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Abstract

This dissertation consists of three chapters that focus on the nonparametric method on

time-varying parameter models and optimal transport problem.

The first chapter, which is jointly authored with Dennis Kristensen, develops a novel

asymptotic theory for local polynomial (quasi-) maximum-likelihood estimators of time-

varying parameters in a broad class of nonlinear time series models. Under weak regularity

conditions, we show the proposed estimators are consistent and follow normal distributions

in large samples. We demonstrate the usefulness of our general results by applying our

theory to local (quasi-) maximum-likelihood estimators of a time-varying VAR’s, ARCH

and GARCH, and Poisson autogressions.

The second chapter proposes a sieve M-estimation of the solution to the optimal trans-

port problem. Many problems in economics, including matching models and quantile meth-

ods, have the structure of an optimal transport problem. The sieve M-estimator is consis-

tent under very little structure on the underlying optimal transport problem being solved. I

then derive convergence rates for the estimator and its derivative when the surplus function

Φ (X,Y ) = X ′Y . The derived convergence rates are the same as the optimal rate in the con-

text of regression and density estimations. The results can be extended to the conditional

optimal transport problem having the conditional vector quantiles as an application.

In the third chapter, I consider the multidimensional matching as one of primary ap-

plications of the optimal transport problem. We employ the sieve simultaneous minimum

distance estimation method to estimate the parameters in the equilibrium wage and assign-

ment functions. Our estimation results show that worker-job complementarities in manual

skills strongly decreased, where as complementarities in cognitive skills increased. This

phenomenon is consistent to the one of Lindenlaub (2017).
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Impact statement

This thesis provides a novel asymptotic theory for nonparametric estimators in two econo-

metric models, time-varying parameter model and optimal transport problem.

For the time-varying parameter estimation, the asymptotic theory imposes very little

structure on the chosen objective function used for estimation and on the underlying model

being estimated. In particular, in contrast to the existing literature on kernel-based estima-

tion of time-varying parameters, we impose substantially weaker smoothness and moment

conditions on the likelihood and its derivatives. Our theory also contributes to the litera-

ture on asymptotic analysis of local polynomial estimators of varying-coefficient models by

extending existing results to cover situations where the objective functions is non-concave.

This is an important extension since the quasi-likelihoods of most non-linear models are

non-concave, and the analysis of this case requires some new technical tools.

The optimal transport problem has been a very active research area in mathematics

and more recently also in economics. Many problems in economics have the structure of

an optimal transport problem. Despite of its many applications, the asymptotic theory for

the optimal transport problem has not been fully established. In this thesis, the asymptotic

theory for the sieve M-estimator impose very little structure on the chosen objective function

used for estimation and on the underlying optimal transport problem being solved. In

particular, in contrast to the existing literature on nonparametric estimation of the solution

to the optimal transport problem, the conditions under which we derive our results are more

easily verified. Moreover, the derived convergence rates for estimators are the same as the

optimal rate in the context of regression and density estimations.

I have shared this research to academic audiences in the U.K. and Europe. I will further

disseminate this research through scholarly publications.
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Chapter 1

Local Polynomial Estimation of

Time-Varing Parameters in

Nonlinear Models

1.1 Introduction

We provide a novel asymptotic theory for local polynomial estimators of time-varying pa-

rameters in a broad class of non-linear time series models. The theory imposes very little

structure on the chosen objective function used for estimation and on the underlying model

being estimated. In particular, in contrast to the existing literature on kernel-based estima-

tion of time-varying parameters, we impose substantially weaker smoothness and moment

conditions on the likelihood and its derivatives. For example, in the case of local linear es-

timators we do not require the existence of so-called derivative processes. And for the local

constant version we only need the first-order derivative process to exist while the exist-

ing literature require higher-order derivatives to be well-defined.1 Finally, again compared

to existing theories, our results hold under much weaker restrictions on the bandwidth se-

quence used in the estimation thereby allowing for standard bandwidth selection procedures

to be used. These features of our theory in turn imply that our asymptotic results take a

simpler form and more closely resemble those found in the literature on local maximum

1For example, Theorem 3 inDahlhaus and Subba Rao (2006) requires the third order derivative process
to obtain the asymptotic bias, which involves the second order derivative process.
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likelihood estimation in a cross-sectional setting. Our theory also applies to GARCH-type

models and for this class we show that additional biases appear due to the local polynomial

approximation being less precise.

We demonstrate the aforementioned attractive features of our theory in two ways: First,

we re-visit some specific models that have been analyzed elsewhere in the literature and show

that our theory allows us to substantially weaken existing regularity conditions for the es-

timators to be well-behaved. Second, we apply our theory to models that fall outside the

framework of existing theories. A simulation study investigates the finite-sample perfor-

mance of the estimators and an empirical application shows the usefulness of the proposed

methodology in practice.

To motivate and further discuss our results, consider the following class of models,

Yn,t = G(Xn,t, εt; θn,t), θn,t = θ (t/n) , (1.1)

for t = 1, 2, ..., n where Yn,t and Xn,t are observed, εt is an unobserved error, and θn,t ∈ Rdθ

is sequence of a possibly time-varying parameters generated by an underlying function θ :

[0, 1] 7→ Rdθ . Here, Xn,t may contain lags of Yn,t and so the above class of models includes

m-order Markov models. However, our theory goes beyond the above and also covers many

other models such as generalized autoregressive models that include, for example, GARCH

as special case. Assuming that θ (·) is a smooth deterministic function, we develop and

analyze nonparametric estimators of θ (u) for any given u ∈ [0, 1]. Our proposed estimation

method is based on the local maximum likelihood principle (see Tibshirani and Hastie, 1987;

Fan et al., 1995): It takes as input a given (quasi-)likelihood function of the model in the

stable case where θt = θ is assumed constant. We then develop a kernel-weighted version of

this objective function where θ (t/n) is approximated by a polynomial in t/n. Maximizing

this w.r.t. the coefficients of the polynomial, we arrive at a local polynomial estimator of

θ (u) and its derivatives.

We develop a novel asymptotic theory showing that the local polynomial estimators are

pointwise (in time) consistent and asymptotically normally distributed. The proof strategy

pursued here is different from the standard one found in the existing literature in that we

rely on a alternative expansion of the score function in order to obtain expressions of the
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leading bias and variance components. This allows us to obtain a simpler expression of

the leading bias and variance terms under weaker regularity conditions compared to, e.g.,

Dahlhaus et al. (2017) and the references therein.

Our estimation method includes as special cases the local constant estimator and the

local linear estimator. The local constant estimator suffers from asymptotic biases involving

the so-called derivative process of the stationary approximation to data, but the local linear

estimator does not. Moreover, the local linear estimator enjoys the well-known automatic

boundary adjustment property meaning that at the beginning and end of the sample, this

estimator will perform better than the local constant one.

Our general theory encompasses most existing results for nonparametric estimators of

with time-varying parameters which are mainly for local constant estimators; see, e.g.,

Kristensen (2012), Robinson (1989), Dahlhaus and Subba Rao (2006) and Fryzlewicz et al.

(2008), and in many cases lead to weaker conditions for existing results to hold. We demon-

strate this feature by revisiting specific models analyzed in these papers and showing that

their asymptotic results carry through under substantially weaker moment and parameter

restrictions. Moreover, it allows us to analyze estimators of models that, as far as we can

tell, cannot be handled by the existing theory, such as Poisson autoregressions with time-

varying parameters. Our theory also contributes to the literature on asymptotic analysis

of local polynomial estimators of varying-coefficient models by extending existing results

(as in Fan et al., 1995; Loader, 2006) to cover situations where the objective functions is

non-concave. This is an important extension since the quasi-likelihoods of most non-linear

models are non-concave, and the analysis of this case requires some new technical tools.

The remainder of the chapter is organized as follows: Framework and estimators are

introduced in Section 1.2. Section 1.3 presents the asymptotic theory of the estimators. In

Section 1.4, we extend the theory to cover GARCH-type models. We then apply our general

theory to particular models in Section 1.5. We present the results of two simulation studies

and an empirical application in Sections 1.6 and 1.7, respectively. All lemmas and proofs

have been relegated to the Appendix.
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1.2 Framework

We are given n observations, Zn,t, t = 1, . . . , n, from a nonlinear time-series model with

associated (quasi-) log-likelihood `n,t (θ) = `t (Zn,t, Zn,t−1, ....Zn,0; θ) ∈ R where θ ∈ Θ. The

quasi-likelihood is assumed to identify the data-generating parameters when these are in

fact constant. That is, when θn,t = θ0 is constant, the data-generating parameter value is

the maximizer of θ 7→ limn→∞
∑n

t=1 E [`n,t (θ)] /n. A natural estimator in the time-invariant

case would then be the M-estimator maximizing the sample analogue,
∑n

t=1 `n,t (θ). The

choice of `n,t (θ) is, of course, model specific. For example, in a regression setting, we

could choose `n,t (θ) as the least squares criteria, while in (G)ARCH models it could be the

Gaussian (quasi-)log-likelihood.

Now, returning to the case where θn,t is potentially varying over time, we then wish to

estimate θ (u) for some given value u ∈ [0, 1] . We propose to do this using local polynomial

estimators where θ (t/n) is approximated by the following polynomial of order m ≥ 0 for

t/n ≈ u,

θ∗u (t/n) := β1 + β2 (t/n− u) + · · ·+ βm+1 (t/n− u)m /m! = D (t/n− u)β0, (1.2)

where β0 =
(
β′0,1, ..., β

′
0,m+1

)′
∈ R(m+1)dθ with β0,i+1 = θ(i) (u) = ∂iθ (u) /∂ui ∈ Rdθ and

D (u) =
[
1, u, u2/2 . . . , um/m!

]
⊗ Idθ ∈ Rdθ×(m+1)dθ .

Next, to control the approximation error, θ (t/n)− θ∗u (t/n), we introduce a kernel weighted

version of the global quasi-log-likelihood and substitute in the polynomial approximation,

Ln (β|u) =
1

n

n∑
t=1

Kb (t/n− u) `n,t (D (t/n− u)β) ,

where Kb (·) = K (·/b) /b, K : R 7→ R is a kernel function, and b = bn > 0 a bandwidth. We

then estimate the polynomial coefficients by

β̂ = arg max
β∈B

Ln (β|u) ,
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where B ⊆ R(m+1)dθ will be specified below, so that θ̂ (u) = β̂0 and θ̂(i) (u) = β̂i+1, i =

0, ...,m. When m = 0, we recover the standard local-constant estimator.

Special care has to be taken with the implementation of local polynomial estimators when

the chosen objective function is not well-defined for all value of θ and/or Θ is compact. A

simple example is ARCH models where parameters have to remain positive for the volatility

process to be well-defined. In such cases, we have to ensure that D (t/n− u)β satisfies these

constraints for t = 1, ..., n. To this end, it proves useful to introduce rescaled versions of β̂

using the following weighting matrix,

Un = diag {1, b, ..., bm} ⊗ Idθ ∈ R(m+1)dθ×(m+1)dθ .

We then define α̂ = Unβ̂ =
(
θ̂ (u)′ , bθ̂(1) (u)′ , ..., bmθ̂(m) (u)′

)′
which satisfies

α̂ = arg max
α∈A

Qn (α|u) , Qn (α|u) =
1

n

n∑
t=1

Kb (t/n− u) `n,t (Db (t/n− u)α) ,

where Db (u) = D (u/b). The asymptotic analysis proves to be much simpler to carry out

in terms of α̂ since each component of α̂ has the same convergence rate as we shall see

in the following section. Un contains the relative rates of convergence of β̂. Importantly,

Db (t/n− u) and Kb (t/n− u) depend on the same argument which facilitates the derivation

of precise restrictions on the parameter space A so that Qn (α|u) is well-defined for all α ∈ A.

The corresponding parameter space for β then takes the form Bn =
{
β = U−1

n α : α ∈ A
}

which expands as b→ 0.

1.3 Asymptotic theory

To establish an asymptotic theory for the proposed class of local polynomial estimators,

we will rely on the concept of local stationarity as introduced by Dahlhaus (1997); see also

Dahlhaus and Subba Rao (2006) and Dahlhaus et al. (2017). We first generalize this concept

to sequences of random functions:

Definition 1.1. A triangular family of random sequences Wn,t (θ), θ ∈ Θ, t = 1, 2, ..., n and

n ≥ 1, is uniformly locally stationary on Θ (ULS(p, q,Θ)) for some p, q > 0 if there exists a
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family of processes W ∗t (θ|u), u ∈ [0, 1], such that: (i) The process {W ∗t (θ|u)} is stationary

and ergodic for all (θ, u) ∈ Θ× [0, 1]; (ii) for some C <∞ and ρ < 1,

E
[
sup
θ∈Θ
‖Wn,t (θ)−W ∗t (θ|u)‖p

]1/p

≤ C
(∣∣∣∣ tn − u

∣∣∣∣q +
1

nq
+ ρt

)
.

Compared to existing definitions of local stationarity, we allow for an additional term ρt

to appear in the approximation error. This is needed in order to allow for the initial value

of the (non-stationary) data-generating process to be arbitrary. In contrast, most of the

existing literature implicitly assumes that the data-generating process has been initialized

at Zn,0 = Z∗0 (u) where Z∗0 (u) is its stationary approximation. This has as consequence that

the data-generating process changes as the researcher varies u in the local log-likelihood

which is a rather peculiar assumption. Moreover, in the estimation of GARCH-type models,

the conditional variance process entering the likelihood is normally initialized at a fixed value

and so again an additional error term will appear when comparing this with its stationary

version. The above definition again allows for this feature. To see how the additional

error is generated in Markov models, we refer the reader to Theorem 1.7 in Appendix 1.8.4

which allow for an arbitrary initialization of the data-generating process. The additional

error term due to different initialization is here assumed to decay geometrically and so

our definition rules out long-memory type processes. This is mostly for simplicity and we

expect that most of our results can be generalized to allow for slower decay rates. Appendix

1.8.1 contain a number of novel results for kernel weighted averages of parameter-dependent

locally stationary processes which will be used in the following analysis of our polynomial

estimators.

We will then require that `n,t (θ) is ULS(p, q,Θ) with stationary approximation `∗t (θ|u).

To illustrate, consider (1.1): The stationary approximation will here take the form `∗t (θ|u) =

` (Z∗t (u) , θ) where Z∗t (u) = (Y ∗t (u) , X∗t (u)) is the stationary solution to the model when

θt = θ (u) is constant,

Y ∗t (u) = G (X∗t (u) , εt; θ (u)) , t = 1, 2, . . .

If the data-generating process is locally stationary, it follows under great generality that the
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likelihood and its derivatives are also locally stationary as shown in the following theorem:

Theorem 1.1. Suppose that Zn,t (θ) is ULS(p, q,Θ) with stationary approximation satis-

fying E [supθ∈Θ ‖Z∗t (θ|u)‖p] < ∞; (ii) εt is i.i.d. and independent of (Zn,t (θ) , Z∗t (θ|u));

and (iii) for some r > 0, E [‖f (z, εt; θ)− f (z′, εt; θ)‖] ≤ C (1 + ‖z‖r + ‖z′‖r) ‖z − z′‖ for

all θ ∈ Θ and z, z′ ∈ Z. Then f (Zn,t, εt; θ) is ULS(p/ (r + 1) , q,Θ).

This result generalizes Proposition 2.5 in Dahlhaus et al. (2017) in two directions: First,

it allows for Zn,t (θ) to be parameter dependent and second it allows for an i.i.d. component,

εt, to enter the transformation. Allowing for parameter dependence means we can apply

the above result to GARCH-type models, among others. The reason why we allow for the

presence of the additional component εt is best illustrated by again considering (1.1): In

this model, we can rewrite Zn,t and thereby the likelihood ` (Zn,t; θ) as a function of Xn,t

and the error term εt. Doing so allows for easier verification of local stationarity of the

likelihood and its derivatives; see Section 1.5 for examples of this.

Under ULS, the nonstationary local likelihood function and its derivatives are well-

approximated by their stationary versions. For example, supα∈A |Q∗n (α|u)−Q∗n (α|u)| =

op (1) where Q∗n (α|u) = 1
n

∑n
t=1Kb (t/n− u) `∗t (Db (t/n− u)α|u). The next step is then to

develop a uniform Law of Large Numbers (ULLN) for Q∗n (α|u). Furthermore, in order to

analyze the bias properties of the local constant version, we need to be able to expand the

stationary version of the score function s∗t (θ|u) = ∂`∗t (θ|u) / (∂θ) w.r.t. u. To this end, we

introduce the following additional concepts:

Definition 1.2. A stationary process W ∗t (θ|u) is said to be Lp-continuous w.r.t. θ if the

following holds for all θ ∈ Θ: E [‖W ∗t (θ|u)‖p] <∞ and

∀ε > 0∃δ > 0 : E

[
sup

θ′:‖θ−θ′‖<δ

∥∥W ∗t (θ′|u)−W ∗t (θ|u)
∥∥p]1/p

< ε.

The process is said to be Lp-differentiable w.r.t. u if there exists a stationary and ergodic

process ∂uW
∗
t (θ|u) with E [‖∂uW ∗t (θ|u)‖p] <∞ such that

E [‖W ∗t (θ|u+ ∆)−W ∗t (θ|u)− ∂uW ∗t (θ|u) ∆‖p]1/p = o (∆) , ∆→ 0.
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Our definition of time differentiability is slightly different from the one found in Dahlhaus

et al. (2017) and other papers where differentiability w.r.t. u has to hold almost surely; our

version is slightly weaker since we only require it to hold in the Lp-norm. The definition of

Lp-continuity w.r.t. θ is also weaker than almost sure continuity: If θ 7→W ∗t (θ|u) is almost

surely continuous with E [supθ∈Θ ‖W ∗t (θ|u)‖p] < ∞ the process is also Lp-continuous since

Dt(δ) = sup‖θ−θ′‖≤δ ‖W ∗t (θ|u)−W ∗t (θ′|u)‖p, δ > 0, will then satisfy limδ→0Dt(δ) = 0

almost surely and so, by dominated convergence, limδ→0 E[Dt(δ)] = 0. It is easily verified

that Lp-continuity w.r.t. θ implies stochastic equicontinuity of Q∗n (α|u) and so a ULLN

holds, c.f. Lemma 1.1(i) in Appendix 1.8.1.

We are now ready to state the regularity conditions under which our estimators are

consistent:

Assumption 1.1. (i) K (·) ≥ 0 has compact support K and
∫
K (v) dv = 1 (ii) K is

symmetric around 0; (iii) for some Λ <∞, |K(v)−K(v′)| ≤ Λ |v − v′|, v, v′ ∈ R.

Assumption 1.2. The parameter space A =
{
α ∈ R(m+1)dθ : D (v)α ∈ Θ,∀v ∈ K

}
where

Θ is compact. The true value θ (u) ∈ Θ.

Assumption 1.3. (i) `n,t (θ) is ULS(p, q,Θ) for some p ≥ 1 and q > 0 with stationary

approximation `∗t (θ|u); (ii) θ 7→ `∗t (θ|u) is L1-continuous; (iii) θ 7→ E [`∗t (θ|u)] has a unique

maximum at θ (u) ∈ Θ.

Assumption 1.1(i) imposes stronger than usual assumptions on K and excludes, among

others, the Gaussian kernel and higher-order kernels. It includes, on the other hand the

Epanechnikov and the triangular kernel. The restriction that K (·) ≥ 0 is used to ensure

identification of the parameters when m > 0; without this, identification is not necessarily

guaranteed; see below for further discussion. The compact support assumption appears to

be quite important for the analysis of local polynomial estimation of non-concave models:

In order to establish uniform convergence of the likelihood we need Θ to be compact as is

standard in the literature. But under this restriction, it is easily checked that Db (v)α /∈ Θ

as b → 0 for any given α = (α1, ..., αm+1) with αi 6= 0 for some i ≥ 1 and any v 6= 0.

Thus, to allow for kernels with unbounded support, we would generally need the parameter

space A to collapse at {(α1, 0, ..., 0) : α1 ∈ Θ} as b → 0. Such shrinking behaviour in turn

22



means that a Taylor expansion of `n,t (Db (v)α) w.r.t. α is not possible and so standard

arguments to establish asymptotic normality of α̂ cannot be applied. On the other hand,

by restricting the support K to be compact, it is easily checked that with A defined in

Assumption 1.2, Kb (v) `n,t (Db (v)α) is well-defined for all α ∈ A and v ∈ R (where we set

Kb (v) `n,t (Db (v)α) = 0 for v/b /∈ K). Moreover, (α1, 0, ..., 0) is an interior point of A and

so in our analysis of α̂ we can employ standard arguments involving a Taylor expansion of

the score function around this point. Thus, it appears as if the compact support assumption

is needed for standard asymptotic arguments to apply. One could replace the definition of

A with

An (u) =
{
α ∈ R(m+1)dθ : Db (v − u)α ∈ Θ, ∀v ∈ {v ∈ [0, 1] : Kb (v − u) > 0}

}
.

This allows for a larger parameter space in finite samples. However, An (u)→ A as b→ 0,

and so we maintain the above definition of A for simplicity.

Assumption 1.3(ii)-(iii) are standard in the analysis of “global” extremum estimators of

stationary models on the form θ̃ (u) = arg maxθ∈Θ
∑n

t=1 `
∗
t (θ|u). In particular, for a given

time series model, we can import existing results for verification of Assumption 1.3(ii)-

(iii); see Section 1.5 for more details. 1.3(iii) in conjunction with the assumption that

K (·) ≥ 0 ensures that the local polynomial estimator identifies θ (u). If we allow for

kernels that take negative values, we have to replace 1.3(iii) with the following more ab-

stract identification condition: The function Q∗ (α|u) =
∫
K (v)E [`∗t (D (v)α|u)] dv satisfies

Q∗ (α|u) < Q∗ ((θ (u) , 0, ..., 0) |u) for any α 6= (θ (u) , 0, ..., 0). We have not been able to pro-

vide primitive conditions for this to hold when K can take negative values and so instead

impose the positivity constraint on K.

If the objective function θ 7→ `n,t (θ) is concave and Θ is concave, we can replace As-

sumption 1.3(i)-(ii) with the following pointwise versions: For any θ ∈ Θ, `n,t (θ) is locally

stationary and E [|`∗t (θ) |] < ∞; see Theorem 2.7 in Newey and McFadden (1994). Under

the above assumptions, the following consistency result holds:

Theorem 1.2. Let Assumptions 1.1-1.3 hold. Then, as b → 0 and nb → ∞, α̂ →p

(θ (u) , 0, ...., 0)′. In particular, θ̂ (u)→p θ (u).
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Note that the above theorem only shows consistency of θ̂ (u) and so at this stage we

cannot make any statements regarding θ̂(i) (u), i = 1, ...,m. This is similar to other results

for nonlinear extremum estimators where parameters associated with components appearing

in the objective function that grow (shrink) with a slower (faster) rate than the leading one

will not be identified; see, e.g., Theorem 9 in Han and Kristensen (2014) where a global

consistency result is only provided for the component with the fastest rate.

However, with some further regularity conditions on the quasi-likelihood function, we can

provide a more precise analysis of the estimators. With sn,t (θ) = ∂`n,t (θ) / (∂θ) ∈ Rdθ and

hn,t (θ) = ∂2`n,t (θ) /
(
∂θ∂θ

′
)
∈ Rdθ×dθ , Dn,t (u) = Db (t/n− u) and Kn,t (u) = Kb(t/n−u),

we introduce the score and hessian,

Sn (α|u) =
1

n

n∑
t=1

Kn,t (u)Dn,t (u)′ sn,t (Dn,t (u)α) ∈ R(m+1)dθ ,

Hn (α|u) =
1

n

n∑
t=1

Kn,t (u)Dn,t (u)′ hn,t (Dn,t (u)α)Dn,t (u) ∈ R(m+1)dθ×(m+1)dθ .

It is easily checked that α0 := Unβ0 belongs to the interior of A for all n large enough due to

Assumption 1.4(ii) in conjunction with Assumption 1.2 and, due to the consistency result,

so will α̂ w.p.a.1. Thus, α̂ will satisfy the first-order condition which combined with the

mean-value theorem yield

0 = Sn (α̂|u) = Sn (α0|u) +Hn (ᾱ|u) (α̂− α0) , (1.3)

where ᾱ is situated on the line segment connecting α̂ and α0. We then decompose the score

function into the bias and variance component, Sn (α0|u) = Bn (u) + Sn (u), where

Bn (u) =
1

n

n∑
t=1

Kn,t (u)Dn,t (u)′ bn,t, Sn (u) =
1

n

n∑
t=1

Kn,t (u)Dn,t (u)′ sn,t (θ (t/n)) , (1.4)

and bn,t = sn,t (θ∗u (t/n)) − sn,t (θ (t/n)) with θ∗u (t/n) defined in eq. (1.2). This decom-

position is different from the one usual employed in the analysis of kernel estimators of

time-varying coefficients where sn,t (θ (t/n)) is replaced by the stationary version of the

score function evaluated at θ (u), s∗t (θ (u) |u); see, e.g., Dahlhaus et al. (2017) and Dahlhaus

and Subba Rao (2006). This choice has as consequence that the corresponding bias term in
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their case generally involves the time derivative process of the score function and so their

analysis tend to impose stronger regularity conditions. By instead centering the analysis

around sn,t (θ (t/n)), our version of the first-order bias component can be obtained through

a standard Taylor expansion w.r.t. θ,

bn,t ∼= hn,t (θ∗u (t/n)) {θ∗u (t/n)− θ (t/n)} ∼= −hn,t (θ (u))
θ(m+1) (u)

(m+ 1)!
{t/n− u}m+1 . (1.5)

Thus, our approach allows for a simpler derivation of the leading bias and variance terms

under the following weak regularity conditions:

Assumption 1.4. (i) `n,t (θ) is twice continuously differentiable; and (ii) θ (u) lies in the

interior of Θ and is m+ 1 times continuously differentiable.

Assumption 1.5. (i) sn,t (θ (t/n)) is a martingale difference (MGD) array w.r.t. Fn,t =

F {Zn,t, Zn,t−1, . . .}; (ii) ωn,t (θ) = sn,t (θ) sn,t (θ)′ ∈ Rdθ×dθ is ULS(p, q, {θ : ‖θ − θ (u)‖ < ε})

for some p ≥ 1 and q, ε > 0 with ω∗t (θ|u) being L1-continuous at θ = θ (u).

Assumption 1.6. hn,t (θ) is ULS(p, q, {θ : ‖θ − θ (u)‖ < ε}) for some p ≥ 1 and q, ε > 0

with L1-continuous stationary approximation h∗t (θ|u) and H (u) ≡ E [h∗t (θ(u)|u)] is non-

singular.

