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Abstract

Many collections of documents, manuscripts, and works of art on paper are prone to

degradation due to a complex interplay of extrinsic and intrinsic factors. The aim of this study

was to examine the simultaneous effect of multiple degradation agents on selected non-model

types of paper in natural environments, and the relative effect of environmental parameters

(heat, humidity, light and pollution) compared to material parameters (pH, fibre composition

and presence of additives). An exposure experiment was set up to investigate visual and

chemical changes of 12 different types of paper in real time in different environmental

conditions over a 1.5-year period at 11 sites across Europe and North Africa, sheltered from

UV light and precipitation. Suitable environmental monitoring equipment, such as data

loggers and gas samplers, and analytical methods to characterise sample degradation,

specifically spectrocolorimetry and capillary viscometry, were used to estimate alterations in

visual appearance and degree of cellulose polymerisation, which are the most important

properties of paper in the heritage context. Multiple linear regression and principal

component regression were used to interpret the large volume of data and calculate a set of

dose-response functions. The results of this study not only suggested that most of the

considered variables are of significance in relation to changes in colour and in average

molecular weight, but also revealed a number of meaningful interactions between these

variables. Based on the assessment of the relative contributions of environmental and

material-related variables to the natural ageing processes of paper, the dose-response

functions proposed in this study enable prioritisation of degradation factors in environmental

management of paper-based collections and in historic paper degradation studies; however,

further work is required to increase accuracy and understanding of the chemistry of

degradation.
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1 Introduction

1.1 The problem of paper degradation

Paper is the longest-established tangible medium of information, but is also a material

inherently susceptible to decay. In the presence of moisture, acids from the environment

(derived from air pollution or poor-quality storage materials) or from within the paper

(originated from the raw materials, manufacturing process and degradation products) cause

chain scission of cellulose. In a typical western archive, library or museum environment, a

high percentage of historic documents and works of art made of paper are known to be acidic

and therefore prone to degradation via the acid-catalysed hydrolysis process, which, in the

long term, may limit their mechanical usability and fitness for display [1]. Beside acid

hydrolysis, paper is susceptible to photolytic and oxidative degradation. For this reason,

collections of documents, manuscripts, and works of art on paper, such as watercolour

paintings, prints, drawings and posters in heritage institutions need to be preserved. The rate

and severity of deterioration, as is well known, is the result of internal and external factors,

most importantly the chemical properties of paper and the environmental conditions in which

the paper is stored [2-5]. Although there are many agents affecting paper degradation during

long-term storage and display, they are not all equally damaging or unavoidable. For

instance, exposure to light, which can discolour and weaken paper, may be minimised or

avoided relatively easily. Pollutants, mainly nitrogen oxides from industrial exhausts, traffic

emissions and heating sources, are readily absorbed into paper and may form compounds

detrimental to its stability; however, nitrogen dioxide (and to a lesser extent acetic acid) has

been shown to affect display lifetimes only in significantly polluted environments, such as

those currently found in some rapidly developing economies or in specific

microenvironments [6], making the need for chemical air filtration in typical library and

archive repositories debatable [7]. Paper composition, acidity probably being the most
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important parameter, can only be controlled via conservation interventions, e.g.

deacidification treatments, that may require financial resources and lead to ethical risks.

Moreover, an often-overlooked issue is that some of those degradation factors can have

synergistic or antagonistic effects.

1.2 Strategies for collections care

The study and mitigation of degradation processes in paper artefacts is challenging due to the

high variability in chemical properties of the material (for example, papers with different

content of lignin and different sizing react differently) and to the potential synergistic effects

of environmental agents of degradation. Because active treatments may not be sufficient to

address the scale of the problem and may cause loss of value, preventive conservation, which

aims at reducing the rate of natural ageing by controlling the surrounding environment,

becomes the preferred option by conservators of historic paper collections. Knowledge and

prioritisation of environmental variables leading to the decay of paper objects are essential to

develop suitable preservation strategies for archive, library and museum collections and

would allow collection managers to evaluate investments into different environmental control

options. Furthermore, the control of environmental effects on paper degradation is relevant

not only to the curator and the scientist, but to the user above all.

1.3 Aim of the research

Despite the numerous studies of paper degradation, general dose-response functions taking

into account all of the most important environmental agents of deterioration are still absent.

Only with such functions, which describe the rate of change of a material property depending

on the selected environmental variables, it will be possible to assess and model, for example,

which environmental parameters are more important to control than others and which types
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of paper are more susceptible to particular agents of deterioration. Among the many agents of

deterioration, temperature, relative humidity, light, pollution and paper composition have

been extensively researched [8] and damage functions focusing only on a selection of the

most important environmental variables and materials have been established [9-11].

However, the susceptibility of individual types of historic papers to those agents of

deterioration has never been expressed in the form of comprehensive dose-response

functions. The scope of this research was therefore to obtain quantitative data on the effects

of physical and chemical variables on the degradation of selected types of paper; this data

was then processed with advanced statistical methods to develop dose-response functions,

based on which environmental management in paper-based collections could be improved to

minimise degradation while optimising resource use.

1.4 Approach to the investigation

During long-term storage and display of historic paper documents and works of art at

moderate environmental conditions, it is often difficult to assume which environmental agent

would have the most decisive influence on the overall behaviour of the material and bring

most conservation benefits if controlled. In such instances, investigation of material

degradation is experimentally demanding. If no single environmental agent prevails, the

number of experimental runs should then be effectively reduced using the principles of

statistical experimental design, as was shown in a similar study of degradation of synthetic

polymers [12]. In that research, the variables of interest, i.e. temperature, humidity, visible

light and typical outdoor-generated primary pollutants, were many, but the number of

degradation experiments was reduced significantly, whilst still allowing for effective

evaluation of interactions between environmental factors. While the usual method of

accelerated degradation in a climate chamber would not allow for all the relevant agents of
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deterioration to be varied, moderate acceleration of degradation could be achieved by

exposing samples to the external environment, with only reasonably exaggerated levels of

many environmental variables. In this type of experiments, care needs to be taken that

variables that are not relevant indoors are excluded, particularly contact with water and

ultraviolet (UV) radiation. Such conditions can be easily achieved in sheltered environments,

i.e. well protected from rainfall and direct or reflected sunlight (including UV radiation).

