Effect of Sodium Hypochlorite on Adhesive Charactersitics of Dentin: A Systematic Review of Laboratory-Based Testing

Ensanya A. Abou Neel^{123*}, Jonathan C. Knowles^{3,4,5}, Laurent Bozec⁶

¹ Division of Biomaterials, Restorative Dentistry Department, King Abdulaziz University, Jeddah, Saudi Arabia,

²Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt,

³ Biomaterials and Tissue Engineering Division, UCL, Eastman Dental Institute, 256 Gray's Inn Road, London, WC1X 8LD.

⁴ The Discoveries Centre for Regenerative and Precision Medicine, UCL Campus, London, UK

⁵ Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea

⁶ Faculty of Dentistry, 124 Edward Street, University of Toronto, Toronto, ONM5G 1G6, Canada

*Corresponding author:

Prof. Ensanya A. Abou Neel Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia P.O. Box: 80209 Zip Code : 21589 E-mails: <u>eabouneel@kau.edu.sa</u>; e.abouneel@ucl.ac.uk

Acknowldgment:

"The authors deny any conflicts of interest".

Outline

- 1. Introduction
- 2. Methods & Study Design
 - 2.1. Eligibility Criteria 2.2. Search Strategy
 - 2.3. Risk of Bias Assessment
 - 2.4. Data Extraction
 - 2.5. Statistical Analysis
- 3. Results

 - 3.1. Bonding to Coronal Dentin
 3.2. Bonding to Pulp Chamber Dentin
 3.3. Bonding to Radicular Dentin
 3.4. Bonding to Root Canal Dentin

 - 3.5. Risk of Bias Assessment
- 4. Discussion

Abstract

Objective: The purpose of this review was to systematically summarize the outcomes of *laboratory-based* studies investigated the effect of sodium hypochlorite application on bond strength of dentin to various materials.

Data: A comprehensive literature search was conducted using PubMed, Google Scholar, Cochrane Library and OpenThesis database. Then a manual search was also carried out for references from identified articles.

Sources: The search followed the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)" statement. Two independent reviewers evaluated the collected studies for their eligibility according to the inclusion and exclusion criteria. Data abstraction and evaluation of risk of bias was then performed.

Study Selection: A total of 164 articles were assessed for eligibility. Only 69 met the inclusion criteria. Most included studies presented a low (15.9%) to medium (68.1%) risk of bias. Only 15.9% presented high risk of bias. Because of heterogeneity of the included studies, Meta-analysis was not performed.

Conclusion: The outcome from low or high risk of bias studies revealed that sodium hypochlorite has no effect on bond strength of coronal or root canal dentin. While that from medium risk studies showed a reduction in bond strength of dentin.

Key words: Sodium hypochlorite, bond strength, dentin, root canal fillings/sealers/posts and risk of bias.

1. Introduction

Due to the complex anatomy of root canal, some areas of root canal dentin could remain untouched during instrumentation. Further effective cleaning is therefore an integral step for the success of endodontic treatments (2). Irrigants, rinses or inter-visit medications are commonly used to remove necrotic tissues and produce bacteria-free root canals (3, 4) - Fig. 1 (i). They also act as lubricants (5).

Sodium hypochlorite (NaOCI) has been recognised as an effective antibacterial agent in 1843 when low rates of infection transmission was recorded between patients washed their hands with it. Its use as an irrigant in endodontics dated back to 1902 since then it has been routinely used for such purpose (6). It has an effective antibacterial action (7-10) and dissolves both pulpal remnants (11, 12) as well as the organic component of root canal dentin (3). Increasing the concentration of NaOCI helps to improve the tissue dissolution and debridement capacities (13, 14). Lowering the surface tension of NaOCI also helps to improve its penetration to those uninstrumented areas of root canals (15). Furthermore, NaOCI also helps in removal of the organic component of the smear layer, produced during filing and drilling of root canal (16). This layer is a film of debris attached to root canal dentin; it is composed of shredded dentin, bacteria, bacterial products, remants of pulp tissues and retained irrigants (17). It occludes the orifices of dentinal tubules, so its presence could adversely affect the penetration of root canal sealers and the formation of intertubular tages required for adhesion of filling materials to root canal dentin (18, 19). Also its removal could ensure elimination of bacteria and their products. Hence the survival and reproduction of bacteria under filling materials could be jeopardized. Since NaOCI can dissolve the organic content of the smear layer, a combination of both NaOCI and

EDTA was found to be effective in removing both inorganic and organic content of the smear layer respectively (16). The concentration of both NaOCI and EDTA is very critical; erosion of root canal dentin could occure after the smear layer removal if the concentration is not well adjusted (20).

Fig. 1: Diagrammatic representation of (i) normal tooth anatomy. (ii) steps of endodontic treatment of tooth with periapical infection: in presence of infection eg, abscess; an access cavity is prepared a), pulp is then removed b); shaping and cleaning of root canal is repeated till infection subside; during this step NaOCI is usually used for irrigation of the root canal c), finally the root canal is filled with a root canal filling material eg, gutta percha and the rest of cavity is also filled with a restorative material eg composite d).

Dentin is composed of 20 wt% organix matrix (manily type I collagen) which substantially contributes to its mechanical properties. NaOCI is known to breakdown the long peptide chains. It also chlorinates terminal groups of protein which will then break down into other species. NaOCI may therefore adversely affect mechanical properties (eg, microhardness, elastic modulus and flexure strength) of dentin (3). Since NaOCI may alter the composition of dentin, its interaction (eg, bond strength) with the subsequent root filling materials could be affected. The long term success of post/core, for example, depends on the bonding of adhesive cement to root canal dentin. Improvement in bonding to root canal dentin increases the longevity of restorations (21-23). Lack of sealing ability of root canal sealers, used with root canal filling materials, or adhesive cements, used to bond post/core materials, could lead to microleagen and finally premature failure of endodontic treatement (24).

The adhesive ability of any restoration can be used to predict its longevity that can be measured by bond strength test eg, microtensile, shear, pull out and push out test. The validity of these tests and their relevance to the clinical performance of any restoration is still questionable (25). The relevance of these tests to *in vitro* microleakage is also questionable (26). However, due to their simplicity, bond strength tests (eg macrobond) are still in use to measure the adhesion of restorative materials to tooth structures (25). Some of these tests (microtensile and microshear) also correlate better with longevity of restorations than others (macrotensile and macroshear) (27).

Not only the root canal dentin can be affected by irrigation/rinses/medications but also the coronal dentin (34). Furthermore, coronal dentin can be infected during root canal irrigation. Both conditions could affect the way the coronal dentin interact with the adhesive system and restorative materials used to restore the crown portion. Compromising the bond of restorative materials to coronal dentin will jeopridize the sealing ability of coronal restorations (35). A perfectly sealed coronal restoration is essential for increasing the longevity of an endodontically treated teeth. The main purposes behind a highly sealed coronal restoration are to avoid marginal leakage, increase the resistance of remaining tooth structure to fracture and restore the function and esthetics (36). For perfectly sealed coronal restoration, adhesives have been used with composite resins. Total etch and self etch adhesive systems are commonly used for such purpose. With total etch (3 step system), its application usually starts with 37% phosphoric acid etching followed by the primer and then bonding agent. Some total etch (2 step system) combines the primer and bonding agent together. Self etch on the other hand, skips the acid etching step. So the etchant could be combined with the primer (2 step system) or with both primer and bonding agent (one step system). The idea behind the use of dentin adhesives is to produce a strong, durable bond between resin and dentin. This bond will be formed when a monomer, having both hydrophilic and hydrophobic groups, penetrated dentin and polymerizes in situ. This resin-impregnation creates a transitional "hybrid" layer of resin-reinforced dentin. This hybrid layer is responsible for locking dentin with any other material on a molecular level creating a perfect seal against marginal leakage (37). Dentin hybridization, however, is a very sensitive technique (38). Recently, it has been shown that deproteinization of normal or acid etched dentin using sodium hypochlorite could be employed as an alternative method to the commonly used technique-sensitive dentin hybridization (39, 40).

Several studies reported the action of NaOCI on bond strength to dentin; there is however a significant controversy between these studies. Some studies reported that NaOCI improved the bond strength to dentin. They related this improvement to: (a) its deproteinizing action (dissolution and removal of exposed decalcified collagen produced by acid etching) thus producing a fresh mineralized matrix that bonded directly to the adhesive (29, 30) and (b) formation of an unusual bonding mechanism to dentin called a "reverse hybrid layer" where NaOCI can also dissolve collagen fibrils in the mineralized matrix left after acid etching producing submicron porosities into which the adhesive can penetrate forming this layer (30). Other studies suggested the opposite (ie, NaOCI reduces the bond strength to dentin). They related this to: (a) its

deproteinizing action that produces a less receptive surface for bonding (31); (b) removal of collagen fibrils prevent the formation of a continuous hybrid layer (32); (c) the presence of remnants of NaOCI may interfere with the penetration of adhesive resins (32) and (c) its oxidizing action and hence an interference with the polymerization mechanism of adhesive resins (33). Accordingly, some authors recommended a delay of bonding for one week after root canal irrigation to provide enough time for elimination of the adverse effect of irrigants/rinses on dentin (28). This delaly in some cases is however impractical. In addition to this major controversy in the results, there are no systematic reviews published on the action of NaOCI on bond strength of dentin. Therefore, this systematic review aimed to summarize the outcomes of *in vitro* studies conducted on bond strength of dentin treated with sodium hypochlorite. It was conducted to answer the following research question (PICO statement is also included): Q1: Does the application of NaOCI have an effect on the bond strength of dentin? **<u>PICO statement:</u> P/Population** = dentin (whether coronal or root canal); **I/Intervention** = application of NaOCI; **C/Comparison** = dentin or dentin irrigated with water or saline; **O/Outcome** = effect on bond strength.

2. Methods/Study Design

This review has been conducted according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement.

2.1. Eligibility Criteria

In vitro studies reporting the bond strength to dentin treated with sodium hypochlorite were considered eligible for inclusion in this systematic review. Articles were considered eligible if they:

- a) Evaluated the effect of sodium hypochlorite applied (before or after etching) on bond strength (immediate or long term) of dentin (human or bovine; coronal or radicular or pulp chamber or root canal) to different materials (resin cements or endodontic fillings or posts).
- b) Have a control group (NaOCI-untreated dentin, dentin irrigated with water or saline).