Assumption 1.5 is non-standard compared to the existing literature (as discussed above)

and allows us to apply a martingale central limit theorem for locally stationary sequences (see

Lemma 1.1(iii) in Appendix 1.8.1) to Sn (u). The MGD assumption amounts to assuming

that the time-varying model is correctly specified and has to be verified on a case-by-case

basis. Finally, Assumption 1.6 together with the expansion in eq. (1.5) is used to derive the

limits of Bn (u) and Hn (ᾱ|u),

√
nbSn (u)→d N (0,K2 ⊗ Ω (u)) , Ω (u) = E [ω∗t (θ (u) |u)] , (1.6)

(i)Hn (ᾱ|u)→p K1 ⊗H (u) , (ii)Bn (u) = bm+1

(
µ1 ⊗H (u)

θ(m+1) (u)

(m+ 1)!
+ oP (1)

)
, (1.7)

where µi =
∫
K (v) vm+iD (v) dv and Ki =

∫
Ki (v)D (v)D (v)′ dv, i ≥ 1. Combining these

limit results, we obtain:
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Theorem 1.3. Suppose that Assumptions 1.1-1.6 hold. Then, as b→ 0 and nb→∞,

√
nbUn

{
β̂ − β0 −Rn (Bias (u) + oP (1))

}
→d N

(
0,K−1

1 K2K−1
1 ⊗H (u)−1 Ω (u)H (u)−1

)
,

where Rn = diag
{
bm+1, bm, ..., b

}
⊗ Idθ and Bias (u) = K−1

1 µ1 ⊗ θ(m+1)(u)
(m+1)! . In particular,

for i = 0, 1, ...,m,

√
nb2i+1

{
θ̂(i) (u)− θ(i) (u)− bm+1−i (Biasi (u) + oP (1))

}
→d N

(
0, κ2,iH (u)−1 Ω (u)H (u)−1

)
, (1.8)

where Biasi (u) = κ1,i
θ(m+1)(u)

(m+1)! + oP (1) while κ1,i and κ2,i denotes the ith element of K−1
1 µ1

and (i, i)th element of K−1
1 K2K−1

1 , respectively.

Similar to existing results for local polynomial estimators in a cross-sectional setting, the

bias component only depends on θ(m+1) (u) and so the estimators adapt to the curvature of

θ (u). The asymptotic variance in Theorem 1.3 can be estimated using plug-in methods: It

follows from the proof of Theorem 1.3 that

V̂ (u) =
1

n

n∑
t=1

K2
n,t (u)Dn,t (u)′ sn,t (Dn,t (u) α̂) sn,t (Dn,t (u) α̂)′Dn,t (u) ,

satisfies V̂ (u)→p K2 ⊗ Ω (u) while Hn (α̂|u)→p K1 ⊗H (u).

Comparing the above limit results and the conditions under which they are derived

with the corresponding ones found in Dahlhaus et al. (2017) and the references therein, we

note that our bandwidth restrictions are much weaker than theirs. In particular, standard

bandwidth selection rules can be employed here but not in their set-up. Moreover, the

existing literature requires time derivatives of the stationary score function to exist and be

well-behaved with these entering the bias expressions. We on the other hand are able to

obtain results that are analogous to the ones found in the literature on local polynomial

likelihood estimators; see, e.g., Theorem 1b of Fan et al. (1995).

Equation (1.8) holds for any value of m ≥ 0 and i = 0, ...,m. However, when m − i is

even, κ1,i = 0 since all odd moments of K are zero due to the symmetry assumption. For

example, for the local constant estimator (m = i = 0), Theorem 1.3 only informs us that
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the bias component of θ̂ (u) is op (b). To obtain the leading bias term in this case, a higher-

order expansion in eq. (1.4) is necessary. This expansion requires additional assumptions

involving time derivatives and standard derivatives w.r.t. θ of h∗t (θ (u) |u):

Assumption 1.7. h∗t (θ|u) is time-differentiable in the L1-sense at (θ (u) , u) with time-

derivative ∂uh
∗
t (θ (u) |u) ∈ Rdθ×dθ .

Assumption 1.8. For i = 1, ..., dθ, ∂hn,t (θ) /∂θi exists and is ULS(p, q, {θ : ‖θ − θ (u)‖ < ε})

for some p ≥ 1 and q, ε > 0 with L1-continuous stationary approximation ∂h∗t (θ|u) /∂θi.

Assumption 1.9.
∑∞

s=1

∣∣∣Cov (h∗ij,t (θ (u) |u) , h∗ij,t+s (θ (u) |u)
)∣∣∣ <∞, i, j = 1, ..., dθ.

The time-derivative ∂uh
∗
t (θ (u) |u) will generally involve time-derivatives of the under-

lying stationary approximation of data. For example, if hn,t (θ) = h (Zn,t (θ) ; θ) where the

right-hand side is differentiable w.r.t. Zn,t (θ) ∈ RdZ , then it takes the form

∂uh
∗
t (θ|u) =

dZ∑
i=1

∂h (Z∗t (θ|u) ; θ)

∂zi
∂uZ

∗
i,t (θ|u) ,

where ∂uZ
∗
i,t (θ|u) is the time derivative of Z∗t (θ|u). Assuming in addition that θ (u) is

m + 2 times continuously differentiable, the following asymptotic expansion of bn,t under

Assumptions 1.7-1.8 holds:

bn,t ∼=− h∗t (θ (u) |u)

{
θ(m+1) (u)

(m+ 2)!
(t/n− u)m+1 +

θ(m+2) (u)

(m+ 2)!
(t/n− u)m+2

}
(1.9)

− ∂uh∗t (θ (u) |u)
θ(m+1) (u)

(m+ 1)!
(t/n− u)m+2

−
dθ∑
i=1

θ
(1)
i (u) ∂θih

∗
t (θ (u) |u)

θ(m+1) (u)

(m+ 1)!
(t/n− u)m+2

+
{t/n− u}2m+2

2 {(m+ 1)!}2
dθ∑
i=1

θ
(m+1)
i (u) ∂θih

∗
t (θ (u) |u) θ(m+1) (u)

The short memory condition imposed in Assumption 1.9 is used to control the variance

component of the first-order bias term derived in Theorem 1.3. A sufficient condition for this

assumption to hold is that h∗t (θ (u) |u) is a geometric moment contraction, c.f. Proposition

2 in Wu and Shao (2004). We then obtain the following higher-order expansion of the bias

component to be used when m− i is even:
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Theorem 1.4. Suppose Assumptions 1.1-1.9 hold and θ (·) is m + 2 times continuously

differentiable. Then, as b→ 0 and nb→∞,

Bn (u) =bm+2 [Bias1 (u) + op (1)] + b2m+2 [Bias2 (u) + op (1)] (1.10)

+ bm+1

[
µ1H (u)

θ(m+1) (u)

(m+ 1)!
+OP (1/nq) +Op

(
1√
nb

)]
,

where, with ∂uH (u) = E [∂uh
∗
t (θ (u) |u)] and ∂θiH (u) = E [∂h∗t (θ (u) |u) /∂θi],

Bias1 (u) = µ2H (u)
θ(m+2) (u)

(m+ 2)!
+ µ2∂uH (u)

θ(m+1) (u)

(m+ 1)!
+ µ2

dθ∑
i=1

θ
(1)
i (u) ∂θiH (u)

θ(m+1) (u)

(m+ 1)!
,

Bias2 (u) = − µm+2

2 {(m+ 1)!}2
dθ∑
i=1

θ
(m+1)
i (u) ∂θiH (u) θ(m+1) (u) .

Corollary 1.1. The local constant estimator (m = 0) satisfies, as b → 0, nb3 → ∞ and

nqb→∞,

√
nb
{
θ̂ (u)− θ (u)− b2

{
H−1 (u)Bias0 (u) + op (1)

}}
→d N

(
0, κ2,0H

−1 (u) Ω (u)H−1 (u)
)
,

(1.11)

where κ2,0 =
∫
K2 (v) dv and, with κ1,0 =

∫
K (v) v2dv,

Bias0 (u) = κ1,0

{
H (u)

θ(2) (u)

2
+ ∂uH (u) θ(1) (u) +

1

2

dθ∑
i=1

θ
(1)
i (u) ∂θiH (u) θ(1) (u)

}
.

To our knowledge this is the first complete characterization of the bias components of

local constant estimators in general time-varying parameter models. Compared to existing

results for specific models (see, e.g., Dahlhaus and Subba Rao, 2006) , we see that our

bias expression takes a different form. In particular, ours only involves the first-order time

derivative process, ∂uh
∗
t (θ (u) |u), while existing results involve higher-order derivatives.

This is due to the aforementioned different proof techniques. One can show that our and

theirs bias expressions are equivalent under their stronger regularity conditions. Comparing

Theorems 1.3 and 1.4, we see that the local linear and local constant estimators share

the same convergence rate and asymptotic variance, but that the local constant estimator

suffers from additional biases. This is consistent with the theory found for local constant
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and local linear estimators in a cross-sectional setting. However, compared with the theory

in a cross-sectional setting (as in Fan et al., 1995), our bias takes a slightly different form.

This is due to the fact that the data-generating process in our setting is non-stationary with

the stationary approximation generating additional biases. Similar to the results found in

a cross-sectional regression context, c.f. Fan (1993), we expect the additional biases of the

local constant estimator to translate into reduced precision and efficiency compared to the

local linear one.

Moreover, as is well-known, local polynomial estimators have the advantage of exhibiting

automatic boundary carpentering. This property also holds in our setting near the end

points of the sample (u = 0 and u = 1). Formally, we analyze the properties of the

estimators at u = cb and u = 1 − cb, respectively, for some c > 0. The following corollary

reports the properties for the first case, a similar result holds for the latter one. We leave

out the proof since it follows along the same arguments as Theorems 1.3 and 1.4, except

that the asymptotic bias and variance terms take a slightly different form.

Corollary 1.2. Let θ̂m (u) be the local polynomial estimator of order m ∈ {0, 1}. Under

the same conditions as in Theorem 1.4, with κci,j =
∫
−cK

i (v) vjdv,

√
nb
{
θ̂m (cb)− θ (cb)− b1+m

(
κ1,mBiasm

(
0+
)

+ op (1)
)}

→d N
(
0, amH

−1
(
0+
)

Ω
(
0+
)
H−1

(
0+
))
,

where Ω (0+) = limu↓0 Ω (u), H (0+) = limu↓0H (u), and Biasm (0+) = Bmθ
(m+1) (0+) with

B0 = κc1,1/κ
c
1,0, B1 =

1

2

[(
κc1,2

)2 − κc1,1κc1,3] / [κc1,0κc1,2 − (κc1,1)2] ,
a0 = κc2,0/

(
κc1,0

)2
, a1 =

[(
κc1,2

)2
κc2,0 − 2κc1,1κ

c
1,2κ

c
2,1 +

(
κc1,1

)2
κc2,2

]
/
[
κc1,0κ

c
1,2 −

(
κc1,1

)2]2
.

This corollary shows that the asymptotic biases and variances for the local constant

and linear estimators at the boundaries are different. While the difference between two

asymptotic variances is only a scale, the bias of the local constant estimators vanishes at a

slower rate than the local linear one.
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1.4 Extension to time-varying generalized autoregressive mod-

els

The theory developed in Section 1.3 requires sn,t (θ (t/n)) to be a Martingale difference.

This assumption is violated in time-varying GARCH-type models as we shall see. We

here demonstrate how our proof strategy can be generalized to cover the following class of

generalized autoregressive models (GAR’s),

Yn,t = GY (λn,t, εt) , λn,t = Gλ (Yn,t−1, λn,t−1, θ (t/n)) .

This class includes GARCH and Poisson Autogressions, amongst others. Since λn,t is not

directly observed, the likelihood takes the form

`n,t (θ) = ` (Yn,t, λn,t (θ)) , λn,t (θ) = Gλ (Yn,t−1, λn,t−1 (θ) , θ) ,

where λn,t (θ) is initialized at λn,0 (θ) = λ0 for some fixed λ0 and ` (·) depends on the

functional form of GY and the assumed distribution of εt.

We will here only provide a theory for local constant estimators since the analysis of local

polynomial estimators requires a completely different proof strategy compared to the one

pursued in this chapter. To see the complications that arise when analyzing local polynomial

estimators of GAR’s, first recall that we need to replace θ (t/n) in the model by its local

polynomial approximation, θ∗u (t/n). But this implies that instead of using λn,t (θ) in the

computation of the likelihood, we should use

λn,t (θ∗u (·)) = Gλ (Yn,t−1, λn,t−1 (θ∗u (·)) , θ∗u (t/n)) .

This in turn implies that the likelihood becomes a functional of θ∗u (·) and so the analysis of

local polynomial estimators for this class of models will require a completely different proof

strategy involving, amongst other things, the use of functional derivatives.

In the case of the local constant estimator, on the other hand, θ∗u (t/n) = β0 is constant

and most of the assumptions and arguments used in Section 1.3 carry over to GAR’s as-

suming we can show that λn,t (θ) and its derivatives are ULS. However, Assumption 1.5 will
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no longer hold in general. To see this, observe that

sn,t (θ) =
∂` (Yn,t, λn,t (θ))

∂λ
∂θλn,t (θ) , ∂θλn,t (θ) = ∇θGλ (∂θλn,t−1 (θ) , Yn,t−1, λn,t−1 (θ) , θ)

with initial conditions ∂θλn,t (θ) = 0 and ∇θGλ (∂θλ, Y, λ, θ) := ∂Gλ(Y,λ,θ)
∂θ + ∂Gλ(Y,λ,θ)

∂λ ∂θλ.

Here, ∂` (Yn,t, λn,t) / (∂λ) is a MGD under great generality while ∂` (Yn,t, λn,t (θ (t/n))) / (∂λ)

will not enjoy this property since λn,t−1 (θ (t/n)) 6= λn,t−1. This in turn implies that

sn,t (θ (t/n)) will generally not be a MGD. Instead, for the arguments in Section 1.3 to

apply to estimators of GAR models, we here propose to replace sn,t (θ) in the definition of

Sn (u) by the following alternative version,

s̄n,t (θ) =
∂` (Yn,t, λn,t)

∂λ
vn,t (θ)

for some process vn,t (θ) ∈ Fn,t−1 as chosen by us. A natural choice is vn,t (θ) = ∂θλn,t (θ)

but we here allow for added flexibility since in some applications other choices facilitate the

verification of the following high-level assumption (see the proof of Theorem 1.5 for one such

example):

Assumption 1.10. (i) s̄n,t (θ (t/n)) is a MGD w.r.t. Fn,t; (ii) ω̄n,t (θ) = s̄n,t (θ) s̄′n,t (θ) ∈

Rdθ×dθ is ULS(p, q, {θ : ‖θ − θ (u)‖ < ε}) for some p ≥ 1 and q > 0 with ω̄∗t (θ|u) being L1-

continuous at θ = θ (u); and (iii) E [‖s̄n,t (θ (t/n))− sn,t (θ (t/n))‖p]1/p ≤ C/nqs for some

p ≥ 1 and qs > 0.

The above assumption is almost identical to Assumption 1.5 except sn,t (θ (t/n)) has been

replaced by s̄n,t (θ (t/n)). The important difference appears in part (iii) which states that the

former is well-approximated by the latter. In the case of Markov-type models, (iii) is auto-

matically satisfied; for GAR-type models, we provide tools for its verification below. We then

redefine variance and bias components as Sn (u) = 1
n

∑n
t=1Kn,t (u)Dn,t (u)′ s̄n,t (θ (t/n)) and

B̄n (u) =
1

n

n∑
t=1

Kb (t/n− u) bn,t, bn,t = sn,t (θ (u))− s̄n,t (θ (t/n)) ,

where the latter can be decomposed into B̄n (u) = Bn (u) + Rn (u) where Bn (u) is defined
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in eq. (1.4) and

Rn (u) =
1

n

n∑
t=1

Kb (t/n− u) rn,t, rn,t = sn,t (θ (t/n))− s̄n,t (θ (t/n)) . (1.12)

We then apply the existing theory to Sn (u) and Bn (u) using Assumption 1.10(i)-(ii) while

Rn (u) = Op (n−qs) under part (iii), and so is negligible if the bandwidth sequence is chosen

such that nqsb2 →∞:

Theorem 1.5. Suppose that Assumptions 1.1-1.4, and 1.6-1.10 hold with m = 0. Then

B̄n (u) = Bn (u) + OP (1/nqs) where Bn (u) satisfies eq. (1.10). In particular, under the

additional restriction that nqsb2 →∞, eq. (1.11) remains valid with Ω (u) = E [ω̄∗t (u)].

Compared to the estimation of Markov-type models considered in the previous section,

an additional bias term appears in the estimation of GAR models due to the additional

approximation error in λn,t−1 − λn,t−1 (θ (u)). In order to apply the above theory, it is

useful with primitive conditions under which `n,t (θ), ωn,t (θ) and hn,t (θ) are ULS and

part (iii) of Assumption 1.10 holds. To this end, observe that these are all functions of

Zn,t (θ) :=
(
λn,t (θ) , ∂θλn,t (θ) , ∂2

θθλn,t (θ)
)

where the first two components are defined above

and ∂2
θθλn,t (θ) is the matrix of second-order partial derivatives. These satisfy

∂2
θθλn,t (θ) = ∇2

θθGλ
(
∂2
θθλn,t−1 (θ) , ∂θλn,t−1 (θ) , Yn,t−1, λn,t−1 (θ) , θ

)
with ∂2

θθλn,t (θ) = 0, for some function ∇2
θθGλ. Importantly, Zn,0 (θ) = (λ0, 0, 0) is fixed

and so existing results for local stationarity do not apply, c.f. the discussion following

Definition 1.1 and we instead develop new tools to show that Zn,t (θ) is ULS. We can then

apply Theorem 1.1 to show that `n,t (θ) and its derivatives are also ULS. Observe that,

for a suitably defined function G, Zn,t (θ) satisfies Zn,t (θ) = G (Yn,t−1, Zn,t−1 (θ) ; θ). The

following theorem states sufficient conditions for processes on this form to be ULS where

we here allow data to also be parameter dependent:

Theorem 1.6. Suppose that Wn,t (θ) is ULS(pW , 1,Θ) with stationary approximation W ∗t (θ|u)

satisfying E [supθ∈Θ ‖W ∗t (θ|u)‖pW ] < ∞, and Zn,t (θ) = G (Wn,t−1 (θ) , Zn,t−1 (θ) ; θ) with
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Zn,0 = z0 where, for some β < 1 and rW , rθ ≥ 0,

∥∥G (w, z; θ)−G
(
w′, z′; θ′

)∥∥ ≤C (1 + ‖w‖rW +
∥∥w′∥∥rW ) ∥∥w − w′∥∥+ β

∥∥z − z′∥∥
+ C

(
1 + ‖w‖rθ +

∥∥w′∥∥rθ) ∥∥θ − θ′∥∥ .
Then the following results hold:

(i) Zn,t (θ) is ULS(pW / (rW + 1) , 1,Θ) with Z∗t (θ|u) = G
(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)
sat-

isfying E
[
supθ∈Θ ‖Z∗t (θ|u)‖pW /(rW+1)

]
<∞.

(ii) If E [‖Wn,t (θ)−Wn,t (θ′)‖pW ]
1/pW ≤ C ‖θ − θ′‖, then

E
[∥∥Zn,t (θ)− Zn,t

(
θ′
)∥∥p̃Z]1/p̃Z

≤ C
∥∥θ − θ′∥∥ , p̃Z = pW / (max {rW , rθ}+ 1) .

(iii) For Zn,t = G (Wn,t−1 (θ (t/n)) , Zn,t−1; θ (t/n)),

E
[
‖Zn,t (θ (t/n))− Zn,t‖pW /rθ

]rθ/pW
≤ C/n.

(iv) If W ∗t (θ|u) is time-differentiable in the LαW sense and G (w, z; θ) is continuously

differentiable with respect to both w and z, then Z∗t (θ|u) is also time-differentiable in the

LαZ sense where αZ = pWαW / (pW + rWαW ) with time-derivative

∂uZ
∗
t (θ|u) =∂zG

(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)
∂uZ

∗
t−1 (θ|u)

+ ∂wG
(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)
∂uW

∗
t−1 (θ|u) .

Part (i) of the theorem provides us with conditions under which λn,t (θ) and its deriva-

tives are ULS and Lipschitz w.r.t. θ supposing that Yn,t is LS and Gλ and its derivatives are

Lipschitz. The above can then be combined with Theorem 1.1 to show ULS of the likelihood

and its derivatives. Parts (ii)-(iii) can be used to verify, e.g., E [‖λn,t (θ (t/n))− λn,t‖pλ ]1/pλ ≤

C/n for some pλ ≥ 1. Suppose now that s (Yn,t, λn,t (θ (t/n))) satisfies the conditions of The-

orem 1.1. By the same arguments as used in the proof of this theorem, it then holds that

E [‖s (Yn,t, λn,t (θ (t/n)))− s (Yn,t, λn,t)‖p]1/p ≤ C/n for a suitable p ≥ 1 thereby verifying

part (iii) of Assumption 1.10; as an example of this, we refer the reader to the proof of

33



Corollary 1.5.

1.5 Examples

To demonstrate the usefulness of our general set-up, we here apply our theory to some

particular models. Throughout this section, Assumption 1.1 is implicitly assumed. All

proofs can be found in Appendix 1.8.3.

Example 1.1. (Cai, 2007; Kristensen, 2012) Consider the following d-dimensional tv-

VAR(q) model,

Yn,t =

q∑
i=1

Φi (t/n)Yn,t−i + Σ (t/n) εt = θ (t/n)Xn,t + Σ (t/n) εt, (1.13)

where εt ∈ Rd is i.i.d. with E [εt] = 0 and E [εtε
′
t] = Id, Φi (·) ∈ Rd×d, i = 1, ...p, Σ (·) ∈ Rd×d,

θ (u) = (vec′ (Φ1 (u)) , ..., vec′ (Φp (u)))′ ∈ Θ = Rd2q, and Xn,t =
(
Y ′n,t−1, ..., Y

′
n,t−q

)′ ⊗ Id.
Under regularity conditions, its stationary approximation is given by

Y ∗t (u) =

q∑
i=1

Φi (u)Y ∗t−i (u) + Σ (u) εt = θ (u)X∗t (u) + Σ (t/n) εt,

where X∗t (u) =
(
Y ∗t−1 (u)′ , ..., Y ∗t−q (u)′

)′⊗ Id, while its derivative process ∂tY
∗
t (u) takes the

form

∂uY
∗
t (u) =

q∑
i=1

Φi (u) ∂tY
∗
t (u) +

q∑
i=1

Φ
(1)
i (u)Y ∗t−i (u) + Σ(1) (u) εt.

and we collect these in ∂uX
∗
t (u) =

(
∂uY

∗
t−1 (u)′ , ..., ∂uY

∗
t−q (u)′

)′ ⊗ Id. We estimate θ (u) by

local least-squares, `n,t (θ) = ‖Yn,t − θ′Xn,t‖2. Applying our asymptotic theory, we obtain

the following novel result for the estimation of time-varying VAR(p) models:

Corollary 1.3. Suppose that θ (·) and Σ (·) are twice continuously differentiable with Φ (v) =

Id −
∑q

i=1 Φi (v) zi having all its eigenvalues outside the unit circle, v ∈ [0, 1]. Then the lo-

cal linear estimator satisfies Theorem 1.3 with H (u) = E
[
X∗t (u)X∗t (u)′

]
and Ω (u) =

E
[
X∗t (u) Σ (u) Σ (u)′X∗t (u)′

]
. If in addition E

[
‖εt‖4

]
< ∞, then the local constant esti-

mator satisfies Theorem 1.4 with ∂θH (u) = 0, and ∂uH (u) = 2E
[
X∗t (u) ∂uX

∗
t (u)′

]
.
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Example 1.2. (Dahlhaus and Subba Rao, 2006; Fryzlewicz et al., 2008) Suppose Wn,t =

Y 2
n,t ∈ R+ solves the following tv-ARCH(q) model,

Wn,t = λn,tε
2
t , λn,t = ω (t/n) +

q∑
i=1

αi (t/n)Wn,t−i, (1.14)

where εt is i.i.d. with zero mean and unit variance. The corresponding stationary solution

and derivative process are given by

W ∗t (u) =λ∗t (u)ε2
t , λ∗t (u) = ω(u) +

q∑
i=1

αi(u)W ∗t−i(u),

∂uW
∗
t (u) =∂uλ

∗
t (u)ε2

t , ∂uλ
∗
t (u) = ω(1)(u) +

q∑
i=1

αi(u)∂tW
∗
t−i(u) +

q∑
i=1

α
(1)
i (u)W ∗t−i (u) .

We estimate the time-varying parameter vector θ (u) = (ω(u), α1(u), ..., αp(u)) using our

local polynomial estimator based on the Gaussian quasi-log likelihood,

`n,t (θ) = − log (λn,t (θ))− Wn,t

λn,t (θ)
, λn,t (θ) = ω +

q∑
i=1

αiWn,t−i.

Corollary 1.4. For the tv-ARCH(q) model given by (1.14), assume that (i) E
[
ε4
t

]
< ∞;

(ii) θ (·) is twice continuously differentiable with
∑q

i=1 αi (v) < 1 for all v ∈ [0, 1]; and (iii)

θ (u) ∈ Int (Θ) where Θ =
{
θ ∈ [δL, δU ]q+1 |

∑q
i=1 αi ≤ 1− δ

}
for some 0 < δL < δU < ∞

and δ > 0. Then the local linear and local constant estimators of the tvARCH model satisfy

Theorems 1.3 and 1.4, respectively, with Ω (u) = −V ar
(
ε2
t

)
H (u),

H (u) = −E
[
∂θλ
∗
t (u) (∂θλ

∗
t (u))′

λ∗t (u)2

]
, ∂θiH (u) = 2E

[
∂θiλ

∗
t (u) ∂θλ

∗
t (u) (∂θλ

∗
t (u))′

λ∗t (u)3

]
,

∂uH (u) = 2E
[
∂uλ

∗
t (u) ∂θλ

∗
t (u) (∂θλ

∗
t (u))′

λ∗t (u)3
+
∂2
θuλ
∗
t (u) (∂θλ

∗
t (u))′

λ∗t (u)2

]
where ∂θλ

∗
t (u) =

(
1,W ∗t−1 (u) , . . . ,W ∗t−q (u)

)′
and ∂2

θuλ
∗
t (u) =

(
1, ∂uW

∗
t−1(u), . . . , ∂uW

∗
t−q(u)

)′
.

Comparing our conditions with the ones in Dahlhaus and Subba Rao (2006), we see

that ours are substantially weaker: They require that E
[
ε12
t

]1/6∑q
j=1 αj (u) < 1− ρ which

rules out most empirically relevant situations. For example, if εt ∼ N (0, 1) then their

requirement becomes
∑q

j=1 αj (u) < 0.22. This strong condition is a by-product of their
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proof strategy which requires mixing and stronger moment conditions of the derivative pro-

cess. Furthermore, while their bias component for the local constant estimator involves the

so-called second-order derivative process while ours only involves the first-order derivative.