However, because environmental variables cannot be controlled, they need to be

continuously monitored.

Since the most important properties of paper are those related to its readability and physical

usability, specifically visual appearance and mechanical strength, a set of analytical

techniques that make it possible to measure changes in these properties were chosen. To

determine the alterations in visual properties (i.e. discolouration) of paper, the CIE L*a*b*

system, which takes into account the “standard human eye response”, was used; as yellowing

often characterises paper ageing, b* was used to evaluate changes in colour. Mechanical

properties are affected by the acid hydrolysis and oxidative reactions in the cellulose linear

homopolymer [2]. The scission of intramolecular bonds results in shorter cellulose chains (as

well as in lower paper strength) and leads to a decrease in average molecular weight, which

represents the number of monomers in a cellulose polymer (i.e. degree of polymerisation or

DP) and can be measured in several ways; in this study, viscometry was used to obtain the

viscometric average DP.

2 Materials and methods

2.1 Selection and preparation of samples

Several types of naturally aged papers were chosen, all representative of materials found in

historic paper collections and archives. The selected samples (Tab. 1) were well characterised
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nineteenth to twenty-first century papers containing different pulps (i.e. chemical or bleached

pulp, obtained by degrading the lignin into water-soluble molecules which can easily be

washed away from the cellulose fibres, and mechanical pulp or groundwood, obtained by

physically tearing the cellulose fibres one from another, thus retaining much of the lignin

adherent to the fibres) and different sizes or additives, and had been previously studied within

the EU FP6 SurveNIR project (SSPI 006594). Additionally, Whatman filter paper (from GE

Healthcare Life Sciences, Little Chalfont, UK) made from purified cotton linters cellulose,

with no sizing or additives of any kind, was selected as a reference material. Small pieces

(some ~ 10 cm × 2 cm and some ~ 4 cm × 4 cm) of the samples listed in Tab. 1 were stapled

to a hard polyethylene sheet. This operation was repeated for each of the eight planned

exposure period and for each of the 11 exposure sites, producing 88 sample frames in total.

The plastic frames (eight for each exposure site) were then vertically hung off a stainless steel

wire mesh, protected from three sides with sheets of polyethylene. Three sides were open,

allowing for free air circulation (Fig. 1).
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Table 1. List of paper samples, with year of production and compositional data, used in the

study.

No. EU FP6
SurveNIR
code

Year pH Fibre composition (%) Rosin-
based
size

Optical
brighteners

Groundwood Cellulose Cotton

1 376 1928 5.8 100 Yes No

2 395 1915 5.4 30 70 Yes No

3 567 1906 4.8 5 95 Yes No

4 688 1894 5.9 80 20 Yes No

5 775 1942 7.6 10 10 80 Yes No

6 1002 1935 6.1 100 Yes No

7 2004 1993 7.7 100 Yes Yes

8 2042 2001 8 100 No Yes

9 2141 1964 7.7 100 No Yes

10 379 1918 4.9 90 10 Yes No

11 2009 2003 8 30 40 30 No Yes

12 2031 2002 7.8 15 85 Yes Yes

Figure 1. Typical sample setups, with individual samples attached to hard polyethylene

sheets hanging vertically off a wire mesh and exposed to the environment from three sides.
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2.2 Selection of exposure environments

The selection of exposure sites was guided by availability and variability. The list of sites in

Tab. 2 shows that the choice was guided by presumed variations in the levels of temperature,

relative humidity, light intensity and pollution. Additional details about the exposure sites are

discussed elsewhere [12]. The outdoor exposure sites were always very well protected by

overhangs or other structures, so that there was no direct or reflected sunlight with the

associated UV radiation, which had to be avoided as it is normally not present in archives and

other paper collection environments (the absence of UV radiation was verified by preliminary

radiometric tests). Each exposure experiment lasted from 6 months to up to 1.5 years.

Table 2. List of exposure sites and their presumed environmental characteristics: ‘−1’ - low; 

‘0’ - medium; ‘1’ - high level of heat, humidity, light or pollution.

Reference Location Description Heat Humidity Light Pollution

BB Bilbao, ES Suburban, external 0 0 1 1

CA Cairo, EG Suburban, internal 1 −1 0 1

FI Florence, IT Urban, external 1 1 1 1

LJ1 Ljubljana, SI Suburban, external −1 1 −1 −1

LJ2 Ljubljana, SI Suburban, external 1 1 1 −1

LJ3 Ljubljana, SI Suburban, internal 1 0 −1 0

LO1 London, UK Suburban, external 0 1 0 −1

LO2 London, UK Reference 1 −1 −1 −1

LO3 London, UK Urban, external 0 1 0 1

MT Zurrieq, MT Rural, external 1 1 1 1

RO Rome, IT Urban, external 1 0 1 1



12
Published in Polymer Degradation and Stability 168 (2019) 108944

2.3 Environmental monitoring

Physical environmental variables, i.e. temperature (T), relative humidity (RH) and visible

light illuminance (Ev), were monitored in 30-min intervals with Onset (Cape Cod, MA)

HOBO U12 data loggers for the duration of the experiments. The loggers were exposed in the

immediate vicinity to the samples (Fig. 1). The concentrations of traffic-generated pollutants,

i.e. nitrogen dioxide (NO2) and ozone (O3), were monitored on a regular basis using Gradko

(Winchester, UK) passive samplers DIF 500 RTU for NO2 and DIF 300 RTU for O3. Sulfur

dioxide (SO2) concentrations were not monitored, since in post-industrial environments the

concentrations of this pollutant are generally very low and in most of the environments used

in this research do not exceed the value of 1 ppb [12], which is commonly the value

considered safe for paper collections according to several standards and guidelines [7]. The

tubes were exposed next to the samples (Fig. 1) for 4 weeks per monitoring period; the

monitoring periods coincided with the first 4 weeks of what was normally a 3-month sample

exposure period, and it was assumed that the obtained concentrations were representative of

the pollutants concentrations in the respective exposure period as a whole.