Articles that did not cover such data were excluded. Also *in vitro* studies that did not report the bond strength and present the control where other chemical irrigants (eg, chlorehexidine) used as controls were excluded. Non- English articles or those having authors' or editorial opinions were also excluded.

2.2. Search Strategy

A web-based search, conducted using PubMed and Google Scholar as research engines, was used to collect the research data. No time limitation was used during the search. The following key words were used for the search: (Sodium hypochlorite OR chemical irrigant OR deprotonizing agent* OR oxidizing agent) AND (Dentin bonding OR dentin adhesive* OR Dent* self-etch adhesive OR Dent* etch and rinse adhesive OR resin cement) AND (resin composite OR endodontic filling OR root canal filling OR endodontic sealer OR root canal sealer). These key words were modified according to the database used for the search. The initial search was conducted in August 2016 and repeated in October 2017 before the final write-up. Furthermore, using a similar search, OpenThesis database was also used to collect relevant theses and dissertations. Reference list of all included studies were hand searched for additional articles. Consultation with endodontic experts was also obtained through personal correspondence. An example of search strategy used is given in Table 1.

Table 1: An example of search strategy conducted in this systematic review (I) and category & subcategory used for data extraction (II).

No.	I. Search key words	Results						
#1	Sodium hypochlorite solution * OR sodium hypochlorite gel* root canal irrigation * OR endodontic irrigation* OR hypochlorite*	7385						
#2	Dentin bonding* OR dental adhesives* OR dental adhesive* OR adhesive* OR adhesives* OR etch and rinse* OR total etch* OR self etch* OR one step self etch* OR two step self etch* three steps etch and rinse* OR bond strength* OR shear bond strength* tensile bond strength* OR microtensile bond strength*	2237						
#3	Endodontic filling* OR root canal filling* OR root canal sealers* OR endodontic sealers* OR endodontic post*	6900						
# 4	#1 AND#2 AND#3	7						
	II. Category & sub-category used for data extraction							

1. NaOCI:

- a) Form
- b) Concentration
- c) Time of application
- 2. Type of control

3. Method:

- a) Source of dentin/location/preparation method
- b) Step during which NaOCI applied
- c) Type of adhesive
- d) Materials bonded to dentin
- e) Bond strength test

4. Outcome of NaOCI on bond strength in comparison to control

Two independent reviewers screened the obtained articles by the title. Any duplicate was eliminated and the abstract of relevant articles were further appraised for their eligibility. When the information provided in both titles and abstracts was not sufficient; full text was considered. The inclusion of articles was based on the agreement between the two reviewers. Any disagreement between the two reviewers was solved by discussion.

2.3. Risk of Bias Assessment

For quality assessment, the evaluation has been based on the presence of the following six parameters: a) presence of control, b) description of sample size, c)

randomization of samples, d) procedures carried out by one operator, e) blinding of the operator and f) materials used according to manufacturers' instructions.

If the parameter under interest has been reported, the article had "Y" (ie, Yes); if not the article received "N" (ie, No). Articles reported one or two parameters were classified as "high risk of bias". Those reported three or four were classified as "medium risk of bias", while those reported five or six were classified as "low risk of bias" (41).

2.4. Data Extraction

Full articles with relevant information were obtained and data were extracted by the two reviewers according to specific criteria that were categorized as given in Table 1.

2.5. Statistical Analysis

Descriptive statistics were used to describe the data obtained from this review, but due to heterogeneity of the studies, Meta-analysis was not be performed.

3. Results

There were 234 articles identified through the database searching. After exclusion of duplicate articles, only 164 articles were involved; 95 articles were further excluded after assessing their eligibility. Therefore, there were 69 articles which were assessed qualitatively throughout this review – Fig. 2.

Fig. 2: PRISMA 2009 Flow Diagram

Table 2 summarizes all the work carried out using sodium hypochlorite to treat dentin and highlights various methodologies used (eg, form/concentration/time of application/step during which NaOCI used, test method, type of adhesive used and type of materials bonded to treated dentin). Regardless of the main use of sodium hypochlorite as an irrigant solution for root canal during endodontic treatments, testing its effect on the bond strength to dentin did not only involve the use of root canal dentin but also the coronal or pulp chamber dentin as highlighted above. Furthermore, the use of sodium hypochlorite could be done after etching step. This includes two situations (a) when used with etch and rinse adhesive where etching is a separate step or (b) when used for deproteinization of acid etched dentin as an alterative to the technique-sensitive dentin hybridization (39) as explained above. The use of sodium hypochlorite could also be done before bonding. This includes two situations (a) before the application of self etch adhesive where there is no separate etching step or (b) when used to simulate what happens clinically where coronal dentin can be contaminated with sodium hypochlorie during root canal irrigation.

Diagrammatic representation of the different methods used to prepare samples for testing the effect of NaOCI on bond strength of different materials to dentin is presented in Fig. 3 (i-v).

Fig 3: Different methods used to prepare samples for testing the adhesion of filling materials to NaOCI-treated dentin; (i) This can be done by using coronal dentin after its flattening a) and preparing discs b) upon which the adhesive is applied c) then the filling material bonded to it d) then sectioning bucco-lingually or mesio-distally e) to prepare slabs used for testing f); (ii) Others rely on filling the pulp chamber a) or root canal b) then transvers sectioning is carried out to prepare slabs used for testing c); (iii) Sometimes longitudinal sections are performed after filling the pulp chamber a) to prepare serial sections b) that further cut transversally c) to prepare hourglass specimens used for testing d). (iv) Also, the root canal to receive a post b), and then transverse sectioning is done to prepare slabs for testing c). In all cases, at the restoration-dentin interface, the dentin treatment and adhesive systems are performed d). (v) In some cases, simulated root canal cavities were prepared in radicular dentin at an equal distance between the dentin and root canal wall (a-c).

Fig. 4(a) summarizes the distribution of number of cases according to the site from which dentin was used for testing the effect of NaOCI on bond strength ie, whether it is coronal (CD), pulp chamber (PCD) or root canal dentin (RCD). As seen 51% of cases used coronal dentin; 43% used root canal dentin and only 6% used pulp chamber dentin. Fig. 4(b) shows the distribution of the number of cases according to the step during which NaOCI was applied. Generally, 69% of cases applied NaOCI before the application of the adhesive (bonding system) to dentin; 31%, applied NaOCI after etching (the first step of bonding) of dentin. When coronal dentin was used, most of the cases applied NaOCI after etching (45%); the opposite is true for root canal dentin (ie, 20% of cases utilized NaOCI after etching). NaOCI-treated coronal dentin was usually bonded to filling materials (eg, composites); NaOCI-treated root canal dentin was usually bonded to root canal filling materials eg, gutta percha (42), resin cements (43) or posts (44).

Fig. 4: Distribution of cases according to the site from which dentin was used ie, whether it is coronal (CD), pulp chamber (PCD) or root canal dentin (RCD) (a); steps during which NaOCI was applied (b). RD: radicular dentin (ie, simulated root canals). FM: filling materials. P: posts.

Table 2: The effect of NaOCI application on bond strength to dentin. HF: hydroflouric acid. CEJ: cemento-enamel junction. ⁺ identifies all factors under bond strength testing methods while * identifies all factors under NaOCI.

Author	+Step during which NaOCI used	*Form of NaOCI	*Concentration of NaOCI (%)	*Time of application of NaOCI (min)	Type of Control	+Bond strength test	+Source of dentin, location & preparation method	+Type of adhesive	+Material bonded to dentin	Outcome of NaOCI on bond strength in comparison to control
								One Step Plus (etch & rinse)	Aelite LS	Decrease
Francescantonio et al.,	After etching	Gel	10	1	Etched	Microtensile	Human 3 rd molars,	Clearfil Photo Bond (etch & rinse)	Clearfil Majesty	Decrease
(45)	with H3PO4				dentin		coronal dentin	Clearfil SE Bond (self-etch)	Clearfil Majesty	No change
	After etching					-		Optibond FL		Increase
Prati et al., (30)	with	Gel	4.5	0	Etched	Shear	Human 3 rd molars,	Scothcbond MP	7100 (Decrease
	35%H3PO4		1.5	2	dentin	(immediate)	coronal dentin	Single Bond	Z100 (composite resin)	Decrease
	for 20s							Prime & Bond 2		No change
Uceda-Gomez et al., (46)	After etching with 32% H3PO4	Solution	10	1	Etched dentin	Microtensile	Human molars, coronal dentin, longitudinal sections of teeth (superficial vs deep dentin ie apical vs occlusal dentin)	One Step	Z100 (composite resin)	Decrease
Osorio et al., (47)	After etching with 35% H3PO4 for 15s	-	5	2	Etched dentin	Shear	Human 3 rd molars, coronal dentin	Single Bond	Z100 (composite resin)	Decrease
								One Step (single bottle)		
Yiu et al.,(48)	After etching	-	5	10	Etched	Microtensile	Human 3 rd molars,	Gluma Comfort Bond +	Renamel Sculpt	Decrease
					dentin		coronal dentin	Desensitizer (single bottle)	(composite resin)	
Saboia et al., (49)	After etching with 35% H3PO4 for 15s	Solution	10	1	Etched dentin	Microtensile	Human 3 rd molars, coronal dentin	XP-Bond (2-step etch & rinse)	Filtek Z250 (mcirohybrid composite resin)	Decrease
Baseggio et al., (50)	After etching with 35% H3PO4 gel for 20s	-	10	1	Etched dentin	Microtensile	Human 3 rd molars, coronal dentin	Single Bond	Z100 (composite resin)	Decrease
dos Santos et al., (51)	After etching with 35% H3PO4 for 15s	Solution	10	1	Etched dentin	Shear	Bovine incisors, coronal dentin	Single Bond	Z100 (composite resin)	Decrease
	After etching							Prime&Bond NT (total-etch)	Surefil (composite resin)	Decrease with
Perdigão et al., (52)	with 34% H3PO4 for 15s	Gel	10	1⁄4, 1⁄2 & 1	Etched dentin	Shear	Bovine, coronal dentin	Single Bond (total-etch)	Z100 (composite resin)	time
Uceda-Gomez et al.,	After etching with 37% H3PO4				Etched			Single Bond (etch & rinse)		
(53)	After etching with 32% H3PO4	Solution	10	1	dentin	Microtensile	Human 3 rd molars, coronal dentin	One Step (etch & rinse)	Z250 (composite resin)	No change
Manjunath & Vinutha	After etching with 35%	-	5.25	1	Etched	Shear	Human premolars,	Adper Single Bond 2 (single bottle)	Z100 (composite resin)	Increase
(54)	H3PO4 for 15s				dentin		coronal dentin	Excite (single bottle)	TeEconom (composite resin)	
Correr et al., (55)	After etching	0.1.1			-			Single Bond		
	with 35%	Solution	10	1	Etched	Shear	Human primary molars,	Prime & Bond 2.1	Filtek Z250 (composite	No change

