277, 1409–1415.  545 

Cortes, C., & Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20, 273-297.  546 

Dayton, P. K. (1985). Ecology of kelp communities. Annual Review of Ecology and Systematics, 16, 547 

212–245. 548 

Dierssen, H. M., Chlus, A., & Russell, B. (2015). Hyperspectral discrimination of floating mats of 549 

seagrass wrack and the macroalgae Sargassum in coastal waters of Greater Florida Bay using 550 

airborne remote sensing. Remote Sensing of Environment, 167, 247–258.  551 

DJI forum. (2016). https://forum.dji.com/thread-48223-1-1.html/ [14 May 2018] 552 

Duffy, E., & Hay, M. E. (1991). Food and shelter as determinants of food choice by an herbivorous 553 

marine amphipod. Ecology, 72, 1286–1298. 554 

Efron, B., & Tibshirani, R. (1997). Improvements on cross-validation: The .632+ bootstrap method. 555 

Journal of the American Statistical Association, 92, 548–560.  556 

Ettritch, G., Bunting, P., Jones, G. & Hardy, A. (2018). Monitoring the coastal zone using earth 557 

 observation: application of linear spectral unmixing to coastal dune systems in Wales. Remote 558 

Sensing in Ecology and Conservation, 4, 303-319. 559 

Govender, M., Chetty, K., & Bulcock, H. (2007). A review of hyperspectral remote sensing and its 560 

application in vegetation and water resource studies. Water SA, 33, 145–151.  561 

Guerra-García, J. M., Ros, M., Izquierdo, D., & Soler-Hurtado, M. M. (2012). The invasive 562 

Asparagopsis armata versus the native Corallina elongata: Differences in associated peracarid 563 

assemblages. Journal of Experimental Marine Biology and Ecology, 416–417, 121–128.  564 

Hammond, T. O., & Verbyla, D. L. (1996). Optimistic bias in classification accuracy assessment. 565 

International Journal of Remote Sensing, 17, 1261–1266.  566 

Hansen, L. K., & Salamon, P. (1990). Neural Network Ensembles. IEEE Transactions on Pattern 567 

Analysis and Machine Intelligence, 12, 993–1001.  568 

Harley, C. D. G., Anderson, K. M., Demes, K. W., Jorve, J. P., Kordas, R. L., Coyle, T. A., & Graham, M. 569 

H. (2012). Efects Of Climate Change On Global Seaweed Communities. Journal of Phycology, 48, 570 

1064–1078.  571 

Hastie, T., Tibshirani, R. J., & Friedman, J. H. (2016). Model Assessment and Selection. In The 572 

Elements of Statistical Learning (2nd ed.). New York: Springer. 573 



 

19 
 

Hijmans, R. J. (2017). raster: Geographic Data Analysis and Modeling. R package version 2.6-7. 574 

https://CRAN.R-project.org/package=raster. 575 

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions 576 

on Pattern Analysis and Machine Intelligence, 20, 832–844.  577 

Hoang, T. C., O’Leary, M. J., & Fotedar, R. K. (2016). Remote-Sensed Mapping of Sargassum spp. 578 

Distribution around Rottnest Island, Western Australia, Using High-Spatial Resolution 579 

WorldView-2 Satellite Data. Journal of Coastal Research, 322, 1310–1321.  580 

Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed : functional food applications and 581 

legislation. Journal of Applied Phycology, 23, 543–597.  582 

Horridge, G. A. (1951). Occurrence of Asparagopsis armata Harv. on the Scilly Isles. Nature, 167, 583 

732–733.  584 

Hsu, C., & Lin, C. (2002). A comparison of methods for multiclass support vector machines. Neural 585 

Networks, IEEE Transactions on Neural Networks, 13, 415–425. 586 

Hu, C.M., Feng, L., Hardy, R.F. & Hochberg, E.J. (2015). Spectral and spatial requirements of remote 587 

 measurements of pelagic Sargassum macroalgae. Remote Sensing of Environment, 167,  229-588 