2.4 Sampling

The samples were sent from the exposure site to the Heritage Science Laboratory at UCL

Institute for Sustainable Heritage, London. The day and time of collection marked the end of

the exposure period, after which the samples travelled in unknown conditions (the travel time

was typically up to three days using international couriers and hence insignificant relative to

the overall duration of the experiment) and were stored at 4 oC for several weeks, until the

day before analysis. The measurements were done at laboratory conditions. The start and the

end of each individual period of exposure were recorded so that the exact duration could be

calculated, and the analytical results could be normalised to the length of the exposure period.
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Similarly, average values of T (oC), RH (%), Ev/d (daily illuminance, lx/day), cNO2 (ppb) and

cO3 (ppb) were calculated for the corresponding period of exposure only. Due to loss of

devices or samples during shipment, or due to malfunctioning loggers, the collection of data

was suboptimal.

2.5 Colour measurements

Colour of the samples was measured using the CIE 1976 L*a*b* colour space [13] with an

X-Rite (Poynton, UK) 500 Series portable spectrodensitometer, and because changes in the

yellow-blue coordinate b* are mostly due to chemical factors, e.g. presence of groundwood

or optical brighteners in the paper composition, Δb* [14] was calculated. Each colour 

measurement was performed on a non-printed area, after brushing the sample to remove any

deposited particulates. Three measurements were taken and the averages were used for data

analysis. The measurements were repeatable to ±0.1 units.

2.6 Degree of polymerisation measurements

Degree of polymerisation (DP) of the samples was measured using capillary viscometry.

Since DP measurements could not be carried out on lignin-containing paper, as lignin is

insoluble in cupriethylenediamine (CED, i.e. the solvent used in viscometric determination of

DP), only DP values of non-groundwood paper were calculated. A 20±1 mg fragment from

each alkaline paper sample and a 30±1 mg fragment from each acidic paper sample were

produced for viscometry measurements and the exact mass of each fragment was recorded.

Each fragment was transferred into a 50 mL glass flask without prior manual shredding, and a

small number of copper wires and 10 mL of deionised water were added before sealing the

flask tightly. The flasks were then shaken until the samples were homogeneously dispersed.

Afterwards, 10 mL of CED (1 mol/L) was added to each sample, flushing the flask with
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nitrogen before sealing it tightly again. The flasks were placed in a thermostatic chamber at a

temperature of 25±0.1 °C for at least 20 min. Four measurements were taken per sample,

recording the flowing time of the solution between two reference lines on a glass capillary

viscometer. A reference sample (i.e. one glass flask containing a solution of 20 mL of

deionised water and 20 mL of CED) was used during the analytical process. Mass and time

data for each sample were used for calculation of DP. All the measurement materials were

thoroughly cleaned with deionised water, 2-propanol and diluted hydrochloric acid before

every analytical sessions.

2.7 Data evaluation

After detecting and removing inaccurate records from the collection of observations, e.g.

colour measurements influenced by the presence of dirt, and time measurements affected by

random errors, data was divided into two sets: the first set (dataset 1) was used to determine

changes in colour (yellowing rate, Δb*/t) and included 72 observations (27 containing optical 

brighteners and 45 without optical brighteners), the second one (dataset 2) was used to

determine changes in mechanical properties (rate of change in degree of polymerisation,

Δ(1/DP)/t) and included 127 observations. The independent variables, related to both 

environmental factors (T, RH, Ev/d, cNO2 and cO3) and material characteristics (pH,

groundwood content –GW– and content of optical brighteners –OB–), chosen for this study

are assumed to contain substantial information about paper degradation, as is suggested in

chemical literature relevant to this topic. For instance, temperature is recognised as a crucial

factor for paper chemical degradation [5,15]; additionally, it is likely that considerable

synergistic/antagonistic interactions within environmental variables (e.g. between RH and

other environmental variables), as well as between environmental variables and material

variables (e.g. between cNO2 and GW) exist [8,16-18]. The relationships between independent
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variables and rate of change (either in colour or DP) were statistically examined using a range

of approaches. First of all, a preliminary examination by means of conventional descriptive

statistics made it possible to observe potential linear correlations between any independent

variables in the datasets. This was repeatedly achieved arranging a number of scatter plots,

each of which displayed the correlation between a pair of variables, in a matrix format, i.e.

the scatterplot matrix [19]. Subsequently, the datasets were interpreted using multiple linear

regression (MLR), which uses several independent variables simultaneously to predict one or

more dependent variables, making it possible to develop dose-response functions for future

damage modelling [20]. This method also has the potential to highlight independent variables

with high statistical significance (i.e. characterised by a p-value less than or equal to a chosen

significance level α; in this study α = 0.05 was the selected significance level) and possible 

interactions between such variables. Although MLR is an established method to calculate

predictive models, this technique fails if strong linear correlations exist between the

independent variables (i.e. multicollinearity), which causes unstable (i.e. not precisely

estimated) regression coefficients and inflated standard errors in the models [21,22].

Therefore, to address the problem of multicollinearity, stepwise selection was used to

improve the MLR models, by selecting variables at different steps according to certain

statistical criteria [23], while principal component regression (PCR) was used to cross-

validate MLR models, as it is unaffected by inter-correlated independent variables [24].

Stepwise selection may be applied following two different iterative processes: backward

selection, which works by eliminating variables, and forward selection, which, on the other

hand, works by adding variables [25]. In this study, only backward stepwise selection was

used, starting with an MLR full model, which included all candidate k variables, and then

removing each variable one at a time, to create k new models, each one containing k−1 

variables. By using a comparison criterion, the MLR model that best fitted the population,
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from which the data were sampled, could be identified among all the available models (i.e.

the initial full model and the new models). When the best model was the initial model,

meaning that there was no improvement, then the process could be stopped. On the contrary,

when the best model was one of the models with variable deletion, then this model could be

used as a starting model during the following step in the selection process; this process was

repeated until no improvement could be detected. In this work, the criterion chosen to

compare the models was the Akaike information criterion (AIC), which was first introduced

by Akaike [26] and is commonly used for this purpose. Essentially, as shown in Eq. (1), AIC

offers a relative measure of the information lost when a statistical model is used to analyse

data, evaluating the fitting power of the model [27]:

AIC = 2k − 2ln(L)

(1)

where k indicates the number of variables in the statistical model and L indicates the

maximised value of the likelihood function for the model. In backward stepwise selection,

AIC was calculated for each candidate model, making it possible to retain the best model

characterised by the smallest AIC.