	H3PO4 for 15s									
Montagner et al., (56)	After etching with 35% H3PO4 for 15s	Solution	10	1	Etched dentin	Push out	Human 3 rd molars, coronal dentin (circular cavities in superficial & deep occlusal & proximal surfaces)	Adper [™] Single Bond 2 (etch & rinse) Clearfil [™] SE Bond (self-etch) Adper [™] SE Plus (self-etch) G-Bond [™] (self-etch)	Filtek ™ Z250 (composite resin)	No change
Lisboa et al., (57)	After etching with 34% H3PO4 for 15s	-	5	2	Untreated dentin	Shear	Human 3 rd molars, coronal dentin	Rely X Unicem (self-adhesive resin cement) BisCem (self-adhesive resin cement)	Rely X Unicem (self- adhesive resin cement) BisCem (self-adhesive resin cement)	No change Increase
Aguilera et al., (58)	After etching with 35% H3PO4	Solution	5	2	Etched dentin	Shear	Human 3 rd molars, coronal dentin	Prime & Bond NT	Tetric Ceram (composite resin)	No change
	After etching with 35% H3PO4 for 15s							Single Bond [™] (total etch)	Filtek [™] Z250 (composite resin)	Decrease
de-Souza et al., (59)	After etching with 34% H3PO4 for 15s	Solution	5	2	Etched dentin	Microtensile	Human 3 rd molars, coronal dentin	Prime & Bond NT [™] (total etch)	Esthet [®] X (composite resin)	Increase
	After etching with 15% H3PO4 for 30s							One Coat Bond (total etch)	Fill Magin (composite resin)	No change
	After etching with 35% H3PO4 for 15s							PQ1™	Vit-I-escence™	Increase
Sauro et al., (60)	After etching with 35% H3PO4 for 15s	-	0.5	1/2	Etched dentin	Microtneisle	Human 3 rd molars, coronal dentin	Schotchbond 1XT (etch & rinse) Optibond Solo Plus (etch & rinse)	Filtek Supreme XT™ (flowable composite resin)	No change
Goncalves et al., (61)	After etching with 37% H3PO4 for 15s	Solution	10	1	Etched dentin	Microtensile	Bovine incisors, coronal dentin	Prime & Bond NT	TPH Spectrum (microhybrid composite resin)	No change
Arias et al., (62)	After etching with 36%	Gel	10	1	Etched	Shear	Bovine incisor, coronal	Gluma One Bond Prime & Bond 2.1 Single Bond Prime & Bond NT	Z100 (composite resin)	No change
	H3PO4 for 20s	Solution			dentin		dentin	Gluma One Bond Prime & Bond 2.1 Single Bond Prime & Bond NT		Increase No change
Taniguchi et al., (63)	Defen	Before Solution bonding		1/4	Dentin	Ndiana kana si		Bond Force (self-etch)		Increase for caries affected dentin No change for
	Before bonding		6			Microtensile	ile Human molars, coronal dentin	Clearfil Protect Bond (self-etch)	Clearfil AP-X (composite resin)	normal dentin No change for caries affected dentin) Decrease for
								Variolink II (total-etch) Cealrfill SA Cement (self-etch)	-	normal dentin N0 change Decrease

Stevens et al., (64)	Before bonding	Solution	6	20	Untreated dentin	Shear (immediate)	Human molars & premolars, coronal dentin	Clearfill Esthetic Cement EX (self- etch)	Ceramic rod etched with 4.9 % HF acid for 20s	N0 change
								SpeedCEM (self-etch, self- adhesive)	and silanated with Monobond Plus for 1min	Decrease
								Multilink (self-etch, self-adhesive)	1 [No change
Cecchin et al., (65)	Before bonding	Solution	1	5 ml every 5min for 60min	Untreated dentin	Microtensile	Human 3 rd molars, coronal dentin, hourglass samples	Xeno III (self-etch)	Z250 (composite resin)	Increase
									TPH (microhybrid composite resin)	
Hassan et al., (66)	Before	-	4	1/3	Untreated dentin	Shear	Human molars, coronal dentin	Adper Easy One	Tetric Evoceram (nanohybrid composite resin)	Increase
	bonding							Prime and Bond 2.1	TPH (microhybrid composite resin) Tetric Evoceram	
									(nanohybrid composite resin)	
Ebrahimi-Chaharom et	Poforo	Solution	5.25	10	Untreated	Shoor	Human premolars, coronal dentin	Clearfil S ³ Bond	7100 (composite regin)	Deerooog
al., (67)	Before bonding	Solution	5.25	10	dentin	Shear	coronal dentin	Adaper Easy Bond	Z100 (composite resin)	Decrease
Gönülol et al., (68)	Before bonding	Solution	5.25	10	Dentin irrigated with distilled water	Microtensile	Human 3 rd molars, coronal dentin	Clearfil SE Bond (2-step self-etch)	Filtek Z550 (core build up composite resisn)	Decrease
Farina et al., (69)	Before bonding	Solution	1	40	Untreated dentin	Microtensile	Human 3 rd molars, coronal dentin	Clearfil SE Bond (self-etch)	Z250 (composite resin)	Decrease
Nassar et al., (70)	Before bonding	Solution	5	10	Dentin irrigated with deionized water	Shear	Human 3 rd molars, coronal dentin	Ephiphany self-etch root canal sealer	Ephiphany (self-etch root canal sealer)	Decrease
Abo et al., (71)	Before bonding	Solution	0.5 v	60	Dentin irrigated with water	Shear	Human molars, coronal dentin	OptiBond FL (3-step etch & rinse) EL#628 (2-step etch & rinse) OptiBond SOLO Plus (2-step self- etch) Clearfil SE Bond (2-step self-etch) AdheSE (2-step self-etch) iBond (1-step self-etch) Adper Prompt L-Pop (1-step self- etch) Xeno (1-step self-etch)	Filtek Supreme (composite resin)	Decrease
Saber & El-Askary (72)	Before bonding	Solution	2.5	-	Untreated dentin	Shear	Human molars, coronal dentin	Clearfil S ³ bond (1-step self- etching)	TPH [™] Spectrum (composite resin)	Decrease
Kunawarote et al., (73)	Before bonding	Solution	6	1/12 1⁄4	Dentin irrigated	Microtensile	Human molars, coronal dentin	Clearfil SE Bond (2- step self-etch)	Clearfil AP-X (composite resin)	No change
				1/2	with running water					Decrease
Kambara et al., (74)	Before	Solution	6	1/12	Dentin irrigated	Shear	Human molars, coronal	Clearfil SA luting (self-adhesive cement) Breeze (self-adhesive cement) Rely X Unicem clicker (self- adhesive cement)	SUS-304 (stainless steel	Decrease
	bonding			1⁄4	with running water		dentin	Clearfil SA luting (self-adhesive cement) Breeze (self-adhesive cement)	rods that had been sandblasted using 50 μm alumina	

								Rely X Unicem clicker (self- adhesive cement)		Increase
Ayad & Garcia-Godoy (75)	Before bonding	Solution	5	1	Untreated dentin	Push-out	Human mandibular 3 rd molars, coronal dentin	Epiphany primer	Epiphany sealer	Increase
Kasraei et al., (76)	Before bonding	Solution	2.5	1/4	Untreated dentin	Microtensile	Human premolars, coronal dentin	Clearfil S3 (self-etch) I-Bond (self-etch)	Z100 (composite resin)	No change
Sasafuchi et al., (77)	Before bonding	Solution	5	1	Untreated dentin	Tensile	Bovine incisors, coronal dentin	Super-Bond C&B (resin cement) Panavia F (resin cement)	Composite resin rods	Decrease No change
Prasansuttiporn et al., (78)	Before bonding	Solution	6	1/2	Dentin irrigated with distilled water	Microtensile	Human 3 rd molars, coronal dentin	Clearfil Protect Bond (2-step self- etch)	Clearfil AP-X (composite resin)	Decrease
Vongphan et al., (79)	Before bonding	Solution	5.25	10	Pulp chamber irrigated with distilled water	Microtensile	Human 3 rd molars, pulp chamber dentin (cavity in pulp chamber was filled & sectioned vertically into 0.8mm thick slabs that were trimmed into dumbbell shaped specimens)	Single Bond (total-etch)	Z250 (composite resin)	Decrease
					Pulp		Human mandibular 3 rd molars, pulp chamber	Single Bond 2		
Bhat Gorwish et al., (80)	Before bonding	Solution	3	1	chamber irrigated	Microtensile	dentin (cavity in pulp chamber was filled then	Prime & Bond NT	Solitaire (posterior composite resin)	Decrease
					with distilled water		sectioned)	Adhes SE		
							Human mandibular 3 rd	Clearfil SE Bond	Clearfil AP-X	
Ozturk & Ozer (81)	Before	Solution	5	1	Unirrigated pulp	Microtensile	molars, pulp chamber dentin (cavity in pulp	Prompt-L Pop Prim & Bond NT	Hytac TPH	Decrease
	bonding	Solution	3		chamber	Wildfolderialie	chamber was filled then sectioned)	Schotbond Multipurpose Plus	Filtek Z250	Decrease
Santos et al., (82)	Before bonding	Solution	5.25	30 (renewed every 3)	Pulp chamber irrigated with 0.9% saline	Tensile	Bovine incisors, pulp chamber dentin (cavity in pulp chamber was filled)	Clearfil SE Bond (self-etch)	Filtek Z250 (composite resin)	Decrease
Shretha et al., (83)	Before bonding	Solution	1.3 5.2	1	Dentin irrigated with distilled water	Micropush- out	Human single rooted teeth, simulated (vertically oriented truncated) canals were prepared in middle of radicular dentin in longitudinal slices cut below CEJ and filled	RealSeal SE (self-etching adhesive sealer)	RealSeal SE (self- etching adhesive sealer)	Increase
Morris et al., (84)	Before bonding	Solution	5	15-20	Root canals irrigated with 0.9% saline	Tensile	Human maxillary incisors and mixed canines, root canal dentin (after filling root canal, they were sectioned into 1 mm thick slabs from CEJ to apex)	C&B Metabond	C&B Metabond	Decrease
Manimaran et al., (85)	Before bonding	Solution	5.25	15-20	Root canals irrigated using 0.9% saline	Microtensile	Human single rooted teeth, root canal obturated with root a canal sealer	Adper™ (self-etch)	RelyX™ (resin cement)	Decrease
Erdemire et al., (21)	Before bonding	Solution	5	1	Root canal irrigated with water	Microtensile	Human single rooted teeth, root canal dentin (after filling root canal, they were sectioned into	C&B Metabond	C&B Metabond	Decrease