246.  589 

Ince, R., Hyndes, G. A., Lavery, P. S., & Vanderklift, M. A. (2007). Marine macrophytes directly 590 

enhance abundances of sandy beach fauna through provision of food and habitat. Estuarine, 591 

Coastal and Shelf Science, 74, 77–86.  592 

Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 69, 373–593 

386.  594 

Koch, M., Bowes, G., Ross, C., & Zhang, X. H. (2013). Climate change and ocean acidification effects 595 

on seagrasses and marine macroalgae. Global Change Biology, 19, 103–132.  596 

Koh, L. P., & Wich, S. A. (2012). Dawn of drone ecology: low-cost autonomous aerial vehicles for 597 

conservation. Tropical Conservation Science, 5, 121–132.  598 

Kraan, S., & Barrington, K. A. (2005). Commercial farming of Asparagopsis armata 599 

(Bonnemaisoniceae, Rhodophyta) in Ireland, maintenance of an introduced species? Journal of 600 

Applied Phycology, 17, 103–110. 601 

Krogh, A., & Hertz, J. A. (1992). A Simple Weight Decay Can Improve Generalization. Advances in 602 

Neural Information Processing Systems, 4, 950–957.  603 

Kuhn, M. 2018. caret: Classification and Regression Training. R package version 6.0-79. 604 

https://CRAN.R-project.org/package=caret. 605 

Kutser, T., Vahtmäe, E., & Martin, G. (2006). Assessing suitability of multispectral satellites for 606 

mapping benthic macroalgal cover in turbid coastal waters by means of model simulations. 607 



 

20 
 

Estuarine, Coastal and Shelf Science, 67, 521–529.  608 

Lozano, I., Devoy, R. J. N., May, W., & Andersen, U. (2004). Storminess and vulnerability along the 609 

Atlantic coastlines of Europe: Analysis of storm records and of a greenhouse gases induced 610 

climate scenario. Marine Geology, 210, 205–225. 611 

Lu, D.J., & Cho, H.J. (2011) An improved water-depth correction algorithm for seagrass mapping 612 

using hyperspectral data. Remote Sensing Letters, 2, 91-97.  613 

Macartain, P., Gill, C. I. R., Brooks, M., Campbell, R., & Rowland, I. R. (2007). Nutritional Value of 614 

Edible Seaweeds. Nutrition Reviews, 65, 535–543.  615 

McConnell, O., & Fenical, W. (1977). Halogen chemistry of the red alga Asparagopsis. 616 

Phytochemistry, 16, 367–374. 617 

Millard, K., & Richardson, M. (2015). On the importance of training data sample selection in Random 618 

Forest image classification: A case study in peatland ecosystem mapping. Remote Sensing, 7, 619 

8489–8515.  620 

Mineur, F., Davies, A. J., Maggs, C. A., Verlaque, M., & Johnson, M. P. (2010). Fronts, jumps and 621 

secondary introductions suggested as different invasion patterns in marine species, with an 622 

increase in spread rates over time. Proceedings of the Royal Society B: Biological Sciences, 277, 623 

2693–2701.  624 

Mount, R. (2005). Acquisition of Through-water Aerial Survey Images : Surface Effects and the 625 

Prediction of Sun Glitter and Subsurface Illumination. Photogrammetric Engineering & Remote 626 

Sensing, 71, 1407–1415. 627 

Movia, A., Beinat, A., & Crosilla, F. (2016). Shadow detection and removal in RGB VHR images for 628 

land use unsupervised classification. ISPRS Journal of Photogrammetry and Remote Sensing, 629 

119, 485–495.  630 

Mumby, P. J., Green, E. P., Edwards, A. J., & Clark, C. D. (1999). The cost-effectiveness of remote 631 

sensing for tropical coastal resources assessment and management. Journal of Environmental 632 

Management, 55, 157–166.  633 

Oppelt, N., Schulze, F., Bartsch, I., Doernhoefer, K., & Eisenhardt, I. (2012). Hyperspectral 634 

classification approaches for intertidal macroalgae habitat mapping : a case study in 635 