PCR is a multivariate calibration technique that uses the principal components loadings,

generated by means of principal component analysis (PCA), to estimate regression

coefficients. PCR overcomes the problem of model instability caused by multicollinearity, by

calculating the regression coefficients on orthogonally transformed variables (i.e. the

principal components or PCs) [28,29]. Since some PCs only contribute to noise due to the

lack of sufficient variance and are not useful, PCR typically regresses the response on a

limited subset of PCs. Deciding the optimal number of PCs that should be retained in order to

explain a high percentage of the variation in the data, and consequently to provide enough

information, is crucial to guarantee the stability of the obtained model. Among the different
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methods to determine a suitable number of variables, in this study a combination of the scree

plot rule and the Kaiser criterion was used. The scree plot is a graphical display of the total

residual variance of each PC in the dataset, which is used to select the PCs that account for

sufficient variance by observing a particular point, called elbow, separating the “steeper”

region from the “flatter” region of the trend line; all the PCs before that point (i.e. with higher

variance) should be retained, while the other PCs (i.e. with lower variance) should be

considered unnecessary and discarded, although in some cases dropping these PCs might lead

to ignoring important information [24]. The Kaiser criterion is based on retaining all PCs

with variance greater than 1 [30].

3 Results and discussion

3.1 Environmental assessment

Physical environmental variables, i.e. T, RH and Ev, were continuously monitored using data

loggers, while the concentrations of traffic-generated pollutants, i.e. NO2 and O3, were

monitored every three months using passive samplers at the start of each exposure period.

The variability of exposure environments at the eleven sites was previously assessed and

described in great detail by the authors of this work in another study [12], and can be

summarised as follows:

 Variation in temperature: −10 - 50 ºC 

 Variation in relative humidity: 10 - 95%

 Variation in illuminance: 0 - 1.2 × 104 lx

 Max NO2 concentration: 31 ppb

 Max O3 concentration: 60 ppb
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Ranges of environmental values relevant to the two datasets used for this research are

presented in Tab. 3 together with other independent and dependent variables values ranges.

The measured ranges covered the expected range of climate and pollution level in indoor

situations in most museums and archives.

Table 3. Variables contained in colour-change dataset (1) and DP-change dataset (2), and

relative ranges of variable values during the entire period of exposure.

Class of variables contained
in datasets

Variable Values range

Dataset 1 Dataset 2

Environmental explanatory
variables (independent)

Temperature (T) 7.36 - 21.76 °C 7.36 - 28.76 °C

Relative humidity
(RH)

48.57 - 74.24% 37.94 - 73.49%

Daily illuminance
(Ev/d)

0.2 × 104 - 1.60
× 104 lx/day

0.2 × 104 - 1.18
× 104 lx/day

Concentration of NO2

(cNO2)
4.76 - 24.44 ppb 4.75 - 24.44

ppb

Concentration of O3

(cO3)
5.48 - 43.99 ppb 5.48 - 43.99

ppb

Material explanatory
variables (independent)

pH 4.80 - 8.00 4.80 - 8.00

Content of lignin
(GW)

0 - 0.90% -

Content of optical
brighteners (OB)

0 (without) or 1
(with)

-

Response variable
(dependent)

Degradation rate (Δ/t, t 
≈ 3 months) 

−0.04 - 0.06 0 - 4.91 

3.2 Analytical results

Data obtained from regular assessment of the colour of paper samples using

spectrocolorimetry was expressed using the CIE L*a*b* colour space, and the yellow-blue

coordinate b* was measured together with the viscometric average DP for each sample after

each period of exposure. The difference values Δb* and Δ(1/DP) were calculated for each 
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exposure period and normalised to the length of the period. While the decrease of DP was

observed in most of the instances (especially in alkaline paper samples due to the fact that the

average molecular weight of acidic paper samples was already significantly low at the

beginning of the experiment), results suggested that different types of paper yellowed (or

bleached) very differently in the same environmental conditions. As an example, Fig. 2

shows that for contemporary alkaline papers with photo-unstable bleached pulp content, as

well as presence of optical brighteners, yellowness tended to increase, while, on the other

hand, for historic acidic papers with no optical brightener content yellowness tended to

decrease.

Figure 2. Variation of the yellow-blue coordinate b* (left) and DP (right) for two different

types of paper (empty symbols – acidic without optical brighteners; filled symbols – alkaline

with optical brighteners) exposed to two different sites (circles – environment 1; triangles –

environment 2) after 1.5-year and 1-year outdoor exposure respectively.

3.3 Calculation of the dose-response function for colour change

Colour results were used to calculate the rate of yellowing (Δb*/t), which was subsequently 

used for calculation of the dose-response function. As seen in Table 3, the values of

independent variables, both environmental and material, in dataset 1 covered relatively large
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ranges. However, the sample distributions of those variables presented different trends, as

shown by the scatterplot matrix in Fig. 3. Specifically, T and Ev/d were characterised by bell-

shaped, i.e. unimodal, distributions; cNO2, cO3 and pH showed bimodal distributions; the

distribution of RH was nearly uniform; most values of GW were extremely small, i.e. close to

0%. In the same scatterplot matrix, a few linear correlations between some independent

variables can be appreciated, e.g. a negative correlation between T and RH and positive

correlations between RH and Ev/d, between Ev/d and cO3, and between pH and OB. These

linear correlations indicate the presence of multicollinearity in the dataset, which could

represent a major problem for MLR interpretation. In fact, the initial MLR model (i.e. the full

model including all variables) showed p-values greater than 0.05 for all the independent

variables except pH and GW only (Tab. 4). Since the large p-values could be caused by

multicollinearity, backward stepwise variable selection based on AIC was used to analyse the

data further. At the end of the process, a model only including the three material variables

was obtained (Tab. 4). In this new model pH and GW maintained their significance, while

OB was associated with a p-value equal to 0.08, which could be caused by the strong linear

correlation between pH and OB observed previously. According to Porck [31], papers with

and without optical brightener content may be characterised by different major degradation

mechanisms, besides, the former tend to have a higher degradation rate. Supposing that the

effects of the other explanatory variables can change depending on the two different values (0

or 1) of the variable OB, the dataset was divided into two sub-datasets, one identified by the

presence of optical brighteners (sub-dataset OB1) and one by their absence (sub-dataset

OB0), which were analysed separately. In order to verify the previous assumptions and

support further analyses, a new scatterplot matrix, with two colours to show the different data

points from the two sub-datasets, was produced (Fig. 4). As shown by the matrix, significant

differences in average values and regression lines slopes between the two groups of data can
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be observed. In particular, the response values in the OB1 sub-dataset are generally higher

than the ones in the OB0 sub-dataset. Hence, separate variable selection processes were

performed with the two groups of data.