							1 mm thick slabs from			
							CEJ to apex)			
Gu et al., (43)	Before bonding	Solution	5.25	1	Root canals irrigated using 0.9% saline	Push-out	Human single rooted teeth, root canal obturated with gutta percha and AH Plus, then a post space was prepared and filled with a resin cement	Panavia F resin cement	Panavia F (resin cement)	Decrease
Ari et al., (86)	Before bonding	Solution	5	5	Root canal irrigated with water	Microtensile	Human single rooted tooth, root canal dentin (after filling root canal, they were sectioned into 1 mm thick slabs from	C&B Metabond PanaviaF Variolink II Rely-X	C&B Metabond PanaviaF Variolink II Rely-X	Decrease No change
Stelzer et al., (87)	Before bonding	Solution	3	4	Root canal irrigated with 0.9%	Push-out	CEJ to apex) Human teeth, root canal obturated with a filling material and a sealer	AH Plus (sealer) RealSealSE (sealer)	Gutta percha Resilon	No change Decrease
Haragushiku et al., (88)	Before bonding	Solution	1	30	saline Root canal irrigated with distilled water	Push-out	Human maxillary canines, root canal obturated with a root canal sealer, then a post space was prepared and filled with a resin cement	- - Epiphany-self etching primer Epiphany-self etching primer	Apexit Plus AH Plus Epiphany-auto mixed Epiphany-hand mixed	No change
Ishizuka et al., (89)	Before bonding	Solution	6 v/v	1,5 & 10	-	Push -out shear	Bovine mandibular 1 st & Bovine mandibular 1 st & 2 nd incisors, root canal dentin (after filling root canal with gutta-percha, a truncated cone cavity of 4 mm diameter & 2.5mm height within coronal part of the root was prepared. Cavity was then filled and sectioned into 1mm thick slabs)	Clearfil Mega Bond (self-etch primer) Single Bond (total-etch)	Clearfil AP-X (composite resin)	Decrease N0 change
Rocha et al., (42)	Before bonding	Solution	2.5	3	Root canal irrigated with 0.9% saline	Push -out	Bovine central incisore, root canal obturated	Epiphany (sealer) AH Plus (sealer)	Resilon Gutta percha	Increase Decrease
Weston et al., (31)	Before bonding	Solution	5.25	15-20	Root canals irrigated with 0.9% saline	Tensile	Human maxillary incisors and mixed canines, root canal obturated with C&B Metabond	C&B Metabond	C&B Metabond	Decrease
Bournziniat et al., (90)	Before bonding	Solution	-5.25 (10 ml during root canal shaping)	1	Root canal irrigated with normal saline	Pull-out	Human mandibular premolars teeth, root canal obturated with gutta percha and AH-26 sealer, then a post space was prepared and filled with a post.	Panavia F2 (self-etch resin cement) Embrace (self-adhesive resin cement)	White Post DC3 (fiber reinforced composite posts)	Decrease
Lacerda et al., (91)	Before bonding	Solution	2.5	-	Root canal irrigated with normal saline	Push-out	Bovine incisors, root canal obturated with gutta percha and calcium hydroxide sealer (Sealer 26), then a post space	Futurabond DC (self-etch dual- cure adhesive) + Bifix QM (epoxy- based dual-cure resin)	Glass fiber posts	Decrease

							was prepared and filled with a post.			
Khoroushi et al., (92)	Before	Solution	-2.5 (during root canal shaping)	1	Root canal irrigated with normal	Pull-out	Human single rooted teeth, root canal obturated with gutta percha and AH26 sealer,	Ceramic Bond + Bifix SE (1-step self-etch cement)	Stainless steel spreaders #55 with handles	Decrease
	bonding		-2.5 (after preparation of post space)	2	saline		then a post space was prepared and filled with a silica-coated and Rocatic system (ESPE Sil)- silanized post.			
Arisu et al., (93)	Before	Solution	-2.25 (during root canal shaping)	-	Root canal irrigated with distilled	Push-out	Human mandibular premolars, root canal obturated with gutta percha and AH26 sealer,	Panavia F 2.0 (resin cement)	Mirafit White (glass fiber	Decrease
		then a post space was prepared and filled with a post		posts)						
			2.5	_	Root canal		Human incisors, root canal obturated with gutta	MultiCore Flow (core build-up) RelyX-UniCem (self-adhesive resin	No.3 RelyX (fiber post)	Increase +++
			2.5	-	irrigated		percha with AH-26 sealer,	cement)		Increase ++
Alkhudhairy & Bin- Shuwaish (94)	Before bonding	Solution	5.05		with NaCl	Push-out	then a post space was prepared and filled with	MultiCore Flow (core build-up)		Increase +
Shuwaish (94)	bonding		5.25	-			post	RelyX-UniCem (self-adhesive resin cement)		Increase +
	canal shaping) Root canals canal obturate	Bovine incisors, root canal obturated with gutta percha and resin sealer	BisCem (self-adhesive resin cement) FRC post (glass fiber	Increase						
Faria-e-Silva et al., (95)	Before bonding	Solution	- 5 (after preparation of post space)	1	irrigation	Push-out	(Sealer-26), then a post space was prepared and filled with an etched (24% H2O2 for 10min) & silanated post.	RelyX Unicem clicker (self- adhesive resin cement)	reinforced epoxy posts)	include
			- 2.5 (25 ml during root canal					Schotbond Multipurpose + RelyX ARC (resin cement)		
			shaping)		Root canal		Bovine mandibular incisors, root canal	ED Primer + Panavia F (resin		No obongo
				-	irrigated with saline	Push-out	obturated with gutta	cement) RelyX U100 (resin cement)		No change
Bueno et al., (96)	Before bonding	Solution	-5.25 (during		solution	shear	percha and AH Plus sealer, then a post space	Schotbond Multipurpose + RelyX	Reforpost No.3 (glass	
			root canal shaping)				was prepared and filled with an etched (37%	ARC (resin cement) ED Primer + Panavia F (resin	fiber posts)	
							H3PO4 for 15s) & silanated pos	cement) RelyX U100 (resin cement)	-	Decrease
			-1 (1ml					AdheSE (self-etch adhesive)	Post FRC Postec and	No change
			during root canal shaping)	-					MultiCore Flow as core material	Ŭ
Bitter et al., (97)	Before	Solution	-1 (5ml after preparation of	1	Root canals irrigated	Push-out	Human maxillary central incisors, root canal	XP Bond (etch & rinse) & self-cure activator	Post X Post and the core material Core X Flow	Increase
	bonding	Colution	post space)		with distilled	i usii out	obturated with gutta	SmartCem2 (self-adhesive resin	Post X Post	Increase
			-1 (1ml		water		percha and AH Plus, then a post space was	cement) AdheSE (self-etch)	Post FRC Postec and	
			during root canal shaping) -				prepared and filled with a post		Post FRC Postec and MultiCore Flow as core material	No change
			-5.25 (5ml after preparation of	1				XP Bond (etch & rinse) & self-cure activator	ure Post X Post and the core material Core X Flow	ino change
			post space)					SmartCem2 (self-adhesive resin cement)	Post X Post	

Ertas et al., (98)	Before bonding	Solution	-2.5 (1 ml during root canal shaping) -5.25 (5 ml after preparation of post space)	5	Root canals irrigated with 0.9% saline	Push-out	Human single rooted teeth, root canal obturated with gutta percha and AH Plus, then a post space was prepared and filled with a post	Bifix SE (dual-cure resin cement)	Fiber posts	Increase
Pelegrine et al., (99)	Before bonding	Solution	-1 (20 ml during root canal shaping) - 2.5 (20 ml during root canal shaping) - 5.25 (20 ml during root canal shaping)	-	Root canals irrigated with 0.9% saline	Tensile	Bovin teeth, root canal obturated with M gutta perch and AH Plus sealer, then a post space was prepared and filled with a H3PO4 etched and silanized (using Clearfil Porcelain Bond Activator & Clearfil SE Primer) post	Clearfil SE Bond (2-step self-etch) + RelyX ARC (resin cement)	Glass fiber post	No change
Haragushiku et al., (100)	Before bonding	Solution	2.5	1	Root canals irrigated with distilled water	Push-out	Human maxillary canines, root canal obturated with gutta percha, accessory MF cones and AH Plus sealer, then a post space was prepared and filled with a silanized (Prosil) – post.	Ambar FGM (2-step etch & rinse) + AllCem (dual-cure resin-based cement)	WhitePost DC2 (glass- fiber post)	No change
Kaif and Raj (101)	Before bonding	Solution	-5.25 (5 ml during root canal shaping) -5.25 (after preparation of post space)	-	Root canals irrigated with distilled water	Push out	Human single rooted teeth, root canal obturated with gutta percha and AH-Plus sealer, then a post space was prepared and filled with a H3PO4 etched post.	Adaper Single Bond 2 + RelyX ARC [®] resin cement	FiberKor [®] post (glass fiber posts)	No change
Saraiva et al., (44)	Before bonding	Solution	-2 (during root canal shaping) -5.25 (after preparation of post space)	- 2	Root canals received no irrigation	Push-out	Human incisors, root canal obturated with gutta percha, then a post space was prepared and filled with a silanated post	Excite Dual-self-cure (2-step etch & rinse) Variolink II (dual-cure resin cement)	FRC Postec® Plus (fiber posts)	No change
Cecchin et al., (102)	After etching with 37% H3PO4 for 15s	Solution	5.25	5	Root canals irrigated with 0.9% saline	Push-out	Bovine incisors, root canal obturated with an etched (H3PO4) and resin covered post	Adaper Schotchbond Mutipurpose (total etch) + Rely X ARC (dual- cure resin cement)	Fiberglass post relined with Z250 composite resin	No change
Inoue et al., (103)	After etching with H3PO4 semi-gel for 15s	Gel	-	1	Root canals received no irrigation	Microtensile	Human molars, root canal obturated with gutta perch and zinc oxide eugnol sealer, then a post space was prepared and filled with an etched (H3PO4) and silanized (porcelain activator + Primer A & B of Clerfil Liner Bond II) indirect resin core	ED Primer + Panavia FluroCement	Indirect Clearfil DC resin core-build up	Increase
							Human maxillary central incisors, root canal	One Step Plus (lightly filled resin- based adhesive) + DUO LINK		