Example 1.3. (Chen and Hong, 2016) Let Wn,t = Y 2
n,t ∈ R+ solve the following tv-GARCH

model,

Wn,t = λn,tε
2
t , λn,t = ω (t/n) + α (t/n)Wn,t−1 + β (t/n)λn,t−1, (1.15)

for t = 1, 2, . . . , n, where εt is i.i.d. (0, 1). We estimate θ (u) = (ω(u), α(u), β(u))′ using

the Gaussian log-likelihood which takes the same form as in Example 1.2 except that now

λn,t (θ) = ω + αWn,t−1 + βλn,t−1 (θ) where λ2
n,0 (θ) = λ0 > 0. The stationary solution and

its derivative process takes the form

W ∗t (u) = λ∗t (u) ε2
t , λ∗t (u) = ω (u) + α (u)W ∗t−1 (u) + β (u)λ∗t−1 (u) ,

and ∂uW
∗
t (u) = ∂uλ

∗
t (u)ε2

t where

∂uλ
∗
t (u) = ω(1)(u) + α(u)∂uW

∗
t−1(u) + β(u)∂uλ

∗
t−1(u) + α

(1)
i (u)W ∗t−1 (u) + β(1) (u)λ∗t−1 (u) .

To state our asymptotic theory, we also need the stationary version of the derivative

process w.r.t. θ, ∂θλ
∗
t (u) = (1/ (1− β (u)) , ∂αλ

∗
t (u) , ∂βλ

∗
t (u))′ where

∂αλ
∗
t (u) = W ∗t−1 (u) + β (u) ∂αλ

∗
t−1 (u) , ∂βλ

∗
t (u) = λ∗t (u) + β (u) ∂βλ

∗
t−1 (u) (u) ,

and ∂2
θuλ
∗
t (u) =

(
β(1) (u) / (1− β (u))2 , ∂2

αuλ
∗
t (u) , ∂2

βuλ
∗
t (u)

)′
where

∂2
αuλ

∗
t (u) = ∂uW

∗
t−1(u) + β(1) (u) ∂αλ

∗
t−1 (u) + β (u) ∂2

αuλ
∗
t (u)

∂2
βuλ
∗
t (u) = ∂uλ

∗
t (u) + β(1) (u) ∂βλ

∗
t−1 (u) (u) + β (u) ∂2

βuλ
∗
t (u) .

Corollary 1.5. For the tvGARCH model given by (1.15), assume that (i) E
[
ε4
t

]
<∞; (ii)

θ (·) is twice continuously differentiable with α (v) + β (v) < 1 for all v ∈ [0, 1]; and (iii)

θ (u) ∈ Int (Θ) where Θ =
{
θ = (ω, α, β)′ ∈ [δL, δU ]3 |α+ β ≤ 1− δ

}
for some 0 < δL <

δU < ∞ and δ > 0. Then the local constant estimator of the tvGARCH model satisfies
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Theorem 1.4 with the relevant moments being on the same form as in Corollary 1.4 but now

with λ∗t (u), ∂tλ
∗
t (u), ∂θλ

∗
t (u) and ∂2

θuλ
∗
t (u) as defined above.

Again, our conditions are substantially weaker compared to those found in the existing

literature: Chen and Hong (2016) require E
[
ε16
t

]
< ∞, that the GARCH process and its

derivative process are φ-irreducible, and that the bandwidth shrinks to zero at a very slow

rate.

Example 1.4. (Agosto et al., 2016) Let Yn,t ∈ {0, 1, 2, . . .} solve the following time-varying

Poisson Autoregression (tvPAR),

Yn,t|Fn,t−1 ∼ Poisson (λn,t) , λn,t = ω (t/n) +

q∑
i=1

αi (t/n)Yn,t−i. (1.16)

where Fn,t−1 = F {Yn,t−i : i = 1, 2, ...}, Poisson(λ) denotes a Poisson distribution with in-

tensity parameter λ. This model is a time-varying parameter version of the model con-

sidered in Agosto et al. (2016) who analyze the properties of Yn,t and of the MLE when

θ (u) = (ω (u) , α1 (u) , ..., αp (u))′ is constant. We here apply our general theory to the local

linear MLE where the log-likelihood function takes the form

`n,t (θ) := Yn,t log {λn,t (θ)} − λn,t (θ) , λn,t (θ) = ω +

q∑
i=1

αiYn,t−i.

Note here that the derivative process of Yn,t is not well-defined due to it being discrete-

valued, and so existing results, such as the ones in Dahlhaus et al. (2017), cannot be used

to analyze the local MLE. The following corollary provides the first asymptotic theory for

local linear estimation of the tvPAR model:

Corollary 1.6. For the tvPAR model given by (1.16), assume that (i) θ (·) is twice contin-

uously differentiable with
∑q

i=1 αi (v) < 1 for all v ∈ [0, 1]; and (ii) θ (u) ∈ Int (Θ) where,

for some 0 < δL < δU < ∞ and δ > 0, Θ =
{
θ ∈ [δL, δU ]q+1|

∑q
i=1 αi ≤ 1− δ

}
. Then the

local linear estimator satisfies Theorem 1.3 with

Ω (u) = E
[

(∂θλ
∗
t (u)) (∂θλ

∗
t (u))′

λ∗t (u)

]
= −H (u) ,

where λ∗t (u) = ω (u) +
∑q

i=1 αi (u)Y ∗t−i (u) and ∂θλ
∗
t (u) =

(
1, Y ∗t−1 (u) , ..., Y ∗t−q (u)

)′
.
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1.6 Simulation study

In this section, we examine the finite-sample performances of our estimators. Throughout,

we use the Epanechnikov kernel and all results are based on 500 simulated data sets. The

performance of the estimators is evaluated using the mean absolute deviation error (MADE),

MADE := 1
n

∑n
t=1

∣∣∣θ̂ (t/n)− θ (t/n)
∣∣∣, as well as their bias, variance, and mean squared

error.

The estimators were implemented as follows: First note that in most applications, we

wish to estimate the full parameter path that generated data, say, θ (1/n) , ..., θ ((n− 1) /n).

This involves n−1 optimization problems but observe that we will in general expect β̂ (i/n)

will be fairly close to β̂ ((i− 1) /n), i = 2, ..., n. This motivates the following sequential

procedures: Do a full parameter search to obtain β̂ (1/n) = arg maxβ∈B Ln (β|1/n) and

then use Newton’s method for the remaining estimates: With b̂i,0 = β̂ ((i− 1) /n), compute

b̂i,k+1 = b̂i,k −H−1
n

(
b̂i,k|i/n

)
Sn

(
b̂i,k|i/n

)
,

for k = 1, 2, ..., where Sn (β|u) and Hn (β|u) denote the score and hessian of Ln (β|i/n),

until convergence is achieved and set β̂ (i/n) equal to the termination value. We found this

method to work very well in practice. When m > 0, the initial computation of b̂i,k is of

dimension (m+ 1) dim (θ) which may be a high-dimensional problem. To resolve this, we

again propose a sequential procedure: First, compute the local constant estimator, θ̂ (u) =

arg maxθ∈Θ Ln (θ|1/n); second, compute the local linear estimator initialized at
(
θ̂ (u) , 0

)
,

and so forth.

To select b, we employ a generalized version of the cross-validation method proposed in

Richter and Dahlhaus (2017): As a first step, we compute the leave-one-out estimator,

β̂b (t0/n) = arg max
β∈B

n∑
t6=t0

Kb

(
t− t0
n

)
`n,t (D (t/n− u)β) ,

for t0 = 1, ..., n, and then use as criterion the over-all global quasi-likelihood,

CV (b) =

n∑
t=1

`n,t

(
D (t/n− u) β̂b (t/n)

)
.
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We then choose our bandwidth as the minimizer of CV (b). Chu and Marron (1991) indicate

that cross-validation may be severely affected when the model is misspecified so that the

score function is no longer a martingale difference. This can be handled by using a “leave-

(2l + 1)-out” version of the above cross-validation method.

1.6.1 Time-varying ARCH

We first consider the time-varying ARCH(1) in eq. (1.14) where ε ∼ i.i.d.N (0, 1) and

ω (u) = −.5 cos (6πu) + .7, α (u) = .4 cos (6πu) + .45.

We estimate ω (u) and α (u) using both local Gaussian log-likelihood and the WLS method

of Fryzlewicz et al. (2008) witht K chosen as the Epanechnikov kernel. The following results

are based on 500 simulated data sets with sample sizes n =250, 500 and 1000. Table 1.1

reports the performance of the estimators based on cross-validated bandwidths. The local

linear MLE performs best in terms of IMSE and MADE among the four estimators for

all sample sizes. We also report MADE values for both local constant and local linear

estimators. For all sample sizes, the bias for the QML estimator is always smaller than one

for WLS estimator.

Table 1.1: Performance of the local constant (LC) and local linear (LL) estimators:
ARCH(1)

ω (u) α (u)

WLS ML WLS ML

n LC LL LC LL LC LL LC LL

250 ISB 0.035 0.029 0.038 0.032 0.033 0.037 0.032 0.033

IV 0.077 0.094 0.068 0.066 0.087 0.112 0.091 0.090

IMSE 0.112 0.123 0.107 0.098 0.120 0.149 0.124 0.123

MADE 0.264 0.263 0.264 0.236 0.271 0.293 0.269 0.272

500 ISB 0.015 0.012 0.014 0.014 0.017 0.018 0.014 0.018

IV 0.042 0.045 0.042 0.035 0.056 0.068 0.062 0.056

IMSE 0.058 0.057 0.056 0.049 0.073 0.087 0.076 0.074

MADE 0.184 0.180 0.178 0.169 0.214 0.225 0.211 0.209

1000 ISB 0.008 0.008 0.006 0.007 0.009 0.009 0.006 0.008

IV 0.024 0.024 0.022 0.019 0.035 0.041 0.037 0.035

IMSE 0.032 0.031 0.028 0.026 0.044 0.049 0.043 0.043

MADE 0.138 0.132 0.129 0.124 0.162 0.169 0.159 0.158

Integrated squared bias (ISB), variance (IV), and mean squared errors (IMSE)
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To investigate the performance of the estimators near the end of the sample, we plot the

estimates of ω for n =1000 in Figure 1.1. As predicted by the theory, we observe that the

local linear estimators enjoys smaller biases near the boundary.
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Figure 1.1: Pointwise means of local constant and local linear MLE’s and LS estimators of
ω in ARCH(1)

1.6.2 Poisson Autoregression

We here report simulation results for the local constant and local linear MLE’s of the

following PARX(1) model with an additional exogeneous regressor Xn,t,

λn,t = ω (t/n) + α (t/n)Yn,t−1 + γ (t/n) exp (Xt−1) ,

where

ω (u) = 0.7− 0.5 sin (2πu) , α (u) = 0.5 + 0.4 sin (2πu) , γ (u) = 1 + 0.5 sin (2πu) ,

and

Xn,t = ρ (t/n)Xn,t−1 + σ (t/n) εt, εt ∼ i.i.d.N (0, 1) .

We examine the performance of the MLE under two different data generating processes

(DGP’s) for the covariate Xt.
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DGP1 Strictly stationary Xn,t: ρ (u) = 0.5, σ (u) = 1.

DGP2 Locally stationary Xn,t: ρ (u) = 0.5− 0.4 cos (πu), σ (u) = 1 + 0.5 cos (2πu).

Table 1.2 reports the over-all performance of the estimators in terms of integrated squared

bias, variance, MSE and MADE. The table shows that the variance of the local linear

estimators is slightly smaller than the one of the local constant estimator. Otherwise, the

performance of the estimators are similar. Overall, we find that the performance of the local

linear estimator for DGP2 is better than the one for DGP1. Finally, similar to the case

of the tvARCH model, the local linear estimator again enjoys better performance near the

boundaries; we leave out the plots to save space.

Table 1.2: Performance of the local constant (LC) and local linear (LL) estimators:
PARX(1)

ω (u) α (u) γ (u)

DGP n = 500 LC LL LC LL LC LL

1 ISB 0.006 0.014 0.002 0.003 0.003 0.003

IVar 0.075 0.078 0.005 0.004 0.018 0.019

IMSE 0.081 0.092 0.007 0.007 0.021 0.022

med.(MADE) 0.202 0.208 0.061 0.063 0.112 0.111

2 ISB 0.008 0.015 0.002 0.002 0.002 0.002

IVar 0.091 0.077 0.005 0.003 0.019 0.016

IMSE 0.099 0.091 0.006 0.006 0.022 0.018

med.(MADE) 0.205 0.205 0.061 0.059 0.109 0.098

Integrated squared bias (ISB), variance (IV), and mean squared errors (IMSE)

1.7 Empirical application

The aim of this section is to analyze possible time-varying effects of various factors explain-

ing US corporate default rates when modeled with a PARX model. The data set on defaults

consists of monthly number of bankruptcies among Moody’s rated industrial firms in the

United States for the period 1982-2011 (T = 360 observations), collected from Moody’s

Credit Risk Calculator (CRC). Figure 1.2, which shows default counts and the correspond-

ing autocorrelation function, reveals (i) high temporal dependence in default counts; (ii)

existence of default clusters over time.

We follow Agosto et al. (2016) and model monthly number of bankrupcies, Yt, by a
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Figure 1.2: Number of defaults per month among Moody’s rated US industrial firms in the
period 1982-2011 (top) and autocorrelation function of defaults (bottom)

PARX model, but here allow for the possibility of time-varying parameters,

Yn,t|Fn,t−1 ∼ Poisson (λn,t) , t = 1, 2, . . . , n;

λn,t = ω (t/n) +

p∑
i=1

αi (t/n)Yn,t−i + γLI (t/n) exp (−LIn,t−1) ,

where LI is the so-called Leading Index released by the Federal Reserve (LI). This can

be seen as a leading indicator of economic activity. To select the number of lags, we first

estimate the model with constant parameters and then use AIC and BIC for model selection.

The results are reported in Table 1.3 from which we see that the preferred specification is

the PARX(3) model.

Table 1.3: Model selection results for corporate defaults
PARX(1) PARX(3) PARX(6) GPARX(1,1) GPARX(2,1) GPARX(3,1)

logL -811.6 -737.2 -723.6 -741.0 -734.0 -731.3

AIC 1629.2 1484.3 1463.2 1490.0 1478.0 1474.6

BIC 1640.9 1503.7 1494.3 1505.5 1497.4 1497.9

p-value of PIT < 10−4 0.0194 0.0151 0.0028 0.0051 0.0068

Agosto et al. (2016) found evidence of of two significant break when the Dot-com bubble

burst in the late 1990’s and again around the onset of the most recent financial crisis in 2008.
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The aim here is to see whether this finding is supported by the nonparametric estimation

for the time-varying parameters. We here focus on the tvPARX(6) model. Figure 1.3 shows

the time-series of local linear estimates,
{
θ̂t

}
, for tvPARX(6). These graphs provide some

evidence of structural change. In particular, the impact of exp (−LI) on the default intensity

is significant and dramatically changes over the whole estimation period. All together, we

find substantial time-variation in the parameters that our local polynomial estimators are

able to capture well.

Figure 1.3: Local linear estimate of tvPARX(6) model

1.8 Appendix

1.8.1 Auxiliary results

In the following, assume that L satisfies: (i) L (·) has a compact support; (ii) for some

Λ <∞, |L(v)− L(v′)| ≤ Λ |v − v′|, v, v′ ∈ R. We denote Lb (·) := L (·/b) /b.

Lemma 1.1. The following hold as b→ 0 and nb→∞:

(i) Suppose {Wn,t (θ)} is ULS(p, q,Θ) with its stationary approximation {W ∗t (θ|u)} being

Lp continuous for some p ≥ 1, q > 0 and Θ is compact Then, with A defined in Assumption

1.2,

sup
α∈A

∥∥∥∥∥ 1

n

n∑
t=1

Lb (t/n− u)Wn,t (Db (t/n− u)α)−
∫
L (v)E [W ∗t (D (v)α|u)] dv

∥∥∥∥∥ = op (1) .
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(ii) Suppose {Wn,t (θ (t/n)) ,Fn,t} is a martingale difference array; and, for some p ≥ 1

and q, ε > 0, Vn,t (θ) = Wn,t (θ)W ′n,t (θ) is ULS(p, q, {θ : ‖θ − θ (u)‖ < ε}) with its stationary

approximation V ∗t (θ|u) being Lp continuous at θ = θ (u); and v 7→ θ (v) is continuous at

v = u. Then

√
b

n

n∑
t=1

Lb (t/n− u)Wn,t (θ (t/n))→d N

(
0,

∫
L2 (v) dv × E [V ∗t (θ (u) |u)]

)
;√

b

n

n∑
t=1

Lb (t/n− cb)Wn,t (θ (t/n))→d N

(
0,

∫ +∞

−c
L2 (v) dv × E [V ∗t (θ (u) |u)]

)
.

(iii) Suppose W ∗t is a stationary and ergodic sequence with
∑∞

s=0

∣∣cov (W ∗t ,W ∗t+s)∣∣ <∞.

Then, for any u ∈ (0, 1)

∣∣∣∣∣ 1n
n∑
t=1

Lb (t/n− u)W ∗t −
∫
L (v) dv × E [W ∗t ]

∣∣∣∣∣ = op

(
1/
√
nb
)
.

Proof of Lemma 1.1. Proof of (i). We first show that for all θ ∈ Θ,

1

n

n∑
t=1

Lb (t/n− u)Wn,t (θ)→p

∫
L (v) dv × E [W ∗t (θ|u)] .

Note that L(v) = 0 for |v| ≥ v̄ for some v̄ > 0. Then the Minkowski’s inequality implies

that

E

[∥∥∥∥∥ 1

n

n∑
t=1

Lb (t/n− u) {Wn,t (θ)−W ∗t (θ|u)}

∥∥∥∥∥
p]1/p

≤ 1

n

n∑
t=1

|Lb (t/n− u)|E [‖Wn,t (θ)−W ∗t (θ|u)‖p]1/p

≤ C

n

n∑
t=1

|Lb (t/n− u)|
(
bq
∣∣∣∣ t/n− ub

∣∣∣∣q + 1/nq + ρt
)

≤ C

n

n∑
t=1

|Lb (t/n− u)| ×
(
bqv̄q + 1/nq + ρt

)
= O (bq) +O

(
n−q

)
+O

(
1√
nb

)
,

where we have used that

1

n

n∑
t=1

|Lb (t/n− u)| ρqt ≤ 1√
nb

√√√√ 1

n

n∑
t=1

(L2)b (t/n− u)

√√√√ n∑
t=1

ρ2qt = O

(
1√
nb

)
.
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Next, with W̄t = W ∗t (θ|u)− E [W ∗t (θ|u)], for sufficiently large n, 1
n

∑n
t=1 Lb (t/n− u) W̄t =

1
nb

∑t̄
t=t Lb (t/n− u) W̄t, where t̄ = [n (u+ v̄b)] and t = [n (u− v̄b)]. Here, [x] denotes the

integer part of any real number x. By summation by parts, we have, with Sn,t =
∑t

j=t W̄j ,

1

n

t̄∑
t=t

Lb (t/n− u) W̄t =
1

n

t̄∑
t=t

Lb (t/n− u) (Sn,t − Sn,t−1)

=
1

n

t̄−1∑
t=t

[Lb (t/n− u)− Lb ((t+ 1) /n− u)]Sn,t +
1

n
Lb (t̄/n− u)Sn,t̄.

Since
{
W̄t

}
is stationary, Sn,t has the same distribution as S̃n,t =

∑t−t+1
j=1 W̄j . Thus, for

some constant M ,
∣∣ 1
n

∑n
t=1 Lb (t/n− u) W̄t

∣∣ ≤ M
nb supt≤t̄−t+1

∣∣∣S̃n,t∣∣∣. The ergodic theorem

yields S̃n,t/t → 0 which in turn implies that 1
n

∑n
t=1 Lb (t/n− u) W̄t tends to zero almost

surely. Finally, using the mean value theorem, there exists vn,t ∈
[
t−1
n , tn

]
so that with

L̄ = supv L (v),

∣∣∣∣∣ 1n
n∑
t=1

Lb (t/n− u)−
∫
Lb (x− u) dx

∣∣∣∣∣ =

∣∣∣∣∣ 1

nb

n∑
t=1

Lb (t/n− u)−
n∑
t=1

∫ t/n

(t−1)/n
Lb (x− u) dx

∣∣∣∣∣
≤ 1

nb

n∑
t=1

|Lb (t/n− u)− Lb (vn,t − u)|

≤ 1

nb

n∑
t=1

Λ

∣∣∣∣ t/n− vn,tb

∣∣∣∣ = O

(
1

nb

)
,

which shows that 1
n

∑n
t=1 Lb (t/n− u)E [W ∗t (θ|u)] =

∫
Lb (x− u) dxE [W ∗t (θ|u)]+O (1/nb).

For the uniform convergence, we note that by definition of A, Db (v − u)α ∈ Θ for all

v ∈ supp (L) and α ∈ A. Thus, 1
n

∑n
t=1Kb (t/n− u)Wn,t (Dn,t (u)α), where Dn,t (u) =

Db (t/n− u), is well-defined for α ∈ A, and

E
[

sup
α∈A
‖Wn,t (Dn,t (u)α)−W ∗t (Dn,t (u)α|u)‖p

]
≤ E

[
sup
θ∈Θ
‖Wn,t (θ)−W ∗t (θ|u)‖p

]
≤ C

(
|t/n− u|q + 1/nq + ρt

)p
.
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Using Hölder’s inequality and Minkowski’s inequality,

E

[
sup
α∈A

∥∥∥∥∥ 1

n

n∑
t=1

Lb (t/n− u) {Wn,t (Dn,t (u)α)−W ∗t (Dn,t (u)α|u)}

∥∥∥∥∥
]

≤ 1

n

n∑
t=1

|Lb (t/n− u)|E
[

sup
α∈A
‖Wn,t (Dn,t (u)α)−W ∗t (Dn,t (u)α|u)‖p

]1/p

≤ C b
q

n

n∑
t=1

|Lb (t/n− u)|
(∣∣∣∣ t/n− ub

∣∣∣∣q + 1/nq + ρt
)

= O (bq) .

Next,

sup
α∈A

∥∥∥∥∥ 1

n

n∑
t=1

Lb (t/n− u) {W ∗t (Dn,t (u)α|u)− E [W ∗t (Dn,t (u)α|u)]}

∥∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥∥ 1

n

n∑
t=1

Lb (t/n− u) {W ∗t (θ|u)− E [W ∗t (θ|u)]}

∥∥∥∥∥+ op (1)

where 1
n

∑n
t=1 Lb (t/n− u) {W ∗t (θ|u)− E [W ∗t (θ|u)]} = oP (1) for all θ ∈ Θ. Thus, the result

will follow if we can show stochastic equicontinuity of θ 7→ 1
n

∑n
t=1 Lb (t/n− u)W ∗t (θ|u) but

this follows from the assumption of θ 7→ W ∗t (θ|u) being Lp continuous: For a given θ ∈ Θ

and ε > 0 there exists δ > 0 so that

E

[
sup

θ′:‖θ−θ′‖<δ

∥∥∥∥∥ 1

n

n∑
t=1

Lb (t/n− u)W ∗t (θ|u)− 1

n

n∑
t=1

Lb (t/n− u)W ∗t
(
θ′|u

)∥∥∥∥∥
]

≤ 1

n

n∑
t=1

|Lb (t/n− u)|E

[
sup

θ′:‖θ−θ′‖<δ

∥∥W ∗t (θ|u)−W ∗t
(
θ′|u

)∥∥]

=
ε

n

n∑
t=1

|Lb (t/n− u)| = O (ε) .

Proof of (ii). Observe that
√
b/n

∑n
t=1 Lb (t/n− u)Wn,t (θ (t/n)) is a martingale with

quadratic variation Qn = b
n

∑n
t=1 L

2
b (t/n− u)Vn,t (θ (t/n)). To derive the limit of Qn, write

Qn =
b

n

n∑
t=1

L2
b (t/n− u)E [V ∗ (θ (t/n) |u)]

+
b

n

n∑
t=1

L2
b (t/n− u) {Vn,t (θ (t/n))− V ∗t (θ (t/n) |u)}

+
b

n

n∑
t=1

L2
b (t/n− u) {V ∗t (θ (t/n) |u)− E [V ∗t (θ (t/n) |u)]} .
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For the first term, employing standard results for kernel averages together with the fact that

θ 7→ E [V ∗t (θ|u)] is continuous (because V ∗t (θ|u) is L1-continuous),

b

n

n∑
t=1

L2
b (t/n− u)E [V ∗t (θ (t/n) |u)]→

∫
L2 (x) dxE [V ∗t (θ (u) |u)] .

Applying arguments similar to those in the proof of Lemma 1.1(i) together with continuity

of v 7→ θ (v), L1-continuity of θ 7→ V ∗t (θ|u) and L having compact support, we have for all

n large enough,

b

n

n∑
t=1

L2
b (t/n− u)E [‖Vn,t (θ (t/n))− V ∗t (θ (t/n) |u)‖]

≤ b

n

n∑
t=1

L2
b (t/n− u) sup

‖θ−θ(u)‖<ε
E [‖Vn,t (θ)− V ∗t (θ|u)‖] = o (1) ,

and

b

n

n∑
t=1

L2
b (t/n− u) {V ∗t (θ (t/n) |u)− E [V ∗t (θ (t/n) |u)]}

≤ b

n

n∑
t=1

L2
b (t/n− u) sup

‖θ−θ(u)‖<ε
E [‖V ∗t (θ|u)− E [V ∗t (θ|u)]‖] = o (1) .

The result now follows if the Lindeberg condition is satisfied, c.f. Brown (1971). But, as

nb→∞, with mn,t (θ) =
√
b/nLb (t/n− u)W ∗t (θ|u),

n∑
t=1

‖mn,t (θ (t/n))‖2 1 (‖mn,t (θ (t/n))‖ > ε)

≤
n∑
t=1

(
‖mn,t (θ (t/n))‖2 − ‖m∗t (θ (u) |u)‖2

)
1 (‖mn,t (θ (t/n))‖ > ε)

+

n∑
t=1

‖m∗t (θ (u) |u)‖2 1
(
‖mn,t (θ (t/n))‖ > ε, ‖m∗t (θ (u) |u)‖ ≤ ε/

√
2
)

+
n∑
t=1

‖m∗t (θ (u) |u)‖2 1
(
‖m∗t (θ (u) |u)‖ > ε/

√
2
)
.

Recycling the arguments used in the analysis of Qn, it follows that the first and third terms

are op (1). Similarly, the convergence of the second term is obtained with the following
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inequality and Markov’s inequality:

n∑
t=1

‖m∗t (θ (u) |u)‖2 1
(
‖mn,t (θ (t/n))‖ > ε, ‖m∗t (θ (u) |u)‖ ≤ ε/

√
2
)

≤ ε2

2

n∑
t=1

1
(
‖mn,t (θ (t/n))‖2 − ‖m∗t (θ (u) |u)‖2 > ε2/2

)
.

Proof of (iii). Assume w.l.o.g. that E [W ∗t ] = 0 and then use

V ar (An) ≤ 1

n

n∑
t1,t2=1

|Lb (t1/n− u)| |Lb (t2/n− u)|
∣∣cov (W ∗t1 ,W ∗t2)∣∣

≤ L̄

(nb)2

n∑
t1,t2=1

∣∣∣∣L( t1/n− ub

)∣∣∣∣ |cov (Wt1 ,Wt2)| = O

(
1

nb

)
.