Regarding the OB1 sub-dataset, after using backward stepwise variable selection based on

AIC, the remaining variables in the final MLR model were T, cO3, pH and GW (Tab. 5). This

model indicated that T was characterised by a p-value greater than 0.05, suggesting low

significance. However, it is well known that temperature plays an important role in chemical

degradation of paper [5,15]. Thus, the model was developed further, taking into account

possible interactions between the independent variables, both included and not included in

the model, e.g. between cNO2 and GW [16] and between RH and other variables [17,18],

possibly leading to a more significant involvement of T. After a number of interaction trials

within the model, a new model also including the variables RH and cNO2, and the interactions

between cO3 and pH (cO3*pH), and between cNO2 and GW (cNO2*GW) was obtained (Tab. 5).

Although the p-value of pH resulted much larger than its counterpart in the model without the

interaction terms, the p-value of T resulted much smaller than the previous value and all the

additional variables and interactions also resulted significant. Therefore, this model was

chosen to be the final model for the OB1 sub-dataset and could be expressed using the

following Eq. (2):

ݕ
ୠ∗

 =  α  +  αଵߕ
்  +  αଶߕ

ோு  +  αଷߕ
ேைమ  +  αସߕ

ைయ  + αହߕ
ு  + αߕ

ீௐ

+  αߕ
ைయߕ

ு  +  α଼ߕ
ேைమߕ

ீௐ  +  Є

(2)

where yi
Δb* is the ith response value of the yellowing rate, Χi is the ith observation (which

includes six variables) and Єi is the error term. This model was characterised by a high power

of explanation (R2 = 81%) and led to interesting findings about NO2 and O3. Specifically,

NO2 has positive effects on the degradation rate, meaning that this pollutant could accelerate
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the yellowing process in paper with optical brighteners. In contrast, high concentrations of O3

appear to slow down the yellowing process, possibly because ozone is a powerful oxidant and

may act as a bleaching agent. Regarding the interaction effects of these pollutants,

concentration of NO2 and groundwood content seem to have antagonistic effects, while

concentration of O3 and pH seem to have synergistic effects. These complex interactions may

be explained by assuming the occurrence of different degradation mechanisms competing

with each other. For instance, both high NO2 concentration and high groundwood content

could intensify degradation, but an antagonistic interaction between them could make one

mechanism overcome the other. A similar competition between O3 concentration and pH,

which have opposite effects, could result in analogous outcomes: mechanisms promoted by

high pH could prevail over reactions with O3, decreasing the mitigation effect of the latter.

Interestingly, high temperature and relative humidity seem to slow down the degradation

process, which may contradict previous work based on accelerated and natural degradation

tests [32]. However, as noted by Kolar et al. [33], colour reversion may happen during

periods in darkness; thus, the observed unusual effect of temperature could be a consequence

of two competing processes, yellowing and bleaching, which are differently promoted by

light during exposure and absence of light during night-time, shipping and storage before

colour analysis. Moreover, although the water content of paper promotes mobility of reactive

species that cause paper degradation [5], at RH > 80% the saturation of the material with

water possibly leads to lower diffusion of oxygen [18], decreasing the rate of degradation.

Concerning the OB0 sub-dataset, after using backward stepwise variable selection based on

AIC, the remaining variables in the final MLR model were Ev/d, pH and GW (Tab. 6),

showing evident differences with the OB1 sub-dataset. This model indicated that all variables

were characterised by a high significance. However, since other variables such as T, RH, cNO2

and cO3, as already seen, play important roles in chemical degradation of paper, some
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interactions between the variables included in the obtained model and those variables that are

not included were considered possible. After a number of interaction trials, no significant

result was found. Therefore, the model was chosen to be the final model for the OB0 sub-

dataset and could be expressed using the following Eq. (3):

ݕ
ୠ∗

 =  α  +  αଵ ߕ
ா௩/ௗ

 +  αଶߕ
ு  +  αଷߕ

ீௐ  +  Є

(3)

where yi
Δb* is the ith response value of the yellowing rate, Χi is the ith observation (which

includes three variables) and Єi is the error term. The interpretation of this model appears

more challenging than the previous one, due to the uncertain effect of light and the relatively

low power of explanation (R2 = 54%), which suggests the potential presence of latent

degradation mechanisms not modelled by linear relationships. However, high pH and high

groundwood content seem to accelerate the degradation rate in paper without optical

brighteners.

These statistical results indicate different major degradation mechanisms for paper with and

without optical brighteners: paper samples with optical brighteners appear more sensitive to

environmental factors such as temperature, humidity and pollutants, and more prone to

yellowing, whereas paper samples without optical brighteners seem to be more sensitive to

light and more prone to bleaching. Additionally, it is worth mentioning that photochemical

reactions between NO2 and oxygen lead to the formation of O3 [8], as confirmed by the

positive linear correlation between Ev/d and cO3. Although the environmental variables cO3

and Ev/d play important roles in the presence and in the absence of optical brighteners

respectively, the obtained results did not clarify whether it may be Ev/d or cO3 having a direct

effect on paper degradation.
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The MLR models for colour-change were validated by means of PCR. Details about the

methodology and the results are provided in the supplementary document Model validation

by principal component regression.

Figure 3. Scatterplot matrix of dataset 1 (colour-change).
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Table 4. MLR statistics of dataset 1 (colour-change). Positive (+) and negative (−) signs 

before the estimate values indicate a positive and a negative effect of the variables

respectively. Errors, which represent standard errors, and p-values are expressed with one

significant figure. The p-values of significant variables (≤ 0.05) are indicated in bold.