Heligoland. Optical Engineering, 51, 111703. 636 

Pacios, I., Guerra-García, J. M., Baeza-Rojano, E., & Cabezas, M. P. (2011). The non-native seaweed 637 

Asparagopsis armata supports a diverse crustacean assemblage. Marine Environmental 638 

Research, 71, 275–282.  639 

Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small drones 640 

for community-based forest monitoring: An assessment of their feasibility and potential in 641 



 

21 
 

tropical areas. Forests, 5, 1481–1507.  642 

Pasko, S., & Goldberg, J. (2014). Review of harvest incentives to control invasive species. 643 

Management of Biological Invasions, 5, 263–277.  644 

Paul, N. A., De Nys, R., & Steinberg, P. D. (2006). Seaweed-herbivore interactions at a small scale: 645 

Direct tests of feeding deterrence by filamentous algae. Marine Ecology Progress Series, 323, 646 

1–9.  647 

Pesando, D., & Caram, B. (1984). Screening of marine algae from the French Mediterranean coast for 648 

antibacterial and antifungal activity. Botanica Marina, 27, 381–386. 649 

Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: 650 

Complexity, overfitting and evaluation. Journal of Biogeography, 41, 629–643.  651 

Salvador, N., Gómez Garreta, A., Lavelli, L., & Ribera, M. A. (2007). Antimicrobial activity of Iberian 652 

macroalgae. Scientia Marina, 71, 101–114.  653 

Schaffelke, B., & Hewitt, C. L. (2007). Impacts of introduced seaweeds. Botanica Marina, 50, 397–654 

417.  655 

Schaffelke, B., Smith, J. E., & Hewitt, C. L. (2006). Introduced macroalgae - A growing concern. 656 

Journal of Applied Phycology, 18, 529–541.  657 

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural Networks, 61, 85–658 

117.  659 

Silva, T. S. F., Costa, M. P. F., Melack, J. M., & Novo, E. M. L. M. (2008). Remote sensing of aquatic 660 

vegetation: theory and applications. Environmental Monitoring and Assessment, 140, 131–145. 661 

Simkanin, C., Power, A., Myers, A., McGrath, D., Southward, A., Mieszkowska, N., … O’Riordan, R. 662 

(2005). Using historical data to detect temporal changes in the abundances of intertidal species 663 

on Irish shores. Journal of the Marine Biological Association of the United Kingdom, 85, 1329–664 

1340.  665 

Smale, D. A., Burrows, M. T., Moore, P., O’Connor, N., & Hawkins, S. J. (2013). Threats and 666 

knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic 667 

perspective. Ecology and Evolution, 3, 4016–4038. 668 

Smit, A. J. (2004). Medicinal and pharmaceutical uses of seaweed natural products: A review. Journal 669 

of Applied Phycology, 16, 245-262. 670 

Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. 671 

Remote Sensing of Environment, 62, 77–89.  672 

Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., & Tegner, M. J. 673 

(2002). Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environmental 674 

Conservation, 29, 436–459.  675 



 

22 
 

Story, M., & Congalton, R. G. (1986). Accuracy assessment: a user’s perspective. Photogrammetric 676 

Engineering & Remote Sensing, 52, 397–399.  677 

Streftaris, N., & Zenetos, A. (2006). Alien marine species in the Mediterranean - the 100 ‘worst 678 

invasives’ and their impact. Mediterranean Marine Science, 7, 87–118.  679 

Vahtmae, E., & Kutser, T. (2007). Mapping Bottom Type and Water Depth in Shallow Coastal Waters 680 

with Satellite Remote Sensing. Journal of Coastal Research, 2007, 185–189. 681 

Vahtmäe, E., Kutser, T., Kotta, J., Pärnoja, M., Möller, T., & Lennuk, L. (2012). Mapping Baltic Sea 682 

Shallow Water Environments with Airborne Remote Sensing. Oceanology, 52, 803–809.  683 

Ventura, D., Bonifazi, A., Gravina, M. F., & Ardizzone, G. D. (2017). Unmanned Aerial Systems (UASs) 684 

for Environmental Monitoring: A Review with Applications in Coastal Habitats. In Aerial Robots 685 