1.8.2 Proofs: Main results

Proof of Theorem 1.1. We first note that f (Z∗t (θ|u) , εt; θ) is stationary and ergodic because

f is a measurable function of (Z∗t (θ|u) , εt). Moreover, with pZ = p/ (r + 1),

E
[
sup
θ∈Θ
‖f (Zn,t (θ) , εt; θ)− f (Z∗t (θ|u) , εt; θ)‖pZ

]1/pZ

≤ CE
[(

1 + ‖Zn,t (θ)‖pr/(r+1) + ‖Z∗t (θ|u)‖pr/(r+1)
)
‖Zn,t (θ)− Z∗t (θ|u)‖pZ

]1/pZ

≤ CE [‖Zn,t (θ)− Z∗t (θ|u)‖p]1/p ≤ C
(
|t/n− u|q + 1/nq + ρt

)
.

where we have employed Hölder’s inequality.

Proof of Theorem 1.2. We apply Lemma 1.1(i) toQn (α|u) = 1
n

∑n
t=1Kb (t/n− u) `n,t (Dn,tα)

and obtain supα∈A |Qn (α|u)−Q∗ (α|u)| = oP (1) forQ∗ (α|u) =
∫
K (v)E [`∗t (D (v)α|u)] dv.

Now, observe that for any α = (α1, ..., αm+1) with αi 6= 0 for some i ≥ 2, the polynomial

v 7→ D (v)α is non-constant almost everywhere. Thus, for any α 6= α∗ = (θ (u) , 0, ..., 0),

D (v)α 6= θ (u) = D (v)α∗ for almost all v ∈ [0, 1] and so by Assumption 1.3(iii), for almost

every v, E [`∗t (D (v)α|u)] < E [`∗t (θ (u) |u)] = E [`∗t (D (v)α∗|u)]. Since K (·) ≥ 0 this in turn
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implies that

Q∗ (α|u) =

∫
K (v)E [`∗t (D (v)α|u)] dv <

∫
K (v)E [`∗t (D (v)α0|u)] dv = Q∗ (α∗|u) .

Finally, by the dominated convergence theorem together with Assumption 1.3(ii) α 7→

Q∗ (α|u) is continuous. This proves α̂ →p α∗, c.f. Theorem 2.1 in Newey and McFad-

den (1994).

Proof of Theorem 1.3. From Theorem 1.2 we know that α̂ →p α∗ := (θ (u) , 0, ...., 0). It

is easily checked that the limit is situated in the interior of A and so w.p.a.1. so will α̂.

As a consequence, α̂ will satisfy (1.3) w.p.a.1. Adding and subtracting Sn (u) and then

rearranging yields

0 =
√
nbSn (u) +Hn (ᾱ|u)

√
nb
(
α̂− α0 −H−1

n (ᾱ|u) {Sn (α0|u)− Sn (u)}
)
.

Here, H−1
n (ᾱ|u) is well-defined w.p.a.1 since, as shown below, it converges towards an

invertible matrix. The claimed asymptotic result now follows if we can verify the claims of

eqs. (1.6)-(1.7):

Proof of eq. (1.6). First note that
√
nbSn (u) =

√
b
n

∑n
t=1 Lb(t/n − u) ⊗ sn,t (θ (t/n))

with L(u) = K(u)D (u). The result now follows from Lemma 1.1(ii) under Assumption 1.5.

Proof of eq. (1.7)(i). We can write Hn (β|u) = 1
n

∑n
t=1 Lb(t/n−u)⊗hn,t (Dn,t (u)β) with

L(u) = K(u)D (u)D (u)′. Applying Lemma 1.1(i) in conjunction with Assumption 1.6, we

then obtain supα∈B(ε) ‖Hn (α|u)−K1 ⊗H (D (v)α|u)‖ = op(1), whereH (θ|u) = E [h∗t (θ|u)]

is continuous w.r.t. θ and B(ε) = {α : ‖α− α∗‖ < ε} for some small ε > 0. Thus, given that

ᾱ →p α∗, Hn (ᾱ|u) →p K1 ⊗ H (θ (u) |u). Finally, note here that since K is a probability

density function, K1 is invertible, while H (θ (u) |u) = H (u) is invertible by assumption.

Proof of eq. (1.7)(ii). First observe that Dn,t (u)α0 = θ∗u (t/n) where θ∗u (t/n) was

defined in (1.2). Now, employ the mean-value theorem twice to obtain that, for some θ̄n,t
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lying between θ∗u (t/n) and θ (t/n) and some un,t ∈ [t/n, u],

bn,t =hn,t
(
θ̄n,t
)
{θ∗u (t/n)− θ (t/n)} = −hn,t

(
θ̄n,t
) θ(m+1) (un,t)

(m+ 1)!
(t/n− u)m+1

=− (t/n− u)m+1 hn,t

(
θ

(
t

n

))
θ(m+1)

(
t
n

)
(m+ 1)!

+

{
hn,t

(
θ

(
t

n

))
θ(m+1)

(
t

n

)
− hn,t

(
θ̄n,t
)
θ(m+1) (un,t)

} ( t
n − u

)m+1

(m+ 1)!
.

The first term is locally stationary and so by the same arguments as in the proof of Lemma

1.1(ii),

bm+1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+1

hn,t (θ (t/n))
θ(m+1) (t/n)

(m+ 1)!

= bm+1

{
µ1 ⊗H (u)

θ(m+1) (u)

(m+ 1)!
+ op (1)

}
.

Next, observe that for |t/n− u| ≤ Cb,
∥∥θ̄n,t − θ (t/n)

∥∥ ≤ ‖θ∗u (t/n)− θ (t/n)‖ ≤ C̃bm+1and

so, using the ULS property of hn,t(θ),

sup
n,t

E
[∥∥∥∥hn,t(θ( tn

))
− hn,t

(
θ̄n,t
)∥∥∥∥]

≤ C

(
bq
∣∣∣∣ tn − ub

∣∣∣∣q + 1/nq

)
+ sup
‖θ−θ′‖≤C̃bm+1

E
[∥∥h∗t (θ|u)− h∗t

(
θ′|u

)∥∥]→ 0,

as n → ∞. Similarly, supn,t
∥∥θ(m+1)

(
t
n

)
− θ(m+1) (un,t)

∥∥ → 0 as n → ∞ using the uniform

continuity of θ(m+1) (·). These two results show that the remainder term is op (1) .

Proof of Theorem 1.4. Proof proceeds exactly as the one of Theorem 1.3, but we now es-

tablish that bn,t satisfies eq. (1.9). Using a second-order expansion w.r.t. θ followed by a

second-order Taylor expansion w.r.t. u, we obtain

bn,t =− hn,t (θ (t/n))

[
θ(m+1) (u)

(m+ 1)!
{t/n− u}m+1 +

θ(m+2) (un,t)

(m+ 2)!
{t/n− u}m+2

]
.

+
1

2

dθ∑
i=1

θ
(m+1)
i (un,t)

(m+ 1)!

∂hn,t
(
θ̄n,t
)

∂θi

θ(m+1) (un,t)

(m+ 1)!
{t/n− u}2m+2 .
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For the first term, write

1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+1

hn,t (θ (t/n))

=
1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+1

[hn,t (θ (t/n))− hn,t (θ (u))]

+
1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+1

h∗t (θ (u) |u)

+
b

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+2

∂uh
∗
t (θ (u) |u)

+
1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+1

 hn,t (θ (u))− h∗t (θ (u) |u)

−∂uh∗t (θ (u) |u) (t/n− u)


where, by Lemma 1.1(iii) together with Assumption 1.9 and Lemma 1.1(i), respectively,

1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+1

[hn,t (θ (t/n))− hn,t (θ (u))]

= bµ2

dθ∑
i=1

θ
(1)
i (u) ∂θiH (u) + oP (b) ,

1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+1

h∗t (θ (u) |u) = µ1H (u) + oP

(
1/
√
nb
)
,

1

n

n∑
t=1

Kn,t (u)Dn,t (u)′
(
t/n− u

b

)m+2

∂uh
∗
t (θ (u) |u) = µ2∂uH (u) + oP (1) ,

while, using Assumption 1.7,

1

n

n∑
t=1

|Kn,t (u)| ‖Dn,t (u)‖
∣∣∣∣ t/n− ub

∣∣∣∣m+1

E


∥∥∥∥∥∥∥
hn,t (θ (u))− h∗t (θ (u) |u)

−∂uh∗t (θ (u) |u) (t/n− u)

∥∥∥∥∥∥∥


≤ 1

n

n∑
t=1

|Kn,t (u)| ‖Dn,t (u)‖
∣∣∣∣ t/n− ub

∣∣∣∣m+1

C
(
1/nq + ρt

)

+
1

n

n∑
t=1

|Kn,t (u)| ‖Dn,t (u)‖
∣∣∣∣ t/n− ub

∣∣∣∣m+1

E


∥∥∥∥∥∥∥
h∗t (θ (u) |t/n)− h∗t (θ (u) |u)

−∂uh∗t (θ (u) |u) (t/n− u)

∥∥∥∥∥∥∥


=O
(
n−q

)
+O

(
1/
√
nb
)

+ o(b).

For the second term and the third term (i = 1, ..., dθ), copying the arguments from the proof
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of eq. (1.7)(ii),

n∑
t=1

Kn,t (u)Dn,t (u)′
{
t/n− u

b

}m+2

hn,t
(
θ̄n,t
) θ(m+2) (un,t)

(m+ 2)!
= µ2H (u)

θ(m+2) (u)

(m+ 2)!
+ oP (1) ,

n∑
t=1

Kn,t (u)Dn,t (u)′
{
t/n− u

b

}2m+2 θ
(m+1)
i (un,t)

(m+ 1)!

∂hn,t
(
θ̄n,t
)

∂θi

θ(m+1) (un,t)

(m+ 1)!

= µm+2
θ

(m+1)
i (u)

{(m+ 1)!}2
∂θiH (u) θ(m+1) (u) + oP (1) .

where the second result uses Assumption 1.8. Collecting terms yield the claimed result.

Proof of Theorem 1.5. All arguments in the proofs of Theorems 1.3-1.4 remain valid except

for the following two adjustments: First, we now have an additional bias component Rn (u),

as defined in eq. (1.12), which we have to show is negligible. Second, the variance component

now takes the form Sn (u) = 1
n

∑n
t=1Kb (t/n− u) s̄n,t. But under Assumption 1.10(iii),

E [‖Rn (u)‖] ≤ 1

n

n∑
t=1

Kb (t/n− u)E [‖sn,t (θ (t/n))− s̄n,t‖] = O (1/nqs) ,

and so Rn (u) = Op (1/nqs) = op
(
b2
)

where the second equality follows from the added

bandwidth condition b2nqs →∞. Moreover, it is easily checked that the arguments used in

the proof of Lemma 1.1(iii) carries over to the redefined version of Sn (u) under Assumption

1.10(i)-(ii).

Proof of Theorem 1.6. With pZ = pW / (rW + 1),

E
[
sup
θ∈Θ
‖Zn,t (θ)− Z∗t (θ|t/n)‖pZ

]1/pZ

=E
[
sup
θ∈Θ

∥∥G (Wn,t−1 (θ) , Zn,t−1 (θ) ; θ)−G
(
W ∗t−1 (θ|t/n) , Z∗t−1 (θ|t/n) ; θ

)∥∥pZ]1/pZ

≤CE
[
sup
θ∈Θ

(
1 + ‖Wn,t−1 (θ)‖pZrW +

∥∥W ∗t−1 (θ|t/n)
∥∥pZrW ) ∥∥Wn,t−1 (θ)−W ∗t−1 (θ|t/n)

∥∥pZ]1/pZ

+ βE
[
sup
θ∈Θ

∥∥Zn,t−1 (θ)− Z∗t−1 (θ|t/n)
∥∥pZ]1/pZ

.

The first term is less than or equal to CE
[
supθ∈Θ

∥∥Wn,t−1 (θ)−W ∗t−1 (θ|t/n)
∥∥pW ]1/pW for
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some C <∞ by applying Hölder’s inequality. Then,

E
[
sup
θ∈Θ
‖Zn,t (θ)− Z∗t (θ|t/n)‖pZ

]1/pZ

≤CE
[
sup
θ∈Θ

∥∥Wn,t−1 (θ)−W ∗t−1 (θ|t/n)
∥∥pW ]1/pW

+ βE
[
sup
θ∈Θ

∥∥Zn,t−1 (θ)− Z∗t−1 (θ|t/n)
∥∥pZ]1/pZ

...

≤C
t∑
i=1

βiE
[
sup
θ∈Θ

∥∥Wn,t−i (θ)−W ∗t−i (θ|t/n)
∥∥pW ]1/pW

+ βtE
[
sup
θ∈Θ
‖z − Z∗0 (θ|t/n)‖pZ

]1/pZ

≤C
t∑
i=1

βi
(
(i+ 1) /n+ ρt−i

)
+ βtE

[
sup
θ∈Θ
‖z − Z∗0 (θ|t/n)‖pZ

]1/pZ

≤ C
(
1/n+ ρt

)
.

Also,

E
[
sup
θ∈Θ

∥∥Wn,t−i (θ)−W ∗t−i (θ|t/n)
∥∥pW ]1/pW

≤E
[
sup
θ∈Θ

∥∥Wn,t−i (θ)−W ∗t−i (θ| (t− i) /n)
∥∥pW ]1/pW

+ E
[∥∥W ∗t−i (θ| (t− i) /n)−W ∗t−i (θ|t/n)

∥∥pW ]1/pW
≤C1

(
1/n+ ρt−i

)
+ C2 (i/n) .

The proof of Z∗t (θ|u) being well-defined and stationary with E [supθ∈Θ ‖Z∗t (θ|u)‖pZ ] < ∞

and E [supθ∈Θ ‖Z∗t (θ|u)− Z∗t (θ|v)‖pZ ] ≤ C |u− v|q proceeds in the same way.

To show the second part write, with p̃Z = pW /rθ,

E
[
‖Zn,t (θ)− Zn,t‖p̃Z

]1/p̃Z

= E
[
sup
θ∈Θ
‖G (Wn,t−1 (θ) , Zn,t−1 (θ) ; θ)−G (Wn,t−1 (θ) , Zn,t−1; θ (t/n))‖p̃Z

]1/p̃Z

≤ CE
[
sup
θ∈Θ

(1 + ‖Wn,t−1 (θ)‖pW )

]1/pZ

‖θ − θ (t/n)‖+ βE
[
sup
θ∈Θ
‖Zn,t−1 (θ)− Zn,t−1‖pZ

]1/pZ

...

≤ C
t∑
i=1

βi ‖θ − θ ((t− i) /n)‖ .
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Substituting in θ = θ (t/n) and using it is continuously differentiable,

t∑
i=1

βi ‖θ (t/n)− θ ((t− i) /n)‖ ≤ C
t∑
i=1

βii/n ≤ C/n.

To show the final part, write

∂uZ
∗
t (θ|u) =∂zG

(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)
∂uZ

∗
t−1 (θ|u)

+ ∂wG
(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)
∂uW

∗
t−1 (θ|u) .

By assumption,
∥∥∂zG (W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)∥∥ ≤ β < 1. Moreover, by applying Hölder’s

inequality, with pZ = pWαW / (pW + rWαW ),

E
[∥∥∂wG (W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)
∂uW

∗
t−1 (θ|u)

∥∥pZ ]1/pZ
≤ CE

[(
1 + 2

∥∥W ∗t−1 (θ|u)
∥∥pW rWαW /(pW+rWαW )

)∥∥∂uW ∗t−1 (θ|u)
∥∥pZ]1/pZ

≤ CE
[∥∥∂uW ∗t−1 (θ|u)

∥∥αW ]1/αW <∞.

It implies that ∂uZ
∗
t (θ|u) has a finite αZ = pWαW / (pW + rWαW )-th moment. Also,

‖Z∗t (θ|u+ b)− Z∗t (θ|u)− ∂uZ∗t (θ|u) b‖

=
∥∥G (W ∗t−1 (θ|u+ b) , Z∗t−1 (θ|u+ b) ; θ

)
−G

(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)
− ∂uZ∗t (θ|u) b

∥∥
≤β
∥∥Z∗t−1 (θ|u+ b)− Z∗t−1 (θ|u)− ∂uZ∗t−1 (θ|u) b

∥∥
+ C

(
1 + 2

∥∥W ∗t−1 (θ|u)
∥∥rW ) ∥∥W ∗t−1 (θ|u+ b)−W ∗t−1 (θ|u)− ∂uW ∗t−1 (θ|u) b

∥∥
+ b

∥∥∂zG (W̄ ∗t−1 (θ|u) , Z̄∗t−1 (θ|u) ; θ
)
− ∂zG

(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)∥∥ ∂uZ∗t−1 (θ|u)

+ b
∥∥∂wG (W̄ ∗t−1 (θ|u) , Z̄∗t−1 (θ|u) ; θ

)
− ∂wG

(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)∥∥ ∂wZ∗t−1 (θ|u)

where
(
W̄ ∗t−1 (θ|u) , Z̄∗t−1 (θ|u)

)
is situated on the line connecting

(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u)

)
and

(
W ∗t−1 (θ|u+ b) , Z∗t−1 (θ|u+ b)

)
. Since

{∥∥∂wG (W̄ ∗t−1 (θ|u) , Z̄∗t−1 (θ|u) ; θ
)∥∥pW /rW

}
is

uniformly integrable,

E
[∥∥∂wG (W̄ ∗t−1 (θ|u) , Z̄∗t−1 (θ|u) ; θ

)
− ∂wG

(
W ∗t−1 (θ|u) , Z∗t−1 (θ|u) ; θ

)∥∥pW /rW
]
→ 0
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as b→ 0. This completes the proof.

1.8.3 Proofs: Examples

Proof of Corollary 1.3. We apply our theory with Θ = Rd2q since the least-squares criterion

used for estimation is concave in θ, c.f. the comments following Assumptions 1.1-1.3. We

first show that Xn,t is locally stationary with p ≥ 2 moments when E
[
‖εt‖2

]
<∞. Without

loss of generality, we here only provide a proof for Yn,t = Φ (t/n)Yn,t−1 + Σ (t/n) εt to be

locally stationary under the following conditions: Φ (u) and Σ (u) are twice continuously

differentiable; and all eigenvalues of Φ (u) lie inside the unit circle for u ∈ [0, 1]. We first

verify the conditions of Theorems 1.7 for G (x, e, ϑ) := Φx + Σe where ϑ = (Φ,Σ) with Φ

having all eigenvalues inside the unit circle. First,

E [‖G (0, εt;u)‖p] ≤ ‖Σ (u)‖p E [‖εt‖p] <∞;

second, for all x, x′ ∈ Rd,

E
[∥∥G (x, εt;ϑ)−G

(
x′, εt;ϑ

)∥∥p]1/p ≤ ∥∥Φ
(
x− x′

)∥∥ ≤ ‖Φ (x− x′)‖
‖x− x′‖

∥∥x− x′∥∥ ≤ ρ ∥∥x− x′∥∥ ,
where ρ = supx 6=0

‖Φx‖
‖x‖ < 1 since all eigenvalues of Φ lie inside the unit circle; and for all

ϑ, ϑ′,

E
[∥∥G (x, εt;ϑ)−G

(
x, εt;ϑ

′)∥∥p]1/p =
∥∥Φ− Φ′

∥∥ ‖x‖+
∥∥Σ− Σ′

∥∥E [‖εt‖p]1/p

≤ C (1 + ‖x‖)
∥∥ϑ− ϑ′∥∥ .

Next, we verify that the log-likelihood and its derivatives are ULS: Observe that

∥∥∥∥∂`n,t (θ)

∂Yn,t

∥∥∥∥ ≤ 2 (‖Yn,t‖ − ‖θ‖ ‖Xn,t‖) ,
∥∥∥∥∂`n,t (θ)

∂Xn,t

∥∥∥∥ = 2 (‖Yn,t‖ − ‖θ‖ ‖Xn,t‖) ‖θ‖ ,

and so 1.1 applies with r = 1. For the score function, observe that s̄n,t = 2Xn,tΣ (t/n) εt

which is a Martingale difference with ωn,t = 4Xn,tΣ (t/n) εtε
′
t (Σ (t/n))′X ′n,t. Then,

s̄n,t = sn,t (θ (t/n)) ,

∥∥∥∥ ∂ωn,t∂Xn,t

∥∥∥∥ = 4 ‖Σ (t/n) εt‖2 ‖Xn,t‖ ,
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and so 1.1 applies with r = 1. The hessian is also ULS by similar arguments. Thus, with

E
[
‖εt‖2

]
<∞, all conditions for Theorem 1.3 hold.

To analyze the local constant estimator, first note that our proof of local stationarity

also implies that Y ∗t (u) is a GMC(p) and so we can apply Proposition 2 in Wu and Shao

(2004) to obtain that the process is short-range dependent. With p = 4 this in turn implies

that h∗t (θ|u) = X∗t (u)X∗t (u)′ satisfies Assumption 1.9. The derivative process takes the

form ∂uY
∗
t (u) = Φ(1) (u)Y ∗t−1 (u) + Φ (u) ∂uY

∗
t−1 (u) + Σ(1) (u) εt. The joint process Z∗t (u) =(

∂uY
∗
t (u)′ , ∂uY

∗
t (u)′

)′
solves another VAR model whose stability condition is satisfied due

to all eigenvalues of Φ (u) lying inside the unit circle. It now follows by Propostion 2.5

in Dahlhaus et al. (2017) and the remarks following this that the derivative process of

the hessian, ∂uh
∗
t (θ|u) = 2∂uX

∗
t (u)X∗t (u)′, satisfies Assumption 1.7. Finally, we note

that the third-order derivatives of the log-likelihood are zero and so Assumption 1.8 is

trivially satisfied. Thus, with E
[
‖εt‖4

]
< ∞, Theorem 1.4 applies to the local constant

estimator.

Proof of Corollary 1.4. Verification of all our general conditions for the stationary version,

including identification and existence of relevant moments, follow from Kristensen and Rah-

bek (2005). For the analysis of the local linear estimator, what remains is to show local

stationarity of the log-likelihood function, the conditional variance of the score function and

the hessian. First, it follows from, e.g., Dahlhaus and Subba Rao (2006) that Wn,t is LS(1, 1)

with supn,t E [Wn,t] <∞ and E [W ∗t (u)] <∞. Thus, local stationarity of the log-likelihood

and its derivatives can be shown by verifying the conditions of Theorem 1.1. We have

`n,t (θ) = log (λn,t (θ))+Wn,t/λn,t (θ) with λn,t (θ) = θ′Vn,t and Vn,t = (1,Wn,t−1, ...,Wn,t−q)
′.

Here, λn,t (θ) is trivially ULS(1, 1,Θ) while

∣∣∣∣∂`n,t (θ)

∂Wn,t

∣∣∣∣ =
1

λn,t (θ)
≤ 1

ω
≤ 1

δL
,

∥∥∥∥ ∂`n,t (θ)

∂λn,t (θ)

∥∥∥∥ ≤ 1

λn,t (θ)
+

Wn,t

λ2
n,t (θ)

≤ 1

δL
+

Wn,t

δLλn,t (θ)
,

where

Wn,t

λn,t (θ)
=
θ(t/n)′Vn,t
θ′Vn,t

ε2
t ≤

supu ω (u) +
∑p

i=1 supu αi (u)

δL
ε2
t . (1.17)

Thus, `n,t (θ) satisfies the conditions of Theorem 1.1 with r = 0 and q = 1. Next, we ver-

ify Assumption 1.5 with the score function sn,t (θ) = (1−Wn,t/λn,t (θ)) ∂θλn,t (θ) /λn,t (θ).
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Here, ∂θλn,t (θ) = Vn,t is trivially ULS(1, 1,Θ). The process {sn,t (θ (t/n)) ,Fn,t−1} is a

MGD and ωn,t (θ) takes the form

ωn,t (θ) =
∂θλn,t (θ) (∂θλn,t (θ))′

λ2
n,t (θ)

(1−Wn,t/λn,t (θ))2 .

By combining (1.17) with sup{θ:‖θ−θ(u)‖<ε} ‖∂θλn,t (θ) /λn,t (θ)‖ ≤ p/δL,

∥∥∥∥∂ωn,t (θ)

∂Wn,t

∥∥∥∥ =
2 ‖∂θλn,t (θ)‖2

λ3
n,t (θ)

|1−Wn,t/λn,t (θ)| ≤ C
(
1 + ε2

t

)
,∥∥∥∥∂ωn,t (θ)

∂λn,t (θ)

∥∥∥∥ =
2 ‖∂θλn,t (θ)‖2

λ3
n,t (θ)

∣∣∣∣∣1− 3Wn,t

λn,t (θ)
+

4W 2
n,t

λ2
n,t (θ)

∣∣∣∣∣ ≤ C (1 + ε2
t + ε4

t

)
,∥∥∥∥ ∂ωn,t (θ)

∂ (∂θλn,t (θ))

∥∥∥∥ =
2 ‖∂θλn,t (θ)‖

λ2
n,t (θ)

(1−Wn,t/λn,t (θ))2 ≤ C
(
1 + ε2

t + ε4
t

)
,

and so ωn,t (θ) satisfies the conditions of Theorem 1.1 with r = 0 and q = 1. The hessian

takes the form

hn,t (θ) =
∂θλn,t (θ) ∂θλn,t (θ)′

λ2
n,t (θ)

[
2Wn,t

λn,t (θ)
− 1

]
,

and recycling the inequalities established above it follows that the hessian is also ULS(1,1,Θ).

This verifies the conditions for Theorem 1.3.

For the analysis of the local constant estimator, observe that h∗t (θ (u) |u) is GMC(p)

for some p > 0, and so Lemma 1 and Proposition 2 in Wu and Shao (2004) imply that the

process is short-range dependent and so satisfies Assumption 1.9. Next, to verify Assumption

1.7, we apply Proposition 2.5(ii) in Dahlhaus et al. (2017): Under their assumptions, the

derivative process takes the form

∂uh
∗
t (θ|u) =

∂h∗t (θ|u)

∂W ∗t (u)
∂uW

∗
t (u) +

∂h∗t (θ|u)

∂λ∗t (θ|u)
∂uλ

∗
t (θ|u) +

∂h∗t (θ|u)

∂ [∂θλ
∗
t (θ|u)]

∂θuλ
∗
t (θ|u) ,

where ∂uλ
∗
t (θ|u) = θ′∂uV

∗
t (u), ∂θuλ

∗
t (θ|u) = ∂uV

∗
t (u) =

(
0, ∂uW

∗
t−1(u), ..., ∂uW

∗
t−q(u)

)′
,

and the derivative process ∂uW
∗
t (u) is given in Section 1.5. We note that the first partial

derivative is bounded by a constant C and the remaining two partial derivatives are bounded

by C
(
1 + ε2

t

)
. Also, Proposition 3.1 in Subba Rao (2006) implies that W ∗t (u) is time-

differentiable in the L1-sense at u. By employing the proof of Theorem 1.1, we have that

h∗t (θ (u) |u) is time-differentiable in the L1-sense. Finally, the third-order derivatives takes
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the form

∂hn,t (θ)

∂θi
= −2

∂θiλn,t (θ) ∂θλn,t (θ) ∂θλn,t (θ)′

λ3
n,t (θ)

[
3Wn,t

λn,t (θ)
− 1

]
;

recycling the inequalities derived above, we conclude that these are ULS(1, 1).