Variable Initial model Final model

Estimate p-value Estimate p-value

Env. T − 0.0006 ± 0.0008 0.5

 RH − 0.0002 ± 0.0006 0.7

Ev/d 0 0.4

cNO2 + 0.0005 ± 0.0004 0.2

cO3 + 0.0002 ± 0.0002 0.2

Mat. pH + 0.005 ± 0.003 0.04 + 0.005 ± 0.003 0.04

GW + 0.04 ± 0.01 0.0002 + 0.03 ± 0.01 0.0008

OB + 0.012 ± 0.006 0.07 + 0.011 ± 0.006 0.08

Env.: environmental variables; Mat.: material variables.
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Figure 4. Scatterplot matrix of sub-dataset OB1 (colour-change in relation to the presence of

optical brighteners - red) and sub-dataset OB0 (colour-change in relation to the absence of

optical brighteners - black).
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Table 5. MLR statistics of sub-dataset OB1 (colour-change in the presence of optical

brighteners). Positive (+) and negative (−) signs before the estimate values indicate a positive 

and a negative effect of the variables/interactions respectively. Errors, which represent

standard errors, and p-values are expressed with one significant figure. The p-values of

significant variables and interactions (≤ 0.05) are indicated in bold.

Variable Model without interaction terms Model with interaction terms

Estimate p-value Estimate p-value

Env. T − 0.0010 ± 0.0005 0.06 − 0.0026 ± 0.0007 0.002

RH     − 0.0007 ± 0.0003 0.05

cNO2 + 0.0008 ± 0.0003 0.04

cO3 + 0.0003 ± 0.0002 0.04 − 0.016 ± 0.007 0.03

Mat. pH + 0.08 ± 0.02 0 + 0.04 ± 0.02 0.09

 GW − 0.08 ± 0.02 0.001 + 0.2 ± 0.1 0.05

Int. cO3*pH + 0.0021 ± 0.0009 0.02

cNO2*GW     − 0.05 ± 0.02 0.01

Int.: interactions.

Table 6. MLR statistics of sub-dataset OB0 (colour-change in the absence of optical

brighteners). Positive (+) and negative (−) signs before the estimate values indicate a positive 

and a negative effect of the variables respectively. Errors, which represent standard errors,

and p-values are expressed with one significant figure. The p-values of significant variables

(≤ 0.05) are indicated in bold. 

Variable Estimate p-value

Env. Ev/d 0 0.002

Mat. pH + 0.005 ± 0.002 0.02

GW + 0.047 ± 0.008 0
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3.3 Calculation of the dose-response function for DP change

Similarly to dataset 1 for colour change, dataset 2 was characterised by wide ranges of data

values (Tab. 3), in addition to distinctive distributions, as shown by the scatterplot matrix in

Fig. 5. The environmental variable T showed unimodal distribution, while most of the other

variables, i.e. RH, Ev/d, cNO2, cO3 and pH, tended to have bimodal distributions with different

degrees of skewness and kurtosis. In the scatterplot matrix, a few linear correlations between

some independent variables can also be appreciated, e.g. negative correlations between T and

RH, between Ev/d and cNO2, and between cNO2 and cO3, and positive correlations between RH

and Ev/d, and between Ev/d and cO3. Also in this case, such linear correlations indicate the

presence of multicollinearity in the dataset, which could represent a major problem for MLR

interpretation. In fact, a pilot MLR model (including all variables) showed p-values larger

than 0.05 for all the variables except cO3 and pH. Hence, backward stepwise variable

selection based on AIC was used to analyse the data further. At the end of the process, a

model only including T, cO3 and pH was obtained (Tab. 7). Similarly to the colour-change

dataset, some interactions between variables, both included and not included in the model,

were considered and, after a number of interaction trials within the model, the interactions

between T and cNO2 (T*cNO2), RH and Ev/d (RH*Ev/d), and cO3 and pH (cO3*pH) were found

to be significant (Tab. 7). Although the variables T and pH showed very low significance, this

model was chosen for dataset 2, due to the previously observed importance of these variables,

and could be expressed using the following Eq. (4):

ݕ
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்  +  αଶߕ
ோு  +  αଷߕ
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ைయߕ
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where yi
Δ1/DP is the ith response value of the DP-change rate, Χi is the ith observation (which

includes six variables) and Єi is the error term. Although all the available variables were
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used, this model was characterised by a low power of explanation (R2 = 46%), which means

that some latent degradation mechanisms or factors may need to be explored. High

temperature and NO2 concentration accelerate degradation, even though the effect of cNO2

could be more important than that of T (as shown by their respective p-values). However, due

to the interaction between T and cNO2, high levels of temperature and NO2 concentration tend

to decrease the acceleration effect, which indicates an antagonistic interaction. Additionally,

high levels of relative humidity and daily illuminance tend to slow down the degradation rate,

but their interaction seems antagonistic and able to nullify the effects of both factors. Also,

high pH and high O3 concentration have opposite effects, i.e. slowing down and accelerating

degradation respectively. On the other hand, degradation mechanisms due to high pH can

prevail on mechanisms due to high O3 concentrations, moderating the accelerating effect of

the latter. This antagonistic interaction between pH and cO3 is similar, but with opposite

effects, to the one described in the interpretation of the colour-change model in the presence

of optical brighteners.

The MLR model for DP-change was validated by means of PCR. Details about the

methodology and the results are provided in the supplementary document Model validation

by principal component regression.
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Figure 5. Scatterplot matrix of dataset 2 (DP-change).
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Table 7. MLR statistics of dataset 2 (DP-change). Positive (+) and negative (−) signs before 

the estimate values indicate a positive and a negative effect of the variables/interactions

respectively. Errors, which represent standard errors, and p-values are expressed with one

significant figure. The p-values of significant variables and interactions (≤ 0.05) are indicated 

in bold.