Mao et al., (104)	After etching with 32% H3PO4 semi- gel for 15s	Solution	10	1	Root canals irrigated with 0.9% saline	Push-out	obturated with gutta perch and AH 26 sealer, then a post space was prepared and filled with a post	(heavily filled dual-cure resin composite cements) One Step Plus (lightly filled resin- based adhesive) LuxaCore (heavily filled dual-cure resin composite cements)	Quartz fiber-reinforced double tapered posts	Increase
Varela et al., (105)	After etching with 37% ortho-H3PO4	Solution	-10 (during root canal shaping)	-	Root canals received no	Tensile	Human single rooted teeth, root canal obturated with gutta	Panavia 21EX cement Dual Cement		No change
	for 60s		-10 (after preparation of post space)	1	irrigation		percha and TopSeal sealer, then a post space was prepared and filled with a post	Panavia 21 Ex cement with ED Primer dentin adhesive Dual Cement with ED Primer dentin adhesive	Posts	Increase
Furuse et al., (106)	After etching Before bonding	Solution	5.25v/v	10	Root canals irrigated with saline solution	Push-out	Bovine incisors, obturated with gutta percha and calcium hydroxide sealer (Sealer 26), root canal openings were sealed with glass ionomer, then a post space was prepared and filled with a post.	Schotbond Multipurpose (3-steps etch & rinse) + RelyX ARC (dual- cure resin cement) Xeno III (1-step self-etch) + RelyX ARC (dual-cure resin cement)	Fiber reinforced posts	No change Decrease
da Cunba et al., (107)	Before bonding After etching Before bonding	Solution	5.25v/v	10	Root canal irrigated with 0.9% saline	Push-out	Bovin incisors, root canal obturated with gutta percha and CaOH sealer, root canal opening filled with glass ionoomer cement, then a post space was prepared and filled with post	Rely X U100 (self-adhesive cement) Rely X ARC (dual-cure cement) with Single Bond 2 (2-step etch & rinse) Rely X ARC (dual-cure cement) with Clearfil SE Bond (2-step self- etch)	Excato #3 (fiber posts)	Decrease

NaOCI applied after etching (1st step of bonding) to coronal dentin

NaOCI applied before boding to coronal dentin

NaOCI applied before boding to pulp chamber dentin

NaOCI applied before boding to radicular dentin (simulated root canals)

NaOCI applied before boding to root canal dentin bonded to filling materials

NaOCI applied before boding to root canal dentin bonded to posts

NaOCI applied after etching to root canal dentin bonded to posts

NaOCI applied before and after etching to root canal dentin bonded to posts

3.1. Bonding to Coronal Dentin

Looking at coronal dentin in particular, sodium hypochlorite has been used to pre-treat the coronal dentin surface upon which the adhesive is applied [Fig. 5 (a)] or after the application of acid etching, the first step in dentin bonding - [Fig. 5 (b)]. As observed in Fig. 5 (a), when applied before bonding to dentin, NaOCI was used as a solution at 0.5-6% concentration for 0.08 - 60 min. The time of NaOCI applications follows this order: 0.25 min > 0.5 min = 10 min > 1 min = 60 min = 0.08 min > 0.3 min = 20 min = 40 min = unknown. Human teeth (94%) represented the most common source of coronal dentin in these studies and microtensile or shear tests (44%) were also commonly employed to measure the bond strength to NaOCI-treated dentin. 50% of cases reported a reduction in bond strength; 31% reported no change but only 19% reported an increase in bond strength after application of NaOCI.

Fig. 5: Summary of studies dealt with the application of NaOCI before bonding (a) or after acid etching (b) of coronal dentin. Summary of studies dealt with the application of NaOCI before bonding to root canal dentin bonded to filling materials (c) or posts (d). Summary of studies dealt with the application of NaOCI after acid etching of root canal dentin bonded to posts (e).

When applied to etched dentin, NaOCI as a solution was used in 50% of cases at a concentration ranging from 0.5 - 10%. for 0.25-10 min (1 min was commonly used in 57% of cases). Still the microtensile or shear bond strength (47%) represents the most commonly used test. Human (79%) is also the common source of dentin for these studies. 40% of cases reported a reduction in bond strength; 40% reported no change but only 20% reported an increase in bond strength after NaOCI application.

Looking at the outcome of studies reported in Fig. 5 (a) and (b), the increase in bond strength after application of NaOCI to coronal dentin was only 20% in both cases (ie before bonding or after etching). The obvious outcome in both cases is the reduction in bond strength after application of NaOCI.

3.2. Bonding to Pulp Chamber Dentin

When sodium hypochlorite was applied before bonding to pulp chamber's dentin, only four studies were conducted using NaOCI solutions with concentration varies from 3-5.25%. for 1-30 min. Microtensile test was used in three studies, while the tensile was used in one study. A decrease in bond strength was reported in all studies (79-82).

3.3. Bonding to Radicular Dentin

When sodium hypochlorite was applied before bonding to radicular dentin (ie, when simulated root canals were used for testing), only one study has been carried out (83). In this study, NaOCI solution (1.3%) was used for 1 min. Micropush-out test was used to test the bond strength of human dentin to RealSeal SE. There was an increase in bond strength.

3.4. Bonding to Root Canal Dentin

Generally, when NaOCI was used for root canal irrigation, it was always used as a solution except in just one case where gel was used (103). In most cases, it was used before the application of bonding agents; the treated root canal dentin was filled with filling materials [Fig. 5 (c)] or posts [Fig. 5 (d)]. In some cases, where posts were used, NaOCI application was also carried out after acid etching of dentin [Fig. 5 (e)]. Human dentin was used in 65% of cases; the rest used bovine dentin. Push-out was the most common test used for measuring the bond strength of treated dentin.

When dentin bonded to filling materials, the concentration of NaOCI varied from 1-6% and the time of application ranged from 1-30 min. The outcome of NaOCI application

was a reduction in bond strength in 64% of cases, no change in 29% and an increase in only 7%.

When dentin bonded to posts and NaOCI applied before bonding, the concentration of NaOCI varied from 1-5.25% and the time of application ranged from 1-10 min. The outcome of NaOCI application was no change in 36% of cases, a reduction in bond strength in 32% of cases and an increase in only 32%.

When dentin bonded to posts and NaOCI applied after etching, the concentration of NaOCI was mostly 5.25% and 10% and the time of application ranged from 1-10 min. The outcome of NaOCI application was no change in 37.5% of cases, an increase in 37.5% of cases while a redcution in 25% of cases.

3.5. Risk of Bias Assessment

The results of risk of bias assessment is give in Table 3. Only 11 articles showed high risk of bias (ie 15.9%); 47 articles have medium risk of bias (68.1%). The remaining 11 articles have low risk of bias (15.9%); most of studies were carried out on root canal dentin irrigated with sodium hypochlorite before bonding to posts. As a standardization of technique, one operator performed the procedures in only 8/69 studies (11.6%). Only 23/69 studies (33.3%) carried the randomization of samples. No blinding was performed in the data analysis; only one study out of 69 (1.4%) performed blinding. 14 studies out of 69 (20.3%) did not follow the manufacturer instructions during preparation of materials used.

Summary of outcome of all included articles has been presented in Table 4 (a). Considering the outcome of articles with high risk of bias (low methodological quality), there is a strong evidence to support that 2.5-10% sodium hypochlorite has no effect on bond strength of coronal or root canal dentin with various materials. Similar outcome was obtained with articles having low risk of bias (high methodological quality). On the other hand, considering the outcome of articles with medium risk of bias (low methodological quality), there is a strong evidence to support that 2.5-10% sodium hypochlorite reduces the bond strength of coronal or root canal dentin with various materials - Table 4 (b & c).

No.	Author	Presence of control	Description of sample size	Randomization of samples	Procedures carried by one operator	Blinding of operator	Materials used according to manufacturers' instruction	Risk of bias
1	Energy and the state (45)	X	X	NI	NI	NI	X	Ma dium
1. 2.	Francescantonio et al., (45) Prati et al., (30)	Y	Y N	N N	N N	N N	Y Y	Medium High
3.		Y	Y	N	N	N	Y	Medium
4.	Uceda-Gomez et al., (46) Osorio et al., (47)	Y	Y	Y	N	N	Y	Medium
5.	· · · · ·	Y	Y	N N	N	N	Y	
	Yiu et al.,(48) Saboia et al., (49)	Y	Y	Y	N	N	Y	Medium
6. 7.	Baseggio et al., (50)	Y	Y Y	Y Y	N	N N	N N	Medium Medium
8.		Y	Y	Y	N	N	N	Medium
<u> </u>	dos Santos et al., (51) Perdigão et al., (52)	Y	Y	Y	N	N	Y	Medium
<u> </u>		Y	Y	Y	Y	N	Y	
	Uceda-Gomez et al., (53)	Y	Y Y	Y Y				Low
<u>11.</u> 12.	Manjunath & Vinutha (54) Correr et al., (55)	Y	Y Y	Y Y	N N	N N	N Y	Medium
12.		Y	Y	Y	Y	N	Y	Medium Low
13.	Montagner et al., (56) Lisboa et al., (57)	Y	Y Y	N N	r N	N	N N	High
14.	Aguilera et al., (58)	Y	Y	Y	N	N	Y	Medium
		Y	Y	Y	N	N	Y	
<u>16.</u> 17.	de-Souza et al., (59)	Y	Y Y	N N	N	N N	N N	Medium High
17.	Sauro et al., (60)	Y	Y	Y	N	N	Y	
	Goncalves et al., (61)	Y	Y Y	Y				Medium
19.	Arias et al., (62)	Y	Y	N N	N N	N	N Y	Medium
20. 21.	Taniguchi et al., (63)	Y	Y	N	N	N N	Y Y	Medium
	Stevens et al., (64)	Y	Y Y	Y			Y Y	High
22.	Cecchin et al., (65)	Y	Y Y		N	N		Medium
23.	Hassan et al., (66)			N	N	N	N	High
24.	Ebrahimi-Chaharom et al., (67)	Y Y	Y Y	Y Y	N	N	Y Y	Medium
25.	Gönülol et al., (68)				N	N	-	Medium
26.	Farina et al., (69)	Y	Y	Y	N	N	Y	Medium
27.	Nassar et al., (70)	Y	Y	Y	N	N	N	Medium
28.	Abo et al., (71)	Y	Y	Y	N	N	Y	Medium
29.	Saber & El-Askary (72)	Y	Y Y	N Y	N N	N	Y Y	Medium
30.	Kunawarote et al., (73)	Y	Y Y	Y Y		N	•	Medium
31.	Kambara et al., (74)	Y	Y Y	Y Y	N Y	N	N	Medium
32.	Ayad & Garcia-Godoy (75)	Y	-	· · · · ·		N	N Y	Medium
33.	Kasraei et al., (76)	Y	Y Y	Y	Y N	N	Y	Low
34.	Sasafuchi et al., (77)	Y		N		N		Medium
35.	Prasansuttiporn et al., (78)	Y	Y Y	N	N	N	Y Y	Medium
36.	Vongphan et al., (79)	Y	Y Y	N Y	N	N	Y Y	Medium
37.	Bhat Gorwish et al., (80)				N	N		Medium
38.	Ozturk & Ozer (81)	Y	Y	N	N	N	Y	Medium
39.	Santos et al., (82)	Y	Y	N	N	N	Y	Medium
40.	Shretha et al., (83)	Y	Y	Y	N	N	Y	Medium
41.	Morris et al., (84)	Ŷ	Y	Y	N	N	Y	Medium
42.	Manimaran et al., (85)	Y	Y	Y	N	N	Y	Medium

 Table 3: Risk of bias assessment for studies included in this review.