Proof of Corollary 1.5. We here verify the conditions of Theorem 1.5. First, using the re-

sults of Subba Rao (2006), we have that (Wn,t, λn,t) is LS(1, 1) with supn,t E [Wn,t] <∞ and

supu E [W ∗t (u)] <∞. Next, observe that the likelihood and score and take the same form as

in the proof of Corollary 1.4. The volatility process is now given by λn,t (θ) = ω+αWn,t−1 +

βλn,t−1 (θ) , and its first and second-order derivatives w.r.t. θ take the form ∂θλn,t (θ) =

(∂ωλn,t (θ) , ∂αλn,t (θ) , ∂βλn,t (θ))′ and ∂2
θθλn,t (θ) =

(
∂2
ωβλn,t (θ) , ∂2

αβλn,t (θ) , ∂2
ββλn,t (θ)

)′
where

∂ωλn,t (θ) = 1 + β∂ωλn,t−1 (θ) , ∂αλn,t (θ) = Wn,t−1 + β∂αλn,t−1 (θ) ,

∂βλn,t (θ) = λn,t−1 (θ) + β∂βλn,t−1 (θ) ,

and

∂2
ωβλn,t (θ) = ∂ωλn,t−1 (θ) + β∂2

ωβλn,t−1 (θ) , ∂2
αβλn,t (θ) = ∂αλn,t−1 (θ) + β∂2

αβλn,t−1 (θ) ,

∂2
ββλn,t (θ) = 2∂βλn,t−1 (θ) + β∂2

ββλn,t−1 (θ) .

We the proceed to show that λn,t (θ), ∂θλn,t (θ) and ∂2
θθλn,t (θ) are ULS and establish

bounds for the following ratios: λn,t/λn,t (θ), ‖∂θλn,t (θ)‖ /λn,t (θ) and
∥∥∂2

θθλn,t (θ)
∥∥ /λn,t (θ).

Given that β < 1, it is easily checked using Theorem 1.6(i) that λn,t (θ), ∂θλn,t (θ) and

∂2
θθλn,t (θ) are ULS(1, 1,Θ). For example, λn,t (θ) = ω + αWn,t−1 + βλn,t−1 (θ) satisfies the

conditions of Theorem 1.6 with rW = 0 and rθ = 1. To establish the desired bound, first

note that, with ω̄ = supu ω (u), ᾱ = supu α (u) and β̄ = supu β (u),

λn,t ≤ ω̄ + ᾱY 2
n,t−1 + β̄λn,t−1 ≤ · · · ≤

ω̄

1− β̄
+

t∑
i=1

β̄iWn,t−i + λ0.

We can now apply the same arguments as on p. 62 in Francq and Zaköıan (2004) to show
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there exists constants c <∞ and 0 < ρ < 1 such that for all θ ∈ Θ and some r < 1,

λn,t
λn,t (θ)

≤ c
t∑
i=0

ρriW̄ r
n,t−i,

where W̄n,t := ω̄+ᾱWn,t−1 satisfies supn,t E
[
W̄ r
n,t

]
<∞. Similarly, again copying arguments

from Francq and Zaköıan (2004),

‖∂θλn,t (θ)‖
λn,t (θ)

≤ C,
∥∥∂2

θθλn,t (θ)
∥∥

λn,t (θ)
≤ C.

It now follows by the same arguments as in the proof of Corollary 1.4 that Assumptions

1.3-1.4 are satisfied.

Next, we verify Assumption 1.10 with

s̄n,t (θ) = (1−Wn,t/λn,t)
∂θλn,t (θ)

λn,t (θ)
=
(
1− ε2

t

) ∂θλn,t (θ)

λn,t (θ)
.

The process {s̄n,t (θ) ,Fn,t−1} is a MGD and ωn,t (θ) takes the form

ωn,t (θ) =
∂θλn,t (θ) (∂θλn,t (θ))′

λ2
n,t (θ)

(
1− ε2

t

)2
.

By the same arguments as for the tvARCH,

∥∥∥∥∂ωn,t (θ)

∂λn,t (θ)

∥∥∥∥ =
2 ‖∂θλn,t (θ)‖2

λ3
n,t (θ)

(
1− ε2

t

)2
,

∥∥∥∥ ∂ωn,t (θ)

∂ (∂θλn,t (θ))

∥∥∥∥ =
2 ‖∂θλn,t (θ)‖

λ2
n,t (θ)

(
1− ε2

t

)2
,

and so ωn,t (θ) satisfies the conditions of Theorem 1 wirh r = 0 and q = 1. Furthermore,

Assumption 1.10(iii) holds with qs = 1 since it is easily checked using Theorem 1.6(iii) that

E [|λn,t − λn,t (θ (t/n))|] ≤ C/n.

The hessian takes the form

hn,t (θ) = −∂θλn,t (θ) ∂θλn,t (θ)′

λ2
n,t (θ)

[
1− 2

Wn,t

λn,t (θ)

]
+
∂2
θθλn,t (θ)

λn,t (θ)

[
1− Wn,t

λn,t (θ)

]
,

and recycling the inequalities established above and again applying Theorem 1.6 it follows
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that the hessian is also ULS(1, 1,Θ) with stationary version

h∗t (θ (u) |u) = −∂θλ
∗
t (u) ∂θλ

∗
t (u)′

λ∗t (u)2

[
1− 2W ∗t (u)

λ∗t (u)

]
+
∂2
θθλ
∗
t (u)

λ∗t (u)

[
1− W ∗t (u)

λ∗t (u)

]
= −∂θλ

∗
t (u) ∂θλ

∗
t (u)′

λ∗t (u)2

(
1− 2ε2

t

)
+
∂2
θθλ
∗
t (u)

λ∗t (u)

(
1− ε2

t

)
.

It can be shown that h∗t (θ (u) |u) is GMC(p) for some p > 0, and so Lemma 1 and Proposition

2 in Wu and Shao (2004) imply that it is short-range dependent and so satisfies Assumption

1.9.

Next, we verify Assumption 1.7: Since hn,t (θ) is ULS(1, 1,Θ),

E [‖hn,t (θ (u))− h∗t (θ (u) |t/n)‖] < C
(
1/n+ ρt

)
.

The derivative process of h∗t (θ|u) takes the form

∂uh
∗
t (θ|u) =

∂h∗t (θ|u)

∂W ∗t (u)
∂uW

∗
t (u) +

∂h∗t (θ|u)

∂λ∗t (θ|u)
∂uλ

∗
t (θ|u)

+
∂h∗t (θ|u)

∂ [∂θλ
∗
t (θ|u)]

∂θuλ
∗
t (θ|u) +

∂h∗t (θ|u)

∂ [∂θθλ
∗
t (θ|u)]

∂θθuλ
∗
t (θ|u) .

We note that the first partial derivative is bounded by a constant C and the remaining three

partial derivatives are bounded by C
(
1 + ε2

t

)
. Also, Proposition 3.1 in Subba Rao (2006)

implies that W ∗t (u) is time-differentiable in the L1-sense at u. We then obtain from Theorem

1.6(iv) that λ∗t (θ|u), λ∗t (θ|u), and ∂2
θθλ
∗
t (θ|u) are time-differentiable in the L1-sense. By

employing Theorem 1.6(iv) one more time, we find that h∗t (θ (u) |u) is also L1-differentiable.

Finally, the third-order derivatives takes the form

∂hn,t (θ)

∂θi
=

2∂θiλn,t (θ) ∂θλn,t (θ) ∂θλn,t (θ)′

λ3
n,t (θ)

[
1− 3

Wn,t

λn,t (θ)

]
−
∂2
θθi
λn,t (θ) ∂θλn,t (θ)′ + ∂θλn,t (θ) ∂2

θθi
λn,t (θ)′

λ2
n,t (θ)

[
1− 2

Wn,t

λn,t (θ)

]
−
∂θiλn,t (θ) ∂2

θθλn,t (θ)

λn,t (θ)2

[
1− 2

Wn,t

λn,t (θ)

]
+
∂3
θθθi

λn,t (θ)

λn,t (θ)

[
1− Wn,t

λn,t (θ)

]

recycling the inequalities derived above, we conclude that these are ULS(1, 1).
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Proof of Corollary 1.6. We first show that the PAR process is locally stationary by verifying

the conditions of Theorem 1.7. First, write the process as

Yn,t = G (Yn,t−1, ..., Yn,t−q, εt; θ (t/n)) := Nt

(
ω (t/n) +

q∑
i=1

αi (t/n)Yn,t−i

)
,

where εt := Nt (·), t = 1, 2, ..., are i.i.d. copies of a Poisson process (see Agosto et al. (2016)

for details). For any x0 ∈ R+
q and all θ ∈ Θ,

E [|G (x0, Nt; θ)|] ≤ E

[
Nt

(
ω +

q∑
i=1

αix0,i

)]
= ω +

q∑
i=1

αix0,i <∞;

and for all x, x′ ∈ R+
q,

E
[∥∥G (x,Nt; θ)−G

(
x′, Nt; θ

)∥∥] ≤ E

[∥∥∥∥∥Nt

(
q∑
i=1

αi
∣∣xi − x′i∣∣

)∥∥∥∥∥
]

=

q∑
i=1

αi
∣∣xi − x′i∣∣ ,

where
∑q

i=1 αi < 1. Finally,

E
[∥∥G (x,Nt; θ)−G

(
x,Nt; θ

′)∥∥] =
∣∣ω − ω′∣∣+

q∑
i=1

∣∣αi − α′i∣∣E [Nt (x)] ≤ C (1 + x)
∥∥θ − θ′∥∥ .

This shows that Xn,t := (Yn,t−1, ..., Yn,t−q) is LS(1, 1) which in turn implies that Yn,t is

LS(1, 1), c.f. Theorem 1.1. However, later we need the existence of higher-order moments,

and so we demonstrate by induction that E [λ∗t (u)r] <∞ for all r <∞: First, E[λ∗t (u)] =

ω (u) +
∑q

i=1 αi (u)E [λ∗t (u)] which has a well-defined solution while

(λ∗t (u))r =
r∑
j=0

(
r

j

)( q∑
i=1

αi (u)Y ∗t−i (u)

)j
ωr−j (u) ,

and so

E[(λ∗t (u))r] =
r∑
j=0

(
r

j

)
E

( q∑
i=1

αi (u)Y ∗t−i (u)

)j (ω (u))r−j

= ω (u)r + E

[(
q∑
i=1

αi (u)Y ∗t−i (u)

)r]
+ E [pr−1 (X∗t (u))] ,

with pr−1 (x) being an (r − 1)th order polynomial. By induction, E [pr−1 (X∗t (u))] < ∞,
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and we are left with considering terms of the form, for some constants cij ,

E

[(
q∑
i=1

αi (u)Y ∗t−i (u)

)r]
=

q∑
i=1

r∑
j=0

cijα
j
i (u)E

[
Y ∗t−i (u)j

]
=

q∑
i=1

αri (u)E
[
Y ∗t−i (u)r

]
+ Cr =

q∑
i=1

αri (u)E [λ∗t (u)r] + Cr

where, again by induction, Cr <∞. Collecting terms, E [(λ∗t (u))r] =
∑q

i=1 α
r
i (u)E [λ∗t (u)r]+

C̃r which has a well-defined solution since
∑q

i=1 α
r
i (u) < 1. This in turn implies that

E [Y ∗t (u)r] <∞ for all r <∞. We can now apply Theorem 1.7 to obtain that λn,t and Yn,t

are LS(r, 1) with E[λrn,t] <∞ and E[Y r
n,t] <∞.

Next, we observe that λn,t (θ), ∂θλn,t (θ) and ∂2
θθλn,t (θ) are on the same form as in the

GARCH model, except that Y 2
n,t−1 has been replaced by Yn,t−1. In particular, it is easily

checked that λn,t (θ) , ∂θλn,t (θ) and ∂2
θθλn,t (θ) are ULS(1, 1,Θ) and with all polynomial

moments since Yn,t−1 has all polynomial moments. Thus, it only remains to show that the

log-likelihood and its derivatives w.r.t. θ satisfy the conditions of Theorem 1.1. First,

∣∣∣∣∂`n,t (θ)

∂Yn,t

∣∣∣∣ = |log {λn,t (θ)}| ≤ max {|log δL| , λn,t (θ)} ,

where λn,t (θ) has all relevant moments. Second,

∣∣∣∣ ∂`n,t (θ)

∂λn,t (θ)

∣∣∣∣ =
Yn,t

λn,t (θ)
+ 1 ≤ Yn,t

δL
+ 1,

where again the right-hand side has all relevant moments. The score function takes the form

sn,t (θ) = (Yn,t/λn,t (θ)− 1) ∂θλn,t (θ) which satisfies the Martingale difference condition

with conditional variance ωn,t (θ) = ∂θλn,t (θ) ∂θλn,t (θ)′ /λn,t (θ). As before, due to all

polynomial moments existing, it is easily checked that the conditional variance satisfies the

conditions of Theorem 1.1 and similarly for the hessian which is on the form

hn,t (θ) =
Yn,t

λ2
n,t (θ)

∂θλn,t (θ) ∂θλn,t (θ)′ −
(

Yn,t
λn,t (θ)

− 1

)
∂2
θθλn,t (θ) .

The analysis of the third-order derivatives is similar and so is left out.
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1.8.4 Local stationarity of Markov processes

Dahlhaus et al. (2017) consider the following general class of nonlinear autoregressive dis-

tributed lag models,

Yn,t = G (Yn,t−1, εt, θ (t/n)) , t = 1, . . . , n,

where G : Y × E ×Θ 7→ Y is some mapping, εt ∈ E ⊆Rdε is a sequence of i.i.d. errors, and

θ (·) ∈ Θ. We here develop generalized versions of their results concerning local stationarity

of Yn,t with stationary approximation Y ∗t (u) solving

Y ∗t (u) = G
(
Y ∗t−1 (u) , εt; θ (u)

)
, u ∈ [0, 1] . (1.18)

In particular, which is in contrast to the existing literature, we do not require that Yn,0 =

Y ∗0 (u) and instead allow Yn,0 to be initialized at some arbitrary value.

Assumption 1.11. (i) There exist y0 ∈ Y and p > 0 such that supθ∈Θ E [‖G (y0, εt; θ)‖p] <

∞; (ii) there exists ρ < 1 so that for all y, y′ ∈ Y,

E
[∥∥G (y, εt; θ)−G

(
y′, εt; θ

)∥∥p]1/p ≤ ρ ∥∥y − y′∥∥ ;

(iii) there exist p̃ ≥ 1, q > 0 and r ≥ 0 so that E
[
‖G (y, εt; θ)−G (y, εt; θ

′)‖p̃
]1/p̃

≤

C (1 + ‖y‖r) ‖θ − θ′‖q for all θ, θ′ ∈ Θ, and (iv) E
[
‖Yn,0‖p̃

]
<∞.

Assumption 1.11(i) ensures that the process is well-behaved around y0 while Assumption

1.11(ii) is the contraction condition implying that {X∗t (u)} is attracted with uniform rate

towards “the centre” of its state space for any given starting point. Finally, Assumption

1.11(iii) allows us to bound the the difference between Yn,t and Y ∗t (t/n). Compared to

Dahlhaus et al. (2017), we here allow for p 6= p̃. In particular, assuming we can verify

E
[
‖Y ∗t (u)‖p̃r

]
< ∞ this allows us to show higher-order local stationarity (p̃ > p). This is,

for example, used in Example 1.4.

Theorem 1.7. Under Assumptions 1.11(i)-(ii), there exists a stationary and ergodic solu-

tion, {Y ∗t (u)} to (1.18) which is GMC(p) with supu∈[0,1] E [‖Y ∗t (u)‖p] <∞. If furthermore
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1.11(iii)-(iv) hold, supu∈[0,1] E
[
‖Y ∗t (u)‖p̃r

]
<∞ and θ (·) ∈ Θ is continuously differentiable,

then Yn,t is LS(p, q) with supn,t E
[
‖Yn,t‖p̃

]
<∞ so that, for some C <∞,

E
[
‖Yn,t − Y ∗t (t/n)‖p̃

]1/p̃
≤ C

(
1

nq
+ ρt

)
, E

[
‖Y ∗t (u)− Y ∗t (v)‖p̃

]1/p̃
≤ C |u− v|q .

Proof of Theorem 1.7. The first part of the result follows from Proposition 4.4 in Dahlhaus

et al. (2017). For the second part,

E [‖Y ∗t (u)− Y ∗t (v)‖p]1/p̃

=E
[∥∥G (Y ∗t−1 (u) , εt, θ (u)

)
−G

(
Y ∗t−1 (v) , εt, θ (v)

)∥∥p̃]1/p̃

≤E
[∥∥G (Y ∗t−1 (u) , εt, θ (u)

)
−G

(
Y ∗t−1 (u) , εt, θ (v)

)∥∥p̃]1/p̃

+ E
[∥∥G (Y ∗t−1 (u) , εt, θ (v)

)
−G

(
Y ∗t−1 (v) , εt, θ (v)

)∥∥p̃]1/p̃

≤C
(

1 + E
[∥∥Y ∗t−1 (u)

∥∥rp̃]1/p̃
)
|u− v|q + ρE

[∥∥Y ∗t−1 (u)− Y ∗t−1 (v)
∥∥p̃]1/p̃

,

and

E
[
‖Yn,t − Y ∗t (t/n)‖p̃

]1/p̃

=E
[∥∥G (Yn,t−1, εt, θ (t/n))−G

(
Y ∗t−1 (t/n) , εt, θ (t/n)

)∥∥p̃]1/p̃

≤ρE
[∥∥Yn,t−1 − Y ∗t−1 (t/n)

∥∥p̃]1/p̃

≤ρE
(∥∥G (Yn,t−2, εt−1, θ ((t− 1) /n))−G

(
Y ∗t−2 (t/n) , εt, θ ((t− 1) /n)

)∥∥)1/p̃
+ ρE

[∥∥G (Y ∗t−2 (t/n) , εt, θ ((t− 1) /n)
)
−G

(
Y ∗t−2 (t/n) , εt, θ (t/n)

)∥∥p]1/p̃
≤ρ2E

[∥∥Yn,t−2 − Y ∗t−2 (t/n)
∥∥p̃]1/p̃

+ ρC

(
1 + E

[∥∥Y ∗t−2 (t/n)
∥∥rp̃]1/p̃

)
1/nq.

Continuing the above two recursions yield the desired results.
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Chapter 2

Sieve Estimation of Optimal

Transport with an Application to

Conditional Vector Quantiles

2.1 Introduction

The Monge-Kantorovich’s optimal transport problem is a class of stochastic optimization

problems bringing new insights into mathematics and many applied sciences. The main ob-

ject of this problem is to find the joint probability measure on X ×Y ⊂ Rd×Rd, with given

marginal probability measures, maximizing (minimizing) the average overall surplus (cost)

generated by linking two random variables X ∈ X and Y ∈ Y. In economics, matching

models under transferable utility have a close relationship to the Monge-Kantorovich prob-

lem; just think of a social planner matching people and trying to maximize total welfare.

Recently, it has been used as a method for investigating many other problems in econo-

metrics and microeconomic theory, such as models of differentiated demand, incomplete

econometric models, and quantile methods (see, for example, Galichon, 2016, 2017).

This chapter considers a class of Monge-Kantorovich problems whose solutions asso-

ciate each point X to a single point Y with a measurable function T : X → Y such that

Y = T (X). I then propose a sieve M-estimation method for T (·) being called the determin-

istic optimal coupling or Monge transport. The objective function for the sieve M-estimation
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is the dual problem of the original Monge-Kantorovich problem. This is because the optimal

joint probability measure π for the Monge transport is identified with a Dirac delta function

while the dual problem is the one minimizing (maximizing) over measurable and integrable

functions. Under certain assumptions on the surplus (cost) function and marginal proba-

bility measures, one can guarantee the existence, uniqueness, and regularity of the solution

of the dual problem, say g : X → R, which is closely connected to T . For example, when

the surplus function is X ′Y , T (X) = ∇g (X) where ∇g is the gradient of g.

In this framework, the solution of the dual problem, g (·), is consistently estimated by a

linear combination of sieve terms. As the number of sieve terms increases, the estimation

error decreases, approaching zero in the limit. The theory impose very little structure on

the underlying optimal transport problem being solved. I then derive convergence rates

for sieve M-estimators of g (·) and its derivatives when Φ (X,Y ) = X ′Y . In particular, in

contrast to the existing literature on nonparametric estimation of the solution to the optimal

transport problem, the conditions under which we derive our results are more easily verified.

Moreover, the derived convergence rates for sieve estimators are the same as the optimal

rate in the context of regression and density estimations (Stone, 1982).

As a generalization of the Monge-Kantorovich problem, we consider the conditional

Monge-Kantorovich problem having an application to the conditional vector quantiles. In

one dimension, the quantile function is the inverse of the cumulative distribution function,

and it is monotone. We follow the definition of the conditional vector quantiles in Carlier

et al. (2016) and Chernozhukov et al. (2017). They define the vector quantiles in terms

of solution for the Monge-Kantorovich problem with the objective function X ′Y , which

includes the original one-dimensional quantile as a special case. Implementation solving the

linear programming problem from the primal optimal transport problem still suffers from

the crossing problem. Simulation studies and empirical applications for the Engel curve

demonstrate that the sieve method avoids this problem. The sieve method also provides a

stable monotone estimate by adding the convexity constraint on the function space. Our

estimator can also capture the nonlinear effect of conditioning variables on vector quantiles.

It decreases the possibility of misspecification.

After Monge (1781) introduced the optimal transport problem, Kantorovich developed
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the problem of optimal coupling, which is a class of joint distribution connected to Monge’s

work. For the deterministic form of the optimal transport map, Brenier (1991) and Mc-

Cann (1995) show that, for the quadratic surplus function, the optimal transport mapping

is unique: a gradient of a convex function. Carlier (2003) and Villani (2008) include the

uniqueness result for the case of a general surplus. Caffarelli (1992) developed the smooth-

ness result of the unique optimal transportation map for the quadratic surplus. This is

extended to the general surplus case by Ma et al. (2005). In this chapter, we use slightly

stronger but simpler conditions, introduced by Lindenlaub (2017), compared to those in

Ma et al. (2005). This property implies that the conventional sieve M-estimation method is

applicable. For the general theory of optimal transport, see Villani (2003), Villani (2008),

or De Philippis and Figalli (2014).

Our convergence rate result is closely related to the work by Gunsilius (2018). This

chapter adapts result from Gunsilius (2018) to construct the second variation on the dual

problem of the Monge-Kantorovich problem. Gunsilius (2018) examines the convergence

rate for the kernel estimator of the solution to the optimal transport problem. For the re-

sult, Poincaré inequality in probability is required to ensure the optimum is well-separated,

but this inequality is a high-level condition. Many popular probability measures includ-

ing those for normal, exponential, and uniform distribution, satisfy Poincaré inequality.

However, it is not easy to verify sufficient conditions for unknown distribution except for

log-concave distribution (Bobkov, 1999). We show that Poincaré inequality is satisfied un-

der the smoothness condition of the densities of two variables and in the constrained case,

in which the true parameter function is under some restrictions.

This chapter is organized as follows. In Section 2.2, we introduce the Monge-Kantorovich’s

optimal transport problem and review the characteristics of optimal transport under certain

regularity conditions on the probability measures and the surplus (cost) function. Section

2.3 proposes the consistent sieve M-estimation method for the solution of the dual problem.

Section 2.4 presents the convergence rate result of the sieve M-estimator. In Section 2.5,

we extend the theory to cover the conditional Monge-Kantorovich problem and then apply

our general theory to the conditional vector quantiles. We present the results of simulation

studies for the conditional vector quantiles in Section 2.6. Section 2.7 revisits the empirical
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study presented in Carlier et al. (2016). Section 2.8 restates our findings and presents our

conclusion. All auxiliary lemmas and proofs have been relegated to the Appendix.

2.2 Monge-Kantorovich problem and Monge transport

Inspired by Monge (1781), who formulated the transport problem in Euclidean space mini-

mizing a specific cost function over two centuries ago, optimal transport is now one of the

most active research areas in mathematics. In economics, the optimal transport is related

to the cost minimization or the surplus maximization. We consider the problem of assign-

ing workers to jobs: assume that there are workers and occupations and their matching

generate a quantity of output. As an economics application of the optimal transport prob-

lem, we can think of a social planner problem deciding which workers to assign to which

occupations to maximize the total output. For this problem the equilibrium matching be-

tween and occupations, and wage function for workers can be expressed with solution of the

Monge-Kantorovich’s optimal transport problem.

The Monge-Kantorovich problem is the stochastic optimization problem depending on

two parts of marginal probability measures and the surplus function. Let X ∈ X ∈ Rd

and Y ∈ Y ∈ Rd have the probability measures PX and PY respectively. Denoting Φ :

X ×Y → Rd ∪ {−∞} as the objective criterion on X ×Y, the Monge-Kantorovich problem

is formulated as follows:

sup
π∈M(PX ,PY )

∫
X×Y

Φ (X,Y ) dπ (X,Y ) (2.1)

where M (PX , PY ) is the set of all joint measures admitting PX and PY as marginals on

X and Y respectively. The pair (X,Y ) having a joint measure π ∈ M (PX , PY ) is called

a coupling of (PX , PY ),1 and (X,Y ) runs over all possible couplings of (PX , PY ) in this

problem. Such couplings, achieving the supremum, are called optimal couplings. One

important feature is that the Monge-Kantorovich problem always has a solution but the

optimal coupling is not necessarily deterministic.2 For example, let X = {0} × [−1, 1] and

1By extension, π is also called a coupling of (PX , PY ).
2The search of deterministic optimal transport map is called the Monge problem. Then, instead of

introducing the possibility of randomization, one can maximize over all deterministic transport maps:
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Y = {−1, 1} × [−1, 1] with uniform marginal distributions U (X ) and U (Y) respectively.

Then, for Φ (X,Y ) = X ′Y , there is a unique optimal coupling at which one half of the mass

at (0, a) matches with (−1, a) and the other half with (1, a).

Another important feature of the Monge-Kantorovich problem is that it is a linear pro-

gramming problem. The objective function in (2.1) is linear with respect to π, so the primal

problem (2.1) admits the following dual problem:

inf
g∈L1(PX), h∈L1(PY )

EX [g (X)] + EY [h (Y )] s.t. g (X) + h (Y ) ≥ Φ (X,Y ) , (2.2)

where Lr (P ) is the space of functions for which rth power is integrable with respect to P . If

Φ is upper semicontinuous and bounded from above, both the primal and the dual problem

have solutions, and the values of two problems are equal (see, e.g., Theorem 5.10 in Villani,

2008 or Theorem 1 in Chiappori et al., 2010). This duality provides two interpretations of

the total surplus. From an economic intuition, the primal problem (2.1) is a social planner

problem maximizing total welfare by pairs. On the other hand, the dual problem (2.2) is

a decentralized problem, offering a breakdown of the total welfare at the individual level.

In the case of the worker-firm matching model, g (X) and h (Y ) can be interpreted as the

equilibrium wage and profit that worker X and firm Y receive at equilibrium, respectively.