- Aerodynamics, Control and Applications. InTechOpen. 686 

Ventura, D., Bruno, M., Jona Lasinio, G., Belluscio, A., & Ardizzone, G. (2016). A low-cost drone based 687 

application for identifying and mapping of coastal fish nursery grounds. Estuarine, Coastal and 688 

Shelf Science, 171, 85–98.  689 

Visser, F., Buis, K., Verschoren, V., & Meire, P. (2015) Depth Estimation of Submerged Aquatic 690 

Vegetation in Clear Water Streams Using Low-Altitude Optical Remote Sensing. Sensors, 15, 691 

25287-25312. 692 

Wallenstein, F. F. M. M., & Neto, A. I. (2006). Intertidal rocky shore biotopes of the Azores: A 693 

quantitative approach. Helgoland Marine Research, 60, 196–206.  694 

Weather2 Ltd. 2018. http://www.myweather2.com/Holiday-Destinations/Azores-Islands/Ponta-695 

Delgada/climate-profile.aspx?month=6/ [10 May 2018] 696 

Werdell, P. J., & Roesler, C. S. (2003). Remote assessment of benthic substrate composition in 697 

shallow waters using multispectral reflectance. Limnology and Oceanography, 48, 557–567.  698 

Williams, S. L., & Smith, J. E. (2007). A Global Review of the Distribution, Taxonomy, and Impacts of 699 

Introduced Seaweeds. Annual Review of Ecology, Evolution, and Systematics, 38, 327–359.  700 

Witten, I. H., & Frank, E. (2005). Credibility: Evaluating what’s been learned. In Data Mining: Practical 701 

Machine Learning Tools and Techniques (2nd ed., pp. 143–185). San Fransisco: Elsevier. 702 

Yesson, C., Bush, L. E., Davies, A. J., Maggs, C. A., & Brodie, J. (2015). Large brown seaweeds of the 703 

british isles: Evidence of changes in abundance over four decades. Estuarine, Coastal and Shelf 704 

Science, 155, 167–175.  705 

Zemke-White, W. L., & Ohno, M. (1999). World seaweed utilisation: An end-of-century summary. 706 

Journal of Applied Phycology, 11, 369–376.  707 

Zoffoli, M.L., Frouin, R. & Kampel, M. (2014). Water Column Correction for Coral Reef Studies by 708 

 Remote Sensing. Sensors, 14(9), 16881-16931. 709 



 

23 
 

 710 

 711 

 712 

TABLES AND FIGURES 713 

 714 

TABLE 1  715 

Description and data source of classes used in classification 716 

 717 

 718 

 719 

TABLE 2 720 

Parameter combinations tested with five-fold cross validation for SVM and ANN, and 0.632+ 721 

bootstrapping for RF 722 

   SVM                      RF                 ANN 
 

Gamma 
 

Cost 
 

Trees 
 

Features 
 

Neurons 
 

Weight decay 

 

 
 

2-13 - 2-12 -...- 23 

 

 
 

 

2-6 - 2-5 -…- 213 
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0.5 

 723 

TABLE 3 724 

Flight specifications for the Caloura, Mosteiros and Lagoa study sites 725 

 Caloura Lagoa Mosteiros 

Target altitude (m) 114 114 114 

Target resolution (cm/pixel) 4.93 4.93 4.93 

Total area (km2) 0.247 0.251 0.197 

Images 335 314 204 

Class                                           Description                                                               Source 

A. armata A. armata in its reddish state Ground-truth 

A. taxiformis Reddish A. taxiformis  Ground-truth 

Brown Brown seaweeds and decaying A. taxiformis in a brownish state Ground-truth 

Deep Deep samples (>5m) and white substrate (white rock and Corallina) Ground-truth 

Green Green seaweeds and the yellowish Cystoseira abies-marina  Photointerpretation 

Black rock Black basalt rock Photointerpretation 

Sand White sand Photointerpretation 
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GCPs 4 4 4 

 726 

TABLE 4 727 

Ground-truth sample size for each target and depth range  728 

Target Shallow (0-5m) Deep (>5m) 