43.	Erdemire et al., (21)	Y	Y	Y	Ν	Ν	Y	Medium
44.	Gu et al., (43)	Y	Y	Y	Ν	Y	Y	Low
45.	Ari et al., (86)	Y	Y	Y	N	N	Y	Medium
46.	Stelzer et al., (87)	Y	Y	N	N	Ν	N	High
47.	Haragushiku et al., (88)	Y	Y	Y	N	Ν	Y	Medium
48.	Ishizuka et al., (89)	Ν	Y	N	N	Ν	Y	High
49.	Rocha et al., (42)	Y	Y	Y	Ν	Ν	Y	Medium
50.	Weston et al., (31)	Y	Y	Y	N	N	Y	Medium
51.	Bournziniat et al., (90)	Y	Y	Y	N	N	Y	Medium
52.	Lacerda et al., (91)	Y	Y	N	N	N	Y	Medium
53.	Khoroushi et al., (92)	Y	Y	Y	N	N	Y	Medium
54.	Arisu et al., (93)	Y	Y	Y	N	N	Y	Medium
55.	Alkhudhairy & Bin-Shuwaish (94)	Y	Y	Y	N	N	Y	Medium
56.	Faria-e-Silva et al., (95)	Y	Y	N	N	N	N	High
57.	Bueno et al., (96)	Y	Y	Y	Y	N	Y	Low
58.	Bitter et al., (97)	Y	Y	Y	Y	N	Y	Low
59.	Ertas et al., (98)	Y	Y	N	N	N	Y	Medium
60.	Pelegrine et al., (99)	Y	Y	Y	Y	N	Y	Low
61.	Haragushiku et al., (100)	Y	Y	N	N	N	Y	Medium
62.	Kaif and Raj (101)	Y	Y	N	N	N	N	High
63.	Saraiva et al., (44)	Y	Y	Y	Y	N	Y	Low
64.	Cecchin et al., (102)	Y	Y	Y	Y	N	Y	Low
65.	Inoue et al., (103)	Y	N	N	N	N	N	High
66.	Mao et al., (104)	Y	Y	Y	N	N	Y	Medium
67.	Varela et al., (105)	Y	Y	Y	Y	N	Y	Low
68.	Furuse et al., (106)	Y	Y	N	N	N	Y	High
69.	da Cunba et al., (107)	Y	Y	Y	Y	N	Y	Low

- NaOCI applied after etching (1st step of bonding) to coronal dentin
- NaOCI applied before boding to coronal dentin
- NaOCI applied before boding to pulp chamber dentin
- NaOCI applied before boding to radicular dentin (simulated root canals)
- NaOCI applied before boding to root canal dentin bonded to filling materials
- NaOCI applied before boding to root canal dentin bonded to posts
- NaOCI applied after etching to root canal dentin bonded to posts
- NaOCI applied before and after etching to root canal dentin bonded to posts
- Additional article for antioxidants to reverse the action of NaOCI

Table 4: (a) Detailed summary of outocme from all included (whether low, medium orhigh risk of bias) studies to NaOCI application on dentin bond strength. CD: coronaldentin. RCD: root canal dentin. F: filling materials. P: posts.

Step of NaOCI Application	Outcome to NaOCI Application					
	Decrease (%)	Increase (%)	No Change (%)			
Before bonding to CD	50	19	31			
After etching to CD	40	20	40			
Before bonding to RCD bonded to F	64	7	29			
Before bonding to RCD bonded to P	32	32	36			
After bonding to RCD bonded to P	25	37.5	37.5			

(b) Summary of outcome to NaOCI application on coronal dentin bond strength.

	Outcome to NaOCI Application		
Type of articles (No.)	Decrease (%)	Increase (%)	No Change (%)
Low risk of bias articles (3)	-	-	100
Medium risk of bias articles (27)	54.5	18.2	27.3
High risk of bias articles (5)	27.3	27.3	45.5

(c) Summary of outcome to NaOCI application on root canal dentin bond strength.

	Outcome to NaOCI Application		
Type of articles (No.)	Decrease (%)	Increase (%)	No Change (%)
Low risk of bias articles (8)	27.3	18.2	54.5
Medium risk or bias articles (20)	63.6	22.7	13.6
High risk of bias articles (6)	33.3	22.2	44.4

4. Discussion

Main Findings: Within the limitation of this review, the evidence from articles with high (low quality) or low risk of bias (high quality) indicates that 2.5-10% sodium hypochlorite has no effect on bond strength of dentin (coronal or root canal) with various materials. The evidence from articles with medium risk of bias (low quality)

indicates that 2.5-10% sodium hypochlorite reduced the bond strength of dentin (coronal or root canal) with various materials.

Strength and Limitations: To the best of authors knowledge, this is the first study to systematically review and assess a wide range of experimental-based articles considering the effect of sodium hypochlorite on bond strength of dentin to various restorative materials. This review was based on comprehesive search strategies using PubMed, Google Scholar, Cochrane Library and OpenThesis database. A manual search was also conducted for references of identified articles. Risk of bias assessment showed that 11 articles out of 69 have low risk of bias (15.9%); 8 articles used root canal dentin to study the effect of sodium hypochlorite (ie more relevant to endodontic use).

The limitations with review however include: (1) there was a significant heterogeneity in testing methodologies used to study the effect of sodium hypochlorite on bond strength to dentin. Regardless of heterogeneity in methodology, the outocme obtained from articles with low risk of bias are highly correlated for both coronal and root canal dentin. The same was also observed with the outcome obtained from articles with medium risk of bias. (2) Although *in vitro* studies attempt to simulate the clinical situations, the clinical trials are the best way to provide a relevant evidence on the effectiveness of any material. However, there is no clinical trials have been conducted on sodium hypochlorite and its effect on dentin bonding to various materials. Therefore, correlating the clinical data with *in vitro* studies was not feasible. (3) Because of heterogeneity of the studies, it was not feasible to conduct a meta-analysis.

Clinical Significance: This review suggest the need for the development of a

standaridized method to get relevant data from the patients receiving sodium hypochlorite as an irrigant during endodontic treatment to reflect its action on adhesion of dentin to various materials.

Conflict of Interest

"The author(s) report no conflict of interest for this study."

References

1. Modh H, Sequeira V, Belur A, Neemaarun, Dhas S, Fernandes G. Newer Trends in Endodontic Treatment: A Review. 2018.

2. Peters OA, Schönenberger K, Laib A. Effects of four Ni-Ti preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod J 2001;34(3):221-230.

3. Mohammadi Z. Sodium hypochlorite in endodontics: an update review. Int Dent J. 2008; 58(6):329-341.

4. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endodontic Topics 2005;10(1):77-102.

5. Haapasalo M, Shen Y, Qian W, Gao Y. Irrigation in endodontics. Dent Clin N Am 2010;54:291-312.

6. Spencer HR, Ike V, Brennan PA. Review: the use of sodium hypochlorite in endodontics — potential complications and their management. Bdj 2007;202:555.

7. Siqueira JF, Machado AG, Silveira RM, Lopes H, de Uzeda M. Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal, in vitro. Int Endod J. 1997;30(4):279-282.

8. Retamozo B, Shabahang S, Johnson N, Aprecio RM, Torabinejad M. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. J Endod 2010;36(3):520-523.

9. del Carpio-Perochena A, Bramante CM, Duarte MH, Bombarda de Andrade F, Graeff MZ, Marciano da Silva M, et al. Effect of temperature, concentration and contact time of sodium hypochlorite on the treatment and revitalization of oral biofilms. J Dent Res Dent Clin Dent Prospects 2015;9(4):209–215.

10. Radcliffe CE, Potouridou L, Qureshi R, Habahbeh N, Qualtrough A, Worthington H, et al. Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. International Endodontic Journal 2004;37:438-446.

11. Reis Só MV, Vier-Pelisser FV, Darcie MS, Smaniotto DGR, Montagner F, Kuga MC. Pulp tissue dissolution when the use of sodium hypochlorite and EDTA alone or associated Rev Odonto Cienc 2011;26(2):156-160.

12. Taneja S, Mishra N, Malik S. Comparative evaluation of human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite: An in vitro study. 2014 17(6):541-545.

13. Abou-Rass M, Oglesby SW. The effects of temperature, concentration and tissue type on the solvent ability of sodium hypochlorite. J Endod. 1981;7:376-377.

14. Cunningham WT, Balekjian AY. Effect of temperature on collagen-dissolving ability of sodium hypochlorite endodontic irrigant. Oral Surg Oral Med Oral Pathol. 1980;49:175-177.

15. Palazzi F, Morra M, Mohammadi Z, Grandini S, Giardino L. Comparison of the surface tension of 5.25% sodium hypochlorite solution with three new sodium hypochlorite-based endodontic irrigants. International Endodontic Journal 2012;45:129–135.

16. Mirseifinejad R, Tabrizizade M, Davari A, Mehravar F. Efficacy of Different Root Canal Irrigants on Smear Layer Removal after Post Space Preparation: A Scanning Electron Microscopy Evaluation. Iranian endodontic journal 2017;12(2):185-190.