We note that, for arbitrary pair (g, h) satisfying the constraint in (2.2), h can be improved

by h1 (Y ) = supx∈X {Φ (x, Y )− g (x)}. A pair (g, h) is said to be tight if

g (X) = sup
y
{Φ (X, y)− h (y)} , h (Y ) = sup

x
{Φ (x, Y )− g (x)} .

If (g, h) is tight in the worker-firm matching model, then it is impossible for the worker to

raise the wage without losing the firm’s profit. Thus, it is logical to restrict our attention to

tight pairs in the dual problem (2.2). We can then reconstruct h in terms of g and rewrite

max
T (·)

EX [Φ (X,T (X))] s.t. T (PX) = PY .

Monge problem is a social planner problem finding the deterministic matching function that maximizes the
average overall surplus. In the Kantorovich approach, it is not required to impose that all the mass sharing
same value, x, should go to the one value, y = T (x).
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(2.2), so the only unknown is g:

inf
g∈L1(PX)

Q (g) , Q (g) = EX [g (X)] + EY
[

sup
x∈X
{Φ (x, Y )− g (x)}

]
. (2.3)

From now on, we consider a class of the dual Monge-Kantorovich problem whose so-

lutions associate each X to one Y with a measurable function T : X → Y such that

Y = T (X). In the context of optimal transport, T (·) is called the deterministic optimal

coupling or Monge transport.3 Notice that the primal problem always has a solution π,

but the dual problem does not. However, the optimal joint probability measure π for the

Monge transport is not easy to compute because it is identified with a Dirac delta function.

As we mentioned, the dual problem is the one optimizing minimizing over measurable and

integrable functions. Once a solution g for the dual problem (2.3) exists, we can easily apply

the sieve M-estimation method.

We are now ready to state the conditions under which the solution of the dual problem

uniquely exists:

Assumption 2.1. (i) PX and PY have compact and convex supports X and Y in Rd;

(ii) PX is absolutely continuous with respect to the Lebesgue measure.

Assumption 2.2. (i) (Lipschitz condition) Φ : X × Y → R is twice continuously differ-

entiable and there exists c > 0 such that for every X1, X2 ∈ X ,

sup
y∈Y
|Φ (X1, y)− Φ (X1, y)| ≤ c ‖X1 −X2‖ ,

where ‖·‖ is the Euclidean norm;

(ii) (Twist condition) For any fixed X ∈ X and Y1 6= Y2 ∈ Y, ∇XΦ (X,Y1) 6= ∇XΦ (X,Y2).4

3It is equivalent to any of the following conditions: (i) If X ∼ PX , the T (X) ∼ PY ; (ii) Equality
PX
(
T−1 (B)

)
= PY (B) holds for every subset B of Y; (iii) When PX and PY have respective densities fX

and fY , and when T is smooth, the so-called Monge-Ampère equation holds:

fX (X) = |det∇T (X)| fY (T (X)) ,

where ∇XT stands for the Jacobian matrix of T .
4For example, Φ (X,Y ) = X ′AY satisfies Assumption 2.2(ii) by imposing the invertibility of A (see,

Chapter 3).
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Assumption 2.2(ii) implies the injectivity of ∇XΦ (X,Y ) for each fixed X, which guar-

antees uniqueness of optimal transport map. Under the above assumptions, the following

result holds:

Lemma 2.1. (Theorem 1 in Carlier, 2003) Let Assumptions 2.1 and 2.2 hold. Then,

there exists a solution g0, which is unique up to an additive constant, such that the map

T : X → Y, satisfying ∇g0 (X) := ∇XΦ (X,Y )|Y=T (X), is the unique optimal transport

map, sending PX onto PY .

We find that the solution of the dual problem, g, is closely connected to T . For example,

when Φ (X,Y ) = X ′Y , T (X) = ∇g (X). Furthermore, a constant can be freely added

to or subtracted from g in (2.3). We can determine g0 uniquely by imposing a location

normalization such as
∫
X g (X) dX = 0 or g (X∗) = 0 for a fixed X∗ ∈ X .

2.3 Consistent sieve estimation of Monge transport

In the dual Monge-Kantorovich problem (2.3), a infinite-dimensional function g is a un-

known parameter of interest. Since Q (g) = Q (g + c) for any constant c, we look at the

solution among those such that
∫
X g (X) dX = 0, which provides a simple way to derive the

convergence rates of our sieve M-estimator. Hence, we denote g0 ∈ G as the true unknown

infinite-dimensional parameter, where G is a linear subspace of the space of real-valued

functions with E
[
g (X)2

]
<∞ and

∫
X g (X) dX = 0.

We apply the sieve M-estimation method of Chen and Shen (1998). To describe the

method, let {Xi}mi=1 and {Yj}nj=1 be d-dimensional independent and identically distributed

(i.i.d.) sequences of observations with unknown marginal probability measure PX and PY ,

respectively. We allow the different numbers of observations for X and Y but here set

m = n without loss of generality. Let {pj (X) , j = 1, 2, . . .} denote a sequence of known

basis functions that can approximate any g ∈ G. Then, for a finite-dimensional linear sieve

Gn =

gn : X → R, gn (X) =

kn∑
j=1

ajpj (X) :

∫
X
gn (X) dX = 0, a1, . . . , akn ∈ R

 , (2.4)

with dim (Gn) = kn → ∞ slowly as n → ∞, we estimate the unknown sieve coefficients of
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gn:

ĝn = arg min
gn∈Gn

Qn (gn) = arg min
gn∈Gn

1

n

n∑
i=1

[
gn (Xi) + sup

x∈X
{Φ (x, Yi)− gn (x)}

]
(2.5)

is a sieve M-estimator of g0. Notice from Lemma 2.1 that the assignment function for Y ,

T (X), satisfies ∇g (X) = ∇XΦ (X,Y )|Y=T (X). Therefore, the Monge transport T can be

estimated from ĝn: ∇ĝn (X) = ∇XΦ (X,Y )|Y=T̂n(X). .5

Computing exact supx∈X {x′Yi − gn (x)} is easy for the small dimension of kn for Gn,

but it is burdensome for the large value of kn. In this case, we consider the set of grid points

or samples on X , Xn, and then compute

hn (Yi, gn) = max
x∈Xn

{
x′Yi − gn (x)

}
.

Since the supports for X and Y are bounded, hn approximates h well as the number of grid

points for Xn increases (see Lemma 2.3).

We note that Qn (g) is convex on Gn and Gn is convex. The pointwise convergence of

Qn (g) to Q (g) is easily checked, and hence Theorem 2.7 in Newey and McFadden (1994) and

Theorem 3.1 in Chen (2007) are applicable to show that ĝn is consistent. In the following we

let ‖g‖∞ ≡ supX∈X |g (X)| and ‖g‖2,leb ≡
{∫
X [g (X)]2 dX

}1/2
denote its L∞ norm and L2

norm with respect to the Lebesgue measure of X , respectively. Then we have the following

consistency result:

Theorem 2.1. Suppose that Assumptions 2.2 and 2.1 hold. Then, ‖ĝn − g0‖∞ = op (1).

2.4 Convergence rates for sieve M-estimators

In this section, we investigate the convergence rate of the sieve M estimator ĝn of the

unknown solution g0. Before investigating the convergence rate results of ĝn, I shall state the

regular property of g0. To apply a sieve estimation method, we will rely on the smoothness

of the solution to the optimal transport problem as well as uniqueness. Notice that the

convergence order of sieve estimator depends on the order of differentiability of solution

5When Φ (X,Y ) = X ′Y , the derivative of ĝn is a sieve estimator of the Monge transport T .
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function. To obtain the results, we introduce the Hölder class of functions. Let 0 < γ ≤ 1.

A real-valued function g on X is said to be Hölder continuous with exponent γ if there is

a positive number c such that |g (X1)− g (X2)| ≤ c ‖X1 −X2‖γ for all X1, X2 ∈ X ⊂ Rd.

Then the Hölder space Cm,γ (X ) is the space of m-times continuously differentiable functions

whose partial derivatives up to order m are Hölder continuous with exponent γ.

The regularity of g0 depends on (i) the Ma-Trudinger-Wang (MTW) condition (Ma et al.,

2005) from the theory of optimal transport, and (ii) the the regularity of marginal densities

fX and fY for X and Y , respectively. The MTW condition is not simple and involves

fourth-order condition on Φ. Lindenlaub (2017) provides a necessary conditions for MTW

condition to hold but much simpler one based on the concept of supermodularity, which is

known as the Spence-Mirrlees condition: The twice continuously differentiable φ : R2 → R

is supermodular if ∂2φ/∂x∂y ≥ 0. The strict supermodularlity obtains whenever the the

strict inequality holds.

Assumption 2.3. PX and PY have compact and convex supports X and Y in Rd and

respective fX and fY such that

(i) fX and fY are bounded away both from zero and infinity on X and Y; and

(ii) fX ∈ Cm,γ (X ) and fY ∈ Cm,γ (Y) for some m ∈ N and γ ∈ (0, 1).

Assumption 2.4. Φ (X,Y ) =
∑d

k=1 φk (Xk, Yk) is a real-valued function defined on X ′×Y,

where X ′ is a open subset in Rd with X ⊂ X ′, such that

(i) φk is four-times continuously differentiable and strictly supermodular; and

(ii) Both ∂2φk/∂Xk∂Yk and log
(
∂2φk/∂Xk∂Yk

)
are supermodular.

Under the above assumptions, the following result holds:

Lemma 2.2. (Theorem 12.51 in Villani, 2008) Suppose that Assumptions 2.3 and 2.4 hold.

Then, g0 ∈ Cm+2,γ (X ).

As a result of Lemma 2.2, g0 ∈ G =
{
g ∈ Cm+2,γ (X ) :

∫
X g (X) dX = 0

}
. This is called

the interior regularity and developed for general surplus function Φ in a large literature.6

We note that a larger domain X ′ is not required for Φ (X,Y ) = X ′Y (see Caffarelli, 1996).

6See for instance Trudinger and Wang (2009), Figalli et al. (2013), De Philippis and Figalli (2014), and
Chen and Wang (2016).
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Let Gn` be a univariate linear sieve space7 for `th dimension for 1 ≤ ` ≤ d and Gn

be the tensor product of Gn1, . . . ,Gnd. Then, it is standard to construct linear sieves with∏d
`=1 gn` (x`), where gn` ∈ Gn` for 1 ≤ ` ≤ d, to approximate a multivariate function g0 ∈ G.

We define the sieve approximation errors to g0 ∈ G ⊂ Cm+2,γ (X ) in L∞ (X )-norm and

L2 (X )-norm as

ρ∞n ≡ inf
g∈Gn

‖g − g0‖∞ , ρ2n ≡ inf
g∈Gn

‖g − g0‖2,leb .

Then, by letting dim (Gn) = kn and dim (Gn`) = Jn for all ` ∈ {1, . . . , n}, we have that

ρ∞n = O
(
J
−(m+2+γ)
n

)
= O

(
k
−(m+2+γ)/d
n

)
if

• Gn` = Pol (Jn) =
{∑Jn

k=1 akx
k
` , x` ∈ X` : ak ∈ R

}
;

• Gn` = TriPol (Jn) =
{
a0 +

∑Jn
k=1 [ak cos (2kπx`) + bk sin (2kπx`)] , x` ∈ X` : ak, bk ∈ R

}
;

or

• Gn` = Spl (r, Jn) =
{∑r−1

k=0 akx
k
` +

∑Jn
j=1 bj [max {x` − tj , 0}]r−1 , x` ∈ X` : ak, bj ∈ R

}
with r ≥ m+ 3.

We consider the dual problem with the surplus function Φ (X,Y ) = X ′Y throughout the

remaining chapter. Notice that the estimation procedure and convergence rate result can

be easily applied to the problem with Φ (X,Y ) = X ′AY where A is invertible.8 Let ‖·‖2

denote the L2 (PX)-norm. We employ the result of Theorem 1 in Shen and Wong (1994) (or

Theorem 3.2 in Chen, 2007) to address how well one may estimate g0 and its αth partial

derivatives simultaneously in the L2 (PX)-norm loss. That is, we bound

‖ĝn (X)− g0 (X)‖2 and ‖∂αĝn (X)− ∂αg0 (X)‖2

where ∂α = ∂[α]/∂Xα1
1 · · · ∂X

αd
d given a d-tuple α of nonnegative integers and [α] = α1 +

· · ·+ αd.

Different from other sieve M-estimation problems, it is not easy to establish that the

optimum of the optimal transport problem is well-separated, i.e., [Q (g)−Q (g0)]1/2 ≥

7See Section 2.3.1 in Chen (2007) for commonly used finite-dimensional linear sieves and their approxi-
mation error rates.

8This specification is not covered by Assumption 2.2, but we can interpret the Monge-Kantorovich problem
as assigning from X to AY := {AY : Y ∈ Y}.
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M ‖g − g0‖2 for some positive M (See Condition C1 in Shen and Wong, 1994). When we

consider Q (g) as a functional from G to R, it is convex on G. Nevertheless, the second-order

directional derivative of Q has not been developed.9 Without any result on the second-order

directional derivative of Q, the conventional theory in Huang (2001) is not applicable.

Gunsilius (2018) develops the second variation in a neighborhood of the optimum g0

recently:

Q (g)−Q (g0) =
1

2
EX
[
‖∇ (g (X)− g0 (X))‖2

]
+ o

(
‖g − g0‖2

)
(‖g − g0‖ → 0) .

Gunsilius (2018) derives the convergence rate for the kernel-weighted M-estimator of g0

by imposing a high-level requirement that the probability measure for X satisfies Poincaré

inequality:

EX
[
‖∇ (g (X)− g0 (X))‖2

]
≥ cVarX (g − g0) .

Many popular probability measures including those for normal, exponential, and uniform

distribution, satisfy Poincaré inequality. However, it is not easy to verify this inequality for

unknown distribution except for log-concave distribution (Bobkov, 1999).

We show that Poincaré inequality is satisfied without any further high-level condition.

The main advantage of our setting is that we only consider the space of functions whose

integrals are same. The smoothness condition of the density of one variable among two

implies Poincaré inequalities with the Lebesgue measure and those with probability measure

follow in the shrunk function space.

Other conditions for the convergence rate results are straightforward. Let us consider

the space

Fn =

{
sup
x∈X

[Φ (x, y)− g (x)]− sup
x∈X

[Φ (x, y)−Πng0 (x)] : g ∈ Gn
}
,

where Πn is a L2 (X ) projection mapping from G to Gn. Under the Assumption 2.3(i),

M1 ‖g‖2,leb ≤ ‖g‖2 ≤M2 ‖g‖2,leb for some positive M1 and M2. We also note that

∣∣∣∣sup
x∈X

[Φ (x, y)− g (x)]− sup
x∈X

[Φ (x, y)−Πng0 (x)]

∣∣∣∣ ≤ sup
x∈X
|g (x)−Πng0 (x)| = ‖g −Πng0‖∞ .

9Chartrand et al. (2009) derive the first-order directional (Gâteaux) derivative of Q.
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Then, the existing results on L∞-metric entropy of the space Fn for small ε > 0, H (ε,Fn),

can be employed for finite-dimensional linear sieves:

H (ε,Fn) ≤ H (ε,Gn) ≤ Ckn log (1/ε) ,

Here kn controls the effective size of the approximating space Gn. Then we can develop the

convergence rate of our estimator ĝn:

Theorem 2.2. Suppose that Assumptions 2.3 holds for the dual Monge-Kantorovich problem

with Φ (X,Y ) = X ′Y . Then ‖ĝn − g0‖2 = Op

(√
kn/n+ ‖Πng0 − g0‖2

)
.

Corollary 2.1. Suppose that Assumptions 2.3 holds for the dual Monge-Kantorovich prob-

lem with Φ (X,Y ) = X ′Y . Then ‖∂αĝn − ∂αg0‖2 = Op

(
k

[α]/d
n ‖ĝn − g‖2

)
.

For ` = 1, . . . , d and p = m+ 2 + γ where g0 ∈ Cm+2,γ (X ), if

• Gn` = Pol (Jn), p > d, and J3d
n /n→ 0;

• Gn` = TriPol (Jn), p > d/2, and J2d
n /n→ 0; or

• Gn` = Spl (r, Jn), r ≥ m+ 3, p > d/2, and J2d
n /n→ 0,

then ‖ĝ − g0‖2 = Op

(√
Jdn/n+ J−pn

)
and ‖∂αĝn − ∂αg0‖2=Op

(
J

[α]
n

√
Jdn/n+ J

−(p−[α])
n

)
.

By choosing Jn = O
(
n1/(2p+d)

)
, ‖ĝ − g0‖2 = Op

(
n−p/(2p+d)

)
, which is the same as the

optimal rate in the context of regression and density estimations (see Stone, 1982). Also,

the convergence rate of the sieve estimate of Monge transport for Y` (1 ≤ ` ≤ d), T`, can be

easily derived with same order of Jn:

∥∥∥T̂` − T`∥∥∥
2

=

∥∥∥∥ ∂ĝn∂X`
− ∂g0

∂X`

∥∥∥∥
2

= Op

(
n−(p−1)/(2p+d)

)
.

2.5 Application to (conditional) vector quantiles

The optimal transport problem can be applied to quantiles. In dimension 1, there are three

types of definitions for quantile map QY : [0, 1]→ R:

1. Inverse of a CDF, FY : QY (u) = F−1
Y (u) = inf {y : FY (y) ≥ u};
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2. QY (u) = arg minq E [ρx (Y − q)] where ρx (z) = uz+ + (1− u) z−;

3. Nondecreasing transport map T such that FU
(
T−1 (y)

)
= FY (y) where U ∼ U ([0, 1]).

When we try to generalize this concept to the multivariate case, the first two definitions

cannot be employed to the case when Y is multivariate. However, the mapping can be

interpreted as a gradient of a convex function. Carlier et al. (2016) and Chernozhukov et al.

(2017), using the last definition, define the vector quantile based on the optimal transport

theory:

Definition 2.1 (Vector quantile). Vector quantile associated with Y ∼ FY is the unique

gradient of a convex function QY (U) = ∇g0 (U) such that FU
(
∇g−1

0 (Y )
)

= FY (Y ) where

U ∼ U
(

[0, 1]d
)

.

We note that, in dimension 1, this definition coincides with the classical notion of a quan-

tile. Chernozhukov et al. (2017) define empirical quantiles and show that this is consistent.

However, besides consistency, further asymptotic behaviors of empirical vector quantiles are

an open problem. The above definition leads to the following dual problem:10

inf
g∈G

EY
[
sup
u∈U

{
u′Y − g (u)

}]
, E [g (U)] =

∫
[0,1]d

g (U) dU = 0.

We do not observe the value of U ∈ U . We aim to estimate quantile function QY : U 7→ Y

given the distribution for U , which is usually U
(

[0, 1]d
)

. Using the optimal transport theory,

there exists a measurable map U 7→ QY (U) from U to R, such that the map U 7→ QY (U)

is the unique gradient of convex function, g0. This implies that11

(
QY (U)−QY

(
Ū
))′ (

U − Ū
)
≥ 0, for all U, Ū ∈ [0, 1]d .

Whenever U ∼ U
(

[0, 1]d
)

, the random vector QY (U) has the distribution function FY (·),

10Brenier (1991): If Φ (X,Y ) = X ′Y in the Euclidean space, FX is absolutely continuous, and FX , FY
have finite second order moments, then there is a unique optimal Monge coupling between FX and FY .
McCann (1995) extends the result without moment conditions, but he does not refer to the Kantorovich or
dual problem. Therefore, the Monge-Kantorovich problem might not be well defined.

11A function f is convex if and only if f ′′ (U) := Q′Y |Z (U,Z) ≥ 0 for all U . In this case, if U ≤ Ū ,

QY |Z (U,Z) ≤ QY |Z
(
Ū , Z

)
. Indeed, in the scalar case the requirement that the transform is the gradient of

a convex map reduces to the requirement that transform is nondecreasing.
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that is,

FY (Y ) =

∫
1 {QY (U) ≤ Y } dU, for all Y ∈ R.

Moreover, there exists a random variable V = U such that almost surely Y = QY (V ) and

V ∼ U
(

[0, 1]d
)

.

The sieve M-estimation method and its convergence rate result in Section 2.3 and 2.4

are directly applicable for vector quantiles. Since U ∼ U
(

[0, 1]d
)

, we obtain desirable

convergence rate results with suitable order of sieves and Assumption 2.3 for PY .

To extend the notion of the vector quantiles to the conditional vector quantiles, we

consider a random vector (Y,U, Z) defined on a complete probability space. The random

vector Z is a vector covariate, taking values in Z ⊂ RdZ . We further assume that U is

uniformly distributed on [0, 1]d and independent of Z. Then, the joint measure of (U,Z),

PUZ , satisfies that PUZ (A×B) = PU (A)PZ (B) for any A ∈ U and B ∈ Y.

The conditional vector quantile function also can be characterized and even defined with

a solution to the dual optimal transportation problem. Then we consider the dual optimal

transport problem in Carlier et al. (2016):

inf
g

{
EUZ [g (U,Z)] + EY Z

[
sup

u∈[0,1]d

{
u′Y − g (u, Z)

}]}

This problem can be written as

inf
g∈L1(PUPZ)

{
EZ

[
EU |Z [g (U,Z) |Z] + EY |Z

[
sup

u∈[0,1]d

{
u′Y − g (u, Z)

}
|Z

]]}

= inf
g∈L1(PUPZ)

EY Z

[
sup

u∈[0,1]d

{
u′Y − g (u, Z)

}]
, EU |Z [g (U,Z) |Z] = 0 (2.6)

Let
{

(Y ′i , Z
′
i)
′}n
i=1

be (d+ dZ)-dimensional independent and identically distributed (i.i.d.)

sequences of observations with unknown joint probability measure PY Z . We consider g0 ∈ G

as the true unknown infinite-dimensional parameter, where G is a linear subspace of the space

of real-valued functions with E
[
g (U,Z)2

]
<∞ and EU |Z [g (U,Z) |Z] =

∫
[0,1]d g (U,Z) dU =

0 for all Z ∈ Z. Let {pj (U,Z) , j = 1, 2, . . .} denote a sequence of known basis functions

78



that can approximate any g ∈ G. Then, for a finite-dimensional linear sieve

Gn =

gn : U × Z → R, gn (U,Z) =

kn∑
j=1

ajpj (U,Z) :

∫
[0,1]d

g (U,Z) dU = 0

 ,

with dim (Gn) = kn → ∞ slowly as n → ∞, we estimate the unknown sieve coefficients of

gn:

ĝn = arg min
gn∈Gn

1

n

n∑
i=1

sup
u∈[0,1]d

{
u′Yi − gn (u, Zi)

}
is a sieve M-estimator of g0 and ∇U ĝ (U,Z) is a sieve estimator of conditional vector quantile

QY |Z .

We are now ready to state the conditions for the convergence rate results of sieve M-

estimator ĝn and its partial derivatives:

Assumption 2.5. For each Z ∈ Z, the conditional probability measure PY |Z has a compact

and convex support YZ ⊂ Rd and admits a density fY |Z such that

(i) fY |Z is bounded away both from zero and infinity on YZ ; and

(ii) fY |Z ∈ Cm,γ (YZ) for some m ∈ N and γ ∈ (0, 1).

Assumption 2.6. g0 (U,Z) ∈ CmZ ,γZ (Z) for each U ∈ U .

We note that under Assumption 2.5, g0 (U,Z) ∈ Cm+2,γ (U) for each Z ∈ Z. It is a

simple application of Lemma 2.2. If Z takes only a finite number of values, we estimate

g0 and its derivative from the observations with the same value of Z. Assumption 2.5 is

sufficient to apply Theorem 2.2 and Corollary 2.1.

For continuous random variable Z, a smoothness of g0 with respect to Z is required for

our sieve M-estimator. It is a high-level requirement, but we ensure from the above two

conditions that g0 ∈ Cmin{m+2,mZ},min{γ,γZ} (U × Z).

Theorem 2.3. Suppose that Assumptions 2.5 and 2.6 hold. Then, the sieve estimator, ĝn,

exists uniquely with probability approaching one as n→∞, and

∥∥∥Q̂Y`|Z (U |Z)−QY`|Z (U |Z)
∥∥∥

2
=

∥∥∥∥∂ĝn∂u`
− ∂g0

∂u`

∥∥∥∥
2

= Op

(
k1/(d+dZ)
n

√
kn/n+ k1/(d+dZ)

n ‖Πng0 − g0‖2
)
.
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In contrast to Carlier et al. (2016), who implement vector quantile regression with dis-

cretization and linear programming problem, we employ the sieve method to the conditional

optimal transport problem. Our estimators have several attractive features that are not

shared by linear programming problem. We can uniformly control the convergence rate of

our estimator as typical sieve estimators under the smoothness condition of g. Also, sieve

methods allow imposing shape constraints easily. The solution to the optimal transport

problem is a convex function in theory, but it still possible to suffer from the crossing prob-

lem in the implementation of vector quantiles. To obtain a stable monotone estimate, we can

simply impose the convexity constraint on the function space. Our estimation method can

also capture the nonlinear effect of conditioning variable on vector quantiles. It decreases

the possibility of misspecification.

Alternatively, we can consider the following optimal transportation problem: for each

Z ∈ Z

inf
gZ∈G

EY |Z
[
sup
u∈U

{
u′Y − gZ (u)

}]
, E [gZ (U)] = 0, (2.7)

where U 7→ gZ (U) are lower semicontinuous. We can easily check that g0 (U,Z) = gZ0 (U),

where gZ0 (U) is a unique solution to the problem (2.7), with probability 1. Furthermore,

the infimum in (2.7) coincides with the infimum in (2.6). Local polynomial approach with

this problem provides another useful method. We estimate the unknown function gZ (U) at

a fixed point Z and the estimated function changes with Z. The asymptotic properties of

an estimator for gZ will depend on only Assumption 2.5 but require additional conditions

for local polynomial method.

2.6 Simulation study

In our procedure, the smoothing parameter is the number of terms in the sieve approxi-

mation of the unknown function. In empirical analysis, we select this parameter by using

information criteria (IC). That is, kn = k̂n = ĴdX × Ĵ
dZ
Z is selected to minimizing

min
k

{
2

n∑
i=1

sup
x∈X
{Φ (x, Yi)− ĝn,k (x, Zi)}+ Cnk

}
,
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where ĝn,k denotes the sieve M estimate given k basis functions. When Cn = 2 or log (n), the

IC becomes Akaike information criterion (AIC) and Bayesian information criterion (BIC)

respectively. Compared to the cross-validation method,12 the IC is a computationally sim-

ple and useful way to select the number of basis functions. In this section, we see the

performance of the estimators across different sieve number of terms.

In both simulations and empirical parts, we use Bernstein polynomials to approximate

each of the unknown functions. We note that Bernstein polynomial is very convenient to

enforce several restrictions. We impose the zero mean constraints in estimation routine.

Also, it is possible to obtain a stable monotone estimate by adding the convexity constraint

on the function space (See the appendix for imposing the convexity constraint.).

We assess the performance of our estimation method for in various distributions. The

performance of the estimators is evaluated using the mean absolute deviation error, MADE =∫
X×Z |ĝ (X,Z)− g0 (X,Z)| fX (X) fZ (Z) dXdZ, as well as their bias, standard deviation,

and mean squared error.