A. armata 10 - 

A. taxiformis (healthy) 9 - 

A. taxiformis 
(decaying) 

8 - 

Brown seaweeds 6 2 

White substrate 8 2 

 729 

TABLE 5 730 

Classification sample sizes as pixels and circles (ground-truth classes only) 731 

Class Pixels Circles 

A. armata 4940 8 

A. taxiformis 5928 9 

Brown 8279 14 

Green 6138 - 

Sand 6538 - 

Black rock 6162 - 

Deep 5133 12 

 732 

TABLE 6 733 

Kappa statistics and optimal parameters obtained through five-fold cross validation for SVM and 734 

ANN, and 0.632+ bootstrapping for RF 735 

 736 

 737 

 738 

TABLE 7 739 

Contingency matrix for ANN tested on the whole training dataset 740 

Kappa (%)    SVM                 RF             ANN 
 

Mean ± SD 
 

  0.998 ± 6.42e-4 
 

   0.998 ± 4.27e-4 
 

         0.983 ± 4.91e-3 
 

Parameters 
 

Gamma 
 

Cost 
 

Trees 
 

Features 
  

  Neurons 
 

Weight decay 
 

Value 
    

    8 
        

         8192  
   

  500 
 

        2 
 

         5 
       

       0.1 
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A
ct

ua
l c

la
ss

 Predicted class Producer 

accuracy (%) 

 A. 

armata  

A. taxiformis Brown Green Deep Sand Black 

rock 

 

A. armata 4751 0 0 0 0 0 189 0.96 

A. 

taxiformis 

0 5814 114 0 0 0 0 0.98 

Brown 0 0 8279 0 0 0 0 1 

Green 22 0 0 6110 0 0 6 0.99 

Deep 0 0 0 0 5133 0 0 1 

Sand 0 0 0 0 0 6538 0 1 

Black rock 5 0 243 0 0 0 5914 0.95 

User accuracy (%) 

 

 

0.99 1 0.95 1 1 

 

 

1 0.96 Total accuracy  

0.98 % 

TABLE 8 741 

Class proportions per location as predicted by RF, ANN and SVM. Total area refers to non-masked area 742 

estimated with the S.1 formula. 743 

RF A. armata A. taxiformis Brown Green Deep Sand Black rock Total area (km2) 

Caloura <0.001 0.097 0.097 0.054 0.434 0.202 0.097 0.160 

Lagoa 0.009 0.240 0.073 0.073 0.319 0.103 0.174 0.106 

Mosteiros 0.445 0.046 0.012 0.098 0.023 0.049 0.319 0.126 

ANN         

Caloura 0.002 0.099 0.236 0.073 0.434 0.013 0.063 0.160 

Lagoa 0.049 0.239 0.115 0.166 0.319 0.066 0.045 0.106 

Mosteiros 0.382 0.040 0.031 0.389 0.023 0.019 0.118 0.126 

SVM         

Caloura <0.001 0.087 0.065 0.348 0.35 <0.001 0.132 0.160 

Lagoa 0.002 0.170 0.038 0.280 0.305 0.047 0.148 0.106 

Mosteiros 0.142 0.010 0.002 0.620 0.011 0.007 0.200 0.126 

 744 

  745 
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FIGURE 1 Location of the Azores, São Miguel and study sites: Mosteiros, Lagoa and Caloura (Europe 746 

coastline data, European Environment Agency, https://www.eea.europa.eu) 747 

 748 

  749 
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FIGURE 2. Original (left) and masked (right) versions of the Caloura photomosaic 750 

 751 

  752 
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FIGURE 3 Aerial and underwater (top right) view of A. armata samples in Mosteiros 753 

 754 
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FIGURE 4 Mean (dot) and standard deviation (line) of RGB values per class 756 
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FIGURE 5 Original masked image (above) and ANN model projection (below) for Lagoa 759 
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FIGURE 6 Class proportions predicted by ANN, RF and SVM in Lagoa. The numbers within the bars 762 

display area (m2), estimated with the S.1 formula (supplementary information) 763 

 764 

765 

766 

 767 