17. Machado R, Comparin D, Engelke Back EDE, Roberti Garcia LdF, Alberton LR. Residual smear layer after root canal instrumentation by using Niti, M-Wire and CM-Wire instruments: A scanning electron microscopy analysis. European journal of dentistry 2018;12(3):403-409.

18. Kokkas AB, Boutsioukis A, Vassiliadis LP, Stavrianos CK. The influence of the smear layer on dentinal tubule penetration depth by three different root canal sealers: an in vitro study. J Endod 2004;30(2):100-102.

19. Shokouhinejad N, Sabeti M, Gorjestani H, Saghiri MA, Lotfi M, Hoseini A. Penetration of Epiphany, Epiphany Self-Etch, and AH Plus into Dentinal Tubules: A Scanning Electron Microscopy Study. Journal of Endodontics 2011;37(9):1316-1319.

20. Niu W, Yoshioka T, Kobayashi C, Suda H. A scanning electron microscopic study of dentinal erosion by final irrigation with EDTA and NaOCI solutions. Int Endod J 2002;35(11):934-939.

21. Erdemir A, Ari H, Güngüneş H, Belli S. Effect of medications for root canal treatment on bonding to root canal dentin. J Endod. 2004;30(2):113-116.

22. Erdemir A, Eldeniz A, Belli S, H Pashley D. Effect of Solvents on Bonding to Root Canal Dentin.2004.

23. Erdemir A, Eldeniz AU, Belli S, Pashley DP. Effect of solvents on bonding to root canal dentin. Journal of Endodontics 2004;30(8):589-591.

24. Sabir Muliyar KAS, Rekha P Thankachan, P G Francis, C S Jayapalan, and K A Abdul Hafiz. Microleakage in Endodontics. J Int Oral Health 2014;6(6):99-104.

25. Kantheti Sirisha TR, Yalavarthi Ravi Shankar, and Pabbati Ravikumar. Validity of bond strength tests: A critical review: Part I. J Conserv Dent. 2014;17(4):305–311.

26. Heintze SD. Systematic reviews: I. The correlation between laboratory tests on marginal quality and bond strength. II. The correlation between marginal quality and clinical outcome. The journal of adhesive dentistry 2007;9 Suppl 1:77-106.

27. Heintze SD. Clinical relevance of tests on bond strength, microleakage and marginal adaptation. Dental Materials 2013;29(1):59-84.

28. Elkhatib H, Nakajima M, Hiraishi N, Kitasako Y, Tagami J, Nomura S. Surface PH and bond strength of a self-etching primer/adhesive system to intracoronal dentin after application of hydrogen peroxide bleach with sodium perborate. 2002.

29. Wakabayashi Y, Kondou Y, Suzuki K, Yatani H, Yamashita A. Effect of dissolution of collagen on adhesion to dentin. Int J Prosthodont. 1994;7(4):302-306.

30. Prati C, Chersoni S, Pashley DH. Effect of removal of surface collagen fibrils on resin-dentin bonding. Dent Mater. 1999;15(5):323-331.

31. Weston CH, Ito S, Wadgaonkar B, Pashley DH. Effects of time and concentration of sodium ascorbate on reversal of NaOCI-induced reduction in bond strengths. J Endod. 2007;33(7):879-881.

32. Nikaido T, Takano Y, Sasafuchi Y, Burrow MF, Tagami J. Bond strengths to endodontically-treated teeth. Am J Dent. 1999;12(4):177-180.

33. Hawkins CL, M.J. D. Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation. Biochem. J. 1999;340:539–548

34. F. Salama HB, F. Al-Yahya, Al-Mofareh S. The effect of cavity disinfectants on microleakage of composite restorations in primary teeth. European Journal of Paediatric Dentistry 2015;16(4):295-300.

35. Dikmen B, Tarim B. The effect of endodontic irrigants on the microtensile bond strength of different dentin adhesives. Nigerian journal of clinical practice 2018;21(3):280-286.

36. Mandke L. Importance of coronal seal: Preventing coronal leakage in endodontics. Journal of Restorative Dentistry 2016;4(3):71-75.

37. Nakabayashi N, Nakamura M, Yasuda N. Hybrid layer as a dentin-bonding mechanism. Journal of esthetic dentistry 1991;3(4):133-138.

38. Salvio LA, Hipólito VD, Martins AL, de Goes MF. Hybridization quality and bond strength of adhesive systems according to interaction with dentin. European journal of dentistry 2013;7(3):315-326.

39. Mountouris G, Silikas N, Eliades G. Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin. The journal of adhesive dentistry 2004;6(3):175-182.

40. Dayem R, Tameesh M. A new concept in hybridization: Bromelain enzyme for deproteinizing dentin before application of adhesive system. Contemporary Clinical Dentistry 2013;4(4):421-426.

41. Emad AlShwaimi DB, Reem Ajaj, Saad Al-Shahrani, Khalid Almas, Abdul Majeed. In Vitro Antimicrobial Effectiveness of Root Canal Sealers against Enterococcus faecalis: A Systematic Review. J Endod. 2016;42(11):1588-1597.

42. Rocha AW, de Andrade CD, Leitune VCB, Collares FM, Samuel SMW, Greeca FS, et al. Influence of endodontic irrigants on resin sealer bond strength to radicular dentin. Bull Tokyo Dent Coll 2012;53(1):1-7.

43. Gu X-H, Mao C-Y, Liang C, Wang H-M, Kern M. Does endodontic post spaceirrigation affect smear layer removal and bonding effectiveness? . Eur J Oral Sci 2009;117:597–603.

44. Saraiva LO, Aguiar TR, Costa L, Correr-Sobrinho L, Muniz L, Mathias P. Effect of different adhesion strategies on fiber post cementation: Push-out test and scanning electron microscopy analysis. Contemp Clin Dent. 2013;4(4):443–447.

45. Francescantonio MD, Nurrohman H, Takagaki T, Nikaido T, Tagami J, Giannini M. Sodium hypochlorite effects on dentin bond strength and acid-base resistant zone formation by adhesive systems. Braz J Oral Sci 2015;14(4):334-340.

46. Uceda-Gomez N, Reis A, Carrilho MRd-O, Loguercio AD, Filho LER. Effect of sodim hypochlorite on the bond strength of an adhesive system to superficial and deep dentin. J Appl Oral Sci 2003;11(3):223-228.

47. Osorio R, Ceballos L, Tay F, Cabrerizo-Vilchez MA, Toledano M. Effect of sodium hypochlorite on dentin bonding with a polyalkenoic acid-containing adhesive system. J Biomed Mater Res 2002;60:316–324.

48. Yiu CKY, García-Godoy F, Tay FR, Pashley DH, Imazato S, King NM, et al. A nanoleakage perspective on bonding to oxidized dentin. J Dent Res 2002;81(9):628-632.

49. Saboia VPA, Nato F, Mazzoni A, Orsini G, Putignano A, Giannini M, et al. Adhesion of a twostep etch-and-rinse adhesive on collagen-depleted dentin. J Adhes Dent. 2008;10:419-422.

50. Baseggio W, Consolmagno EC, de Carvalho FLN, Ueda JK, Schmitt VL, Formighieri LA, et al. Effect of deproteinization and tubular occlusion on microtensile bond strength and marginal microleakage of resin composite restorations. J Appl Oral Sci. 2009;17(5):462-466.

51. dos Santos PH, Sinhoreti MAC, Consani S, Sorbinho LC, Adabo GL, Vas LG. Effect of cyclic compressive loading on the bond strength of an adhesive system to dentin after collagen removal. J Adhes Dent. 2005;7:127-131.

52. Perdigão J, Lopes M, Geraldeli S, Lopes GC, García-Godoy F. Effect of a sodium hypochlorite gel on dentin bonding. Dent Mater. 2000;16(5):311-323.

53. Uceda-Gomez N, Loguercio AD, Moura SK, Grande RHM, Odas M, Reis A. Long-term bond strength of adhesive systems applied to etched and deproteinized dentin. J Appl Oral Sci. 2007;15(6):475-479.

54. Manjunath MK, Vinutha M. In vitro evaluation of the effect of sodium hypochlorite on shear bond strength of dentin bonding agent on demineralized and remineralized dentin. Journal of Conservative Dentistry 2007;10(2):64-73.

55. Correr GM, Ruppin-Rontani RM, Correr-Sobrinho L, Sinhoreti MAC, Consani S. Effect of sodium hypchlorite on dentin bonding in primary teeth. J Adhes Dent. 2004;6:307-312.

56. Montagner AF, Skupien JA, Borges MF, Krejci I, Bortolotto T, Henrique A. Effect of sodium hypochlorite as dentinal pretreatment on bonding strength of adhesive systems. Indian Journal of Dental Research 2015;26(4):416-420.

57. Lisboa DS, Santos SV, Griza S, Rodrigues JL, Faria-e-Silva AL. Dentin deproteinization effect on bond strength of self-adhesive resin cements. Braz Oral Res. 2013;27(1):73-75.

58. Aguilera F-S, Osorio R, Osorio E, Moura P, Toledano M. Bonding efficacy of an acetone/based etch-and-rinse adhesive after dentin deproteinization. Med Oral Patol Oral Cir Bucal. 2012;17(4):e649-654.

59. de-Souza FB, Silva CHV, Dibb RGP, Delfino CS, Beatrice LCd-S. Bonding performance of different adhesive systems to deproteinized dentin: microtensile bond strength and scanning electron microscopy. J Biomed Mater Res B Appl Biomater. 2005;75(1):158-167.

60. Sauro S, Mannocci F, Toledano M, Osorio R, Pashley DH, Watson TF. EDTA or H3PO4/NaOCl dentine treatments may increase hybrid layers' resistance to degradation: A microtensile bond strength and confocal-micropermeability study. Jo u r n a l of De n t i s t ry 2009;37:27 29 – 28 28.

61. Goncalves LS, consani S, Sinhoreti MAC, Schneider LFG, Saboia VPA. Effect of storage and compressive cycles on the bond strength after collagen removal. Operative Dentistry 2009;34-36:681-687.

62. Arias VG, Bedran-de-Castro AKB, Pimenta LA. Effects of sodium hypochlorite gel and sodium hypochlorite solution on dentin bond strength. J Biomed Mater Res Part B: Appl Biomater 2005;72B:339 –344.