We first consider a two-dimensional Gaussian copula, C : [0, 1]2 → [0, 1]. Th Gaussian

copula is defined as

C (Y1, Y2; ρ) := Φ
(
Φ−1

1 (Y1) ,Φ−1
2 (Y2) ; ρ

)
,

where Φ1 and Φ2 are standard univariate normal CDFs and Φ (·, ·; ρ) denotes the joint

CDF of the bivariate normal distribution with unit variances and covariance ρ. So, ρ is

the dependence parameter of the copula measuring the dependence between the standard

univariate normal marginals Φ1 and Φ2.

We estimate QY (U) for the simulated Gaussian copula with ρ = 0.5 using Bernstein

polynomial. Our estimation method is different to the conventional estimation method for

12To select the number of basis, k = Jd, we can also employ the cross-validation method: As a first step,
we compute the leave-one-out estimator,

ĝki0 = arg inf
gz∈Gnk

n∑
i6=i0

sup
x∈X
{Φ (x, Yi)− g (x, Zi)} ,

for i = 1, . . . , n, and then use as criterion the over all global sample analog,

CV (k) =
n∑
i=1

sup
x∈X

{
Φ (x, Yi)− ĝki (x, Zi)

}
.

We then choose the number of basis as the minimizer of CV (k). The optimal value for k is then easily
evaluated for a grid of natural numbers.
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quantile functions. Instead of estimating it for each u, we estimate the whole function. In

earlier section, we derived the uniform convergence rate of QY (U) = ∇Ug (U).

For model 2, Table 2.1 reports the simulation results with a different number of sieve

terms. The sieve estimator with three sieve terms is the best for all sample sizes. Estimation

performance is mainly affected by the variance and imposing convexity constraint gives us

more stable estimate with smaller variance

Table 2.1: Performance of the sieve M-estimators with different order of sieves
Nobs = 200 No convexity constraint Convexity constraint

JU ISB IV IMSE IMADE ISB IV IMSE IMADE

X ∼ U
(

[0, 1]2
)

, Y : Gaussian copula with linear correlation parameters ρ = −0.5

2 0.108 0.165 0.276 5.798 0.108 0.165 0.276 5.796
3 0.012 0.193 0.213 5.112 0.013 0.189 0.209 5.073
4 0.012 0.217 0.236 5.360 0.012 0.199 0.218 5.151

Integrated squared bias (ISB), variance (IV), and mean squared errors (IMSE)

All values are multiplied by 100

Next, we examine the finite-sample performances of our estimator for the conditional

vector quantiles. We consider the following one-dimensional conditional quantiles:

Y1 = 5Zε1, Z, ε1 ∼ U ([0, 1]) ;

Y2 = sin (2πZ) +
(
1 + Z2

)
ε2/4, ε2 ∼ N (0, 1) , Z ∼ U ([0, 1]) .

The above two models are smooth location-scale models. We are interested in estimating

the uth conditional quantile of Y , QU (Z) = a (Z)+b (Z)Qε,U where Qε,U is the uth quantile

of ε. Figure 2.1 illustrates true quantile functions conditional on Z over regular grid points

between 0.025 and 0.975 with an increment 0.025. We find that the quantile function in the

first model is linear and monotone in Z, but the second one is nonlinear and not monotone.

For model 1, Table 2.2 reports the integrated squared error (IBias2), variance (IVar),

MSE (IMSE) and mean absolute deviation error (IMADE) with a different number of sieve

terms. The results are based on 500 simulated data sets with sample sizes Nobs =200 and

500. We observe that all values decrease as n increases as we expect. The sieve estimator

for model 1 with two sieve terms is the best for all sample sizes. This is because the model 1

has a simple specification, and it does not require many sieve terms. The biases are already
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Figure 2.1: True conditional quantile functions for model 1 (left) and model 2 (right)

tiny with small number of sieve terms, and estimation performance is mainly affected by

the variance. Also, we find that imposing convexity constraint gives us more stable estimate

with smaller variance, but the difference of performance decreases as n increases.

Table 2.2: Performance of the sieve M-estimators with different order of sieves: Model 1
No convexity constraint Convexity constraint

JU = JZ ISB IV IMSE IMADE ISB IV IMSE IMADE

Nobs = 200
2 0.048 1.213 1.261 7.455 0.048 1.209 1.257 7.452
3 0.062 1.928 1.990 9.209 0.063 1.869 1.932 9.090
4 0.079 2.517 2.596 10.477 0.083 2.329 2.412 10.121
5 0.100 3.064 3.164 11.590 0.100 2.712 2.812 10.938

Nobs = 500
2 0.012 0.504 0.516 4.764 0.012 0.503 0.515 4.760
3 0.013 0.782 0.796 5.774 0.014 0.777 0.790 5.756
4 0.016 1.024 1.040 6.623 0.017 0.971 0.988 6.462
5 0.021 1.260 1.281 7.357 0.021 1.150 1.171 7.056

Integrated squared bias (ISB), variance (IV), and mean squared errors (IMSE)

All values are multiplied by 100

For model 2, Table 2.3 reports the simulation results with a different number of sieve

terms. The sieve estimator with five sieve terms is the best for all sample sizes. Since the

model 2 is nonlinear and not monotone in Z, it requires more sieve terms than model 1.

Estimation performance for model 2 is mainly affected by the bias. In particular, model 1

has a simpler form than model 2, but the estimation performs better for model 2.

As a simple example for two-dimensional CVQR, we consider the simplest multivariate
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Table 2.3: Performance of the sieve M-estimators with different order of sieves: Model 2
No convexity constraint Convexity constraint

JU = JZ ISB IV IMSE IMADE ISB IV IMSE IMADE

Nobs = 200
3 0.685 0.441 1.126 8.304 0.685 0.417 1.103 8.236
4 0.474 0.585 1.059 8.093 0.540 0.505 1.045 8.042
5 0.053 0.669 0.723 6.283 0.069 0.553 0.622 5.826
6 0.030 0.786 0.817 6.726 0.057 0.619 0.676 6.110

Nobs = 500
3 0.634 0.177 0.811 7.161 0.635 0.171 0.806 7.143
4 0.423 0.235 0.658 6.596 0.479 0.208 0.687 6.705
5 0.034 0.261 0.295 3.987 0.040 0.225 0.265 3.778
6 0.010 0.310 0.320 4.195 0.030 0.257 0.287 3.966

Integrated squared bias (ISB), variance (IV), and mean squared errors (IMSE)

All values are multiplied by 100

model with the bivariate standard normal model:Y1

Y2

 ∼ N
0,

1 Z

Z 1


 .

If (Y1, Y2) are independent, that is Z = 0, then Y1 = Q1 (U1) and Y2 = Q2 (U2), which is

equivalent to two single-dimensional quantiles. An increase in Y1 is not associated to the

change in Y2. Assume (Y1, Y2) are not independent. In the case that Z > 0, an increase

in U1 not only increases Y1, but also Y2. In Figure 2.2, we plot the quantiles with different

values of conditioning variable Z.

The simulation results are presented in table 2.4. The integrated squared bias, variance,

mean squared error and MADE are the sum of results for QY1|Z and QY2|Z conditional

on Z = 0. We only report the results with four set of sieve terms. By adding one more

variable, the dimension of the tensor product spaces increases by product the dimension of

the additional variable. Estimation performance for this model is mainly affected by the

variance, and it requires a smaller number of sieve terms for Z.
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Figure 2.2: Vector quantiles for Y1 and Y2 conditional on Z = z: Y1, Y2 ∼ N (0, 1),
cov (Y1, Y2) = Z

Table 2.4: Performance of the sieve M-estimators with different order of sieves: Model 3
Nobs = 200 Nobs = 500

JZ ISB IV IMSE IMADE ISB IV IMSE IMADE

JU = 2
1 6.031 2.111 8.142 26.782 6.022 0.864 6.886 22.720
2 4.325 4.301 8.632 30.389 4.291 1.789 6.080 24.332
3 4.566 4.880 9.446 31.758 4.518 2.022 6.540 25.029
JU = 3
1 5.691 2.611 8.302 27.264 5.699 1.051 6.750 22.790

Integrated squared bias (ISB), variance (IV), and mean squared errors (IMSE)

All values are multiplied by 100

2.7 Empirical application

We demonstrate the use of our sieve estimation method to the optimal transport problem

on a standard application of quantile regression. The data are taken from the Engel’s data

on household expenditures. Engel’s data set is richer and classifies household expenses in

nine broad categories, but we focus on a two-dimensional dependent variable. We choose

food expenditure and housing expenditure as Y1 and Y2. We take the total expenditure as

a conditioning variable.

We first run a pair of one-dimensional conditional vector quantiles, Y1 on Z and Y2 on

Z. We plot the results in Figure 2.3; the curves drawn here are U 7→ QY`|Z (U,Z), ` = 1, 2,
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Figure 2.3: One-dimensional vector quantile regression conditional on total expenditure

for values of U and the cdf of Z. We can find that our estimation does not suffer from the

“crossing problem.” However, it does not convey information about the joint conditional

dependence in Y1 and Y2 given X.

The two-dimensional vector quantile yields the curves drawn in Figure 2.4, which are

(U1, U2)→ QYj |Z (U1, U2, Z)), j = 1, 2.
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Figure 2.4: Two-dimensional vector quantile regression conditional on median value of total
expenditure

As Carlier et al. (2016) mentioned, the two-dimensional vector quantile may be used to

check if Y1 and Y2 are local complements or substitutes. Two graphs on the right-hand side

in Figure 2.5 shows that, at a median level of income, the food and housing expenditure are
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local substitutes, which is also consistent to the result in Carlier et al. (2016). However, we

can find that those relationships are not so strong.
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Figure 2.5: 90% Bootstrap confidence bands of two-dimensional quantiles for food and
housing expenditure

2.8 Conclusion

In this chapter, we examined the statistical properties of sieve M-estimation in the optimal

transport problem. We provide identification and regularity of a solution to the optimal

transport problem and establish the nonparametric convergence rate. We also present Monte

Carlo simulation results with a different choice of smoothing parameters and the performance

of the sieve M-estimator.

I highlight two directions for future work. The first direction is to develop the inference

theory on the entire optimal transport mapping and its linear functionals. We here only
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present the convergence rate of the sieve estimator. One possible inference method is to use

the weighted bootstrap method. We will be able to check the conditions for the validity of

the weighted bootstrap method easily. Then, we can use this result to construct uniform

confidence bands for linear functionals and how to test shape restrictions.

The second direction is to extend the original optimal transport problem to allow for

more general structures. Compared to the development of the optimal transport problem

with flexible output functions, our asymptotic theory applies to the simplest output function

X ′Y . To broaden the applicability of this theory further, it will be essential to extend the

well-separateness property to more flexible output functions. These are challenging problems

for future research.

2.9 Appendix

2.9.1 Bernstein polynomials with convex constraints

Without any constraint on g (X), the unique solution (up to constant) for the dual Kan-

torovich problem with Φ (X,Y ) = X ′Y is convex. However, the estimator of g (X), ĝn (X),

might be nonconvex at the values close to the boundary of X . To obtain more stable esti-

mator, we can give a convexity restriction without loss of generality. Among many several

linear approximating space, we consider the following Bernstein polynomial sieve space:

Gn =

gn : X → R : gn (X) =

Jn∑
j1,...,jd=0

aj1···jd

[
d∏
`=1

gj` (X`)

]
:

gj` (X`) =
1

X̄` −X`

Jn
j`

 (X` −X`)
j`
(
X̄` −X`

)Jn−j`
 ,

for Jn = 1, 2, . . . , where gj` is the Bernstein basis polynomial. Let g (x) be a real-valued con-

vex function in F =
{
g ∈ Cm+2,γ (X ) : 2g

(
X1+X2

2

)
≤ g (X1) + g (X2) , ∀X1, X2 ∈ X

}
. No-

tice that we are not assuming that the true function g (X) has derivatives of any order. For

the simplicity, we consider the one-dimensional sieve space (d = 1):

Fn = {gn (X) ∈ Gn : AJnαJn ≥ 0}
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where

AJnαJn ≡



1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

. . .

0 · · · 0 1 −2 1


(Jn−1)×(Jn+1)



α0

α1

...

αJn


≥



0

0

...

0


.

Since the second derivatives of gn (X) can be written as

g(2)
n (X) = Jn (Jn − 1)

Jn−2∑
j=0

(αj+2 − 2αj+1 + αj) gj (X, Jn − 2) ,

the above restriction ensures g
(2)
n (·) ≥ 0 for all n.

2.9.2 Auxiliary Lemma

Computing exact supx∈X {Φ (x, Yi)− gn (x)} is easy for the small dimension of kn for Gn,

but it is burdensome for the large value of Jn. In this case, we consider the set of grid points

or samples on X , Xn, and then compute

hn (Yi, g) = max
x∈Xn

{Φ (x, Yi)− gn (x)} .

The following lemma shows that the error caused by the set of grid points is negligible

with large sample.

Lemma 2.3. Suppose that |g − g0|∞ ≤ ε for continuous functions g and g0 on X . Under

Assumption 2.1 and 2.2.(i), supy |h (y)− hJn (y)| = ε+Op
(
J−1
n

)
where

h (Y ) = sup
x∈X

[Φ (x, Y )− g (x)] .

hJn (Y ) = max
xj

[Φ (xj , Y )− gn (xj)] , xj ∈ {x1, . . . , xJn} .
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Proof of Lemma 2.3. Since

sup
x∈X

[Φ (x, Y )− gn (x)] ≤ sup
x∈X

[Φ (x, Y )− g (x)] + sup
x∈X
|gn (x)− g (x)|

= sup
x∈X

[Φ (x, Y )− g (x)] + ε;

sup
x∈X

[Φ (x, Y )− gn (x)] ≥ sup
x∈X

[Φ (x, Y )− g (x)]− sup
x∈X
|gn (x)− g (x)|

= sup
x∈X

[Φ (x, Y )− g (x)] + ε;

We note that

sup
x∈X

[Φ (x, Y )− gn (x)] ≥ max
xj

[Φ (xj , Y )− gn (xj)] .

Let x̃ be the vector such that

Φ (x̃, Y )− gn (x̃) = sup
x∈X

[Φ (x, Y )− gn (x)] .

Since there is Jn ∈ N such that ‖x̃− x̃Jn‖ := minj∈{1,...,Jn} {‖x̃− xj‖} ≤ C/Jn,

sup
y∈Y

{
min
j
{Φ (x̃, Y )− gn (x̃)− [Φ (xj , Y )− gn (xj)]}

}
≤ sup
y∈Y
|Φ (x̃, Y )− Φ (x̃Jn , Y )|+ |gn (x̃)− gn (x̃Jn)| ≤ C ′/Jn.

2.9.3 Proofs of main results

Proof of Theorem 2.1. We first note that both Qn (g) and Q (g) are continuous under the

sup norm since

∣∣∣∣sup
x∈X
{Φ (x, Yi)− g1 (x)} − sup

x∈X
[Φ (x, Y )− g2 (x)]

∣∣∣∣ ≤ sup
x∈X
|g1 (x)− g2 (x)| .

Let Ḡk = Gk∩{g : ‖g − g0‖∞ ≤ 2ε} and Bk be its boundary. Since Qn (g) converges to Q (g)

in probability uniformly on Ḡk for all k, as a result of Theorem 3.1 in Chen (2007), the

minimand g̃n of Qn (g) on Ḡn is consistent for g0. The remaining proof comes from the one

of Theorem 2.7 in Newey and McFadden (1994): The event that g̃n is within ε of g0, so that
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Qn (g̃n) ≤ ming∈Bn Qn (g), occurs with probability approaching one.In this event, for any

g in Gn ∩ {g : ‖g − g0‖∞ > 2ε}, there is a linear convex combination λg̃n + (1− λ) g that

lies in Bn, so that Qn (g̃n) ≤ Qn (λg̃n + (1− λ) g). It follows from the convexity of Qn that

Qn (λg̃n + (1− λ) g) ≤ λQn (g̃n) + (1− λ)Qn (g), which implies that g̃n is the minimand

over Gn.

Proof of Lemma 2.2 . It follows from the proof of Proposition 1 in Lindenlaub (2017) that

Φ satisfies the MTW(0) condition. Then, we can employ Theorem 12.51 in Villani (2008)

to obtain the regularity in the Lemma.

Proof of Theorem 2.2. We first show that there exists a constant κ > 0 such that Q (g) −

Q (g0) ≥ κEX
[
|g (X)− g0 (X)|2

]
for any g ∈ G. We note that g − g0 is also in G, i.e.,∫

X [g (X)− g0 (X)] dX = 0. Lemma 2 in Gunsilius (2018) implies that

Q (g)−Q (g0) =
1

2
EX
[
‖∇ (g (X)− g0 (X))‖2

]
+ o

(
‖g − g0‖22

)
(‖g − g0‖2 → 0) .

Therefore, it suffices to show that EX
[
‖∇ (g (X)− g0 (X))‖2

]
≥ 2κ ‖g − g0‖22. Since fX (X)

is bounded away from zero and infinite,

EX
[
|g (X)− g0 (X)|2

]
≤ f̄X

∫
X
|g (X)− g0 (X)|2 dX, (2.8)

= f̄X

∫
X
|g (X)− g0 (X)− ḡ|2 dX,

where f̄X = supx∈X fX (x) <∞ and ḡ =
{∫
X [g (X)− g0 (X)] dX

}
/X̄ = 0 with the volume

of X , X̄ . The original Poincaré inequality implies that there exists a constant C > 0 such

that

∫
X
|g (X)− g0 (X)− ḡ|2 dX ≤ C

∫
X
‖∇ (g (X)− g0 (X))‖2 dX (2.9)

≤ C

f
X

EX
[
‖∇ (g (X)− g0 (X))‖2

]
,

where f
X

= infx∈X fX (x) > 0. Combining two inequalities (2.8) and (2.9), we obtain the
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desired result:

EX
[
‖∇ (g (X)− g0 (X))‖2

]
≥

f
X

Cf̄X
EX
[
|g (X)− g0 (X)|2

]
.

Now we check Conditions 3.7 and 3.8 in Chen (2007). Since

sup
x∈X
{Φ (x, Y )− g (x)} ≤ sup

x∈X
{Φ (x, Y )− g0 (x)}+ sup

x∈X
|g (x)− g0 (x)| ;

sup
x∈X
{Φ (x, Y )− g (x)} ≥ sup

x∈X
{Φ (x, Y )− g0 (x)} − sup

x∈X
|g (x)− g0 (x)| ,

∣∣∣∣sup
x∈X
{Φ (x, Y )− g (x)} − sup

x∈X
{Φ (x, Y )− g0 (x)}

∣∣∣∣ ≤ sup
x∈X
|g (x)− g0 (x)| ,

which implies that

∣∣∣∣g (Xi) + sup
x∈X
{Φ (x, Yi)− g (x)} − g0 (Xi)− sup

x∈X
{Φ (x, Yi)− g0 (x)}

∣∣∣∣
≤2 sup

x∈X
|g (x)− g0 (x)| = 2 ‖g − g0‖∞ .

By Lemma 2 in Chen and Shen (1998) for any p > 0, we have ‖g − g0‖∞ ≤ c ‖g − g0‖2p/(2p+d)
2 .

Hence

E

[∣∣∣∣g (Xi) + sup
x∈X
{Φ (x, Yi)− g (x)} − g0 (Xi)− sup

x∈X
{Φ (x, Yi)− g0 (x)}

∣∣∣∣2
]

≤4c ‖g − g0‖4p/(2p+d)
2 .

So Condition 3.7 is satisfied for all ε ≤ 1. On the other hand, using Lemma 2 in Chen

and Shen (1998) again we see that Condition 3.8 is then satisfied with s = 2p/ (2p+ d),

U (Xi, Yi) = 1 and any value γ ≥ 2.

To apply Theorem 3.2 in Chen (2007), it remains to compute the metric entropy with

bracketingH[] (w,Fn, ‖·‖2) of the class Fn = {` (g, (Xi, Yi))− ` (g0, (Xi, Yi)) : ‖g − g0‖2 ≤ δ, g ∈ Gn} .

By definition,

‖g0 − πng0‖ = E
[
‖g0 −Πng0‖2

]1/2
≤ c ‖g0 −Πng0‖∞ .

Then, for all 0 < w ≤ δ < 1, H[] (w,Fn, ‖·‖2) ≤ logN (w,Gn, ‖·‖∞). Since logN (w,Gn, ‖·‖∞) ≤
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kn log (1 + C/w) by Lemma 2.5 in van de Geer (2009), δn solves

1√
nδ2

n

∫ δn

bδ2n

√
H[] (w,Fn, ‖·‖2)dw ≤ 1√

nδ2
n

∫ δn

bδ2n

√
kn log (1 + C/w)dw ≤ 1√

nδ2
n

√
knδn ≤ C ′.

The solution is δn ≈
√
kn/n. The statement of theorem follows from Theorem 3.2 in Chen

(2007).

Proof of Corollary 2.1. Note that Bernstein inequalities from approximation theory imply

that ‖∂αg‖2 = O
(
k

[α]/d
n

)
‖g‖2 for all g ∈ Gn. Then, we have that for i = 1, . . . , d and

g ∈ Gn,

‖∂α (Πng0)− ∂αg0‖2 ≤ O
(
k[α]/d
n

)
‖Πn (g0 − g)‖2 + ‖∂αg − ∂αg0‖2

≤ O
(
k[α]/d
n

)
‖g0 − g‖2 + ‖∂αg − ∂αg0‖2

Since the above inequality holds uniformly in g ∈ Gn, we choose g such that

‖g0 − g‖2 = Op (‖ĝn − g‖2)

and

‖∂αg − ∂αg0‖2 = Op

(
‖ĝn − g‖2 × k

[α]/d
n

)
.

By similar arguments to the above, we have that

‖∂αĝn − ∂αg0‖2 ≤ ‖∂
αĝn − ∂α (Πng0)‖2 + ‖∂α (Πng0)− ∂αg0‖2

≤ O
(
k[α]/d
n

)
‖ĝn − g0‖2 + ‖∂α (Πng0)− ∂αg0‖2

and the result follows.
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Proof of Theorem 2.3. We first show that there exists a constant κ > 0 such that

Q (g)−Q (g0)

:= EY Z
[
sup
u∈U

{
u′Y − g (u, Z)

}]
− EY Z

[
sup
u∈U

{
u′Y − g0 (u, Z)

}]
= E

[
EY |Z

[
sup
u∈U

{
u′Y − g (u, Z)

}
|Z
]
− EY |Z

[
sup
u∈U

{
u′Y − g0 (u, Z)

}
|Z
]]

≥ κEUZ
[
(g (U,Z)− g0 (U,Z))2

]

for g ∈ G. We note that g− g0 is also in G, i.e.,
∫
U [g (U, z)− g0 (U, z)] dU = 0 for all z ∈ Z.

Lemma 2 in Gunsilius (2018) implies that

Q (g (·, z))−Q (g0 (·, z))

:= EY |Z=z

[
sup
u∈U

{
u′Y − g (u, Z)

}
|Z = z

]
− EY |Z=z

[
sup
u∈U

{
u′Y − g0 (u, Z)

}
|Z = z

]
=

1

2

∫
U
‖∇ (g (U, z)− g0 (U, z))‖2 dU + o

(
‖g (U, z)− g0 (U, z)‖22

)
(‖v‖ → 0) .

We can easily check from the original Poincaré inequality that there exists a constant C > 0

such that

∫
U
|g (U, z)− g0 (U, z)|2 dU ≤ C

∫
U
‖∇ (g (U, z)− g0 (U, z))‖2 dU

It implies that

Q (g)−Q (g0) = EZ [Q (g (·, Z))−Q (g0 (·, Z))]

≥ 1

2C
E
[
|g (U, z)− g0 (U, z)|2

]
+ o

(
‖g (U, z)− g0 (U, z)‖22

)

Now we check Conditions 3.7 and 3.8 in Chen (2007). Since

sup
u∈U

{
u′y − g (u, z)

}
≤ sup

u∈U

{
u′y − g0 (u, z)

}
+ sup
u∈U
|g (u, z)− g0 (u, z)| ;

sup
u∈U

{
u′y − g (u, z)

}
≥ sup

u∈U

{
u′y − g0 (u, z)

}
− sup
u∈U
|g (u, z)− g0 (u, z)| ,
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∣∣∣∣sup
u∈U

{
u′y − g (u, z)

}
− sup
u∈U

{
u′y − g0 (u, z)

}∣∣∣∣ ≤ sup
u∈U
|g (u, z)− g0 (u, z)| ,

it follows from Lemma 2 in Chen and Shen (1998) that

EY Z

[∣∣∣∣sup
u∈U

{
u′Y − g (u, Z)

}
− sup
u∈U

{
u′Y − g0 (u, Z)

}∣∣∣∣2
]
≤ 4c ‖g − g0‖4p/(2p+d+dZ)

2 .

So Condition 3.7 is satisfied for all ε ≤ 1. On the other hand, using Lemma 2 in Chen and

Shen (1998) again we see that Condition 3.8 is then satisfied with s = 2p/ (2p+ d+ dZ),

U (Yi, Zi) = 1 and any value γ ≥ 2.
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Chapter 3

Multidimensional Matching as

Optimal Transport Problem

3.1 Introduction

The empirical analysis of matching between workers and jobs affected by technological

progress represents an important area in the labour market. Each worker has different levels

of multiple skills and each job demands different levels of worker’s multiple skills. When their

matching generates a quantity of output, how could we sort workers into jobs to maximize

the total output? This social planner problem is an application of the optimal transport

problem. Agents’ multiple characteristics are not usually perfectly correlated and neglecting

these multidimensional heterogeneity is problematic. In stead of aggregating multivariate

characteristics into one-dimensional index, Lindenlaub (2017) extends the scalar notion of

positive assortative matching (PAM) to the multidimensional one and develops a framework

based one the optimal transport having studies the existence, uniqueness, and purity of

multidimensional matching under transferable utility.

This chapter follows the setting in Lindenlaub (2017) and extends her results. Adding

to the uniqueness and smoothness of equilibrium function, we derive the equilibrium wage

and matching functions in terms of the solution to the dual Monge-Kantorovich problem in

Chapter 2. The results are not in closed form unlike Lindenlaub (2017), who solves for the

assignment and wage function explicitly when both workers and jobs characteristic variables
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follow bivariate normal distributions. However, our results are more general in the sense

that we allow for any multidimensional variables having probability densities.

Any model of matching based on optimal transport will not be exploitable because it will

generate far too strong predictions. The equilibrium wage and assignment are deterministic,

but some matchings will never hold. Hence, we need to regularize the matching model. The

standard approach is to allow for a class of unobserved heterogeneity or search frictions,

but we introduce measurement error in the equilibrium functions to keep the model in line

with the theory of optimal transport. Notice that we could avoid a situation in which

the unobserved heterogeneity affects the assignment by assuming that it involves in non-

interaction terms.