Variable Model without interaction terms Model with interaction terms

Estimate p-value Estimate p-value

Env. T − 0.03 ± 0.01 0.008 + 0.07 ± 0.04 0.08

RH     − 0.04 ± 0.02 0.05

Ev/d     − 0.0006 ± 0.0002 0.005

cNO2 + 0.13 ± 0.06 0.02

cO3 + 0.09 ± 0.03 0.002 + 0.08 ± 0.03 0.004

Mat. pH − 0.1 ± 0.1 0.1 − 0.2 ± 0.1 0.1

Int. T*cNO2     − 0.006 ± 0.003 0.03

RH*Ev/d 0 0.002

cO3*pH     − 0.009 ± 0.004 0.03

4 Conclusions

The aim of this study was to develop a novel methodology to calculate dose-response

functions, by applying an experimental approach based on moderate acceleration in

conjunction with advanced statistical techniques. Although the experimental times are long, it

could be argued that the obtained results can be more reliably extrapolated to real conditions;

however, data analysis revealed several methodological challenges. In our research we

explored quantitative analysis of comprehensive environmental and material datasets, which

included a wide range of variables with potentially high influence in dose-response functions.

The results of this study, therefore, complement other current research, provide a more

complex view of paper degradation, and stress important gaps in knowledge such as variable

interactions and the influence of light/dark cycles.
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Advanced statistical methods, i.e. stepwise selection MLR and PCR, were used to address the

problem of multicollinearity. From MLR models of two datasets, one for rate of colour

change and one for rate of DP change, it was found that all the considered variables, related

to both the environment and the paper material, are of significance. Additionally, some

meaningful interactions between those variables were revealed, which is an important

finding. For colour-change, the presence of optical brighteners led to a higher rate of

yellowing, compared to paper without optical brighteners. After separation of the data into

two groups and stepwise selection MLR on each group, two distinct models were created.

The model related to paper samples containing optical brighteners showed a high sensitivity

to environmental variables, such as temperature, RH and concentrations of NO2 and O3, as

well as to the two available material variables, i.e. pH and groundwood content, and was

characterised by a high power of explanation. The model related to samples without optical

brighteners was only sensitive to one environmental variable, i.e. daily illuminance, as well

as to the two available material variables, i.e. pH and groundwood content, and its power of

explanation was weaker compared to the previous model. The MLR model regarding the DP-

change dataset included all the available variables, i.e. temperature, RH, daily illuminance,

concentrations of NO2 and O3, and pH, but the power of explanation was also relatively low.

Most of the findings obtained by PCR were consistent with the MLR results and some

interesting supplementary details were revealed. Specifically, a number of underlying

patterns, which could not be detected by MLR, were discovered, such as the effects of

temperature, RH and concentrations of NO2 and O3 in colour-change data in the absence of

optical brighteners.

This experimental approach to accelerated degradation of real (i.e. not model) samples could

find more widespread use in heritage science in the future; however, great care must be taken

to ensure that the spread of data (both material and environmental) is appropriate and that the
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data is as accurate as possible. There is no other experimental approach currently available

that would explore the effect of a multitude of degradation variables simultaneously, which is

extremely important for informed preventive conservation of cultural heritage.
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The material contained in this document is supplementary to the article Development of dose-

response functions for historic paper degradation using exposure to natural conditions and

multivariate regression.
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1. Validation of the MLR models for colour change

PCR was performed by means of PCA including all the independent variables and after

standardisation of the dataset. According to the scree plot/Kaiser rule, the first three PCs,

which account for 73% of variance, were suitable for conducting the analysis (Fig. 1).

Figure 1. Scree plot of dataset 1 (colour-change).

The resulting loadings (Tab. 1) showed that PC1 was significantly correlated to the

environmental variables, while PC2 was significantly correlated to the material variables. In

addition, PC3 had significant correlations with cNO2 and GW, reflecting the cNO2*GW

interaction found with MLR.
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Table 1. Loadings for the PCA of dataset 1 (colour-change).

Variable Loadings

PC1 PC2 PC3

Env. T 0.434

 RH −0.508 −0.293

Ev/d −0.494

cNO2 0.326 −0.551

cO3 −0.441

Mat. pH 0.691

GW −0.228 0.774

OB 0.679 0.175

To perform PCR, Δb*/t was regressed against the first three PCs. In the obtained model (Tab. 

2) PC1 showed a p-value equal to 1, while PC2, PC3 and the PC1*PC2 interaction term were

all significant, suggesting that degradation mechanisms were associated with both

environmental and material variables, but the effects of environmental variables were

dependent on material variables.

Table 2. PCR statistics of dataset 1 (colour-change). Positive (+) and negative (−) signs before the estimate 

values indicate a positive and a negative effect of the principal components/interactions respectively. Errors,

which represent standard errors, and p-values are expressed with one significant figure. The p-values of

significant principal components and interactions (≤ 0.05) are indicated in bold. 

Principal component Estimate p-value

PC1 0 ± 0.001 1

PC2 − 0.006 ± 0.001 0

PC3 − 0.007 ± 0.002 0.0002

PC1*PC2 − 0.0023 ± 0.0008 0.004
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During the MLR analysis, in order to provide more compelling results, the dataset was

separated into the two sub-datasets OB1 and OB0. Hence, the same kind of analysis was

repeated using PCR (Tab. 3).

Table 3. Loadings for the PCA of sub-dataset OB1 (colour-change in the presence of optical brighteners) and

sub-dataset OB0 (colour-change in the absence of optical brighteners).

Variable OB1 loadings OB0 loadings

PC1 PC2 PC3 PC1 PC2 PC3

Env. T 0.423 −0.145 −0.448 0.434 −0.153

 RH −0.500 0.246 −0.169 −0.505 0.194 −0.345

Ev/d −0.501 −0.411 −0.492 −0.246

cNO2 0.315 0.357 −0.615 0.340 0.303 −0.659

cO3 −0.445 −0.169 −0.436 0.130

Mat. pH −0.599 −0.437 0.597 0.590

 GW −0.141 −0.650 −0.700 0.140

Generally, PC1 was still correlated to the environmental variables in both groups, while

PC2’s and PC3’s correlations were mixed, resulting in a challenging interpretation, although

those correlations could reflect degradation mechanisms that are caused by various

interactions between environmental and material variables (see references 8,16-18 in the

main manuscript). PCR on OB1 resulted in a very complex model which showed the

significance of PC3 and the interaction between all three PCs (Tab. 4). The interpretation of

this model on the sole base of regression estimation values appeared very challenging;

however, the model might provide some interesting information for further research in

complex degradation mechanisms of paper.
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Table 4. PCR statistics of sub-dataset OB1 (colour-change in the presence of optical brighteners) and sub-

dataset OB0 (colour-change in the absence of optical brighteners). Positive (+) and negative (−) signs before the 

estimate values indicate a positive and a negative effect of the principal components/interactions respectively.