63. Taniguchi G, Nakajima M, Hosaka K, Iwamoto N, Ikeda M, Foxton RM, et al. Improving the effect of NaOCI pretreatment on bonding to caries-affected dentin using self-etch adhesives. j o u r n a l of de n t i s t ry 2009;37:76 79 – 77 75.

64. Stevens CD. Immediate shear bond strength of resin cements to sodium hypochlorite-treated dentin. J Endod 2014;40:1459-1462.

65. Cecchin D, Farina AP, Galafassi D, Barbizam JVB, Corona SAM, Carlini-Júnior B. Influence of sodium hypochlorite and EDTA on the microtensile bond strength of a self-etching adhesive system. J. Appl. Oral Sci. 2010;18(4):385-389.

66. Hassan AM, Goda AA, Baroudi K. The effect of different disinfecting agents on bond strength of resin composites. International Journal of Dentistry 2014;2014.

67. Mohammad-Esmaeel Ebrahimi-Chaharom SK, Narmin Mohammadi, Parnian-Alizadeh Oskoee, Mehdi Daneshpuy, and Mahmoud Bahari. Effect of sodium ascorbate on the bond strength of all-inone adhesive systems to NaOCl-treated dentin. J Clin Exp Dent. 2015;7(5):e595–e599.

68. Gonulol N, Kalyoncuoglu K, Ertas E. Effect of sodium ascorbate on dentin bond strength after treatment with oxidizing root canal irrigants. Journal of Dental Sciences 2015;10:139-144.

69. Farina AP, Cecchin D, Barbizam JVB, Carlini-Júnior B. Influence of endodontic irrigants on bond strength of a self-etching adhesiveae. Aust Endod J 2011;37:26–30.

70. Nassar M, Awawdeh L, Jamleh J, Sadr A, Tagami J. Adhesion of epiphany self-etch sealer to Dentin Treated with intracanal irrigating solutions. J Endod 2011;37:228–230.

71. Abo T, Asmussen E, Uno S, Taggmi J. Short- and long-term in vitro study of the bonding of eight commercial adhesives to normal and deproteinized dentin. 2006;Acta Odontologica Scandinavica(64).

72. Saber S-EM, El-Askary FS. The outcome of immediate or delayed application of a single-step self-etch adhesive to coronal dentin following the application of different endodontic irrigants. Eur J Dent 2009;3:83-89.

73. Kunawarote S, Nakajima M, Shida K, Kitasako Y, Foxton RM, Tagami J. Effect of dentin pretreatment with mild acidic HOCI solution on microtensile bond strength and surface pH. j o u r n a l of de n t i s t ry 2010;38:26 21 – 26 28.

74. Kmabara K, Nakajima M, Hoska K, Takahash M, Thanatvarakorn O, Ichinose S, et al. Effect of smear layer treatment on dentin bond of self-adhesive cements. Dental Materials Journal 2012;31(6):980–987.

75. Ayad MF, Garcia-Godoy F. Effect of lactic acid irrigant on shear bond strength of Epiphany adhesive sealer to human dentin surface. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:e100-e106.

76. Kasraei S, Azarsina M, Khamverdi Z. Effect of Ethylene diamine tetra acetic acid and sodium hypochlorite solution conditioning on microtensile bond strength of one-step self-etch adhesives. J Conserv Dent. 2013;16(3):243–246.

77. Sasafuchi Y, Nikaido T, Tagami J. Effect of chemical irrigants and medicaments for endodontic treatment on dentin bonding. Int China Dent J 2003;3:7-12.

78. Prasansuttiporn T, Nakajima M, Kunawarote S, Foxton RM, Tagami J. Effect of reducing agents on bond strength to NaOCI-treated dentin. Dent Mater. 2011;27(3):229-234.

79. Vongphan N, Senawongse P, Somsiri W, Harnirattisai C. Effects of sodium ascorbate on microtensile bond strength of total-etching adhesive system to NaOCI treated dentine. Journal of Dentistry 2005;33:689-695.

80. Bhat Gorwich S, Mohan B, Lackshimanarayana L, Savadamoorthi. A comparative evaluation of effect of sodium hypochlorite on microtensile bond strength of three different bonding agents to the lateral wall of pulp chamber : An in vitro study. International Research Jorunal of Pharmacy 2013;4(3):156-159.

81. Ozturk B, Ozer F. Effect of NaOCI on bond strengths of bonding agents to pulp chamber lateral walls. J Endod. 2004;30(5):362-365.

82. Santos JN, Carrilho MRd-O, De Goes MF, Zaia AA, Gomes BPFd-A, de Souza-Filho FJ, et al. Effect of chemical irrigants on the bond strength of a self-etching adhesive to pulp chamber dentin. J Endod 2006;32:1088 –1090.

83. Shrestha D, Wu W-C, He K-Y, Wei X, Ling J-Q. Effect of sodium ascorbate on degree of conversion and bond strength of realseal se to sodium hypochlorite treated root dentin. Dent Mater J 2013;32(1).

84. Morris MD, Lee KW, Agee KA, Bouillaguet S, Pashley DH. Effects of sodium hypochlorite and RC-prep on bond strengths of resin cement to endodontic surfaces. J Endod. 2001;27(12):753-757.

85. Manimaran VS, Srinivasulu S, Rajesh Ebenezar A, Mahalaxmi S, Srinivasan N. Application of a proanthocyanidin agent to improve the bond strength of root dentin treated with sodium hypochlorite. J Conserv Dent. 2011;14(3):306-308.

86. Ari H, Yaşar E, Belli S. Effects of NaOCl on bond strengths of resin cements to root canal dentin. J Endod. 2003;29(4):248-251.

87. Stelzer R, Schaller H-G, Gernhardt CR. Push-out Bond Strength of RealSeal SE and AH Plus after Using Different Irrigation Solutions. J Endod 2014;40:1654–1657.

88. Haragushiku GA, Sousa-Neto MD, Silva-Sousa YTC, Alfredo E, Silva SC, Silva RG. Adhesion of endodontic sealers to human root dentine submitted to different surface treatments. Photomedicine and Laser Surgery 2010;28(3):405–410.

89. Ishizuka T, Kataoka H, Yoshioka T, Suda H, Iwasaki N, Takahash H, et al. Effect of NaClO treatment on bonding to root canal dentin using a new evaluation method. Dental Materials Journal 2001;20(1):24-33.

90. Boruziniat A, Arjmand N, Atoufi A. Evaluation of the effect of sodium hypochlorite irrigant on pull-out bond strength of FRC posts using different resin cements. Jorunal of Dental Materials and Techniques 2015;4(1):43-48.

91. Lacerda AJF, Gullo MA, Xavier ACC, Pucci CP, Carvalho CAT, Hutala MFRL. Influence of ultrasound and irrigant solutions on the bond strength of glass fiber posts to root canal dentine. Braz Dent Sci 2013;16(1):53-58.

92. Khoroushi M, Kachuei M. Pull-out bond strength of a self-adhesive resin cement to NaOCltreated root dentin: effect of antioxidizing agents. Restor Dent Endod 2014;39(2):95-103.

93. Arısu HD, luKıvanç BDH, lam BCS, Simsek E, Görgül G. Effect of post-space treatments on the push-out bond strength and failure modes of glass fibre posts. Aust Endod J 2013;39:19–24.

94. Alkhudhairy FI, Bin-Shuwaish MS. The effect of sodium hypochlorite and resin cement systems on push-out bond strength of cemented fiber posts. Pak J Med Sci 2016;32(4):905-910.

95. Faria-e-Silva AL, Menezes Md-S, Silva FP, dos Reis GR, de Moraes RR. Intra-radicular dentin treatments and retention of fiber posts with selfadhesive resin cements. Braz Oral Res., (São Paulo) 2013;27(1):14-19.

96. Bueno CEd-S, Pelegrine RA, Silveira CFd-M, Bueno VCPd-S, Alves Vd-O, Cunha RS, et al. The impact of endodontic irrigating solutions on the push-out shear bond strength of glass fiber posts luted with resin cements. Gen Dent. 2016;64(1):26-30.

97. Bitter K, Hambarayan A, Neumann K, Blunck U, Sterzenbach G. Various irrigation protocols for final rinse to improve bond strengths of fiber posts inside the root canal. Eur J Oral Sci 2013;121:349–354.

98. Ertas H, Ok E, Uysal B, Arslan H. Effects of different irrigating solutions and disinfection methods on push-out bond strengths of fiber posts. Acta Odontologica Scandinavica 2014;72(8):783-787.

99. Pelegrine RA, De Martin AS, Cunha RS, Pelegrine AA, Bueno CEd-S, Paulo S. Influence of chemical irrigants on the tensile bond strength of an adhesive system used to cement glass fiber posts to root dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod

Endod 2010;110:e73-e76.

100. Haragushiku GA, Back EDEE, Tomazinho PH, Filho BF, Furuse AY. Influence of antimicrobial solutions in the decontamination and adhesio of glass-fiber posts to root canals. J Appl Oral Sci 2015;23(4):436-641.

101. Kaif M, Bissu R. Influence of irrigating solutions on push-out bond strenght of intraradicular posts to dentine. Int. J. Dental Sc. 2016;18(1):73-81.

102. Cecchin D, Almeida JFA, Gomes BPFA, Zaia AA, Ferraz CCR. Deproteinization technique stabilizes the adhesion of the fiberglass post relined with resin composite to root canal. J Biomed Mater Res Part B 2012;100B:577–583.

103. Inoue S, Murata Y, Sano H, Kashiwada T. Effect of NaOCl treatment on bond strength between indirect resin core-buildup and dentin. Dent Mater J. 2002;21(4):343-354.

Mao H, Chen Y, Yip KH-K, Smales RJ. Effect of three radicular dentine treatments and two luting cements on the regional bond strength of quartz fibre posts. Clin Oral Invest 2011;15:869–878.
Varela SG, Rábade LB, Lombardero PR, Sixto JM, Bahillo JD, Park SA. In vitro study of endodontic post cementation protocols that use resin cements. J Prosthet Dent. 2003;89(2):146-153.
Furuse AY, Cunha LF, Baratto SP, Leonardi DP, Haragushiku GA, Gonzaga CC. Bond strength of fiber-reinforced posts to deproteinized root canal dentin. J Contemp Dent Pract. 2014;15(5):581-586.
da Cunha LF, Furuse AY, Mondelli RFL, Mondelli J. Compromised bond strength after root dentin deproteinization reversed with ascorbic acid. J Endod. 2010;36(1):130-134.

108. Khoroushi M, Kachuei M. Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents. Restor Dent Endod. 2014;39(2):95-103.