We then study equilibrium wage and matching system with exogenous worker’s multiple

skills. The specification for output generated by the matching involves unknown finite-

dimensional parameters for which there are nonparameteric equilibrium wage and matching

functions. In our analysis of the semiparametric matching model, we first provide identi-

fication under the theory of optimal transport, which is the uniqueness and continuously

differentiability of the solution to the dual Monge-Kantorovich problem. Moreover, we

employ the sieve minimum distance estimation of conditional moment restrictions for the

nonparametric wage function and finite-dimensional parameter in the output function.

The estimation procedure is comparable to those of Lindenlaub (2017), who transforms

two-dimensional skills data to make them close to a bivariate normal random variable and

then uses the closed form solution for the equilibrium wage function in estimation. Para-

metric models lead to more efficient estimation if they are correctly specified. However, the

transformed data does not fully follow the specifically aimed distributions. Another one is

that even if both worker’s cognitive and manual skills and job’s skill demands follow the

bivariate normal distribution, the model with measurement errors in Lindenlaub (2017) may

still be misspecified. The equilibrium wage and matching equations depend on the produc-

tivity correlation under the bivariate normality, but Lindenlaub (2017) uses a correlation of

error contaminated job’s skill demands, which is different from the productivity correlation.

As an empirical study, the data in Lindenlaub (2017) is revisited to estimate the produc-

tion functions quantifying technological progress in the U.S. between 1990 and 2010. Our
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estimation results using transformed data are similar to the results of Lindenlaub (2017):

worker-job complementarities in manual skills strongly decreased, where as complementari-

ties in cognitive skills increased. However, the reformulated model does not explain the wage

polarization (declining lower tail but expanding upper tail wage inequality) in the U.S. For

this reason, despite of the consistency of our estimation method, we need to consider a more

flexible environment such as search friction and higher dimensional skills.

This chapter is organized as follows. Section 3.2 introduces the multidimensional match-

ing as an application of the optimal transport problem. Section 3.3 specifies the model with

measurement errors and obtains the identification. Section 3.4 presents the sieve minimum

distance procedure. Section 3.5 revisits the empirical study presented in Lindenlaub (2017).

3.2 Multidimensional matching: An optimal transport ap-

proach

One case of interest is found in the marriage market in Becker (1973). In one-dimensional

case, with scalar “ability indices” of men and women, he defines the positive assortative

matching (PAM) given a joint surplus, Φ (x, y), to be shared:

∂2Φ (x, y) /∂x∂y ≥ 0.

Matching between men and women is described by the function T : X → Y. For one-

dimensional variables, x and y, the PAM means that high-type workers match high-type

firms. The matching function is defined by

T (x) = F−1
Y (FX (x))

where FX and FY are the cumulative distribution functions (CDFs) for X and Y , respec-

tively.

We assume that d-dimensional heterogeneities are observable where workers and firms are

characterized by X = (X1, . . . , Xd) ∈ X ⊂ Rd and Y = (Y1, . . . , Yd) ∈ Y ⊂ Rd, respectively.

Then, assortativity involves properties of the first derivative of the matching function, given
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by ∇Y (X) = (∇Y (X))ij = ∂Yi/∂Xj . Lindenlaub (2017) develops a theoretical framework

that generalizes the scalar notion of PAM to the multidimensional one as follows:

Definition 3.1 (Multidimensional Assortative Matching). The sorting pattern is PAM

(NAM) if for all X,

∂Y`
∂X`

> (<) 0 for ` = 1, . . . , d, and det (∇Y (X)) > 0.

We further assume that every firm produces a single homogeneous good by combining all

inputs. If worker X works for firm characterized by Y , this generates a quantity of output

Φ (X,Y ). We consider the social planner’s problem maximizing the total output assigning

workers to firms. This leads to the Monge-Kantorovich problem:

sup
π∈M(PX ,PY )

∫
X×Y

Φ (X,Y ) dπ (X,Y ) (3.1)

where M (PX , PY ) is the set of all joint measures admitting PX and PY as marginals on X

and Y respectively. In most cases, the above problem leads to the dual problem:

inf
g∈G

EX [g (X)] + EY
[

sup
x∈X
{Φ (x, Y )− g (x)}

]
, s.t.

∫
X
g (X) dX = 0. (3.2)

We now consider the firm’s profit maximization problem. By assuming that the wage

function, w, is not a function of skills demand, the firm’s problem can be written as

max
x∈X
{Φ (x, y)− w (x)} .

We aim to find the equilibrium assignment, T : X → Y, and wage function, w : X → R+.

Lindenlaub (2017) provides the sufficient conditions on the technology under which sorting

is obtained. The existence of a unique deterministic equilibrium depends on well-established

results in the optimal transport literature. Adding to Proposition 1 in Lindenlaub (2017),

the equilibrium wage and matching functions are obtained in terms of the solution to the

dual optimal transport problem by applying Lemma 2.1 in Chapter 2:

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold. Then, there exists the unique
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solution, g0 (x), for (3.2). Furthermore, the equilibrium wage function is given by w (X) =

g0 (X) + c, where c is the constant of integration, and the map T : X → Y, satisfying

∇Xg0 (X) := ∇XΦ (X,Y )|Y=T (X), is the unique equilibrium assignment.

To apply this multidimensional matching framework to the technological change, we

specify the technology to X ′AY with a d × d matrix A. We assume that there are sets of

firms and workers with d = 2 without loss of generality. Every worker is endowed with a

bundle of cognitive and manual skills, X = (XC , XM ) ∈ X = R2. Points in X represent

worker types. In turn, each firm is endowed with both cognitive and manual skill demands,

Y = (YC , YM ) ∈ Y = R2. Coordinate YC (respectively manual YM ) corresponds to the

productivity or skill requirement of cognitive task C (respectively manual task M). Points

in Y represent firm types. We denote the marginals of (XC , XM ) and (YC , YM ) by PX and

PY respectively.

We consider the social planner’s problem with the following technology:

Φ (X,Y ; θ) = X ′AY +X ′b

:=

(
XC XM

)αCC αCM

αMC αMM


YC
YM

+

(
XC XM

)βC
βM

 .

Here the elements of A represent the level of worker-job complementabilities or substitutabil-

ities. The diagonal elements capture within-task complementarity and the off-diagonal ele-

ments indicate between-task complementarity. We note from Proposition 2 in Lindenlaub

(2017) that if A is a diagonal matrix with all positive principal minors, there exists a unique

optimal matching function T satisfying PAM.

Assumption 3.1. A is invertible.

Let Ỹ = AY . Since the assignment is unaffected by non-interaction terms, the original

problem (3.1) and its dual problem can be rewritten as

sup
π∈M(PX ,PỸ )

Eπ
[
X ′Ỹ

]
,

inf
g∈G

EX [g (X)] + EỸ

[
sup
x∈X

{
X ′Ỹ − g (x)

}]
, s.t.

∫
X
g (X) dX = 0. (3.3)
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We can interpret this problem as assigning from X to AY := {AY : Y ∈ Y}.

Lindenlaub (2017) derives T and w in closed form under the assumption that x and

y follow bivariate standard normal distributions. Using the explicit form of T and w, she

estimates the production function, Φ (X,Y ; θ), to investigate how technology in the U.S. has

evolved over time. The following statement follows from the existing results in the optimal

transport literature and generalizes the results in Lindenlaub (2017) by allowing X and Y to

be non-Gaussian. The equilibrium matching and wage, Y ∗ = (Y ∗C , Y
∗
M ) and w∗, are derived

in terms of the solution of the dual Monge-Kantorovich problem:

Corollary 3.1. Suppose that Assumptions 2.1 and 3.1 are hold. Then, there exists the

unique convex solution, g0 (X;A), for (3.3), and the equilibrium assignment and wage func-

tion are given by

A

Y ∗C (X)

Y ∗M (X)

 = ∇Xg0 (X;A) ⇒

Y ∗C (X)

Y ∗M (X)

 = A−1

∂g0 (X;A) /∂XC

∂g0 (X;A) /∂XM

 ,

w∗ (X) = g0 (X;A) + βCXC + βMXM + c,

where c is the constant of integration.

Proof. We note from Proposition 1.(i) in Lindenlaub (2017) that

∇w∗ (X)−

βC
βM

 = ∇XX ′Ỹ
∣∣∣
Ỹ=T (X)

= ∇g0 (X;A) .

It implies that w∗ (X) = g0 (X;A) + βCXC + βMXM + c.

This specification follows from the existing results in the optimal transport literature

(see, Villani, 2008; Lindenlaub, 2017). Also, the result coincides with the interpretation of

g0 (X) and h0 (Y ), which are the equilibrium payoffs that worker x and firm y receive at

equilibrium. We add non-interaction terms using the first-order condition of firm’s problem.

In the dual problem (3.2), we may impose the constraint, g (0) = 0, among other constraints

such as zero mean of g (X). Then, c equals the wage of the worker having a pair of cognitive

and manual skills, (0, 0).
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Lindenlaub (2017) derives T = ∇g0 and w in closed form under the assumption that X

and Y follow bivariate standard normal distributions.1 However, in most cases, X and Y are

not bivariate normally distributed. To employ the closed forms of equilibrium functions, she

transformed the original data. Figure 3.1 illustrates how she derives the equilibrium assign-

ment and wage function explicitly from transformed data. To align the data with the model

that features standard Gaussian distribution, the empirical distributions are transformed

into Gaussian copulas. Each one-dimensional variables are converted into Gaussian vari-

ables using the inverse transform method, and their dependence is modeled using Gaussian

copula. If the transformed data follow the bivariate normal distribution, this transforma-

tion provides a way of studying dependency independent of the marginals by removing the

marginal characteristics. However, joint distribution of two normally distributed random

variables does not always follow the bivariate normal. When transformed data, X̃ and Ỹ ,

do not follow bivariate normal distribution, the model based on the closed form expression

for g
(
X̃;A

)
can be misspecified.

3.3 Model and identification

Let {(wi, X ′i, Y ′i )}ni=1 represent an independent and identically distributed (i.i.d.) sequence

of n matched observations on the worker i’s wage wi, cognitive and manual skills Xi =

(XCi, XMi)
′, and on the matched job’s skill demands Yi = (YCi, YMi)

′. Any model of

1LetX ∼ N

(
0,

(
1 ρX
ρX 1

))
and Y ∼ N

(
0,

(
1 ρY
ρY 1

))
. Then, a unique equilibrium matching function

T ∗ and wage function w∗ for the technology Φ (X,Y ) = αC (XCYC + γXMYM ) + βCXC + βMXM are as
follows:

Y = T ∗ (X; γ, ρX , ρY ) , w = w∗ (X; θ, ρX , ρY )

where

T ∗ (X; γ, ρX , ρY ) =

(
J11 (γ, ρX , ρY ) J12 (γ, ρX , ρY )
J21 (γ, ρX , ρY ) /γ J22 (γ, ρX , ρY ) γ

)
X,

w∗ (X; θ, ρX , ρY ) =
1

2
αCX

′
(
J11 (γ, ρX , ρY ) J12 (γ, ρX , ρY )
J21 (γ, ρX , ρY ) J22 (γ, ρX , ρY )

)
X + βCXC + βMXM + c

with the constant of integration c and(
J11 (γ, ρX , ρY ) J12 (γ, ρX , ρY )
J21 (γ, ρX , ρY ) J22 (γ, ρX , ρY )

)
=

1√
1 + 2γ

(
ρXρY +

√
1− ρ2X

√
1− ρ2Y + γ2

)
 1 + γ

√
1−ρ2

Y√
1−ρ2

X

γ

(
ρY − ρX

√
1−ρ2

Y√
1−ρ2

X

)
γ

(
ρY − ρX

√
1−ρ2

Y√
1−ρ2

X

)
γ

(
γ +

√
1−ρ2

Y√
1−ρ2

X

)
 .
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X ∼ FX

Y ∼ FY

X̃C = F−1
Z (FXC (XC)) ∼ N (0, 1)

X̃M = F−1
Z (FXM (XM )) ∼ N (0, 1)

ỸC = F−1
Z (FYC (YC)) ∼ N (0, 1)

ỸM = F−1
Z (FYM (YM )) ∼ N (0, 1)

(
X̃C

X̃M

)
∼ N

(
0,

(
1 ρX
ρX̃ 1

))

(
ỸC
ỸM

)
∼ N

(
0,

(
1 ρỸ
ρỸ 1

))
Z ∼ N (0, 1)

?

?

T (X) T̃
(
X̃
)

Figure 3.1: Lindenlaub (2017)

matching based on optimal transport will not be exploitable because it will generate far

too strong predictions. Some matchings will never hold. Hence, we need to regularize the

matching model. The standard approach is to allow for a class of unobserved heterogeneity

or search frictions, but we introduce measurement error in the equilibrium functions to

keep the model in line with the theory of optimal transport.23 By doing this, it keeps the

empirical model in line with the theory:

wi = w∗i + εwi = g (Xi;A) + βCXCi + βMXMi + c+ εwi;

AYi = A (Y ∗i + εY i) = ∇g (Xi;A) +A

εCi
εMi

 (3.4)

with the exogeneity of X:

E [εwi|Xi] = E [εCi|Xi] = E [εMi|Xi] = 0 (3.5)

Let θ =
(
vec (A′)′ , b′, c

)′
= (αCC , αCM , αMC , αMM , βC , βM , c)

′ denote a vector of un-

known finite-dimensional parameters and θ ∈ Θ where Θ is a compact subset of R7. We

2Based on the bivariate normality of X and Y , the closed form expression for g (X) involves the productiv-
ity correlation under the bivariate normality, but Lindenlaub (2017) uses a correlation of error contaminated
YC and YM , which is different from the productivity correlation. The estimation result with data shows that
the estimated variances of measurement errors, εC and εM are greater than one, which is not desirable in the
setting. If the measurement error is introduced in the assignment equation, then the productivity correlation
should be reformulated.

3Notice that we could avoid a situation in which the unobserved heterogeneity affects the assignment by
assuming that it involves in non-interaction terms.
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denote Zi = (wi, X
′
i, Y

′
i )′ and ρ ≡ (ρ1, ρ2, ρ3)′ ∈ R3, where

ρ1 (wi, Xi;βC , βM , c, g) = wi − (g (Xi) + βCXCi + βMXMi + c) ,

ρ2 (Yi, Xi;αCC , αCM , g) = αCCYCi + αCMYMi − ∂g (Xi) /∂XC ,

ρ3 (Yi, Xi;αMC , αMM , g) = αMCYCi + αMMYMi − ∂g (Xi) /∂XM .

For each observation i, the model (3.4) satisfies (3.5), which we rewrite as

E [ρ (Zi; θ0, g0) |Xi] = 0, (3.6)

where (θ0, g0) is the true but unknown parameter.

Here, we estimate parameters using a standard SMD estimator, which does not require

the closed form of function g. The parameters (θ, g), where θ = (A, b, c) and g is an unknown

convex function, are identified from Corollary 3.1 and the exogeneity of X:

Theorem 3.2. Suppose that Assumptions 2.1, 3.1, and (3.6) hold. Then, θ and g are

identified.

Proof of Theorem 3.2. We first note from E [εw|X] = 0 that the convex function g̃ (X) =

E [w|X] = g (X) + Xb + c is easily identified. Since ∇g̃ (X) is Then, the remaining exo-

geneities of X, E [εC |X] = E [εM |X] = 0, and the invertibility of A imply that A and b

are identified. Finally, the specification for g̃ and the normalization for g identify c and

g (X) = g̃ (X)− βCXC − βMXM − c:

∫
X

(g̃ (X)− βCXC − βMXM − c) dX = 0.

Assumption 2.1 and 3.1 imply that there exists a unique deterministic equilibrium with

unique convex g, which follows from the theory of optimal transport (see, e.g., Villani,

2008; De Philippis and Figalli, 2014). Assumption 3.1 guarantees the injectivity of Y 7→

∇XΦ (X,Y ) for each fixed X, which can be viewed as a generalization of the Spence-Mirrlees

condition. Furthermore, the convexity of g implies that E
[
∇g (X)∇g (X)′

]
has full rank,
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which implies that A and b are identified.

3.4 Sieve minimum distance estimation

We consider the model (3.4) with diagonal A = αCdiag (1, γ) and apply the sieve minimum

distance (SMD) estimation method of Ai and Chen (2003) for semiparametric conditional

moment restrictions. Notice that γ represents the relative level of complementarities across

cognetive and manual tasks. First we approximate the unknown function g ∈ G by gn ∈ Gn

where Gn is an approximating function space becoming dense in G as n → ∞. Then for

given (θ, gn) in the parameter space Θ× Gn, we estimate the conditional moment function

m (X, θ, g) = E [ρ (Z; θ, g)|X] nonparametrically by m̂ (X, θ, g). Finally, we estimate the θ

and the unknown sieve coefficient of gn jointly by applying the SMD procedure:

min
(θ,g)∈Θ×Gn

n∑
i=1

m̂ (Xi; θ, g)′
[
Σ̂0 (Xi)

]−1
m̂ (Xi; θ, g) ,

where Σ̂0 (X) is a consistent estimator of the optimal weighting matrix Σ0 (X).

We estimate the parameter using the three-step procedure proposed in Ai and Chen

(2003), which is summarized in the table.

Algorithm: Computing the Sieve MD Estimator of Φ (X,Y ∗; θ)

Obtain an initial consistent sieve MD estimator
(
θ̃n, g̃n

)
by

min(θ,g)

∑n
i=1 m̂ (Xi; θ, g)′ m̂ (Xi; θ, g) ,

where m̂ (Xi; θ, g) is the sieve least square estimator of E [ρ (Z; θ, g)|X].

Obtain a consistent estimator Σ̂0 (X) of Σ0 (X) = Var [ρ (Z; θ, g)|X]

using
(
θ̃n, g̃n

)
and sieve LS estimation.

Obtain the optimally weighted sieve MD estimator
(
θ̂n, ĝn

)
by

min(θ,g)

∑n
i=1 m̂ (Xi; θ, g)′

[
Σ̂0 (Xi)

]−1
m̂ (Xi; θ, g).

When ρ (Z; θ, g) − ρ (Z; θ0, g0) does not depend on Y , we can apply the sieve GLS

procedure with the replacement of m̂ (X; θ, g) by ρ (Zi; θ, g):

min
(θ,g)

n∑
i=1

ρ (Zi; θ, g)′
[
Σ̂0 (Xi)

]−1
ρ (Zi; θ, g) .
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If we change ρ2 to ρ̃2 (YM , X; γ, g) = YM − (∂g (X) /∂XM ) /γ, ρ̃ (Z; θ, g)− ρ̃ (Z; θ0, g0) with

ρ̃2 does not depend on Y . However, ρ̃2 may not satisfy the pointwise Hölder continuity in

γ, which is the typically imposed sufficient condition in the literature such as Ai and Chen

(2003).

For each fixed (X, θ, g), it is required to estimate m (X, θ, g) and Σ0 (X). Let p0j (X),

j = 1, . . . , Jn, be a sequence of known basis functions approximating any square inte-

grable function of X well as Jn → ∞. With pJn (X) = (po1 (X) , . . . , p0Jn (X))′ and

P =
(
pJn (X1) , . . . , pJn (Xn)

)′
. Then the sieve LS estimators of m (X, θ, g) and Σ0 (X)

are

m̂ (X, θ, g) =
n∑
i=1

ρ (Zi; θ, g) pJn (Xi)
′ (P ′P )−1

pJn (X) ,

Σ̂0 (X) =
n∑
i=1

ρ
(
Zi; θ̃, g̃n

)
ρ
(
Zi; θ̃, g̃n

)′
pJn (Xi)

′ (P ′P )−1
pJn (X) ,

where
(
θ̃, g̃n

)
is the SMD estimator obtained in the first step.

We use the weighted bootstrap method as an inference method. Ma and Kosorok (2005)

and Chen and Pouzo (2009) established results for a semiparametric M-estimation with

or without nonparametric endogeneity, respectively. We employ there results to obtain

distributional approximation for θ̂. To describe this method, consider an i.i.d. sample of

positive weights, {πi}ni=1, satisfying E [πi] = 1, Var (πi) = 1, and is independent of the data.

We define the weighted bootstrap estimator θ̂b as the solution to the weighted minimization

problem.

3.5 Empirical application to U.S. sorting and wage inequality

shifts

We apply the sieve MD procedure to estimate the production using the national longitudinal

survey of youth (NLSY) and O*NET4 data. The NLSY and O*NET data are used to

construct a two-dimensional vector of workers’ cognitive and manual skills as well as the

4U.S. Department of Labour Occupational Characteristics Database
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cognitive and manual skill requirements of firms.5 To assess the effect of technological

changes on wage inequality, we compare the data sets based on two cohorts: the first starting

in 1979 (NLSY79) and the second starting in 1997 (NLSY97). We focus on employed workers

between the ages of 27 and 29 in 1990 to 1991 and 2009 to 10 (from the NLSY79 and NLSY97

respectively). The wage, w, is the hourly rate adjusted by the CPI.

Two-dimensional skill demand is constructed from the O*NET, which contains informa-

tion on skill requirements for occupations. We use a dataset for (YC , YM ) constructed by

Sanders (2016). We then match individual’s education and training to their corresponding

occupation in the NLSY. The matched value of (XC , XM ) is (YC , YM ) from O*NET. It is

important to note that the workers’ skills are independent of their occupation. Table 3.1

illustrates the summary statistics of both workers’ skills and firms’ skill demand.

Table 3.1: Summary statistics of skills and skill demand
1990/91 (n = 2984) 2009/10 (n = 4495)

XC XM YC YM XC XM YC YM
Mean 0.3596 -0.2912 0.0135 -0.1189 0.5667 -0.6601 0.0468 -0.2509
SD 0.7423 0.9923 0.8490 1.0240 0.7556 0.8358 0.9280 0.9656
Min -2.0595 -1.7004 -2.0622 -1.6949 -2.3019 -1.8116 -2.5200 -1.6597
Max 2.1649 2.1855 2.0925 2.1895 1.9160 2.1838 3.0504 2.1351

To align the data with the model that features standard Gaussian distribution, the em-

pirical distributions are transformed into Gaussian copulas. Each one-dimensional variable

is converted into Gaussian variables using the inverse transform method, and their depen-

dence is modeled using Gaussian copula. We employ Mardia’s test6 (Mardia, 1970) to check

the bivariate normality for each two-dimensional variable. Table 3.2 shows that every X̃ and

Ỹ for the two periods did not follow the bivariate normal distribution. Using SME procedure

5In this exercise, we rely on the data constructed by Lindenlaub (2017).
6Create the n× n matrix:

C = (cij) = X∗S−1 (X∗)
′
,

where the ith row of X∗, X∗i = X̃i− ¯̃X, and define multivariate measures of skewness and kurtosis as follows:

b1 =
1

n2

n∑
i=1

n∑
j=1

c3ij , b2 =
1

n

n∑
i=1

c2ii

Under multidimensional normality, the limiting distributions of

nb1
6
,

√
n (b2 − d (d+ 2))√

8d (d+ 2)

are a chi-square distribution with d (d+ 1) (d+ 2) /6 degrees of freedom and a N (0, 1) distribution, respec-
tively.
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is recommended because it does not require the multivariate normality of variables.

Table 3.2: Multivariate normality: Mardia statistics (p-value) of transformed data
1990/91 (n90 = 2984) 2009/10 (n00 = 4495)

X̃ Ỹ X̃ Ỹ

Skewness 4.58 (0.333) 100.09 (0.000) 16.34 (0.003) 145.14 (0.000)
Kurtosis 4.44 (0.000) 0.29 (0.774) 14.42 (0.000) 1.98 (0.048)

We estimate the model for each period separately. We apply the SMD procedure using

a finite-dimensional Bernstein polynomial sieve to construct the approximating space Gn of

G. The estimation results for technology parameters are given in Table 3.3. We report the

results with Bernstein(6) and Bernstein(10) as Gn, and pJn
(
X̃
)

for m̂ and Σ̂ consisting

of Bernstein(3) and Bernstein(5). There is a substantial decrease in δ, which represents

the relative complementarities across tasks. This shows that technological advances have

replaced workers for manual tasks but increased strong complementarities between skills

and job attributes in cognitive tasks. In this two-dimensional world, the cognitive dimension

becomes much more important in sorting. The parameters for non-interaction terms have

no impact on the assignment and the curvature of the wage function. The increase in λ

means that the productivity of cognitive skill also increases. We note that this productivity,

unlike δ, is independent of a firm’s cognitive skill demand. Overall, our results are consistent

with the results in Lindenlaub (2017). However, their magnitudes are different. For both

two period, the estimate of α is much bigger with a sieve MD estimation.

Table 3.3: Estimates of technology parameters
1990/91 2009/10

ML SMD ML SMD

αC 0.446 (0.019) 3.777 (0.599) 0.712 (0.015) 2.734(0.632)
γ 0.964 (0.058) 0.298 (0.040) -0.300 (0.024) 0.170 (0.053)
βC 1.737 (0.014) 1.655 (0.089) 2.079 (0.012) 2.003 (0.090)
βM -0.361 (0.014) -0.347 (0.088) 0.116 (0.012) 0.068 (0.082)
R2 0.070 0.082 0.052 0.054

Standard errors in the parentheses

We now consider the effect of technological changes on wage inequality. Wage polariza-

tion is defined as the wage growth in the bottom and upper tails relative to the median.

This phenomenon characterizes the U.S. labour market until the late 2000s. Figure 3.2 plots

how the wages relative to the median wage change between 1990/91 and 2009/10 by wage
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percentile. We find that there is a increases in upper tail wage inequality and a decrease in

lower tail wage inequality. However, our estimated models with both transformed and un-

transformed data do not account for wage polarization. This result is inconsistent with the

result presented in Lindenlaub (2017), who shows that the estimated technological changes,

αC and γ, could possibly trigger the wage polarization.
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Figure 3.2: Wage polarization (data and model)

In sum, the matching model with two-dimensional heterogeneity is not sufficient to

explain the phenomena in the labor market fully. We could think of possible extensions.

I derive the identification result for the technology with between-task complementarities,

but the estimation is based on the bi-linear technology to compare with the results in

Lindenlaub (2017). Also, there might be another heterogeneity, e.g. interpersonal skill,

affecting the assignment. Finally, in our framework, all workers with same cognitive-manual

skills matched firms with the same skill demand without randomness. It suggests that we

could consider unobserved heterogeneity.
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3.6 Conclusion

In this chapter, we studied multidimensional matching models as an optimal transport

problem. Based on the identification and regularity of a solution to the optimal transport

problem, we propose to apply the SMD procedure to estimate the model. Our application

to multidimensional matching model in the U.S. shows that worker-job complementarities

in manual skills strongly decreased, whereas complementarities in cognitive skills increased.

This phenomenon is consistent with that found in Lindenlaub (2017), but the magnitudes

between two methods are quite different. We surmise that it might be due to the risk of

misspecification.

I would like to highlight two potential directions for future work. The first direction is

to introduce the measurement error in workers’ characteristics as well. Ben-Moshe (2019)

analyzes the classical linear regression model with measurement errors in all the variables.

I hope to study the extension of this to the nonparametric regression models.

We can also think of other ways of introducing randomness in the assignment, for exam-

ple, search frictions and unobserved heterogeneity. Although Eeckhout and Kircher (2011)

develop the theory in matching with search frictions, it is restricted to the one-dimensional

case. It will be challenging to extend the optimal transport approach to multidimensional

setting.
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