Errors, which represent standard errors, and p-values are expressed with one significant figure. The p-values of

significant principal components and interactions (≤ 0.05) are indicated in bold. 

Principal component OB1 final model OB0 final model

Estimate p-value Estimate p-value

PC1 + 0.004 ± 0.002 0.09 − 0.002 ± 0.001 0.09

PC2 + 0.001 ± 0.003 0.7 − 0.006 ± 0.002 0.005

PC3 − 0.011 ± 0.004 0.01 − 0.008 ± 0.002 0.005

PC1*PC2 − 0.003 ± 0.002 0.09

PC1*PC3 − 0.004 ± 0.002 0.1 − 0.004 ± 0.002 0.03

PC2*PC3 − 0.001 ± 0.004 0.8

PC1*PC2*PC3 + 0.004 ± 0.002 0.03

PCR on OB0 showed the significance of PC2 and PC3 and a useful interaction between PC1

and PC3 (Tab. 4). This model represented an optimal supplement to the results obtained by

MLR analysis, which did not include T, RH, cNO2 and cO3. The influence of those important

factors was revealed thanks to the application of PCR and their absence in the MLR model

could be explained by assuming the existence of some complex underlying patterns, which

were impossible to be modelled by linear regression, confirming that PCR can recover useful

information potentially missed by MLR. This also explained the low R2 of the MLR model,

since those latent mechanisms could not be modelled.
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2. Validation of the MLR model for DP change

PCR was performed by means of PCA including all the independent variables and after

standardisation of the dataset. According to the scree plot/Kaiser rule, the first three PCs,

which account for 86% of variance, were suitable for conducting the analysis (Fig. 2).

Figure 2. Scree plot of dataset 2 (DP-change).

The resulting loadings (Tab. 5) showed that PC1 was significantly correlated to the physical

environmental variables (T, RH and Ev/d), while PC2 was significantly correlated to the

chemical environmental variables under the effect of temperature (T, cO3 and cNO2). In

addition, PC3 had a significant correlation with the material variables only due to the high

loading of pH (0.999).



44
Published in Polymer Degradation and Stability 168 (2019) 108944

Table 5. Loadings for the PCA of dataset 2 (DP-change).

Variable Loadings

PC1 PC2 PC3

Env. T 0.461 −0.450

 RH −0.527 0.381

Ev/d −0.556 −0.110

cNO2 0.243 0.585

cO3 −0.376 −0.545

Mat. pH 0.999

To perform PCR, Δ(1/DP)/t was regressed against the first three PCs. In the obtained model 

(Tab. 6) PC2 showed a p-value larger than 0.05, while PC2 and PC3 were significant.

Table 6. PCR statistics of dataset 2 (DP-change). Positive (+) and negative (−) signs before the estimate values 

indicate a positive and a negative effect of the principal components respectively. Errors, which represent

standard errors, and p-values are expressed with one significant figure. The p-values of significant principal

components (≤ 0.05) are indicated in bold. 

Principal component Estimate p-value

PC1 − 0.22 ± 0.04 0

PC2 − 0.08 ± 0.05 0.1

PC3 + 0.39 ± 0.06 0

Hence, to find a suitable model with a high explanation power, an attempt to determine useful

interactions between those three PCs was carried out. However, no significant interaction

could be found, suggesting that the degradation mechanisms involving T, RH, Ev/d and pH

were the most prominent. The insignificance of PC2 may be explained assuming that there

might be different degradation mechanisms for different pollutants, i.e. NO2 and O3.

Therefore, the degradation mechanisms caused by those two pollutants might be independent,

which is consistent with the different mechanisms shown by the MLR model.
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3. Model validation improvements for future studies

Both MLR and PCR have their own advantages and disadvantages. For example, MLR is an

easier technique that may be also used by researchers who lack a substantial statistical

knowledge and is currently the most used advanced statistical method in paper degradation

research. However, this study showed that some variables, which are of well-known

relevance to paper degradation but were eliminated during stepwise selection, should be

added back as interaction terms. Such additions may negatively balance the multicollinearity

mitigation ability of stepwise selection, hence recovering the problem that needed to be

solved in the first place and creating a risk of overfitting. Concerning PCR, there is no risk

related to multicollinearity, since principal components are orthogonal, and this technique can

often reveal underlying mechanisms hidden in the data. Nevertheless, interpretation of

principal component analysis frequently represents a difficult task even for researchers with a

high level of expertise in multivariate analysis. In general, the application of both methods

simultaneously should become an established practice: on the one hand, PCR is a technique

with a great potential for revealing new findings in the research field of paper degradation, as

long as the principal components are properly interpreted; on the other hand, MLR is still an

extremely useful technique, as it can show results that cannot be found using PCR.

There could be further developments in the application of PCR. For instance, in order to

interpret the principal components in a better way and to calculate models with substantial

information, rotation techniques and cross-validation techniques could be applied [1]. In

addition, to increase the prediction power of the models presented in this study, more data

should be obtained and, if possible, their measurement precision should be improved.

Moreover, if the response variable presents a heterogeneous error distribution, e.g.

exponentially distributed rather than normally distributed, it may be useful to calculate a



46
Published in Polymer Degradation and Stability 168 (2019) 108944

generalised linear model (GLM) [2], although this process is rather complicated and is not

commonly used in this area of research. Finally, since the regression coefficients provided by

PCR are not guaranteed to be significant, partial least square regression (PLSR) may be a

more suitable technique [3]. This method works by projecting both the independent and the

response variables to a new space and then constructing a new linear regression model in that

space. In this way, while PCR does not transform the response variable, PLSR takes also into

account the response variable and may find a model that fits the response better and provides

more meaningful results.
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